101
|
A microfluidic perspective on conventional in vitro transcranial direct current stimulation methods. J Neurosci Methods 2023; 385:109761. [PMID: 36470469 PMCID: PMC9884911 DOI: 10.1016/j.jneumeth.2022.109761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a promising non-invasive brain stimulation method to treat neurological and psychiatric diseases. However, its underlying neural mechanisms warrant further investigation. Indeed, dose-response interrelations are poorly understood. Placing explanted brain tissue, mostly from mice or rats, into a uniform direct current electric field (dcEF) is a well-established in vitro system to elucidate the neural mechanism of tDCS. Nevertheless, we will show that generating a defined, uniform, and constant dcEF throughout a brain slice is challenging. This article critically reviews the methods used to generate and calibrate a uniform dcEF. We use finite element analysis (FEA) to evaluate the widely used parallel electrode configuration and show that it may not reliably generate uniform dcEF within a brain slice inside an open interface or submerged chamber. Moreover, equivalent circuit analysis and measurements inside a testing chamber suggest that calibrating the dcEF intensity with two recording electrodes can inaccurately capture the true EF magnitude in the targeted tissue when specific criteria are not met. Finally, we outline why microfluidic chambers are an effective and calibration-free approach of generating spatiotemporally uniform dcEF for DCS in vitro studies, facilitating accurate and fine-scale dcEF adjustments. We are convinced that improving the precision and addressing the limitations of current experimental platforms will substantially improve the reproducibility of in vitro experimental results. A better mechanistic understanding of dose-response relations will ultimately facilitate more effective non-invasive stimulation therapies in patients.
Collapse
|
102
|
Wessel MJ, Draaisma LR, Hummel FC. Mini-review: Transcranial Alternating Current Stimulation and the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2023; 22:120-128. [PMID: 35060078 DOI: 10.1007/s12311-021-01362-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 02/01/2023]
Abstract
Oscillatory activity in the cerebellum and linked networks is an important aspect of neuronal processing and functional implementation of behavior. So far, it was challenging to quantify and study cerebellar oscillatory signatures in human neuroscience due to the constraints of non-invasive cerebellar electrophysiological recording and interventional techniques. The emerging cerebellar transcranial alternating current stimulation technique (CB-tACS) is a promising tool, which may partially overcome this challenge and provides an exciting non-invasive opportunity to better understand cerebellar physiology.Several studies have successfully demonstrated that CB-tACS can modulate the cerebellar outflow and cerebellum-linked behavior. In the present narrative review, we summarize current studies employing the CB-tACS approach and discuss open research questions. Hereby, we aim to provide an overview on this emerging electrophysiological technique and strive to promote future research in the field. CB-tACS will contribute in the further deciphering of cerebellar oscillatory signatures and its role for motor, cognitive, or affective functions. In long term, CB-tACS could develop into a therapeutic tool for retuning disturbed oscillatory activity in cerebellar networks underlying brain disorders.
Collapse
Affiliation(s)
- Maximilian J Wessel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland. .,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL Valais), Sion, Switzerland. .,Department of Neurology, Julius-Maximilians-University Würzburg, Würzburg, Germany.
| | - Laurijn R Draaisma
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL Valais), Sion, Switzerland
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL Valais), Sion, Switzerland.,Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
103
|
Krause MR, Vieira PG, Pack CC. Transcranial electrical stimulation: How can a simple conductor orchestrate complex brain activity? PLoS Biol 2023; 21:e3001973. [PMID: 36716309 PMCID: PMC9886255 DOI: 10.1371/journal.pbio.3001973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transcranial electrical stimulation (tES) is one of the oldest and yet least understood forms of brain stimulation. The idea that a weak electrical stimulus, applied outside the head, can meaningfully affect neural activity is often regarded as mysterious. Here, we argue that the direct effects of tES are not so mysterious: Extensive data from a wide range of model systems shows it has appreciable effects on the activity of individual neurons. Instead, the real mysteries are how tES interacts with the brain's own activity and how these dynamics can be controlled to produce desirable therapeutic effects. These are challenging problems, akin to repairing a complex machine while it is running, but they are not unique to tES or even neuroscience. We suggest that models of coupled oscillators, a common tool for studying interactions in other fields, may provide valuable insights. By combining these tools with our growing, interdisciplinary knowledge of brain dynamics, we are now in a good position to make progress in this area and meet the high demand for effective neuromodulation in neuroscience and psychiatry.
Collapse
Affiliation(s)
- Matthew R. Krause
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- * E-mail: (MRK); (PGV); (CCP)
| | - Pedro G. Vieira
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- * E-mail: (MRK); (PGV); (CCP)
| | - Christopher C. Pack
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- * E-mail: (MRK); (PGV); (CCP)
| |
Collapse
|
104
|
Bond E. The contribution of coherence field theory to a model of consciousness: electric currents, EM fields, and EM radiation in the brain. Front Hum Neurosci 2023; 16:1020105. [PMID: 36760225 PMCID: PMC9903675 DOI: 10.3389/fnhum.2022.1020105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/19/2022] [Indexed: 01/26/2023] Open
Abstract
A paradigm in neuroscience is developing which views resonance as the phenomenon responsible for consciousness. Much progress is being made in the investigation of how resonance as oscillating flows within the brain's electric field might result in production of mind from matter. But it's mostly unknown how vibrations among features of matter such as nanoscale atomic structures and photonic waves may participate in forming the basic substance of first-person consciousness, meaning percepts such as colors, textures, sounds, thoughts, feelings et cetera. Initial evidence at the leading edge of quantum biology suggests that light and atoms combine to form synchronously resonating structures of contiguous energy which I have termed coherence fields. My hypothesis is that coherence fields as atomic nodes within expanses of integrating photonic waves are the fundamental unit of first-person percepts insofar as they arise from electromagnetic matter. A concept of quantum coherence is formulated based on a new phenomenology of matter's nanoscale properties, and this is shown to tie what we have thus far discovered of neural anatomy into a comprehensive model of how electrical impulses travel through neurons as electron currents driven by coherence at the quantum scale. Transmembrane electric fields generated by ionic currents, synaptic phase regulation, and perhaps further mechanisms have been hypothesized as responsible for local field potentials (LFP) oscillations. Some insights into how emergent, macroscopic waves in the brain's electric field may reciprocally impact LFP propagation to control arousal, attention, and volition are briefly discussed. Activation of neural tissue is closely linked to temperature variation, and it is hypothesized that this is not merely a waste byproduct but constitutes a signature of coherence field modulation, with photonic waves of a primarily infrared spectral range functioning as an interstitial medium of the basic percept field. A variety of possible routes to coherence field modulation are outlined that derive from the mechanisms of electric currents, EM fields, EM radiation, and entanglement. If future experimental designs continue to validate coherence field theory, this could set science on course to resolve the mind/body problem.
Collapse
|
105
|
Abstract
Conventional theories of consciousness (ToCs) that assume that the substrate of consciousness is the brain's neuronal matter fail to account for fundamental features of consciousness, such as the binding problem. Field ToC's propose that the substrate of consciousness is the brain's best accounted by some kind of field in the brain. Electromagnetic (EM) ToCs propose that the conscious field is the brain's well-known EM field. EM-ToCs were first proposed only around 20 years ago primarily to account for the experimental discovery that synchronous neuronal firing was the strongest neural correlate of consciousness (NCC). Although EM-ToCs are gaining increasing support, they remain controversial and are often ignored by neurobiologists and philosophers and passed over in most published reviews of consciousness. In this review I examine EM-ToCs against established criteria for distinguishing between ToCs and demonstrate that they outperform all conventional ToCs and provide novel insights into the nature of consciousness as well as a feasible route toward building artificial consciousnesses.
Collapse
|
106
|
Lee TL, Lee H, Kang N. A meta-analysis showing improved cognitive performance in healthy young adults with transcranial alternating current stimulation. NPJ SCIENCE OF LEARNING 2023; 8:1. [PMID: 36593247 PMCID: PMC9807644 DOI: 10.1038/s41539-022-00152-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation used for improving cognitive functions via delivering weak electrical stimulation with a certain frequency. This systematic review and meta-analysis investigated the effects of tACS protocols on cognitive functions in healthy young adults. We identified 56 qualified studies that compared cognitive functions between tACS and sham control groups, as indicated by cognitive performances and cognition-related reaction time. Moderator variable analyses specified effect size according to (a) timing of tACS, (b) frequency band of simulation, (c) targeted brain region, and (b) cognitive domain, respectively. Random-effects model meta-analysis revealed small positive effects of tACS protocols on cognitive performances. The moderator variable analyses found significant effects for online-tACS with theta frequency band, online-tACS with gamma frequency band, and offline-tACS with theta frequency band. Moreover, cognitive performances were improved in online- and offline-tACS with theta frequency band on either prefrontal and posterior parietal cortical regions, and further both online- and offline-tACS with theta frequency band enhanced executive function. Online-tACS with gamma frequency band on posterior parietal cortex was effective for improving cognitive performances, and the cognitive improvements appeared in executive function and perceptual-motor function. These findings suggested that tACS protocols with specific timing and frequency band may effectively improve cognitive performances.
Collapse
Affiliation(s)
- Tae Lee Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Hanall Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Nyeonju Kang
- Department of Human Movement Science, Incheon National University, Incheon, South Korea.
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea.
- Division of Sport Science & Sport Science Institute, Incheon National University, Incheon, South Korea.
| |
Collapse
|
107
|
Wang B, Aberra AS, Grill WM, Peterchev AV. Responses of model cortical neurons to temporal interference stimulation and related transcranial alternating current stimulation modalities. J Neural Eng 2023; 19:10.1088/1741-2552/acab30. [PMID: 36594634 PMCID: PMC9942661 DOI: 10.1088/1741-2552/acab30] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Objective.Temporal interference stimulation (TIS) was proposed as a non-invasive, focal, and steerable deep brain stimulation method. However, the mechanisms underlying experimentally-observed suprathreshold TIS effects are unknown, and prior simulation studies had limitations in the representations of the TIS electric field (E-field) and cerebral neurons. We examined the E-field and neural response characteristics for TIS and related transcranial alternating current stimulation modalities.Approach.Using the uniform-field approximation, we simulated a range of stimulation parameters in biophysically realistic model cortical neurons, including different orientations, frequencies, amplitude ratios, amplitude modulation, and phase difference of the E-fields, and obtained thresholds for both activation and conduction block.Main results. For two E-fields with similar amplitudes (representative of E-field distributions at the target region), TIS generated an amplitude-modulated (AM) total E-field. Due to the phase difference of the individual E-fields, the total TIS E-field vector also exhibited rotation where the orientations of the two E-fields were not aligned (generally also at the target region). TIS activation thresholds (75-230 V m-1) were similar to those of high-frequency stimulation with or without modulation and/or rotation. For E-field dominated by the high-frequency carrier and with minimal amplitude modulation and/or rotation (typically outside the target region), TIS was less effective at activation and more effective at block. Unlike AM high-frequency stimulation, TIS generated conduction block with some orientations and amplitude ratios of individual E-fields at very high amplitudes of the total E-field (>1700 V m-1).Significance. The complex 3D properties of the TIS E-fields should be accounted for in computational and experimental studies. The mechanisms of suprathreshold cortical TIS appear to involve neural activity block and periodic activation or onset response, consistent with computational studies of peripheral axons. These phenomena occur at E-field strengths too high to be delivered tolerably through scalp electrodes and may inhibit endogenous activity in off-target regions, suggesting limited significance of suprathreshold TIS.
Collapse
Affiliation(s)
- Boshuo Wang
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Aman S. Aberra
- Department of Biomedical Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
| | - Warren M. Grill
- Department of Biomedical Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, School of Medicine, Duke University, Durham, NC 27710, USA
- Department of Neurosurgery, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Angel V. Peterchev
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC 27710, USA
- Department of Biomedical Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC 27708, USA
- Department of Neurosurgery, School of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
108
|
Khan A, Antonakakis M, Suntrup-Krueger S, Lencer R, Nitsche MA, Paulus W, Groß J, Wolters CH. Can individually targeted and optimized multi-channel tDCS outperform standard bipolar tDCS in stimulating the primary somatosensory cortex? Brain Stimul 2023; 16:1-16. [PMID: 36526154 DOI: 10.1016/j.brs.2022.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/22/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has emerged as a non-invasive neuro-modulation technique. Most studies show that anodal tDCS increases cortical excitability, however, with variable outcomes. Previously, we have shown in computer simulations that our multi-channel tDCS (mc-tDCS) approach, the distributed constrained maximum intensity (D-CMI) method can potentially lead to better controlled tDCS results due to the improved directionality of the injected current at the target side for individually optimized D-CMI montages. OBJECTIVE In this study, we test the application of the D-CMI approach in an experimental study to stimulate the somatosensory P20/N20 target source in Brodmann area 3b and compare it with standard bipolar tDCS and sham conditions. METHODS We applied anodal D-CMI, the standard bipolar and D-CMI based Sham tDCS for 10 min to target the 20 ms post-stimulus somatosensory P20/N20 target brain source in Brodmann area 3b reconstructed using combined magnetoencephalography (MEG) and electroencephalography (EEG) source analysis in realistic head models with calibrated skull conductivity in a group-study with 13 subjects. Finger-stimulated somatosensory evoked fields (SEF) were recorded and the component at 20 ms post-stimulus (M20) was analyzed before and after the application of the three tDCS conditions in order to read out the stimulation effect on Brodmann area 3b. RESULTS Analysis of the finger stimulated SEF M20 peak before (baseline) and after tDCS shows a significant increase in source amplitude in Brodmann area 3b for D-CMI (6-16 min after tDCS), while no significant effects are found for standard bipolar (6-16 min after tDCS) and sham (6-16 min after tDCS) stimulation conditions. For the later time courses (16-26 and 27-37 min post-stimulation), we found a significant decrease in M20 peak source amplitude for standard bipolar and sham tDCS, while there was no effect for D-CMI. CONCLUSION Our results indicate that targeted and optimized, and thereby highly individualized, mc-tDCS can outperform standard bipolar stimulation and lead to better control over stimulation outcomes with, however, a considerable amount of additional work compared to standard bipolar tDCS.
Collapse
Affiliation(s)
- Asad Khan
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany.
| | - Marios Antonakakis
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | | | - Rebekka Lencer
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund, Dortmund, Germany
| | - Walter Paulus
- Department of Neurology, Ludwig Maximilians University, München, Germany; Department of Clinical Neurophysiology, University Medical Center, Georg-August University, Göttingen, Germany
| | - Joachim Groß
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149 Münster, Germany
| | - Carsten H Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149 Münster, Germany
| |
Collapse
|
109
|
Shirehjini SN, Shahrabi Farahani M, Ibrahim MK, Salman HM, Motevalli S, Mohammadi MH. Mechanisms of Action of Noninvasive Brain Stimulation with Weak Non-Constant Current Stimulation Approaches. IRANIAN JOURNAL OF PSYCHIATRY 2023; 18:72-82. [PMID: 37159640 PMCID: PMC10163911 DOI: 10.18502/ijps.v18i1.11415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 12/24/2022]
Abstract
Objective: Non-constant current stimulation (NCCS) is a neuromodulatory method in which weak alternating, pulsed or random currents are delivered to the human head via scalp or earlobe electrodes. This approach is widely used in basic and translational studies. However, the underlying mechanisms of NCCS, which lead to biological and behavioral effects in the brain, remain largely unknown. In this review, we characterize NCCS techniques currently being utilized in neuroscience investigations, including transcranial alternating current stimulation (tACS), transcranial pulsed current stimulation (tPCS), transcranial random noise stimulation (tRNS), and cranial electrotherapy stimulation (CES). Method: We unsystematically searched all relevant conference papers, journal articles, chapters, and textbooks on the biological mechanisms of NCCS techniques. Results: The fundamental idea of NCCS is that these low-level currents can interact with neuronal activity, modulate neuroplasticity and entrain cortical networks, thus, modifying cognition and behavior. We elucidate the mechanisms of action for each NCCS technique. These techniques may cause microscopic effects (such as affecting ion channels and neurotransmission systems) and macroscopic effects (such as affecting brain oscillations and functional connectivity) on the brain through different mechanisms of action (such as neural entrainment and stochastic resonance). Conclusion: The appeal of NCCS is its potential to modulate neuroplasticity noninvasively, along with the ease of use and good tolerability. Promising and interesting evidence has been reported for the capacity of NCCS to affect neural circuits and the behaviors under their control. Today, the challenge is to utilize this advancement optimally. Continuing methodological advancements with NCCS approaches will enable researchers to better understand how NCCS can be utilized for the modulation of nervous system activity and subsequent behaviors, with possible applications to non-clinical and clinical practices.
Collapse
Affiliation(s)
- Samaneh Nazarpoy Shirehjini
- Department of Clinical Psychology, Faculty of Psychology, Khomeyni Shahr Branch, Islamic Azad University, Isfahan, Iran
| | | | - Mazin Khaleel Ibrahim
- Department of Accounting, College of Administration and Economics, Al-Farahidi University, Baghdad, Iraq
| | - Hayder Mahmood Salman
- Department of Computer Science, Al-Turath University College, Al Mansour, Baghdad, Iraq
| | - Saeid Motevalli
- Department of Psychology, Faculty of Social Sciences & Liberal Arts, UCSI University, Kuala Lumpur, Malaysia
| | | |
Collapse
|
110
|
Hazani JA. Sampling of environmental electromagnetic frequencies demonstrates the evolution of the nervous system toward social cognitive reflexes. Front Comput Neurosci 2023; 17:1008238. [PMID: 36908757 PMCID: PMC9996026 DOI: 10.3389/fncom.2023.1008238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/02/2023] [Indexed: 02/25/2023] Open
Abstract
The aim of this research is to help inspect the motion of cell life by applying electrical engineering scientific techniques to the cellular evolution of human neural networks. Using a mathematically rigorous theory of cellular biological progression, the hypothesis will demonstrate that cell life evolves toward increasing the organism's resonant energy transfer or "exposing points" with its natural environment. This increases the sampling points of electromagnetic radiation frequencies available for transferal into its biological system to stabilize its cellular reproduction cycle as a function of physical motion measurable in volt-ampere or calories/second as an experimental measure of fitness.
Collapse
|
111
|
Zhang M, Force RB, Walker C, Ahn S, Jarskog LF, Frohlich F. Alpha transcranial alternating current stimulation reduces depressive symptoms in people with schizophrenia and auditory hallucinations: a double-blind, randomized pilot clinical trial. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:114. [PMID: 36566277 PMCID: PMC9789318 DOI: 10.1038/s41537-022-00321-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/29/2022] [Indexed: 12/25/2022]
Abstract
People with schizophrenia exhibit reduced alpha oscillations and frontotemporal coordination of brain activity. Alpha oscillations are associated with top-down inhibition. Reduced alpha oscillations may fail to censor spurious endogenous activity, leading to auditory hallucinations. Transcranial alternating current stimulation (tACS) at the alpha frequency was shown to enhance alpha oscillations in people with schizophrenia and may thus be a network-based treatment for auditory hallucinations. We conducted a double-blind, randomized, placebo-controlled pilot clinical trial to examine the efficacy of 10-Hz tACS in treating auditory hallucinations in people with schizophrenia. 10-Hz tACS was administered in phase at the dorsolateral prefrontal cortex and the temporoparietal junction with a return current at Cz. Patients were randomized to receive tACS or sham for five consecutive days during the treatment week (40 min/day), followed by a maintenance period, during which participants received weekly tACS (40 min/visit) or sham. tACS treatment reduced general psychopathology (p < 0.05, Cohen's d = -0.690), especially depression (p < 0.005, Cohen's d = -0.806), but not auditory hallucinations. tACS treatment increased alpha power in the target region (p < 0.05), increased the frequency of peak global functional connectivity towards 10 Hz (p < 0.05), and reduced left-right frontal functional connectivity (p < 0.005). Importantly, changes in brain functional connectivity significantly correlated with symptom improvement (p < 0.05). Daily 10 Hz-tACS increased alpha power and altered alpha-band functional connectivity. Successful target engagement reduced depression and other general psychopathology symptoms, but not auditory hallucinations. Considering existing research of 10Hz tACS as a treatment for major depressive disorder, our study demonstrates its transdiagnostic potential for treating depression.
Collapse
Affiliation(s)
- Mengsen Zhang
- grid.410711.20000 0001 1034 1720Department of Psychiatry, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC USA
| | - Rachel B. Force
- grid.410711.20000 0001 1034 1720Department of Psychiatry, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC USA
| | - Christopher Walker
- grid.410711.20000 0001 1034 1720Department of Psychiatry, University of North Carolina, Chapel Hill, NC USA
| | - Sangtae Ahn
- grid.410711.20000 0001 1034 1720Department of Psychiatry, University of North Carolina, Chapel Hill, NC USA ,grid.258803.40000 0001 0661 1556School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, South Korea
| | - L. Fredrik Jarskog
- grid.410711.20000 0001 1034 1720Department of Psychiatry, University of North Carolina, Chapel Hill, NC USA
| | - Flavio Frohlich
- grid.410711.20000 0001 1034 1720Department of Psychiatry, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Neuroscience Center, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC USA ,grid.410711.20000 0001 1034 1720Department of Neurology, University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
112
|
Deterministic and Stochastic Components of Cortical Down States: Dynamics and Modulation. J Neurosci 2022; 42:9387-9400. [PMID: 36344267 PMCID: PMC9794366 DOI: 10.1523/jneurosci.0914-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Slow oscillations are an emergent activity of the cerebral cortex network consisting of alternating periods of activity (Up states) and silence (Down states). Up states are periods of persistent cortical activity that share properties with that of underlying wakefulness. However, the occurrence of Down states is almost invariably associated with unconsciousness, both in animal models and clinical studies. Down states have been attributed relevant functions, such as being a resetting mechanism or breaking causal interactions between cortical areas. But what do Down states consist of? Here, we explored in detail the network dynamics (e.g., synchronization and phase) during these silent periods in vivo (male mice), in vitro (ferrets, either sex), and in silico, investigating various experimental conditions that modulate them: anesthesia levels, excitability (electric fields), and excitation/inhibition balance. We identified metastability as two complementary phases composing such quiescence states: a highly synchronized "deterministic" period followed by a low-synchronization "stochastic" period. The balance between these two phases determines the dynamical properties of the resulting rhythm, as well as the responsiveness to incoming inputs or refractoriness. We propose detailed Up and Down state cycle dynamics that bridge cortical properties emerging at the mesoscale with their underlying mechanisms at the microscale, providing a key to understanding unconscious states.SIGNIFICANCE STATEMENT The cerebral cortex expresses slow oscillations consisting of Up (active) and Down (silent) states. Such activity emerges not only in slow wave sleep, but also under anesthesia and in brain lesions. Down states functionally disconnect the network, and are associated with unconsciousness. Based on a large collection of data, novel data analysis approaches and computational modeling, we thoroughly investigate the nature of Down states. We identify two phases: a highly synchronized "deterministic" period, followed by a low-synchronization "stochastic" period. The balance between these two phases determines the dynamic properties of the resulting rhythm and responsiveness to incoming inputs. This finding reconciles different theories of slow rhythm generation and provides clues about how the brain switches from conscious to unconscious brain states.
Collapse
|
113
|
Kasten FH, Herrmann CS. The hidden brain-state dynamics of tACS aftereffects. Neuroimage 2022; 264:119713. [PMID: 36309333 DOI: 10.1016/j.neuroimage.2022.119713] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/11/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Non-invasive techniques to electrically stimulate the brain such as transcranial direct and alternating current stimulation (tDCS/tACS) are increasingly used in human neuroscience and offer potential new avenues to treat brain disorders. Previous research has shown that stimulation effects may depend on brain-states. However, this work mostly focused on experimentally induced brain-states over the course of several minutes. Besides such global, long-term changes in brain-states, previous research suggests, that the brain is likely to spontaneously alternate between states in sub-second ranges, which is much closer to the time scale at which it is generally believed to operate. Here, we utilized Hidden Markov Models (HMM) to decompose magnetoencephalography data obtained before and after tACS into spontaneous, transient brain-states with distinct spatial, spectral and connectivity profiles. Only one out of four spontaneous brain-states, likely reflecting default mode network activity, showed evidence for an effect of tACS on the power of spontaneous α-oscillations. The identified state appears to disproportionally drive the overall (non-state resolved) tACS effect. No or only marginal effects were found in the remaining states. We found no evidence that tACS influenced the time spent in each state. Although stimulation was applied continuously, our results indicate that spontaneous brain-states and their underlying functional networks differ in their susceptibility to tACS. Global stimulation aftereffects may be disproportionally driven by distinct time periods during which the susceptible state is active. Our results may pave the ground for future work to understand which features make a specific brain-state susceptible to electrical stimulation.
Collapse
Affiliation(s)
- Florian H Kasten
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence "Hearing4All", Carl von Ossietzky University, Oldenburg, Germany; Centre de Recherche Cerveau & Cognition, CNRS, Toulouse, France; Université Toulouse III Paul Sabatier, Toulouse, France
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence "Hearing4All", Carl von Ossietzky University, Oldenburg, Germany; Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany.
| |
Collapse
|
114
|
Lee ARYB, Yau CE, Mai AS, Tan WA, Ong BSY, Yam NE, Ho CSH. Transcranial alternating current stimulation and its effects on cognition and the treatment of psychiatric disorders: a systematic review and meta-analysis. Ther Adv Chronic Dis 2022; 13:20406223221140390. [PMID: 36479141 PMCID: PMC9720798 DOI: 10.1177/20406223221140390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/03/2022] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Transcranial alternating current stimulation (TACS) is a non-invasive method of brain stimulation that is hypothesised to alter cortical excitability and brain electrical activity, modulating functional connectivity within the brain. Several trials have demonstrated its potential in treating psychiatric disorders such as depression and schizophrenia. OBJECTIVES To study the efficacy of TACS in ameliorating symptoms of depression and schizophrenia in patients and its effects on cognition in patients and healthy subjects compared to sham stimulation. DESIGN Systematic review with meta-analysis. DATA SOURCES AND METHODS This PROSPERO-registered systematic review (CRD42022331149) is reported according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. PubMed, EMBASE, CENTRAL and PsycINFO were searched from inception to March 2022. Only randomised-controlled trials were included. RESULTS A total of 12 randomised-controlled trials are reviewed for meta-analysis, with three randomised-controlled trials reporting only effects on cognition in psychiatric and cognitively impaired patients, three trials on cognition in healthy subjects, one trial on cognition in both patients and healthy subjects, one trial on only depression, two on both cognition and depression in patients and two on schizophrenia symptoms. No studies were at significant risk of bias. For cognition, TACS showed significant improvement [positive standardised mean differences (SMD) denoting improvement] over sham stimulation in those with psychiatric disorders with an SMD of 0.60 (95% confidence interval [CI]: 0.14, 1.06). Similarly, among patients with depression, an SMD of 1.14 (95% CI: 0.10, 2.18) was found significantly favouring TACS over sham stimulation. Two studies assessed the effect of TACS on schizophrenia symptoms with mixed results. CONCLUSION TACS has shown promise in ameliorating symptoms of both schizophrenia and depression in patients. TACS also improves cognition in both patients and healthy subjects. However, these findings are limited by the sample size of included studies, and future studies may be required to better our understanding of the potential of TACS. REGISTRATION PROSPERO (CRD42022331149).
Collapse
Affiliation(s)
| | - Chun En Yau
- MBBS Programme, Yong Loo Lin School of
Medicine, National University of Singapore, Singapore
| | - Aaron Shengting Mai
- MBBS Programme, Yong Loo Lin School of
Medicine, National University of Singapore, Singapore
| | - Weiling Amanda Tan
- MBBS Programme, Yong Loo Lin School of
Medicine, National University of Singapore, Singapore
| | - Bernard Soon Yang Ong
- MBBS Programme, Yong Loo Lin School of
Medicine, National University of Singapore, Singapore
| | - Natalie Elizabeth Yam
- MBBS Programme, Yong Loo Lin School of
Medicine, National University of Singapore, Singapore
| | - Cyrus Su Hui Ho
- Department of Psychological Medicine, Yong Loo
Lin School of Medicine, National University of Singapore, NUHS Tower Block,
Level 9, 1E Kent Ridge Road, Singapore 119228
| |
Collapse
|
115
|
Weisinger B, Pandey DP, Saver JL, Hochberg A, Bitton A, Doniger GM, Lifshitz A, Vardi O, Shohami E, Segal Y, Reznik Balter S, Djemal Kay Y, Alter A, Prasad A, Bornstein NM. Frequency-tuned electromagnetic field therapy improves post-stroke motor function: A pilot randomized controlled trial. Front Neurol 2022; 13:1004677. [PMID: 36452175 PMCID: PMC9702345 DOI: 10.3389/fneur.2022.1004677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/05/2022] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Impaired upper extremity (UE) motor function is a common disability after ischemic stroke. Exposure to extremely low frequency and low intensity electromagnetic fields (ELF-EMF) in a frequency-specific manner (Electromagnetic Network Targeting Field therapy; ENTF therapy) is a non-invasive method available to a wide range of patients that may enhance neuroplasticity, potentially facilitating motor recovery. This study seeks to quantify the benefit of the ENTF therapy on UE motor function in a subacute ischemic stroke population. METHODS In a randomized, sham-controlled, double-blind trial, ischemic stroke patients in the subacute phase with moderately to severely impaired UE function were randomly allocated to active or sham treatment with a novel, non-invasive, brain computer interface-based, extremely low frequency and low intensity ENTF therapy (1-100 Hz, < 1 G). Participants received 40 min of active ENTF or sham treatment 5 days/week for 8 weeks; ~three out of the five treatments were accompanied by 10 min of concurrent physical/occupational therapy. Primary efficacy outcome was improvement on the Fugl-Meyer Assessment - Upper Extremity (FMA-UE) from baseline to end of treatment (8 weeks). RESULTS In the per protocol set (13 ENTF and 8 sham participants), mean age was 54.7 years (±15.0), 19% were female, baseline FMA-UE score was 23.7 (±11.0), and median time from stroke onset to first stimulation was 11 days (interquartile range (IQR) 8-15). Greater improvement on the FMA-UE from baseline to week 4 was seen with ENTF compared to sham stimulation, 23.2 ± 14.1 vs. 9.6 ± 9.0, p = 0.007; baseline to week 8 improvement was 31.5 ± 10.7 vs. 23.1 ± 14.1. Similar favorable effects at week 8 were observed for other UE and global disability assessments, including the Action Research Arm Test (Pinch, 13.4 ± 5.6 vs. 5.3 ± 6.5, p = 0.008), Box and Blocks Test (affected hand, 22.5 ± 12.4 vs. 8.5 ± 8.6, p < 0.0001), and modified Rankin Scale (-2.5 ± 0.7 vs. -1.3 ± 0.7, p = 0.0005). No treatment-related adverse events were reported. CONCLUSIONS ENTF stimulation in subacute ischemic stroke patients was associated with improved UE motor function and reduced overall disability, and results support its safe use in the indicated population. These results should be confirmed in larger multicenter studies. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov/ct2/show/NCT04039178, identifier: NCT04039178.
Collapse
Affiliation(s)
| | - Dharam P. Pandey
- Manipal Hospital Physiotherapy and Rehabilitation, New Delhi, India
| | - Jeffrey L. Saver
- Department of Neurology, UCLA Comprehensive Stroke and Vascular Neurology Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | | | | | | | | | - Ofir Vardi
- BrainQ Technologies, Ltd., Jerusalem, Israel
| | - Esther Shohami
- BrainQ Technologies, Ltd., Jerusalem, Israel
- Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaron Segal
- BrainQ Technologies, Ltd., Jerusalem, Israel
| | | | | | | | - Atul Prasad
- Department of Neurology, B. L. Kapur Super Specialty Hospital (BLK), National Capital Territory of Delhi, New Delhi, India
| | | |
Collapse
|
116
|
Hu Z, Samuel IB, Meyyappan S, Bo K, Rana C, Ding M. Aftereffects of Frontoparietal Theta tACS on Verbal Working Memory: Behavioral and Neurophysiological Analysis. IBRO Neurosci Rep 2022; 13:469-477. [PMID: 36386597 PMCID: PMC9649961 DOI: 10.1016/j.ibneur.2022.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022] Open
Abstract
Verbal working memory is supported by a left-lateralized frontoparietal theta oscillatory (4–8 Hz) network. We tested whether stimulating the left frontoparietal network at theta frequency during verbal working memory can produce observable after-stimulation effects in behavior and neurophysiology. Weak theta-band alternating electric currents were delivered via two 4 × 1 HD electrode arrays centered at F3 and P3. Three stimulation configurations, including in-phase, anti-phase, or sham, were tested on three different days in a cross-over (within-subject) design. On each test day, the subject underwent three experimental sessions: pre-, during- and post-stimulation sessions. In all sessions, the subject performed a Sternberg verbal working memory task with three levels of memory load (load 2, 4 and 6), imposing three levels of cognitive demand. Analyzing behavioral and EEG data from the post-stimulation session, we report two main observations. First, in-phase stimulation improved task performance in subjects with higher working memory capacity (WMC) under higher memory load (load 6). Second, in-phase stimulation enhanced frontoparietal theta synchrony during working memory retention in subjects with higher WMC under higher memory loads (load 4 and load 6), and the enhanced frontoparietal theta synchronization is mainly driven by enhanced frontal→parietal theta Granger causality. These observations suggest that (1) in-phase theta transcranial alternating current stimulation (tACS) during verbal working memory can result in observable behavioral and neurophysiological consequences post stimulation, (2) the short-term plasticity effects are state- and individual-dependent, and (3) enhanced executive control underlies improved behavioral performance. Frontoparietal network was stimulated at theta frequency (4 - 8Hz) during verbal working memory and aftereffeccts analyzed In-phase frontoparietal theta stimulation improved working memory performance in participants with higher working memory capacity Enhanced behavioral performance was accompanied by enhanced frontoparietal theta synchrony Enhanced frontoparietal theta synchronization was driven by enhanced frontal→parietal theta Granger causality
Collapse
|
117
|
Gansel KS. Neural synchrony in cortical networks: mechanisms and implications for neural information processing and coding. Front Integr Neurosci 2022; 16:900715. [PMID: 36262373 PMCID: PMC9574343 DOI: 10.3389/fnint.2022.900715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Synchronization of neuronal discharges on the millisecond scale has long been recognized as a prevalent and functionally important attribute of neural activity. In this article, I review classical concepts and corresponding evidence of the mechanisms that govern the synchronization of distributed discharges in cortical networks and relate those mechanisms to their possible roles in coding and cognitive functions. To accommodate the need for a selective, directed synchronization of cells, I propose that synchronous firing of distributed neurons is a natural consequence of spike-timing-dependent plasticity (STDP) that associates cells repetitively receiving temporally coherent input: the “synchrony through synaptic plasticity” hypothesis. Neurons that are excited by a repeated sequence of synaptic inputs may learn to selectively respond to the onset of this sequence through synaptic plasticity. Multiple neurons receiving coherent input could thus actively synchronize their firing by learning to selectively respond at corresponding temporal positions. The hypothesis makes several predictions: first, the position of the cells in the network, as well as the source of their input signals, would be irrelevant as long as their input signals arrive simultaneously; second, repeating discharge patterns should get compressed until all or some part of the signals are synchronized; and third, this compression should be accompanied by a sparsening of signals. In this way, selective groups of cells could emerge that would respond to some recurring event with synchronous firing. Such a learned response pattern could further be modulated by synchronous network oscillations that provide a dynamic, flexible context for the synaptic integration of distributed signals. I conclude by suggesting experimental approaches to further test this new hypothesis.
Collapse
|
118
|
Shaw P, Vanraes P, Kumar N, Bogaerts A. Possible Synergies of Nanomaterial-Assisted Tissue Regeneration in Plasma Medicine: Mechanisms and Safety Concerns. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3397. [PMID: 36234523 PMCID: PMC9565759 DOI: 10.3390/nano12193397] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Cold atmospheric plasma and nanomedicine originally emerged as individual domains, but are increasingly applied in combination with each other. Most research is performed in the context of cancer treatment, with only little focus yet on the possible synergies. Many questions remain on the potential of this promising hybrid technology, particularly regarding regenerative medicine and tissue engineering. In this perspective article, we therefore start from the fundamental mechanisms in the individual technologies, in order to envision possible synergies for wound healing and tissue recovery, as well as research strategies to discover and optimize them. Among these strategies, we demonstrate how cold plasmas and nanomaterials can enhance each other's strengths and overcome each other's limitations. The parallels with cancer research, biotechnology and plasma surface modification further serve as inspiration for the envisioned synergies in tissue regeneration. The discovery and optimization of synergies may also be realized based on a profound understanding of the underlying redox- and field-related biological processes. Finally, we emphasize the toxicity concerns in plasma and nanomedicine, which may be partly remediated by their combination, but also partly amplified. A widespread use of standardized protocols and materials is therefore strongly recommended, to ensure both a fast and safe clinical implementation.
Collapse
Affiliation(s)
- Priyanka Shaw
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Patrick Vanraes
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Naresh Kumar
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Guwahati 781125, Assam, India
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
119
|
Rouleau N, Cimino N. A Transmissive Theory of Brain Function: Implications for Health, Disease, and Consciousness. NEUROSCI 2022; 3:440-456. [PMID: 39483436 PMCID: PMC11523760 DOI: 10.3390/neurosci3030032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/03/2022] [Indexed: 11/03/2024] Open
Abstract
Identifying a complete, accurate model of brain function would allow neuroscientists and clinicians to make powerful neuropsychological predictions and diagnoses as well as develop more effective treatments to mitigate or reverse neuropathology. The productive model of brain function, which has been dominant in the field for centuries, cannot easily accommodate some higher-order neural processes associated with consciousness and other neuropsychological phenomena. However, in recent years, it has become increasingly evident that the brain is highly receptive to and readily emits electromagnetic (EM) fields and light. Indeed, brain tissues can generate endogenous, complex EM fields and ultraweak photon emissions (UPEs) within the visible and near-visible EM spectra. EM-based neural mechanisms, such as ephaptic coupling and non-visual optical brain signaling, expand canonical neural signaling modalities and are beginning to disrupt conventional models of brain function. Here, we present an evidence-based argument for the existence of brain processes that are caused by the transmission of extracerebral, EM signals and recommend experimental strategies with which to test the hypothesis. We argue for a synthesis of productive and transmissive models of brain function and discuss implications for the study of consciousness, brain health, and disease.
Collapse
Affiliation(s)
- Nicolas Rouleau
- Department of Psychology, Algoma University, Sault Ste. Marie, ON P6A 2G4, Canada
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Nicholas Cimino
- Department of Psychology, Algoma University, Sault Ste. Marie, ON P6A 2G4, Canada
| |
Collapse
|
120
|
Simula S, Daoud M, Ruffini G, Biagi MC, Bénar CG, Benquet P, Wendling F, Bartolomei F. Transcranial current stimulation in epilepsy: A systematic review of the fundamental and clinical aspects. Front Neurosci 2022; 16:909421. [PMID: 36090277 PMCID: PMC9453675 DOI: 10.3389/fnins.2022.909421] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Transcranial electrical current stimulation (tES or tCS, as it is sometimes referred to) has been proposed as non-invasive therapy for pharmacoresistant epilepsy. This technique, which includes direct current (tDCS) and alternating current (tACS) stimulation involves the application of weak currents across the cortex to change cortical excitability. Although clinical trials have demonstrated the therapeutic efficacy of tES, its specific effects on epileptic brain activity are poorly understood. We sought to summarize the clinical and fundamental effects underlying the application of tES in epilepsy. Methods A systematic review was performed in accordance with the PRISMA guidelines. A database search was performed in PUBMED, MEDLINE, Web of Science and Cochrane CENTRAL for articles corresponding to the keywords “epilepsy AND (transcranial current stimulation OR transcranial electrical stimulation)”. Results A total of 56 studies were included in this review. Through these records, we show that tDCS and tACS epileptic patients are safe and clinically relevant techniques for epilepsy. Recent articles reported changes of functional connectivity in epileptic patients after tDCS. We argue that tDCS may act by affecting brain networks, rather than simply modifying local activity in the targeted area. To explain the mechanisms of tES, various cellular effects have been identified. Among them, reduced cell loss, mossy fiber sprouting, and hippocampal BDNF protein levels. Brain modeling and human studies highlight the influence of individual brain anatomy and physiology on the electric field distribution. Computational models may optimize the stimulation parameters and bring new therapeutic perspectives. Conclusion Both tDCS and tACS are promising techniques for epilepsy patients. Although the clinical effects of tDCS have been repeatedly assessed, only one clinical trial has involved a consistent number of epileptic patients and little knowledge is present about the clinical outcome of tACS. To fill this gap, multicenter studies on tES in epileptic patients are needed involving novel methods such as personalized stimulation protocols based on computational modeling. Furthermore, there is a need for more in vivo studies replicating the tES parameters applied in patients. Finally, there is a lack of clinical studies investigating changes in intracranial epileptiform discharges during tES application, which could clarify the nature of tES-related local and network dynamics in epilepsy.
Collapse
Affiliation(s)
- Sara Simula
- Aix Marseille Univ, INSERM, INS, Int Neurosci Syst, Marseille, France
| | - Maëva Daoud
- Aix Marseille Univ, INSERM, INS, Int Neurosci Syst, Marseille, France
| | | | | | | | | | | | - Fabrice Bartolomei
- Aix Marseille Univ, INSERM, INS, Int Neurosci Syst, Marseille, France
- APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
- *Correspondence: Fabrice Bartolomei
| |
Collapse
|
121
|
Wang K, Wei A, Fu Y, Wang T, Gao X, Fu B, Zhu Y, Cui B, Zhu M. State-dependent modulation of thalamocortical oscillations by gamma light flicker with different frequencies, intensities, and duty cycles. Front Neuroinform 2022; 16:968907. [PMID: 36081653 PMCID: PMC9445583 DOI: 10.3389/fninf.2022.968907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Rhythmic light flickers have emerged as useful tools to modulate cognition and rescue pathological oscillations related to neurological disorders by entrainment. However, a mechanistic understanding of the entrainment for different brain oscillatory states and light flicker parameters is lacking. To address this issue, we proposed a biophysical neural network model for thalamocortical oscillations (TCOs) and explored the stimulation effects depending on the thalamocortical oscillatory states and stimulation parameters (frequency, intensity, and duty cycle) using the proposed model and electrophysiology experiments. The proposed model generated alpha, beta, and gamma oscillatory states (with main oscillation frequences at 9, 25, and 35 Hz, respectively), which were successfully transmitted from the thalamus to the cortex. By applying light flicker stimulation, we found that the entrainment was state-dependent and it was more prone to induce entrainment if the flicker perturbation frequency was closer to the endogenous oscillatory frequency. In addition, endogenous oscillation would be accelerated, whereas low-frequency oscillatory power would be suppressed by gamma (30-50 Hz) flickers. Notably, the effects of intensity and duty cycle on entrainment were complex; a high intensity of light flicker did not mean high entrainment possibility, and duty cycles below 50% could induce entrainment easier than those above 50%. Further, we observed entrainment discontinuity during gamma flicker stimulations with different frequencies, attributable to the non-linear characteristics of the network oscillations. These results provide support for the experimental design and clinical applications of the modulation of TCOs by gamma (30-50 Hz) light flicker.
Collapse
Affiliation(s)
- Kun Wang
- Institute of Medical Support Technology, Academy of Military Science of Chinese PLA, Tianjin, China
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Aili Wei
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yu Fu
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Tianhui Wang
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiujie Gao
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Bo Fu
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yingwen Zhu
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Bo Cui
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Mengfu Zhu
- Institute of Medical Support Technology, Academy of Military Science of Chinese PLA, Tianjin, China
| |
Collapse
|
122
|
Battaglini L, Di Ponzio M, Ghiani A, Mena F, Santacesaria P, Casco C. Vision recovery with perceptual learning and non-invasive brain stimulation: Experimental set-ups and recent results, a review of the literature. Restor Neurol Neurosci 2022; 40:137-168. [PMID: 35964213 DOI: 10.3233/rnn-221261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Vision is the sense which we rely on the most to interact with the environment and its integrity is fundamental for the quality of our life. However, around the globe, more than 1 billion people are affected by debilitating vision deficits. Therefore, finding a way to treat (or mitigate) them successfully is necessary. OBJECTIVE This narrative review aims to examine options for innovative treatment of visual disorders (retinitis pigmentosa, macular degeneration, optic neuropathy, refractory disorders, hemianopia, amblyopia), especially with Perceptual Learning (PL) and Electrical Stimulation (ES). METHODS ES and PL can enhance visual abilities in clinical populations, inducing plastic changes. We describe the experimental set-ups and discuss the results of studies using ES or PL or their combination in order to suggest, based on literature, which treatment is the best option for each clinical condition. RESULTS Positive results were obtained using ES and PL to enhance visual functions. For example, repetitive transorbital Alternating Current Stimulation (rtACS) appeared as the most effective treatment for pre-chiasmatic disorders such as optic neuropathy. A combination of transcranial Direct Current Stimulation (tDCS) and visual training seems helpful for people with hemianopia, while transcranial Random Noise Stimulation (tRNS) makes visual training more efficient in people with amblyopia and mild myopia. CONCLUSIONS This narrative review highlights the effect of different ES montages and PL in the treatment of visual disorders. Furthermore, new options for treatment are suggested. It is noteworthy to mention that, in some cases, unclear results emerged and others need to be more deeply investigated.
Collapse
Affiliation(s)
- Luca Battaglini
- Department of General Psychology, University of Padova, Italy.,Centro di Ateneo dei Servizi Clinici Universitari Psicologici (SCUP), University of Padova, Padova, Italy.,Neuro.Vis.U.S, University of Padova, Padova, Italy
| | - Michele Di Ponzio
- Department of General Psychology, University of Padova, Italy.,Istituto di Neuroscienze, Florence, Italy
| | - Andrea Ghiani
- Department of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, the Netherlands
| | - Federica Mena
- Department of General Psychology, University of Padova, Italy
| | | | - Clara Casco
- Department of General Psychology, University of Padova, Italy.,Centro di Ateneo dei Servizi Clinici Universitari Psicologici (SCUP), University of Padova, Padova, Italy.,Neuro.Vis.U.S, University of Padova, Padova, Italy
| |
Collapse
|
123
|
Dugas CS, Keltner-Dorman E, Hart J. Differential effects from cognitive rehabilitation and high-definition tDCS in posterior cortical atrophy: A single-case experimental design. Neuropsychol Rehabil 2022; 32:1620-1642. [PMID: 34037503 DOI: 10.1080/09602011.2021.1927761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/04/2021] [Indexed: 02/08/2023]
Abstract
Posterior cortical atrophy (PCA) is a progressive neurodegenerative syndrome characterized by visual-perceptual deficits, which impact daily life. Recent research has focused on non-pharmacological techniques to ameliorate these deficits, with the most common being cognitive rehabilitation. The present study investigates the differential effects of high definition-transcranial direct current stimulation (HD-tDCS) and cognitive rehabilitation in a single-case experimental design with two separate experimental phases in a patient with PCA. Experimental Phase 1 consisted of 10 sessions of HD-tDCS targeting the pre-SMA/dACC and Phase 2 consisted of 10 sessions of cognitive rehabilitation. Normed and standardized scores from figure copy and recall tests served as the primary outcome measures for visuospatial processing. The participant showed no immediate or long-term changes in visuospatial measures following HD-tDCS intervention. However, cognitive rehabilitation showed immediate improvement in visuospatial memory (figure recall) and clinically significant improvement in visuospatial construction (figure copy). Visuospatial construction gains remained in the low average range in the 10-week follow-up while visuospatial memory returned to baseline. Results indicated differential effects between HD-tDCS and cognitive rehabilitation with cognitive rehabilitation showing clinically significant improvement in primary outcome measures with sustained improvement in the long-term follow-up measure. Additional research is warranted to confirm these effects.
Collapse
Affiliation(s)
- Christine Sofka Dugas
- Department of Speech, Language and Hearing Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Elena Keltner-Dorman
- Department of Speech, Language and Hearing Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - John Hart
- Department of Speech, Language and Hearing Sciences, University of Texas at Dallas, Dallas, TX, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
124
|
Subramanian M, Chiang CC, Couturier NH, Durand DM. Theta waves, neural spikes and seizures can propagate by ephaptic coupling in vivo. Exp Neurol 2022; 354:114109. [PMID: 35551899 PMCID: PMC10214533 DOI: 10.1016/j.expneurol.2022.114109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Electric field coupling has been shown to be responsible for non-synaptic neural activity propagation in hippocampal slices and cortical slices. Epileptiform and slow-wave sleep activity can propagate by electric field coupling without using synaptic connections at speeds of ~0.1 m/s in vitro. However, the characteristics of the events that can propagate using electric field coupling through a volume conductor in vivo have not been studied. Thus, we tested the hypothesis that various types of neural signals such as interictal spikes, theta waves and seizures could propagate in vivo across a transection in the hippocampus. We induced epileptiform activity in 4 rats under anesthesia by injecting 4-aminopyridine in the temporal region of the hippocampus, four recording electrodes were inserted along the longitudinal axis of the hippocampus. A transection was made between the electrodes to study the propagation of the neural activity. Although 54% of the interictal spikes could propagate through the cut, only those spikes with a high amplitude and short duration had a high probability to do so. 70% of seizure events could propagate through the cut but parameters distinguishing between propagating and non-propagating seizure events could not be identified. Theta activity was also observed to propagate at a mean speed of 0.16 ± 0.12 m/s in the characteristic range of propagation using electric field coupling through the transection. The electric field volume conduction mechanism was confirmed by showing that propagation was blocked by placing a dielectric layer within the cut. The speed of propagation was not affected by the transection thereby providing further evidence that various types of neural signals including activity in the theta range can propagate by electric field coupling in-vivo.
Collapse
Affiliation(s)
- Muthumeenakshi Subramanian
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Chia-Chu Chiang
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nicholas H Couturier
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Dominique M Durand
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
125
|
Intracranial Monitoring to Verify Novel Transcranial Electric Stimulation in an Epileptic Swine Model. ELECTRONICS 2022. [DOI: 10.3390/electronics11142195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Invasive deep brain stimulation has proven to be clinically therapeutic for patients with drug-refractory epilepsy. The aim of this study was to develop a novel transcranial electrical device as a noninvasive stimulation modality for seizure treatment. We fabricated a novel transcranial electrical device and tested it in four swine brains with depth electrodes surgically implanted under neuro-navigation. Stimulation with two high-frequency alternating currents was used to cause an interference envelope. Acute focal epilepsy was induced by a subcortical injection of penicillin and specific anesthesia protocol. The frequency and electric field of the stimulation in the hippocampus were investigated. The two frequencies (2 k and 2.14 kHz) of stimulation successfully caused an envelope of 140 Hz. With 1 mA stimulation, the electric field degraded gradually and induced an in situ electric field of 0.68 mV/mm in the hippocampi. The interference mode transcranial electric stimulation attenuated the originally induced epileptic form discharges. No neuronal or axonal injuries were noted histopathologically after the stimulation. The feasibility and biosafety of our proposed device were preliminarily verified. Future translational research should focus on the electrode deposition and stimulation parameters for a quantitative therapeutic effect.
Collapse
|
126
|
Steinmann I, Williams KA, Wilke M, Antal A. Detection of Transcranial Alternating Current Stimulation Aftereffects Is Improved by Considering the Individual Electric Field Strength and Self-Rated Sleepiness. Front Neurosci 2022; 16:870758. [PMID: 35833087 PMCID: PMC9272587 DOI: 10.3389/fnins.2022.870758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Non-invasive electrical stimulation methods, such as transcranial alternating current stimulation (tACS), are increasingly used in human neuroscience research and offer potential new avenues to treat neurological and psychiatric disorders. However, their often variable effects have also raised concerns in the scientific and clinical communities. This study aims to investigate the influence of subject-specific factors on the alpha tACS-induced aftereffect on the alpha amplitude (measured with electroencephalography, EEG) as well as on the connectivity strength between nodes of the default mode network (DMN) [measured with functional magnetic resonance imaging (fMRI)]. As subject-specific factors we considered the individual electrical field (EFIELD) strength at target regions in the brain, the frequency mismatch between applied stimulation and individual alpha frequency (IAF) and as a covariate, subject’s changes in mental state, i.e., sleepiness. Eighteen subjects participated in a tACS and a sham session conducted on different days. Each session consisted of three runs (pre/stimulation/). tACS was applied during the second run at each subject’s individual alpha frequency (IAF), applying 1 mA peak-to-peak intensity for 7 min, using an occipital bihemispheric montage. In every run, subjects watched a video designed to increase in-scanner compliance. To investigate the aftereffect of tACS on EEG alpha amplitude and on DMN connectivity strength, EEG data were recorded simultaneously with fMRI data. Self-rated sleepiness was documented using a questionnaire. Conventional statistics (ANOVA) did not show a significant aftereffect of tACS on the alpha amplitude compared to sham stimulation. Including individual EFIELD strengths and self-rated sleepiness scores in a multiple linear regression model, significant tACS-induced aftereffects were observed. However, the subject-wise mismatch between tACS frequency and IAF had no contribution to our model. Neither standard nor extended statistical methods confirmed a tACS-induced aftereffect on DMN functional connectivity. Our results show that it is possible and necessary to disentangle alpha amplitude changes due to intrinsic mechanisms and to external manipulation using tACS on the alpha amplitude that might otherwise be overlooked. Our results suggest that EFIELD is really the most significant factor that explains the alpha amplitude modulation during a tACS session. This knowledge helps to understand the variability of the tACS-induced aftereffects.
Collapse
Affiliation(s)
- Iris Steinmann
- Department of Cognitive Neurology, University Medical Center Göttingen, Göttingen, Germany
- *Correspondence: Iris Steinmann,
| | - Kathleen A. Williams
- Department of Cognitive Neurology, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Melanie Wilke
- Department of Cognitive Neurology, University Medical Center Göttingen, Göttingen, Germany
- German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Andrea Antal,
| |
Collapse
|
127
|
Nasr K, Haslacher D, Dayan E, Censor N, Cohen LG, Soekadar SR. Breaking the boundaries of interacting with the human brain using adaptive closed-loop stimulation. Prog Neurobiol 2022; 216:102311. [PMID: 35750290 DOI: 10.1016/j.pneurobio.2022.102311] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022]
Abstract
The human brain is arguably one of the most complex systems in nature. To understand how it operates, it is essential to understand the link between neural activity and behavior. Experimental investigation of that link requires tools to interact with neural activity during behavior. Human neuroscience, however, has been severely bottlenecked by the limitations of these tools. While invasive methods can support highly specific interaction with brain activity during behavior, their applicability in human neuroscience is limited. Despite extensive development in the last decades, noninvasive alternatives have lacked spatial specificity and yielded results that are commonly fraught with variability and replicability issues, along with relatively limited understanding of the neural mechanisms involved. Here we provide a comprehensive review of the state-of-the-art in interacting with human brain activity and highlight current limitations and recent efforts to overcome these limitations. Beyond crucial technical and scientific advancements in electromagnetic brain stimulation, new frontiers in interacting with human brain activity such as task-irrelevant sensory stimulation and focal ultrasound stimulation are introduced. Finally, we argue that, along with technological improvements and breakthroughs in noninvasive methods, a paradigm shift towards adaptive closed-loop stimulation will be a critical step for advancing human neuroscience.
Collapse
Affiliation(s)
- Khaled Nasr
- Clinical Neurotechnology Laboratory & Center for Translational Neuromodulation, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - David Haslacher
- Clinical Neurotechnology Laboratory & Center for Translational Neuromodulation, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eran Dayan
- Department of Radiology and Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nitzan Censor
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institutes of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Surjo R Soekadar
- Clinical Neurotechnology Laboratory & Center for Translational Neuromodulation, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
128
|
Perspectives on the Combined Use of Electric Brain Stimulation and Perceptual Learning in Vision. Vision (Basel) 2022; 6:vision6020033. [PMID: 35737420 PMCID: PMC9227313 DOI: 10.3390/vision6020033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
A growing body of literature offers exciting perspectives on the use of brain stimulation to boost training-related perceptual improvements in humans. Recent studies suggest that combining visual perceptual learning (VPL) training with concomitant transcranial electric stimulation (tES) leads to learning rate and generalization effects larger than each technique used individually. Both VPL and tES have been used to induce neural plasticity in brain regions involved in visual perception, leading to long-lasting visual function improvements. Despite being more than a century old, only recently have these techniques been combined in the same paradigm to further improve visual performance in humans. Nonetheless, promising evidence in healthy participants and in clinical population suggests that the best could still be yet to come for the combined use of VPL and tES. In the first part of this perspective piece, we briefly discuss the history, the characteristics, the results and the possible mechanisms behind each technique and their combined effect. In the second part, we discuss relevant aspects concerning the use of these techniques and propose a perspective concerning the combined use of electric brain stimulation and perceptual learning in the visual system, closing with some open questions on the topic.
Collapse
|
129
|
Mitsutake T, Taniguchi T, Nakazono H, Yoshizuka H, Sakamoto M. Effects of Noisy Galvanic Vestibular Stimulation on the Muscle Activity and Joint Movements in Different Standing Postures Conditions. Front Hum Neurosci 2022; 16:891669. [PMID: 35721349 PMCID: PMC9202802 DOI: 10.3389/fnhum.2022.891669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/11/2022] [Indexed: 11/15/2022] Open
Abstract
Objective Noisy galvanic vestibular stimulation (nGVS) is an effective method for stabilizing posture; however, little is known regarding the detailed muscle activity and joint movement in the standing posture. This study aimed to clarify the changes in the lower limb muscle activity and joint angular velocity by nGVS intervention using the simultaneous assessment method of inertial measurement units and surface electromyography (EMG). Methods Seventeen healthy participants were assessed for their physical responses under four conditions (standing on a firm surface with eyes-open/eyes-closed, and a foam surface with eyes-open/eyes-closed) without stimulation (baseline) and with stimulation (sham or nGVS). Noise stimuli were applied for 30 s at a level below the perceptual threshold. The body control response was evaluated using EMG activity and angular velocity of the lower limbs. Result Regarding the change from baseline for each parameter, there was a significant interactive effect of EMG activity in the muscle type × intervention and EMG activity and angular velocity in the condition × intervention. Post hoc analysis revealed that the angular velocity was significantly decreased in the abduction-adduction direction in the standing on a foam surface with eyes-closed condition compared to that with eyes-open in the nGVS intervention. Conclusion Our results suggest that nGVS altered physical responses in different standing postural conditions. The present study is exploratory and therefore the evidence should be investigated in future studies specifically target those muscle activities and joint motion parameters.
Collapse
Affiliation(s)
- Tsubasa Mitsutake
- Department of Physical Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan
- *Correspondence: Tsubasa Mitsutake
| | - Takanori Taniguchi
- Department of Physical Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Hisato Nakazono
- Department of Occupational Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Hisayoshi Yoshizuka
- Department of Physical Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Maiko Sakamoto
- Faculty of Medicine, Education and Research Center for Community Medicine, Saga University, Saga, Japan
| |
Collapse
|
130
|
Krause MR, Vieira PG, Thivierge JP, Pack CC. Brain stimulation competes with ongoing oscillations for control of spike timing in the primate brain. PLoS Biol 2022; 20:e3001650. [PMID: 35613140 PMCID: PMC9132296 DOI: 10.1371/journal.pbio.3001650] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/27/2022] [Indexed: 11/19/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) is a popular method for modulating brain activity noninvasively. In particular, tACS is often used as a targeted intervention that enhances a neural oscillation at a specific frequency to affect a particular behavior. However, these interventions often yield highly variable results. Here, we provide a potential explanation for this variability: tACS competes with the brain's ongoing oscillations. Using neural recordings from alert nonhuman primates, we find that when neural firing is independent of ongoing brain oscillations, tACS readily entrains spiking activity, but when neurons are strongly entrained to ongoing oscillations, tACS often causes a decrease in entrainment instead. Consequently, tACS can yield categorically different results on neural activity, even when the stimulation protocol is fixed. Mathematical analysis suggests that this competition is likely to occur under many experimental conditions. Attempting to impose an external rhythm on the brain may therefore often yield precisely the opposite effect.
Collapse
Affiliation(s)
- Matthew R. Krause
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Pedro G. Vieira
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jean-Philippe Thivierge
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
- Brain and Mind Research Institute University of Ottawa, Ottawa, Ontario, Canada
| | - Christopher C. Pack
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
131
|
Porcaro C, Marino M, Carozzo S, Russo M, Ursino M, Valentinaruggiero, Ragno C, Proto S, Tonin P. Fractal Dimension Feature as a Signature of Severity in Disorders of Consciousness: An EEG Study. Int J Neural Syst 2022; 32:2250031. [DOI: 10.1142/s0129065722500319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
132
|
Lazzaro G, Fucà E, Caciolo C, Battisti A, Costanzo F, Varuzza C, Vicari S, Menghini D. Understanding the Effects of Transcranial Electrical Stimulation in Numerical Cognition: A Systematic Review for Clinical Translation. J Clin Med 2022; 11:jcm11082082. [PMID: 35456176 PMCID: PMC9032363 DOI: 10.3390/jcm11082082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023] Open
Abstract
Atypical development of numerical cognition (dyscalculia) may increase the onset of neuropsychiatric symptoms, especially when untreated, and it may have long-term detrimental social consequences. However, evidence-based treatments are still lacking. Despite plenty of studies investigating the effects of transcranial electrical stimulation (tES) on numerical cognition, a systematized synthesis of results is still lacking. In the present systematic review (PROSPERO ID: CRD42021271139), we found that the majority of reports (20 out of 26) showed the effectiveness of tES in improving both number (80%) and arithmetic (76%) processing. In particular, anodal tDCS (regardless of lateralization) over parietal regions, bilateral tDCS (regardless of polarity/lateralization) over frontal regions, and tRNS (regardless of brain regions) strongly enhance number processing. While bilateral tDCS and tRNS over parietal and frontal regions and left anodal tDCS over frontal regions consistently improve arithmetic skills. In addition, tACS seems to be more effective than tDCS at ameliorating arithmetic learning. Despite the variability of methods and paucity of clinical studies, tES seems to be a promising brain-based treatment to enhance numerical cognition. Recommendations for clinical translation, future directions, and limitations are outlined.
Collapse
Affiliation(s)
- Giulia Lazzaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (E.F.); (C.C.); (A.B.); (F.C.); (C.V.); (S.V.)
| | - Elisa Fucà
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (E.F.); (C.C.); (A.B.); (F.C.); (C.V.); (S.V.)
| | - Cristina Caciolo
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (E.F.); (C.C.); (A.B.); (F.C.); (C.V.); (S.V.)
| | - Andrea Battisti
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (E.F.); (C.C.); (A.B.); (F.C.); (C.V.); (S.V.)
- Department of Human Science, LUMSA University, 00193 Rome, Italy
| | - Floriana Costanzo
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (E.F.); (C.C.); (A.B.); (F.C.); (C.V.); (S.V.)
| | - Cristiana Varuzza
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (E.F.); (C.C.); (A.B.); (F.C.); (C.V.); (S.V.)
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (E.F.); (C.C.); (A.B.); (F.C.); (C.V.); (S.V.)
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Centro di Riabilitazione Casa San Giuseppe, Opera Don Guanella, 00165 Rome, Italy
| | - Deny Menghini
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (E.F.); (C.C.); (A.B.); (F.C.); (C.V.); (S.V.)
- Correspondence: ; Tel.: +39-066-859-7091
| |
Collapse
|
133
|
Wass SV, Perapoch Amadó M, Ives J. Oscillatory entrainment to our early social or physical environment and the emergence of volitional control. Dev Cogn Neurosci 2022; 54:101102. [PMID: 35398645 PMCID: PMC9010552 DOI: 10.1016/j.dcn.2022.101102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/18/2022] [Accepted: 03/23/2022] [Indexed: 01/08/2023] Open
Abstract
An individual's early interactions with their environment are thought to be largely passive; through the early years, the capacity for volitional control develops. Here, we consider: how is the emergence of volitional control characterised by changes in the entrainment observed between internal activity (behaviour, physiology and brain activity) and the sights and sounds in our everyday environment (physical and social)? We differentiate between contingent responsiveness (entrainment driven by evoked responses to external events) and oscillatory entrainment (driven by internal oscillators becoming temporally aligned with external oscillators). We conclude that ample evidence suggests that children show behavioural, physiological and neural entrainment to their physical and social environment, irrespective of volitional attention control; however, evidence for oscillatory entrainment beyond contingent responsiveness is currently lacking. Evidence for how oscillatory entrainment changes over developmental time is also lacking. Finally, we suggest a mechanism through which periodic environmental rhythms might facilitate both sensory processing and the development of volitional control even in the absence of oscillatory entrainment.
Collapse
Affiliation(s)
- S V Wass
- Department of Psychology, University of East London, UK.
| | | | - J Ives
- Department of Psychology, University of East London, UK
| |
Collapse
|
134
|
Transcranial alternating current stimulation rescues motor deficits in a mouse model of Parkinson's disease via the production of glial cell line-derived neurotrophic factor. Brain Stimul 2022; 15:645-653. [DOI: 10.1016/j.brs.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 11/15/2022] Open
|
135
|
Fabbrini A, Guerra A, Giangrosso M, Manzo N, Leodori G, Pasqualetti P, Conte A, Di Lazzaro V, Berardelli A. Transcranial alternating current stimulation modulates cortical processing of somatosensory information in a frequency- and time-specific manner. Neuroimage 2022; 254:119119. [PMID: 35321858 DOI: 10.1016/j.neuroimage.2022.119119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/16/2022] [Accepted: 03/19/2022] [Indexed: 10/18/2022] Open
Abstract
Neural oscillations can be modulated by non-invasive brain stimulation techniques, including transcranial alternating current stimulation (tACS). However, direct evidence of tACS effects at the cortical level in humans is still limited. In a tACS-electroencephalography co-registration setup, we investigated the ability of tACS to modulate cortical somatosensory information processing as assessed by somatosensory-evoked potentials (SEPs). To better elucidate the neural substrates of possible tACS effects we also recorded peripheral and spinal SEPs components, high-frequency oscillations (HFOs), and long-latency reflexes (LLRs). Finally, we studied whether changes were limited to the stimulation period or persisted thereafter. SEPs, HFOs, and LLRs were recorded during tACS applied at individual mu and beta frequencies and at the theta frequency over the primary somatosensory cortex (S1). Sham-tACS was used as a control condition. In a separate experiment, we assessed the time course of mu-tACS effects by recording SEPs before (T0), during (T1), and 1 min (T2) and 10 min (T3) after stimulation. Mu-tACS increased the amplitude of the N20 component of SEPs compared to both sham and theta-tACS. No differences were found between sham, beta-, and theta-tACS conditions. Also, peripheral and spinal SEPs, P25, HFOs, and LLRs did not change during tACS. Finally, mu-tACS-induced modulation of N20 amplitude specifically occurred during stimulation (T1) and vanished afterwards (i.e., at T2 and T3). Our findings suggest that TACS applied at the individual mu frequency is able to modulate early somatosensory information processing at the S1 level and the effect is limited to the stimulation period.
Collapse
Affiliation(s)
- Andrea Fabbrini
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy
| | - Andrea Guerra
- IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy
| | - Margherita Giangrosso
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy
| | - Nicoletta Manzo
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy; IRCCS San Camillo Hospital, Via Alberoni 70, Venice 30126, Italy
| | - Giorgio Leodori
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy; IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy
| | - Patrizio Pasqualetti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale dell'Università 30, Rome 00185, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy; IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Via Álvaro Del Portillo 21, Rome 00128, Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy; IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy.
| |
Collapse
|
136
|
Mc Laughlin M, Khatoun A, Asamoah B. Detection of tACS Entrainment Critically Depends on Epoch Length. Front Cell Neurosci 2022; 16:806556. [PMID: 35360495 PMCID: PMC8963722 DOI: 10.3389/fncel.2022.806556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/11/2022] [Indexed: 11/26/2022] Open
Abstract
Neural entrainment is the phase synchronization of a population of neurons to an external rhythmic stimulus such as applied in the context of transcranial alternating current stimulation (tACS). tACS can cause profound effects on human behavior. However, there remain a significant number of studies that find no behavioral effect when tACS is applied to human subjects. To investigate this discrepancy, we applied time sensitive phase lock value (PLV) based analysis to single unit data from the rat motor cortex. The analysis revealed that detection of neural entrainment depends critically on the epoch length within which spiking information is accumulated. Increasing the epoch length allowed for detection of progressively weaker levels of neural entrainment. Based on this single unit analysis, we hypothesized that tACS effects on human behavior would be more easily detected in a behavior paradigm which utilizes longer epoch lengths. We tested this by using tACS to entrain tremor in patients and healthy volunteers. When the behavioral data were analyzed using short duration epochs tremor entrainment effects were not detectable. However, as the epoch length was progressively increased, weak tremor entrainment became detectable. These results suggest that tACS behavioral paradigms that rely on the accumulation of information over long epoch lengths will tend to be successful at detecting behavior effects. However, tACS paradigms that rely on short epoch lengths are less likely to detect effects.
Collapse
|
137
|
Del Felice A, Bertuccelli M, Rubega M, Cattelan M, Masiero S. Reply to Letter "Transcranial alternating current stimulation (tACS) as a treatment for fibromyalgia syndrome?" by Fröhlich and Riddle. Eur Arch Psychiatry Clin Neurosci 2022; 272:351-353. [PMID: 34002242 DOI: 10.1007/s00406-021-01271-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/22/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Alessandra Del Felice
- Section of Rehabilitation, Department of Neuroscience, University of Padova, Via Giustiniani, 3, 35128, Padua, Italy.
- Padova Neuroscience Center, University of Padova, 35131, Padua, Italy.
| | - Margherita Bertuccelli
- Section of Rehabilitation, Department of Neuroscience, University of Padova, Via Giustiniani, 3, 35128, Padua, Italy
- Padova Neuroscience Center, University of Padova, 35131, Padua, Italy
| | - Maria Rubega
- Section of Rehabilitation, Department of Neuroscience, University of Padova, Via Giustiniani, 3, 35128, Padua, Italy
| | - Manuela Cattelan
- Department of Statistical Sciences, University of Padova, via C. Battisti 241, 35121, Padua, Italy
| | - Stefano Masiero
- Section of Rehabilitation, Department of Neuroscience, University of Padova, Via Giustiniani, 3, 35128, Padua, Italy
- Padova Neuroscience Center, University of Padova, 35131, Padua, Italy
| |
Collapse
|
138
|
Vogeti S, Boetzel C, Herrmann CS. Entrainment and Spike-Timing Dependent Plasticity – A Review of Proposed Mechanisms of Transcranial Alternating Current Stimulation. Front Syst Neurosci 2022; 16:827353. [PMID: 35283735 PMCID: PMC8909135 DOI: 10.3389/fnsys.2022.827353] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Specific frequency bands of neural oscillations have been correlated with a range of cognitive and behavioral effects (e.g., memory and attention). The causal role of specific frequencies may be investigated using transcranial alternating current stimulation (tACS), a non-invasive brain stimulation method. TACS involves applying a sinusoidal current between two or more electrodes attached on the scalp, above neural regions that are implicated in cognitive processes of interest. The theorized mechanisms by which tACS affects neural oscillations have implications for the exact stimulation frequency used, as well as its anticipated effects. This review outlines two main mechanisms that are thought to underlie tACS effects – entrainment, and spike-timing dependent plasticity (STDP). Entrainment suggests that the stimulated frequency synchronizes the ongoing neural oscillations, and is thought to be most effective when the stimulated frequency is at or close to the endogenous frequency of the targeted neural network. STDP suggests that stimulation leads to synaptic changes based on the timing of neuronal firing in the target neural network. According to the principles of STDP, synaptic strength is thought to increase when pre-synaptic events occur prior to post-synaptic events (referred to as long-term potentiation, LTP). Conversely, when post-synaptic events occur prior to pre-synaptic events, synapses are thought to be weakened (referred to as long-term depression, LTD). In this review, we summarize the theoretical frameworks and critically review the tACS evidence for each hypothesis. We also discuss whether each mechanism alone can account for tACS effects or whether a combined account is necessary.
Collapse
Affiliation(s)
- Sreekari Vogeti
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence “Hearing for All”, Carl von Ossietzky University, Oldenburg, Germany
| | - Cindy Boetzel
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence “Hearing for All”, Carl von Ossietzky University, Oldenburg, Germany
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence “Hearing for All”, Carl von Ossietzky University, Oldenburg, Germany
- Neuroimaging Unit, European Medical School, Carl von Ossietzky University, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany
- *Correspondence: Christoph S. Herrmann,
| |
Collapse
|
139
|
Preisig BC, Hervais-Adelman A. The Predictive Value of Individual Electric Field Modeling for Transcranial Alternating Current Stimulation Induced Brain Modulation. Front Cell Neurosci 2022; 16:818703. [PMID: 35273479 PMCID: PMC8901488 DOI: 10.3389/fncel.2022.818703] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
There is considerable individual variability in the reported effectiveness of non-invasive brain stimulation. This variability has often been ascribed to differences in the neuroanatomy and resulting differences in the induced electric field inside the brain. In this study, we addressed the question whether individual differences in the induced electric field can predict the neurophysiological and behavioral consequences of gamma band tACS. In a within-subject experiment, bi-hemispheric gamma band tACS and sham stimulation was applied in alternating blocks to the participants' superior temporal lobe, while task-evoked auditory brain activity was measured with concurrent functional magnetic resonance imaging (fMRI) and a dichotic listening task. Gamma tACS was applied with different interhemispheric phase lags. In a recent study, we could show that anti-phase tACS (180° interhemispheric phase lag), but not in-phase tACS (0° interhemispheric phase lag), selectively modulates interhemispheric brain connectivity. Using a T1 structural image of each participant's brain, an individual simulation of the induced electric field was computed. From these simulations, we derived two predictor variables: maximal strength (average of the 10,000 voxels with largest electric field values) and precision of the electric field (spatial correlation between the electric field and the task evoked brain activity during sham stimulation). We found considerable variability in the individual strength and precision of the electric fields. Importantly, the strength of the electric field over the right hemisphere predicted individual differences of tACS induced brain connectivity changes. Moreover, we found in both hemispheres a statistical trend for the effect of electric field strength on tACS induced BOLD signal changes. In contrast, the precision of the electric field did not predict any neurophysiological measure. Further, neither strength, nor precision predicted interhemispheric integration. In conclusion, we found evidence for the dose-response relationship between individual differences in electric fields and tACS induced activity and connectivity changes in concurrent fMRI. However, the fact that this relationship was stronger in the right hemisphere suggests that the relationship between the electric field parameters, neurophysiology, and behavior may be more complex for bi-hemispheric tACS.
Collapse
Affiliation(s)
- Basil C. Preisig
- Department of Psychology, Neurolinguistics, University of Zurich, Zurich, Switzerland
- Donders Institute for Cognitive Neuroimaging, Radboud University, Nijmegen, Netherlands
- Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
- Neuroscience Center Zurich, Eidgenössische Technische Hochschule Zurich, University of Zurich, Zurich, Switzerland
| | - Alexis Hervais-Adelman
- Department of Psychology, Neurolinguistics, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Eidgenössische Technische Hochschule Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
140
|
Khan A, Yuan K, Bao SC, Ti CHE, Tariq A, Anjum N, Tong RKY. Can Transcranial Electrical Stimulation Facilitate Post-stroke Cognitive Rehabilitation? A Systematic Review and Meta-Analysis. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:795737. [PMID: 36188889 PMCID: PMC9397778 DOI: 10.3389/fresc.2022.795737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/11/2022] [Indexed: 01/12/2023]
Abstract
Background Non-invasive brain stimulation methods have been widely utilized in research settings to manipulate and understand the functioning of the human brain. In the last two decades, transcranial electrical stimulation (tES) has opened new doors for treating impairments caused by various neurological disorders. However, tES studies have shown inconsistent results in post-stroke cognitive rehabilitation, and there is no consensus on the effectiveness of tES devices in improving cognitive skills after the onset of stroke. Objectives We aim to systematically investigate the efficacy of tES in improving post-stroke global cognition, attention, working memory, executive functions, visual neglect, and verbal fluency. Furthermore, we aim to provide a pathway to an effective use of stimulation paradigms in future studies. Methods Preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines were followed. Randomized controlled trials (RCTs) were systematically searched in four different databases, including Medline, Embase, Pubmed, and PsychInfo. Studies utilizing any tES methods published in English were considered for inclusion. Standardized mean difference (SMD) for each cognitive domain was used as the primary outcome measure. Results The meta-analysis includes 19 studies assessing at least one of the six cognitive domains. Five RCTs studying global cognition, three assessing visual neglect, five evaluating working memory, three assessing attention, and nine studies focusing on aphasia were included for meta-analysis. As informed by the quantitative analysis of the included studies, the results favor the efficacy of tES in acute improvement in aphasic deficits (SMD = 0.34, CI = 0.02-0.67, p = 0.04) and attention deficits (SMD = 0.59, CI = -0.05-1.22, p = 0.07), however, no improvement was observed in any other cognitive domains. Conclusion The results favor the efficacy of tES in an improvement in aphasia and attentive deficits in stroke patients in acute, subacute, and chronic stages. However, the outcome of tES cannot be generalized across cognitive domains. The difference in the stimulation montages and parameters, diverse cognitive batteries, and variable number of training sessions may have contributed to the inconsistency in the outcome. We suggest that in future studies, experimental designs should be further refined, and standardized stimulation protocols should be utilized to better understand the therapeutic effect of stimulation.
Collapse
Affiliation(s)
- Ahsan Khan
- Biomedical Engineering Department, The Chinese University of Hong Kong, Hong Kong, China
| | - Kai Yuan
- Biomedical Engineering Department, The Chinese University of Hong Kong, Hong Kong, China
| | - Shi-Chun Bao
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Chun Hang Eden Ti
- Biomedical Engineering Department, The Chinese University of Hong Kong, Hong Kong, China
| | - Abdullah Tariq
- Department of Electrical Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Nimra Anjum
- Department of Electrical Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Raymond Kai-Yu Tong
- Biomedical Engineering Department, The Chinese University of Hong Kong, Hong Kong, China,Hong Kong Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong, China,*Correspondence: Raymond Kai-Yu Tong
| |
Collapse
|
141
|
Assogna M, Sprugnoli G, Press D, Dickerson B, Macone J, Bonnì S, Borghi I, Connor A, Hoffman M, Grover N, Wong B, Shen C, Martorana A, O'Reilly M, Ruffini G, El Fakhri G, Koch G, Santarnecchi E. Gamma-induction in frontotemporal dementia (GIFTeD) randomized placebo-controlled trial: Rationale, noninvasive brain stimulation protocol, and study design. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 7:e12219. [PMID: 35141396 PMCID: PMC8813035 DOI: 10.1002/trc2.12219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 08/02/2021] [Accepted: 09/20/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Frontotemporal dementia (FTD) is a neurodegenerative disorder for which there is no effective pharmacological treatment. Recently, interneuron activity responsible for fast oscillatory brain activity has been found to be impaired in a mouse model of FTD with consequent cognitive and behavioral alterations. In this study, we aim to investigate the safety, tolerability, and efficacy of a novel promising therapeutic intervention for FTD based on 40 Hz transcranial alternating current stimulation (tACS), a form of non-invasive brain stimulation thought to engage neural activity in a frequency-specific manner and thus suited to restore altered brain oscillatory patterns. METHODS This is a multi-site, randomized, double-blind, placebo-controlled trial on 50 patients with a diagnosis of behavioral variant FTD (bvFTD). Participants will be randomized to undergo either 30 days of 1-hour daily tACS or Sham (placebo) tACS. The outcomes will be assessed at baseline, right after the intervention and at a 3- to 6-months follow-up. The primary outcome measures are represented by the safety and feasibility of tACS administration, which will be assessed considering the nature, frequency, and severity of adverse events as well as attrition rate, respectively. To assess secondary outcomes, participants will undergo extensive neuropsychological and behavioral assessments and fluorodeoxyglucose (FDG)-positron emission tomography (PET) scans to evaluate changes in brain metabolism, functional and structural magnetic resonance imaging (MRI), resting and evoked electroencephalography, as well as blood biomarkers to measure changes in neurodegenerative and neuroinflammatory markers. RESULTS The trial started in October 2020 and will end in October 2023. Study protocols have been approved by the local institutional review board (IRB) at each data-collection site. DISCUSSION This study will evaluate the safety and tolerability of 40 Hz tACS in bvFTD patients and its efficacy on gamma oscillatory activity, cognitive function, and brain glucose hypometabolism.
Collapse
Affiliation(s)
- Martina Assogna
- Berenson‐Allen Center for Noninvasive Brain StimulationBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Non‐Invasive Brain Stimulation UnitDepartment of Behavioural and Clinical NeurologySanta Lucia Foundation IRCCSRomeItaly
| | - Giulia Sprugnoli
- Berenson‐Allen Center for Noninvasive Brain StimulationBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Radiology UnitDepartment of Medicine and SurgeryUniversity of ParmaParmaItaly
| | - Daniel Press
- Berenson‐Allen Center for Noninvasive Brain StimulationBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Brad Dickerson
- Frontotemporal Disorders Unit and Alzheimer's Disease Research CenterDepartments of Psychiatry and NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Joanna Macone
- Berenson‐Allen Center for Noninvasive Brain StimulationBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Sonia Bonnì
- Non‐Invasive Brain Stimulation UnitDepartment of Behavioural and Clinical NeurologySanta Lucia Foundation IRCCSRomeItaly
| | - Ilaria Borghi
- Non‐Invasive Brain Stimulation UnitDepartment of Behavioural and Clinical NeurologySanta Lucia Foundation IRCCSRomeItaly
| | - Ann Connor
- Berenson‐Allen Center for Noninvasive Brain StimulationBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Megan Hoffman
- Berenson‐Allen Center for Noninvasive Brain StimulationBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Nainika Grover
- Berenson‐Allen Center for Noninvasive Brain StimulationBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Bonnie Wong
- Frontotemporal Disorders Unit and Alzheimer's Disease Research CenterDepartments of Psychiatry and NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Changyu Shen
- Richard and Susan Smith Center for Outcomes Research in CardiologyDivision of CardiologyBeth Israel Deaconess Medical and Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Molly O'Reilly
- Berenson‐Allen Center for Noninvasive Brain StimulationBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | | | - Georges El Fakhri
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Giacomo Koch
- Non‐Invasive Brain Stimulation UnitDepartment of Behavioural and Clinical NeurologySanta Lucia Foundation IRCCSRomeItaly
| | - Emiliano Santarnecchi
- Berenson‐Allen Center for Noninvasive Brain StimulationBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
142
|
Suzuki M, Tanaka S, Gomez-Tames J, Okabe T, Cho K, Iso N, Hirata A. Nonequivalent After-Effects of Alternating Current Stimulation on Motor Cortex Oscillation and Inhibition: Simulation and Experimental Study. Brain Sci 2022; 12:brainsci12020195. [PMID: 35203958 PMCID: PMC8870173 DOI: 10.3390/brainsci12020195] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
The effects of transcranial alternating current stimulation (tACS) frequency on brain oscillations and cortical excitability are still controversial. Therefore, this study investigated how different tACS frequencies differentially modulate cortical oscillation and inhibition. To do so, we first determined the optimal positioning of tACS electrodes through an electric field simulation constructed from magnetic resonance images. Seven electrode configurations were tested on the electric field of the precentral gyrus (hand motor area). We determined that the Cz-CP1 configuration was optimal, as it resulted in higher electric field values and minimized the intra-individual differences in the electric field. Therefore, tACS was delivered to the hand motor area through this arrangement at a fixed frequency of 10 Hz (alpha-tACS) or 20 Hz (beta-tACS) with a peak-to-peak amplitude of 0.6 mA for 20 min. We found that alpha- and beta-tACS resulted in larger alpha and beta oscillations, respectively, compared with the oscillations observed after sham-tACS. In addition, alpha- and beta-tACS decreased the amplitudes of conditioned motor evoked potentials and increased alpha and beta activity, respectively. Correspondingly, alpha- and beta-tACSs enhanced cortical inhibition. These results show that tACS frequency differentially affects motor cortex oscillation and inhibition.
Collapse
Affiliation(s)
- Makoto Suzuki
- Faculty of Health Sciences, Tokyo Kasei University, 2-15-1 Inariyama, Sayama 350-1398, Saitama, Japan; (T.O.); (K.C.); (N.I.)
- Correspondence: ; Tel.: +81-42-955-6074
| | - Satoshi Tanaka
- Laboratory of Psychology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan;
| | - Jose Gomez-Tames
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Aichi, Japan; (J.G.-T.); (A.H.)
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Aichi, Japan
| | - Takuhiro Okabe
- Faculty of Health Sciences, Tokyo Kasei University, 2-15-1 Inariyama, Sayama 350-1398, Saitama, Japan; (T.O.); (K.C.); (N.I.)
| | - Kilchoon Cho
- Faculty of Health Sciences, Tokyo Kasei University, 2-15-1 Inariyama, Sayama 350-1398, Saitama, Japan; (T.O.); (K.C.); (N.I.)
| | - Naoki Iso
- Faculty of Health Sciences, Tokyo Kasei University, 2-15-1 Inariyama, Sayama 350-1398, Saitama, Japan; (T.O.); (K.C.); (N.I.)
| | - Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Aichi, Japan; (J.G.-T.); (A.H.)
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Aichi, Japan
| |
Collapse
|
143
|
Effects of transcranial alternating current stimulation on spiking activity in computational models of single neocortical neurons. Neuroimage 2022; 250:118953. [PMID: 35093517 PMCID: PMC9087863 DOI: 10.1016/j.neuroimage.2022.118953] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 11/24/2022] Open
Abstract
Neural oscillations are a key mechanism for information transfer in brain circuits. Rhythmic fluctuations of local field potentials control spike timing through cyclic membrane de- and hyperpolarization. Transcranial alternating current stimulation (tACS) is a non-invasive neuromodulation method which can directly interact with brain oscillatory activity by imposing an oscillating electric field on neurons. Despite its increasing use, the basic mechanisms of tACS are still not fully understood. Here, we investigate in a computational study the effects of tACS on morphologically realistic neurons with ongoing spiking activity. We characterize the membrane polarization as a function of electric field strength and subsequent effects on spiking activity in a set of 25 neurons from different neocortical layers. We find that tACS does not affect the firing rate of investigated neurons for electric field strengths applicable to human studies. However, we find that the applied electric fields entrain the spiking activity of large pyramidal neurons and large basket neurons at < 1 mV/mm field strengths. Our model results are in line with recent experimental studies and can provide a mechanistic framework to understand the effects of oscillating electric fields on single neuron activity. They highlight the importance of neuron morphology and biophysics in responsiveness to electrical stimulation.
Collapse
|
144
|
Smell-induced gamma oscillations in human olfactory cortex are required for accurate perception of odor identity. PLoS Biol 2022; 20:e3001509. [PMID: 34986157 PMCID: PMC8765613 DOI: 10.1371/journal.pbio.3001509] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/18/2022] [Accepted: 12/08/2021] [Indexed: 11/24/2022] Open
Abstract
Studies of neuronal oscillations have contributed substantial insight into the mechanisms of visual, auditory, and somatosensory perception. However, progress in such research in the human olfactory system has lagged behind. As a result, the electrophysiological properties of the human olfactory system are poorly understood, and, in particular, whether stimulus-driven high-frequency oscillations play a role in odor processing is unknown. Here, we used direct intracranial recordings from human piriform cortex during an odor identification task to show that 3 key oscillatory rhythms are an integral part of the human olfactory cortical response to smell: Odor induces theta, beta, and gamma rhythms in human piriform cortex. We further show that these rhythms have distinct relationships with perceptual behavior. Odor-elicited gamma oscillations occur only during trials in which the odor is accurately perceived, and features of gamma oscillations predict odor identification accuracy, suggesting that they are critical for odor identity perception in humans. We also found that the amplitude of high-frequency oscillations is organized by the phase of low-frequency signals shortly following sniff onset, only when odor is present. Our findings reinforce previous work on theta oscillations, suggest that gamma oscillations in human piriform cortex are important for perception of odor identity, and constitute a robust identification of the characteristic electrophysiological response to smell in the human brain. Future work will determine whether the distinct oscillations we identified reflect distinct perceptual features of odor stimuli. Intracranial recordings from human olfactory cortex reveal a characteristic spectrotemporal response to odors, including theta, beta and gamma oscillations, and show that high-frequency responses are critical for accurate perception of odors.
Collapse
|
145
|
Dhaynaut M, Sprugnoli G, Cappon D, Macone J, Sanchez JS, Normandin MD, Guehl NJ, Koch G, Paciorek R, Connor A, Press D, Johnson K, Pascual-Leone A, El Fakhri G, Santarnecchi E. Impact of 40 Hz Transcranial Alternating Current Stimulation on Cerebral Tau Burden in Patients with Alzheimer's Disease: A Case Series. J Alzheimers Dis 2022; 85:1667-1676. [PMID: 34958021 PMCID: PMC9023125 DOI: 10.3233/jad-215072] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by diffuse amyloid-β (Aβ) and phosphorylated Tau (p-Tau) aggregates as well as neuroinflammation. Exogenously-induced 40 Hz gamma oscillations have been showing to reduce Aβ and p-Tau deposition presumably via microglia activation in AD mouse models. OBJECTIVE We aimed to translate preclinical data on gamma-induction in AD patients by means of transcranial alternating current stimulation (tACS). METHODS Four participants with mild-to-moderate AD received 1 h of daily 40 Hz (gamma) tACS for 4 weeks (Monday to Friday) targeting the bitemporal lobes (20 h treatment duration). Participant underwent Aβ, p-Tau, and microglia PET imaging with [11C]-PiB, [18F]-FTP, and [11C]-PBR28 respectively, before and after the intervention along with electrophysiological assessment. RESULTS No adverse events were reported, and an increase in gamma spectral power on EEG was observed after the treatment. [18F]-FTP PET revealed a significant decrease over 2% of p-Tau burden in 3/4 patients following the tACS treatment, primarily involving the temporal lobe regions targeted by tACS and especially mesial regions (e.g., entorhinal cortex). The amount of intracerebral Aβ as measured by [11C]-PiB was not significantly influenced by tACS, whereas 1/4 reported a significant decrease of microglia activation as measured by [11C]-PBR28. CONCLUSION tACS seems to represent a safe and feasible option for gamma induction in AD patients, with preliminary evidence of a possible effect on protein clearance partially mimicking what is observed in animal models. Longer interventions and placebo control conditions are needed to fully evaluate the potential for tACS to slow disease progression.
Collapse
Affiliation(s)
- Maeva Dhaynaut
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Giulia Sprugnoli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Davide Cappon
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joanna Macone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Justin S. Sanchez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc D. Normandin
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicolas J. Guehl
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Rachel Paciorek
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ann Connor
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Daniel Press
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Keith Johnson
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emiliano Santarnecchi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
146
|
Potok W, van der Groen O, Bächinger M, Edwards D, Wenderoth N. Transcranial Random Noise Stimulation Modulates Neural Processing of Sensory and Motor Circuits, from Potential Cellular Mechanisms to Behavior: A Scoping Review. eNeuro 2022; 9:ENEURO.0248-21.2021. [PMID: 34921057 PMCID: PMC8751854 DOI: 10.1523/eneuro.0248-21.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 11/21/2022] Open
Abstract
Noise introduced in the human nervous system from cellular to systems levels can have a major impact on signal processing. Using transcranial stimulation, electrical noise can be added to cortical circuits to modulate neuronal activity and enhance function in the healthy brain and in neurologic patients. Transcranial random noise stimulation (tRNS) is a promising technique that is less well understood than other non-invasive neuromodulatory methods. The aim of the present scoping review is to collate published evidence on the effects of electrical noise at the cellular, systems, and behavioral levels, and discuss how this emerging method might be harnessed to augment perceptual and motor functioning of the human nervous system. Online databases were used to identify papers published in 2008-2021 using tRNS in humans, from which we identified 70 publications focusing on sensory and motor function. Additionally, we interpret the existing evidence by referring to articles investigating the effects of noise stimulation in animal and subcellular models. We review physiological and behavioral findings of tRNS-induced offline after-effects and acute online benefits which manifest immediately when tRNS is applied to sensory or motor cortices. We link these results to evidence showing that activity of voltage-gated sodium ion channels might be an important cellular substrate for mediating these tRNS effects. We argue that tRNS might make neural signal transmission and processing within neuronal populations more efficient, which could contribute to both (1) offline after-effects in the form of a prolonged increase in cortical excitability and (2) acute online noise benefits when computations rely on weak inputs.
Collapse
Affiliation(s)
- Weronika Potok
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, 8093, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Federal Institute of Technology Zurich, University and Balgrist Hospital Zurich, Zurich 8057, Switzerland
| | - Onno van der Groen
- Neurorehabilitation and Robotics Laboratory, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia 6027, Australia
| | - Marc Bächinger
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, 8093, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Federal Institute of Technology Zurich, University and Balgrist Hospital Zurich, Zurich 8057, Switzerland
| | - Dylan Edwards
- Neurorehabilitation and Robotics Laboratory, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia 6027, Australia
- Moss Rehabilitation Research Institute, Elkins Park, PA 19027
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, 8093, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Federal Institute of Technology Zurich, University and Balgrist Hospital Zurich, Zurich 8057, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), 138602, Singapore
| |
Collapse
|
147
|
Alekseichuk I, Wischnewski M, Opitz A. A minimum effective dose for (transcranial) alternating current stimulation. Brain Stimul 2022; 15:1221-1222. [PMID: 36044976 PMCID: PMC9854271 DOI: 10.1016/j.brs.2022.08.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 01/24/2023] Open
Affiliation(s)
- Ivan Alekseichuk
- Dept of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA,Corresponding author. Dept of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, MN 55455, USA. (I. Alekseichuk)
| | - Miles Wischnewski
- Dept of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Alexander Opitz
- Dept of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
148
|
Booth SJ, Taylor JR, Brown LJE, Pobric G. The effects of transcranial alternating current stimulation on memory performance in healthy adults: A systematic review. Cortex 2021; 147:112-139. [PMID: 35032750 DOI: 10.1016/j.cortex.2021.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/14/2021] [Accepted: 12/01/2021] [Indexed: 01/03/2023]
Abstract
The recent introduction of Transcranial Alternating Current stimulation (tACS) in research on memory modulation has yielded some exciting findings. Whilst evidence suggests small but significant modulatory effects of tACS on perception and cognition, it is unclear how effective tACS is at modulating memory, and the neural oscillations underlying memory. The aim of this systematic review was to determine the efficacy with which tACS, compared to sham stimulation, can modify working memory (WM) and long-term memory (LTM) performance in healthy adults. We examined how these effects may be moderated by specific tACS parameters and study/participant characteristics. Our secondary goal was to investigate the neural correlates of tACS' effects on memory performance in healthy adults. A systematic search of eight databases yielded 11,413 records, resulting in 34 papers that included 104 eligible studies. The results were synthesised by memory type (WM/LTM) and according to the specific parameters of frequency band, stimulation montage, individual variability, cognitive demand, and phase. A second synthesis examined the correspondence between tACS' effects on memory performance and the oscillatory features of electroencephalography (EEG) and magnetencephalography (MEG) recordings in a subset of 26 studies. The results showed a small-to-medium effect of tACS on WM and LTM performance overall. There was strong evidence to suggest that posterior theta-tACS modulates WM performance, whilst the modulation of LTM is achieved by anterior gamma-tACS. Moreover, there was a correspondence between tACS effects on memory performance and oscillatory outcomes at the stimulation frequency. We discuss limitations in the field and suggest ways to improve our understanding of tACS efficacy to ensure a transition of tACS from an investigative method to a therapeutic tool.
Collapse
Affiliation(s)
- Samantha J Booth
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, England, UK.
| | - Jason R Taylor
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, England, UK.
| | - Laura J E Brown
- Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, England, UK.
| | - Gorana Pobric
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, England, UK.
| |
Collapse
|
149
|
Sprugnoli G, Munsch F, Cappon D, Paciorek R, Macone J, Connor A, El Fakhri G, Salvador R, Ruffini G, Donohoe K, Shafi MM, Press D, Alsop DC, Pascual Leone A, Santarnecchi E. Impact of multisession 40Hz tACS on hippocampal perfusion in patients with Alzheimer's disease. Alzheimers Res Ther 2021; 13:203. [PMID: 34930421 PMCID: PMC8690894 DOI: 10.1186/s13195-021-00922-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/20/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is associated with alterations in cortical perfusion that correlate with cognitive impairment. Recently, neural activity in the gamma band has been identified as a driver of arteriolar vasomotion while, on the other hand, gamma activity induction on preclinical models of AD has been shown to promote protein clearance and cognitive protection. METHODS In two open-label studies, we assessed the possibility to modulate cerebral perfusion in 15 mild to moderate AD participants via 40Hz (gamma) transcranial alternating current stimulation (tACS) administered 1 h daily for 2 or 4 weeks, primarily targeting the temporal lobe. Perfusion-sensitive MRI scans were acquired at baseline and right after the intervention, along with electrophysiological recording and cognitive assessments. RESULTS No serious adverse effects were reported by any of the participants. Arterial spin labeling MRI revealed a significant increase in blood perfusion in the bilateral temporal lobes after the tACS treatment. Moreover, perfusion changes displayed a positive correlation with changes in episodic memory and spectral power changes in the gamma band. CONCLUSIONS Results suggest 40Hz tACS should be further investigated in larger placebo-controlled trials as a safe, non-invasive countermeasure to increase fast brain oscillatory activity and increase perfusion in critical brain areas in AD patients. TRIAL REGISTRATION Studies were registered separately on ClinicalTrials.gov ( NCT03290326 , registered on September 21, 2017; NCT03412604 , registered on January 26, 2018).
Collapse
Affiliation(s)
- Giulia Sprugnoli
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Radiology, University Hospital of Parma, Parma, Italy
| | - Fanny Munsch
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Davide Cappon
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rachel Paciorek
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joanna Macone
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ann Connor
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Georges El Fakhri
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Kevin Donohoe
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mouhsin M Shafi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Daniel Press
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David C Alsop
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Alvaro Pascual Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew Senior Life, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Guttmann Brain Health Institute, Barcelona, Spain
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
150
|
Rothwell J, Antal A, Burke D, Carlsen A, Georgiev D, Jahanshahi M, Sternad D, Valls-Solé J, Ziemann U. Central nervous system physiology. Clin Neurophysiol 2021; 132:3043-3083. [PMID: 34717225 PMCID: PMC8863401 DOI: 10.1016/j.clinph.2021.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
This is the second chapter of the series on the use of clinical neurophysiology for the study of movement disorders. It focusses on methods that can be used to probe neural circuits in brain and spinal cord. These include use of spinal and supraspinal reflexes to probe the integrity of transmission in specific pathways; transcranial methods of brain stimulation such as transcranial magnetic stimulation and transcranial direct current stimulation, which activate or modulate (respectively) the activity of populations of central neurones; EEG methods, both in conjunction with brain stimulation or with behavioural measures that record the activity of populations of central neurones; and pure behavioural measures that allow us to build conceptual models of motor control. The methods are discussed mainly in relation to work on healthy individuals. Later chapters will focus specifically on changes caused by pathology.
Collapse
Affiliation(s)
- John Rothwell
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK,Corresponding author at: Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK, (J. Rothwell)
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Germany
| | - David Burke
- Department of Neurology, Royal Prince Alfred Hospital, University of Sydney, Sydney 2050, Australia
| | - Antony Carlsen
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Dejan Georgiev
- Department of Neurology, University Medical Centre Ljubljana, Slovenia
| | - Marjan Jahanshahi
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Dagmar Sternad
- Departments of Biology, Electrical & Computer Engineering, and Physics, Northeastern University, Boston, MA 02115, USA
| | - Josep Valls-Solé
- Institut d’Investigació Biomèdica August Pi I Sunyer, Villarroel, 170, Barcelona, Spain
| | - Ulf Ziemann
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|