101
|
The Neuroplastic and Therapeutic Potential of Spinal Interneurons in the Injured Spinal Cord. Trends Neurosci 2018; 41:625-639. [PMID: 30017476 DOI: 10.1016/j.tins.2018.06.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 12/25/2022]
Abstract
The central nervous system is not a static, hard-wired organ. Examples of neuroplasticity, whether at the level of the synapse, the cell, or within and between circuits, can be found during development, throughout the progression of disease, or after injury. One essential component of the molecular, anatomical, and functional changes associated with neuroplasticity is the spinal interneuron (SpIN). Here, we draw on recent multidisciplinary studies to identify and interrogate subsets of SpINs and their roles in locomotor and respiratory circuits. We highlight some of the recent progress that elucidates the importance of SpINs in circuits affected by spinal cord injury (SCI), especially those within respiratory networks; we also discuss potential ways that spinal neuroplasticity can be therapeutically harnessed for recovery.
Collapse
|
102
|
Côté MP, Murray LM, Knikou M. Spinal Control of Locomotion: Individual Neurons, Their Circuits and Functions. Front Physiol 2018; 9:784. [PMID: 29988534 PMCID: PMC6026662 DOI: 10.3389/fphys.2018.00784] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/05/2018] [Indexed: 12/31/2022] Open
Abstract
Systematic research on the physiological and anatomical characteristics of spinal cord interneurons along with their functional output has evolved for more than one century. Despite significant progress in our understanding of these networks and their role in generating and modulating movement, it has remained a challenge to elucidate the properties of the locomotor rhythm across species. Neurophysiological experimental evidence indicates similarities in the function of interneurons mediating afferent information regarding muscle stretch and loading, being affected by motor axon collaterals and those mediating presynaptic inhibition in animals and humans when their function is assessed at rest. However, significantly different muscle activation profiles are observed during locomotion across species. This difference may potentially be driven by a modified distribution of muscle afferents at multiple segmental levels in humans, resulting in an altered interaction between different classes of spinal interneurons. Further, different classes of spinal interneurons are likely activated or silent to some extent simultaneously in all species. Regardless of these limitations, continuous efforts on the function of spinal interneuronal circuits during mammalian locomotion will assist in delineating the neural mechanisms underlying locomotor control, and help develop novel targeted rehabilitation strategies in cases of impaired bipedal gait in humans. These rehabilitation strategies will include activity-based therapies and targeted neuromodulation of spinal interneuronal circuits via repetitive stimulation delivered to the brain and/or spinal cord.
Collapse
Affiliation(s)
- Marie-Pascale Côté
- CÔTÉ Lab, Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Lynda M. Murray
- Motor Control and NeuroRecovery Research Laboratory (Klab4Recovery), Department of Physical Therapy, College of Staten Island, City University of New York, New York, NY, United States
- Graduate Center, Ph.D. Program in Biology, City University of New York, New York, NY, United States
| | - Maria Knikou
- Motor Control and NeuroRecovery Research Laboratory (Klab4Recovery), Department of Physical Therapy, College of Staten Island, City University of New York, New York, NY, United States
- Graduate Center, Ph.D. Program in Biology, City University of New York, New York, NY, United States
| |
Collapse
|
103
|
Parker J, Bondy B, Prilutsky BI, Cymbalyuk G. Control of transitions between locomotor-like and paw shake-like rhythms in a model of a multistable central pattern generator. J Neurophysiol 2018; 120:1074-1089. [PMID: 29766765 DOI: 10.1152/jn.00696.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ability of the same neuronal circuit to control different motor functions is an actively debated concept. Previously, we showed in a model that a single multistable central pattern generator (CPG) could produce two different rhythmic motor patterns, slow and fast, corresponding to cat locomotion and paw shaking. A locomotor-like rhythm (~1 Hz) and a paw shake-like rhythm (~10 Hz) did coexist in our model, and, by applying a single pulse of current, we could switch the CPG from one regime to another (Bondy B, Klishko AN, Edwards DH, Prilutsky BI, Cymbalyuk G. In: Neuromechanical Modeling of Posture and Locomotion, 2016). Here we investigated the roles of slow intrinsic ionic currents in this multistability. The CPG is modeled as a half-center oscillator circuit comprising two reciprocally inhibitory neurons. Each neuron is equipped with two slow inward currents, a Na+ current ( INaS) and a Ca2+ current ( ICaS). ICaS inactivates much more slowly and at more hyperpolarized voltages than INaS. We demonstrate that INaS is the primary current driving the paw shake-like bursting. ICaS is crucial for the locomotor-like bursting, and it is inactivated during the paw shake-like activity. We investigate the sensitivity of the bursting regimes to perturbations, using a pulse of current to induce a switch from one regime to the other, and we demonstrate that the transition duration is dependent on pulse amplitude and application phase. We also investigate the modulatory roles of the strength of various currents on characteristics of these rhythms and show that their effects are regime specific. We conclude that a multistable CPG is physiologically plausible and derive testable predictions of the model. NEW & NOTEWORTHY Little is known about how a single central pattern generator could produce multiple rhythms. We describe a novel mechanism for multistability of bursting regimes with strongly distinct periods. The proposed mechanism emphasizes the role of intrinsic cellular dynamics over synaptic dynamics in the production of multistability. We describe how the temporal characteristics of multiple rhythms could be controlled by neuromodulation and how single pulses of current could produce a switch between regimes in a functional fashion.
Collapse
Affiliation(s)
- Jessica Parker
- Neuroscience Institute, Georgia State University , Atlanta, Georgia
| | - Brian Bondy
- Neuroscience Institute, Georgia State University , Atlanta, Georgia.,Institute for Neuroscience, University of Texas , Austin, Texas
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology , Atlanta, Georgia
| | | |
Collapse
|
104
|
Andrzejczuk LA, Banerjee S, England SJ, Voufo C, Kamara K, Lewis KE. Tal1, Gata2a, and Gata3 Have Distinct Functions in the Development of V2b and Cerebrospinal Fluid-Contacting KA Spinal Neurons. Front Neurosci 2018; 12:170. [PMID: 29651232 PMCID: PMC5884927 DOI: 10.3389/fnins.2018.00170] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/02/2018] [Indexed: 12/17/2022] Open
Abstract
Vertebrate locomotor circuitry contains distinct classes of ventral spinal cord neurons which each have particular functional properties. While we know some of the genes expressed by each of these cell types, we do not yet know how several of these neurons are specified. Here, we investigate the functions of Tal1, Gata2a, and Gata3 transcription factors in the development of two of these populations of neurons with important roles in locomotor circuitry: V2b neurons and cerebrospinal fluid-contacting Kolmer-Agduhr (KA) neurons (also called CSF-cNs). Our data provide the first demonstration, in any vertebrate, that Tal1 and Gata3 are required for correct development of KA and V2b neurons, respectively. We also uncover differences in the genetic regulation of V2b cell development in zebrafish compared to mouse. In addition, we demonstrate that Sox1a and Sox1b are expressed by KA and V2b neurons in zebrafish, which differs from mouse, where Sox1 is expressed by V2c neurons. KA neurons can be divided into ventral KA″ neurons and more dorsal KA′ neurons. Consistent with previous morpholino experiments, our mutant data suggest that Tal1 and Gata3 are required in KA′ but not KA″ cells, whereas Gata2a is required in KA″ but not KA′ cells, even though both of these cell types co-express all three of these transcription factors. In gata2a mutants, cells in the KA″ region of the spinal cord lose expression of most KA″ genes and there is an increase in the number of cells expressing V3 genes, suggesting that Gata2a is required to specify KA″ and repress V3 fates in cells that normally develop into KA″ neurons. On the other hand, our data suggest that Gata3 and Tal1 are both required for KA′ neurons to differentiate from progenitor cells. In the KA′ region of these mutants, cells no longer express KA′ markers and there is an increase in the number of mitotically-active cells. Finally, our data demonstrate that all three of these transcription factors are required for later stages of V2b neuron differentiation and that Gata2a and Tal1 have different functions in V2b development in zebrafish than in mouse.
Collapse
Affiliation(s)
| | - Santanu Banerjee
- Department of Biology, Syracuse University, Syracuse, NY, United States
| | | | - Christiane Voufo
- Department of Biology, Syracuse University, Syracuse, NY, United States
| | - Kadiah Kamara
- Department of Biology, Syracuse University, Syracuse, NY, United States
| | - Katharine E Lewis
- Department of Biology, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
105
|
Ramírez-Jarquín UN, Tapia R. Excitatory and Inhibitory Neuronal Circuits in the Spinal Cord and Their Role in the Control of Motor Neuron Function and Degeneration. ACS Chem Neurosci 2018; 9:211-216. [PMID: 29350907 DOI: 10.1021/acschemneuro.7b00503] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The complex neuronal networks of the spinal cord coordinate a wide variety of motor functions, including walking, running, and voluntary and involuntary movements. This is accomplished by different groups of neurons, called center pattern generators, which control left-right alternation and flexor-extensor patterns. These spinal circuits, located in the ventral horns, are formed by several neuronal types, and the specific function of most of them has been identified by means of studies in vivo and in the isolated spinal cord of mice harboring genetically induced ablation of specific neuronal populations. These studies have shown that the coordinated activity of several interneuron types, mainly GABAergic and glycinergic inhibitory neurons, have a crucial role in the modulation of motor neurons activity that finally excites the corresponding muscles. A pharmacological experimental approach by administering in the spinal cord agonists and antagonists of glutamate, GABA, glycine, and acetylcholine receptors to alter their synaptic action has also produced important results, linking the deficits in the synaptic function with the resulting motor alterations. These results have also increased the knowledge of the mechanisms of motor neuron degeneration, which is characteristic of diseases such as amyotrophic lateral sclerosis, and therefore open the possibility of designing new strategies for the prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Uri Nimrod Ramírez-Jarquín
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510-Ciudad de México, México
| | - Ricardo Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510-Ciudad de México, México
| |
Collapse
|
106
|
Sathyamurthy A, Johnson KR, Matson KJE, Dobrott CI, Li L, Ryba AR, Bergman TB, Kelly MC, Kelley MW, Levine AJ. Massively Parallel Single Nucleus Transcriptional Profiling Defines Spinal Cord Neurons and Their Activity during Behavior. Cell Rep 2018; 22:2216-2225. [PMID: 29466745 PMCID: PMC5849084 DOI: 10.1016/j.celrep.2018.02.003] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/19/2017] [Accepted: 01/30/2018] [Indexed: 01/08/2023] Open
Abstract
To understand the cellular basis of behavior, it is necessary to know the cell types that exist in the nervous system and their contributions to function. Spinal networks are essential for sensory processing and motor behavior and provide a powerful system for identifying the cellular correlates of behavior. Here, we used massively parallel single nucleus RNA sequencing (snRNA-seq) to create an atlas of the adult mouse lumbar spinal cord. We identified and molecularly characterized 43 neuronal populations. Next, we leveraged the snRNA-seq approach to provide unbiased identification of neuronal populations that were active following a sensory and a motor behavior, using a transcriptional signature of neuronal activity. This approach can be used in the future to link single nucleus gene expression data with dynamic biological responses to behavior, injury, and disease.
Collapse
Affiliation(s)
- Anupama Sathyamurthy
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Kory R Johnson
- Bioinformatics Section, Information Technology Program, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Kaya J E Matson
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Courtney I Dobrott
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Li Li
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Anna R Ryba
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Tzipporah B Bergman
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Michael C Kelly
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Ariel J Levine
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA.
| |
Collapse
|
107
|
Jung H, Baek M, D'Elia KP, Boisvert C, Currie PD, Tay BH, Venkatesh B, Brown SM, Heguy A, Schoppik D, Dasen JS. The Ancient Origins of Neural Substrates for Land Walking. Cell 2018; 172:667-682.e15. [PMID: 29425489 PMCID: PMC5808577 DOI: 10.1016/j.cell.2018.01.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/18/2017] [Accepted: 01/05/2018] [Indexed: 01/30/2023]
Abstract
Walking is the predominant locomotor behavior expressed by land-dwelling vertebrates, but it is unknown when the neural circuits that are essential for limb control first appeared. Certain fish species display walking-like behaviors, raising the possibility that the underlying circuitry originated in primitive marine vertebrates. We show that the neural substrates of bipedalism are present in the little skate Leucoraja erinacea, whose common ancestor with tetrapods existed ∼420 million years ago. Leucoraja exhibits core features of tetrapod locomotor gaits, including left-right alternation and reciprocal extension-flexion of the pelvic fins. Leucoraja also deploys a remarkably conserved Hox transcription factor-dependent program that is essential for selective innervation of fin/limb muscle. This network encodes peripheral connectivity modules that are distinct from those used in axial muscle-based swimming and has apparently been diminished in most modern fish. These findings indicate that the circuits that are essential for walking evolved through adaptation of a genetic regulatory network shared by all vertebrates with paired appendages. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Heekyung Jung
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Myungin Baek
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Kristen P D'Elia
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Catherine Boisvert
- Department of Environment and Agriculture, Curtin University, Bentley, WA 6102, Australia; Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, VIC 3800, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, VIC 3800, Australia; EMBL Australia, Melbourne Node, Monash University, Clayton, VIC 3800, Australia
| | - Boon-Hui Tay
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Biopolis, Singapore 138673, Singapore
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Biopolis, Singapore 138673, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Stuart M Brown
- Applied Bioinformatics Laboratory, NYU School of Medicine, New York, NY 10016, USA
| | - Adriana Heguy
- Genome Technology Center, Division for Advanced Research Technologies, and Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - David Schoppik
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA; Department of Otolaryngology, NYU School of Medicine, New York, NY 10016, USA
| | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
108
|
Sweeney LB, Bikoff JB, Gabitto MI, Brenner-Morton S, Baek M, Yang JH, Tabak EG, Dasen JS, Kintner CR, Jessell TM. Origin and Segmental Diversity of Spinal Inhibitory Interneurons. Neuron 2018; 97:341-355.e3. [PMID: 29307712 PMCID: PMC5880537 DOI: 10.1016/j.neuron.2017.12.029] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/14/2017] [Accepted: 12/17/2017] [Indexed: 10/18/2022]
Abstract
Motor output varies along the rostro-caudal axis of the tetrapod spinal cord. At limb levels, ∼60 motor pools control the alternation of flexor and extensor muscles about each joint, whereas at thoracic levels as few as 10 motor pools supply muscle groups that support posture, inspiration, and expiration. Whether such differences in motor neuron identity and muscle number are associated with segmental distinctions in interneuron diversity has not been resolved. We show that select combinations of nineteen transcription factors that specify lumbar V1 inhibitory interneurons generate subpopulations enriched at limb and thoracic levels. Specification of limb and thoracic V1 interneurons involves the Hox gene Hoxc9 independently of motor neurons. Thus, early Hox patterning of the spinal cord determines the identity of V1 interneurons and motor neurons. These studies reveal a developmental program of V1 interneuron diversity, providing insight into the organization of inhibitory interneurons associated with differential motor output.
Collapse
Affiliation(s)
- Lora B Sweeney
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Jay B Bikoff
- Howard Hughes Medical Institute, Zuckerman Institute, Departments of Neuroscience, and Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Mariano I Gabitto
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA.
| | - Susan Brenner-Morton
- Howard Hughes Medical Institute, Zuckerman Institute, Departments of Neuroscience, and Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Myungin Baek
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Jerry H Yang
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Esteban G Tabak
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Christopher R Kintner
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Thomas M Jessell
- Howard Hughes Medical Institute, Zuckerman Institute, Departments of Neuroscience, and Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
109
|
Ausborn J, Snyder AC, Shevtsova NA, Rybak IA, Rubin JE. State-dependent rhythmogenesis and frequency control in a half-center locomotor CPG. J Neurophysiol 2018; 119:96-117. [PMID: 28978767 PMCID: PMC5866471 DOI: 10.1152/jn.00550.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 01/15/2023] Open
Abstract
The spinal locomotor central pattern generator (CPG) generates rhythmic activity with alternating flexion and extension phases. This rhythmic pattern is likely to result from inhibitory interactions between neural populations representing flexor and extensor half-centers. However, it is unclear whether the flexor-extensor CPG has a quasi-symmetric organization with both half-centers critically involved in rhythm generation, features an asymmetric organization with flexor-driven rhythmogenesis, or comprises a pair of intrinsically rhythmic half-centers. There are experimental data that support each of the above concepts but appear to be inconsistent with the others. In this theoretical/modeling study, we present and analyze a CPG model architecture that can operate in different regimes consistent with the above three concepts depending on conditions, which are defined by external excitatory drives to CPG half-centers. We show that control of frequency and phase durations within each regime depends on network dynamics, defined by the regime-dependent expression of the half-centers' intrinsic rhythmic capabilities and the operating phase transition mechanisms (escape vs. release). Our study suggests state dependency in locomotor CPG operation and proposes explanations for seemingly contradictory experimental data. NEW & NOTEWORTHY Our theoretical/modeling study focuses on the analysis of locomotor central pattern generators (CPGs) composed of conditionally bursting half-centers coupled with reciprocal inhibition and receiving independent external drives. We show that this CPG framework can operate in several regimes consistent with seemingly contradictory experimental data. In each regime, we study how intrinsic dynamics and phase-switching mechanisms control oscillation frequency and phase durations. Our results provide insights into the organization of spinal circuits controlling locomotion.
Collapse
Affiliation(s)
- Jessica Ausborn
- Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Abigail C Snyder
- Department of Mathematics, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Natalia A Shevtsova
- Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
110
|
Saltiel P, d’Avella A, Tresch MC, Wyler K, Bizzi E. Critical Points and Traveling Wave in Locomotion: Experimental Evidence and Some Theoretical Considerations. Front Neural Circuits 2017; 11:98. [PMID: 29276476 PMCID: PMC5727018 DOI: 10.3389/fncir.2017.00098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/20/2017] [Indexed: 11/13/2022] Open
Abstract
The central pattern generator (CPG) architecture for rhythm generation remains partly elusive. We compare cat and frog locomotion results, where the component unrelated to pattern formation appears as a temporal grid, and traveling wave respectively. Frog spinal cord microstimulation with N-methyl-D-Aspartate (NMDA), a CPG activator, produced a limited set of force directions, sometimes tonic, but more often alternating between directions similar to the tonic forces. The tonic forces were topographically organized, and sites evoking rhythms with different force subsets were located close to the constituent tonic force regions. Thus CPGs consist of topographically organized modules. Modularity was also identified as a limited set of muscle synergies whose combinations reconstructed the EMGs. The cat CPG was investigated using proprioceptive inputs during fictive locomotion. Critical points identified both as abrupt transitions in the effect of phasic perturbations, and burst shape transitions, had biomechanical correlates in intact locomotion. During tonic proprioceptive perturbations, discrete shifts between these critical points explained the burst durations changes, and amplitude changes occurred at one of these points. Besides confirming CPG modularity, these results suggest a fixed temporal grid of anchoring points, to shift modules onsets and offsets. Frog locomotion, reconstructed with the NMDA synergies, showed a partially overlapping synergy activation sequence. Using the early synergy output evoked by NMDA at different spinal sites, revealed a rostrocaudal topographic organization, where each synergy is preferentially evoked from a few, albeit overlapping, cord regions. Comparing the locomotor synergy sequence with this topography suggests that a rostrocaudal traveling wave would activate the synergies in the proper sequence for locomotion. This output was reproduced in a two-layer model using this topography and a traveling wave. Together our results suggest two CPG components: modules, i.e., synergies; and temporal patterning, seen as a temporal grid in the cat, and a traveling wave in the frog. Animal and limb navigation have similarities. Research relating grid cells to the theta rhythm and on segmentation during navigation may relate to our temporal grid and traveling wave results. Winfree's mathematical work, combining critical phases and a traveling wave, also appears important. We conclude suggesting tracing, and imaging experiments to investigate our CPG model.
Collapse
Affiliation(s)
- Philippe Saltiel
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Andrea d’Avella
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation, Rome, Italy
| | - Matthew C. Tresch
- Departments of Biomedical Engineering, Physical Medicine and Rehabilitation, and Physiology, Northwestern University, Chicago, IL, United States
| | - Kuno Wyler
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Emilio Bizzi
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
111
|
Danner SM, Shevtsova NA, Frigon A, Rybak IA. Computational modeling of spinal circuits controlling limb coordination and gaits in quadrupeds. eLife 2017; 6:e31050. [PMID: 29165245 PMCID: PMC5726855 DOI: 10.7554/elife.31050] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 11/21/2017] [Indexed: 01/27/2023] Open
Abstract
Interactions between cervical and lumbar spinal circuits are mediated by long propriospinal neurons (LPNs). Ablation of descending LPNs in mice disturbs left-right coordination at high speeds without affecting fore-hind alternation. We developed a computational model of spinal circuits consisting of four rhythm generators coupled by commissural interneurons (CINs), providing left-right interactions, and LPNs, mediating homolateral and diagonal interactions. The proposed CIN and diagonal LPN connections contribute to speed-dependent gait transition from walk, to trot, and then to gallop and bound; the homolateral LPN connections ensure fore-hind alternation in all gaits. The model reproduces speed-dependent gait expression in intact and genetically transformed mice and the disruption of hindlimb coordination following ablation of descending LPNs. Inputs to CINs and LPNs can affect interlimb coordination and change gait independent of speed. We suggest that these interneurons represent the main targets for supraspinal and sensory afferent signals adjusting gait.
Collapse
Affiliation(s)
- Simon M Danner
- Department of Neurobiology and AnatomyDrexel University College of MedicinePhiladelphiaUnited States
| | - Natalia A Shevtsova
- Department of Neurobiology and AnatomyDrexel University College of MedicinePhiladelphiaUnited States
| | - Alain Frigon
- Department of Pharmacology-PhysiologyUniversité de SherbrookeSherbrookeCanada
| | - Ilya A Rybak
- Department of Neurobiology and AnatomyDrexel University College of MedicinePhiladelphiaUnited States
| |
Collapse
|
112
|
Delineating the Diversity of Spinal Interneurons in Locomotor Circuits. J Neurosci 2017; 37:10835-10841. [PMID: 29118212 DOI: 10.1523/jneurosci.1829-17.2017] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/27/2017] [Accepted: 10/11/2017] [Indexed: 11/21/2022] Open
Abstract
Locomotion is common to all animals and is essential for survival. Neural circuits located in the spinal cord have been shown to be necessary and sufficient for the generation and control of the basic locomotor rhythm by activating muscles on either side of the body in a specific sequence. Activity in these neural circuits determines the speed, gait pattern, and direction of movement, so the specific locomotor pattern generated relies on the diversity of the neurons within spinal locomotor circuits. Here, we review findings demonstrating that developmental genetics can be used to identify populations of neurons that comprise these circuits and focus on recent work indicating that many of these populations can be further subdivided into distinct subtypes, with each likely to play complementary functions during locomotion. Finally, we discuss data describing the manner in which these populations interact with each other to produce efficient, task-dependent locomotion.
Collapse
|
113
|
Thiry L, Lemieux M, Bretzner F. Age- and speed-dependent modulation of gaits in DSCAM 2J mutant mice. J Neurophysiol 2017; 119:723-737. [PMID: 29093169 DOI: 10.1152/jn.00471.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gaits depend on the interplay between distributed spinal neural networks, termed central pattern generators, generating rhythmic and coordinated movements, primary afferents, and descending supraspinal inputs. Recent studies demonstrated that the mouse displays a rich repertoire of gaits. Changes in gaits occur in mutant mice lacking particular neurons or molecular signaling pathways implicated in the normal establishment of these neural networks. Given the role of the Down syndrome cell adherence molecule (DSCAM) to the formation and maintenance of spinal interneuronal circuits and sensorimotor integration, we have investigated its functional contribution to gaits over a wide range of locomotor speeds using freely walking mice. We show in this study that the DSCAM2J mutation, while not precluding any gait, impairs the age- and speed-dependent modulation of gaits. It impairs the ability of mice to maintain their locomotion at high treadmill speeds. DSCAM2J mutation induces the dominance of lateral walk over trot and the emergence of aberrant gaits for mice, such as pace and diagonal walk. Gaits were also more labile in DSCAM2J mutant mice, i.e., less stable, less attractive, and less predictable than in their wild-type littermates. Our results suggest that the DSCAM mutation affects the behavioral repertoire of gaits in an age- and speed-dependent manner. NEW & NOTEWORTHY Gaits evolve throughout development, up to adulthood, and according to the genetic background. Using mutant mice lacking DSCAM (a cell adherence molecule associated with Down syndrome), we show that the DSCAM2J mutation alters the repertoire of gaits according to the mouse's age and speed, and prevents fast gaits. Such an incapacity suggests a reorganization of spinal, propriospinal, and supraspinal neuronal circuits underlying locomotor control in DSCAM2J mutant mice.
Collapse
Affiliation(s)
- Louise Thiry
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL-Neurosciences, Quebec City, Quebec , Canada
| | - Maxime Lemieux
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL-Neurosciences, Quebec City, Quebec , Canada
| | - Frédéric Bretzner
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL-Neurosciences, Quebec City, Quebec , Canada.,Faculty of Medicine, Department of Psychiatry and Neurosciences, Université Laval , Quebec City, Quebec , Canada
| |
Collapse
|
114
|
Lai HC, Seal RP, Johnson JE. Making sense out of spinal cord somatosensory development. Development 2017; 143:3434-3448. [PMID: 27702783 DOI: 10.1242/dev.139592] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The spinal cord integrates and relays somatosensory input, leading to complex motor responses. Research over the past couple of decades has identified transcription factor networks that function during development to define and instruct the generation of diverse neuronal populations within the spinal cord. A number of studies have now started to connect these developmentally defined populations with their roles in somatosensory circuits. Here, we review our current understanding of how neuronal diversity in the dorsal spinal cord is generated and we discuss the logic underlying how these neurons form the basis of somatosensory circuits.
Collapse
Affiliation(s)
- Helen C Lai
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rebecca P Seal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
115
|
Ziskind-Conhaim L, Hochman S. Diversity of molecularly defined spinal interneurons engaged in mammalian locomotor pattern generation. J Neurophysiol 2017; 118:2956-2974. [PMID: 28855288 DOI: 10.1152/jn.00322.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 01/18/2023] Open
Abstract
Mapping the expression of transcription factors in the mouse spinal cord has identified ten progenitor domains, four of which are cardinal classes of molecularly defined, ventrally located interneurons that are integrated in the locomotor circuitry. This review focuses on the properties of these interneuronal populations and their contribution to hindlimb locomotor central pattern generation. Interneuronal populations are categorized based on their excitatory or inhibitory functions and their axonal projections as predictors of their role in locomotor rhythm generation and coordination. The synaptic connectivity and functions of these interneurons in the locomotor central pattern generators (CPGs) have been assessed by correlating their activity patterns with motor output responses to rhythmogenic neurochemicals and sensory and descending fibers stimulations as well as analyzing kinematic gait patterns in adult mice. The observed complex organization of interneurons in the locomotor CPG circuitry, some with seemingly similar physiological functions, reflects the intricate repertoire associated with mammalian motor control and is consistent with high transcriptional heterogeneity arising from cardinal interneuronal classes. This review discusses insights derived from recent studies to describe innovative approaches and limitations in experimental model systems and to identify missing links in current investigational enterprise.
Collapse
Affiliation(s)
- Lea Ziskind-Conhaim
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin; and
| | - Shawn Hochman
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
116
|
Pasquini JM, Barrantes FJ, Quintá HR. Normal development of spinal axons in early embryo stages and posterior locomotor function is independent of GAL-1. J Comp Neurol 2017; 525:2861-2875. [DOI: 10.1002/cne.24243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Juana M. Pasquini
- Departamento de Química Biológica; Instituto de Química y Físico Química Biológica, Universidad de Buenos Aires; Buenos Aires Argentina
| | | | - Héctor R. Quintá
- Departamento de Química Biológica; Instituto de Química y Físico Química Biológica, Universidad de Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
117
|
Minassian K, Hofstoetter US, Dzeladini F, Guertin PA, Ijspeert A. The Human Central Pattern Generator for Locomotion: Does It Exist and Contribute to Walking? Neuroscientist 2017; 23:649-663. [PMID: 28351197 DOI: 10.1177/1073858417699790] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ability of dedicated spinal circuits, referred to as central pattern generators (CPGs), to produce the basic rhythm and neural activation patterns underlying locomotion can be demonstrated under specific experimental conditions in reduced animal preparations. The existence of CPGs in humans is a matter of debate. Equally elusive is the contribution of CPGs to normal bipedal locomotion. To address these points, we focus on human studies that utilized spinal cord stimulation or pharmacological neuromodulation to generate rhythmic activity in individuals with spinal cord injury, and on neuromechanical modeling of human locomotion. In the absence of volitional motor control and step-specific sensory feedback, the human lumbar spinal cord can produce rhythmic muscle activation patterns that closely resemble CPG-induced neural activity of the isolated animal spinal cord. In this sense, CPGs in humans can be defined by the activity they produce. During normal locomotion, CPGs could contribute to the activation patterns during specific phases of the step cycle and simplify supraspinal control of step cycle frequency as a feedforward component to achieve a targeted speed. Determining how the human CPGs operate will be essential to advance the theory of neural control of locomotion and develop new locomotor neurorehabilitation paradigms.
Collapse
Affiliation(s)
- Karen Minassian
- 1 Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,2 Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
| | - Ursula S Hofstoetter
- 2 Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
| | - Florin Dzeladini
- 3 Biorobotics Laboratory, School of Engineering, Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Pierre A Guertin
- 4 Department of Psychiatry & Neurosciences, Laval University, Québec City, Quebec, Canada
| | - Auke Ijspeert
- 3 Biorobotics Laboratory, School of Engineering, Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| |
Collapse
|
118
|
Schwarz O, Bohra AA, Liu X, Reichert H, VijayRaghavan K, Pielage J. Motor control of Drosophila feeding behavior. eLife 2017; 6:e19892. [PMID: 28211791 PMCID: PMC5315463 DOI: 10.7554/elife.19892] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 02/02/2017] [Indexed: 12/01/2022] Open
Abstract
The precise coordination of body parts is essential for survival and behavior of higher organisms. While progress has been made towards the identification of central mechanisms coordinating limb movement, only limited knowledge exists regarding the generation and execution of sequential motor action patterns at the level of individual motoneurons. Here we use Drosophila proboscis extension as a model system for a reaching-like behavior. We first provide a neuroanatomical description of the motoneurons and muscles contributing to proboscis motion. Using genetic targeting in combination with artificial activation and silencing assays we identify the individual motoneurons controlling the five major sequential steps of proboscis extension and retraction. Activity-manipulations during naturally evoked proboscis extension show that orchestration of serial motoneuron activation does not rely on feed-forward mechanisms. Our data support a model in which central command circuits recruit individual motoneurons to generate task-specific proboscis extension sequences.
Collapse
Affiliation(s)
- Olivia Schwarz
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Biozentrum University of Basel, Basel, Switzerland
- Division of Zoology and Neurobiology, Technical University Kaiserslautern, Kaiserslautern, Germany
| | - Ali Asgar Bohra
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Xinyu Liu
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Biozentrum University of Basel, Basel, Switzerland
| | | | | | - Jan Pielage
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Biozentrum University of Basel, Basel, Switzerland
- Division of Zoology and Neurobiology, Technical University Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
119
|
Sternfeld MJ, Hinckley CA, Moore NJ, Pankratz MT, Hilde KL, Driscoll SP, Hayashi M, Amin ND, Bonanomi D, Gifford WD, Sharma K, Goulding M, Pfaff SL. Speed and segmentation control mechanisms characterized in rhythmically-active circuits created from spinal neurons produced from genetically-tagged embryonic stem cells. eLife 2017; 6. [PMID: 28195039 PMCID: PMC5308898 DOI: 10.7554/elife.21540] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/16/2017] [Indexed: 12/31/2022] Open
Abstract
Flexible neural networks, such as the interconnected spinal neurons that control distinct motor actions, can switch their activity to produce different behaviors. Both excitatory (E) and inhibitory (I) spinal neurons are necessary for motor behavior, but the influence of recruiting different ratios of E-to-I cells remains unclear. We constructed synthetic microphysical neural networks, called circuitoids, using precise combinations of spinal neuron subtypes derived from mouse stem cells. Circuitoids of purified excitatory interneurons were sufficient to generate oscillatory bursts with properties similar to in vivo central pattern generators. Inhibitory V1 neurons provided dual layers of regulation within excitatory rhythmogenic networks - they increased the rhythmic burst frequency of excitatory V3 neurons, and segmented excitatory motor neuron activity into sub-networks. Accordingly, the speed and pattern of spinal circuits that underlie complex motor behaviors may be regulated by quantitatively gating the intra-network cellular activity ratio of E-to-I neurons. DOI:http://dx.doi.org/10.7554/eLife.21540.001 The nerve cells or neurons within an animal’s nervous system connect with one another like the wires in a complex circuit. Each neuron can send and receive signals and a major challenge in neuroscience is to understand how these circuits of neurons behave. To do this, researchers often use genetic tools and computer modeling to map the connections between the cells in a nervous system. However, it remains difficult to predict how an input signal will appear at the output after it passes through a network made of different types of neuron. Brains contain many networks of interconnected neurons. Some of these networks send signals with a rhythmic pattern and typically drive repetitive movements such as breathing and walking. The networks are called central pattern generators (or CPGs for short). They contain both excitatory and inhibitory neurons and can generate rhythmic activity without any additional input. Nevertheless CPGs are not rigid, but can flexibly control when and how fast the muscles are activated to suit the animal's needs. It is thought the circuits are flexible because of the way excitatory and inhibitory neurons interact, but it is not known how these interactions define the behavior of the circuit. Sternfeld et al. have now developed a new method to examine how the neurons that make up a circuit influence its activity. First, embryonic stem cells from mice were coaxed to develop into a number of subtypes of both excitatory and inhibitory neurons in the laboratory. These neurons were used to grow networks of neurons in a dish, named “circuitoids”. The precise combination of subtypes of neuron was deliberately varied between each circuitoid, and Sternfeld et al. then studied how the different circuitoids behaved. Several subtypes of excitatory neurons showed rhythmic bursts of activity, just like simple CPGs. Moreover, the ratio of excitatory to inhibitory neurons in the circuitoids was critical for establishing how fast and synchronized the bursts of activity were across the network. It is possible that the brain also uses this simple strategy of varying the ratio of excitatory to inhibitory neurons in circuits of neurons to generate complex, yet highly flexible, circuits with rhythmic activity. Further work will be needed to test this idea. Finally, other researchers will hopefully be able to use this new approach to construct circuitoids and learn more about how the brain generates and controls rhythmic activity. It might also be possible to one-day transplant similar circuitoids into people to repair injured or diseased parts of a nervous system, or use circuitoids that resemble specific neurological disorders to screen for new treatments. DOI:http://dx.doi.org/10.7554/eLife.21540.002
Collapse
Affiliation(s)
- Matthew J Sternfeld
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States.,Biological Sciences Graduate Program, University of California, San Diego, La Jolla, United States
| | - Christopher A Hinckley
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
| | - Niall J Moore
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
| | - Matthew T Pankratz
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
| | - Kathryn L Hilde
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, United States
| | - Shawn P Driscoll
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
| | - Marito Hayashi
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States.,Biological Sciences Graduate Program, University of California, San Diego, La Jolla, United States
| | - Neal D Amin
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, United States.,Medical Scientist Training Program, University of California, San Diego, La Jolla, United States
| | - Dario Bonanomi
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
| | - Wesley D Gifford
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States.,Medical Scientist Training Program, University of California, San Diego, La Jolla, United States.,Neurosciences Graduate Program, University of California, San Diego, La Jolla, United States
| | - Kamal Sharma
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, United States
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - Samuel L Pfaff
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
| |
Collapse
|
120
|
Flynn JR, Conn VL, Boyle KA, Hughes DI, Watanabe M, Velasquez T, Goulding MD, Callister RJ, Graham BA. Anatomical and Molecular Properties of Long Descending Propriospinal Neurons in Mice. Front Neuroanat 2017; 11:5. [PMID: 28220062 PMCID: PMC5292581 DOI: 10.3389/fnana.2017.00005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/19/2017] [Indexed: 11/13/2022] Open
Abstract
Long descending propriospinal neurons (LDPNs) are interneurons that form direct connections between cervical and lumbar spinal circuits. LDPNs are involved in interlimb coordination and are important mediators of functional recovery after spinal cord injury (SCI). Much of what we know about LDPNs comes from a range of species, however, the increased use of transgenic mouse lines to better define neuronal populations calls for a more complete characterisation of LDPNs in mice. In this study, we examined the cell body location, inhibitory neurotransmitter phenotype, developmental provenance, morphology and synaptic inputs of mouse LDPNs throughout the cervical and upper thoracic spinal cord. LDPNs were retrogradely labelled from the lumbar spinal cord to map cell body locations throughout the cervical and upper thoracic segments. Ipsilateral LDPNs were distributed throughout the dorsal, intermediate and ventral grey matter as well as the lateral spinal nucleus and lateral cervical nucleus. In contrast, contralateral LDPNs were more densely concentrated in the ventromedial grey matter. Retrograde labelling in GlyT2GFP and GAD67GFP mice showed the majority of inhibitory LDPNs project either ipsilaterally or adjacent to the midline. Additionally, we used several transgenic mouse lines to define the developmental provenance of LDPNs and found that V2b positive neurons form a subset of ipsilaterally projecting LDPNs. Finally, a population of Neurobiotin (NB) labelled LDPNs were assessed in detail to examine morphology and plot the spatial distribution of contacts from a variety of neurochemically distinct axon terminals. These results provide important baseline data in mice for future work on their role in locomotion and recovery from SCI.
Collapse
Affiliation(s)
- Jamie R Flynn
- School of Biomedical Sciences and Pharmacy, University of NewcastleCallaghan, NSW, Australia; Hunter Medical Research InstituteNewcastle, NSW, Australia
| | - Victoria L Conn
- Institute of Neuroscience and Psychology, University of Glasgow Glasgow, UK
| | - Kieran A Boyle
- Institute of Neuroscience and Psychology, University of Glasgow Glasgow, UK
| | - David I Hughes
- Institute of Neuroscience and Psychology, University of Glasgow Glasgow, UK
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine Sapporo, Japan
| | - Tomoko Velasquez
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies La Jolla, CA, USA
| | - Martyn D Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies La Jolla, CA, USA
| | - Robert J Callister
- School of Biomedical Sciences and Pharmacy, University of NewcastleCallaghan, NSW, Australia; Hunter Medical Research InstituteNewcastle, NSW, Australia
| | - Brett A Graham
- School of Biomedical Sciences and Pharmacy, University of NewcastleCallaghan, NSW, Australia; Hunter Medical Research InstituteNewcastle, NSW, Australia
| |
Collapse
|
121
|
Dasen JS. Master or servant? emerging roles for motor neuron subtypes in the construction and evolution of locomotor circuits. Curr Opin Neurobiol 2017; 42:25-32. [PMID: 27907815 PMCID: PMC5316365 DOI: 10.1016/j.conb.2016.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/05/2016] [Accepted: 11/13/2016] [Indexed: 01/23/2023]
Abstract
Execution of motor behaviors relies on the ability of circuits within the nervous system to engage functionally relevant subtypes of spinal motor neurons. While much attention has been given to the role of networks of spinal interneurons on setting the rhythm and pattern of output from locomotor circuits, recent studies suggest that motor neurons themselves can exert an instructive role in shaping the wiring and functional properties of locomotor networks. Alteration in the distribution of motor neuron subtypes also appears to have contributed to evolutionary transitions in the locomotor strategies used by land vertebrates. This review describes emerging evidence that motor neuron-derived cues can have a profound influence on the organization, wiring, and evolutionary diversification of locomotor circuits.
Collapse
Affiliation(s)
- Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
122
|
Spinal Hb9::Cre-derived excitatory interneurons contribute to rhythm generation in the mouse. Sci Rep 2017; 7:41369. [PMID: 28128321 PMCID: PMC5269678 DOI: 10.1038/srep41369] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/20/2016] [Indexed: 11/14/2022] Open
Abstract
Rhythm generating neurons are thought to be ipsilaterally-projecting excitatory neurons in the thoracolumbar mammalian spinal cord. Recently, a subset of Shox2 interneurons (Shox2 non-V2a INs) was found to fulfill these criteria and make up a fraction of the rhythm-generating population. Here we use Hb9::Cre mice to genetically manipulate Hb9::Cre-derived excitatory interneurons (INs) in order to determine the role of these INs in rhythm generation. We demonstrate that this line captures a consistent population of spinal INs which is mixed with respect to neurotransmitter phenotype and progenitor domain, but does not overlap with the Shox2 non-V2a population. We also show that Hb9::Cre-derived INs include the comparatively small medial population of INs which continues to express Hb9 postnatally. When excitatory neurotransmission is selectively blocked by deleting Vglut2 from Hb9::Cre-derived INs, there is no difference in left-right and/or flexor-extensor phasing between these cords and controls, suggesting that excitatory Hb9::Cre-derived INs do not affect pattern generation. In contrast, the frequencies of locomotor activity are significantly lower in cords from Hb9::Cre-Vglut2Δ/Δ mice than in cords from controls. Collectively, our findings indicate that excitatory Hb9::Cre-derived INs constitute a distinct population of neurons that participates in the rhythm generating kernel for spinal locomotion.
Collapse
|
123
|
Francius C, Hidalgo-Figueroa M, Debrulle S, Pelosi B, Rucchin V, Ronellenfitch K, Panayiotou E, Makrides N, Misra K, Harris A, Hassani H, Schakman O, Parras C, Xiang M, Malas S, Chow RL, Clotman F. Vsx1 Transiently Defines an Early Intermediate V2 Interneuron Precursor Compartment in the Mouse Developing Spinal Cord. Front Mol Neurosci 2016; 9:145. [PMID: 28082864 PMCID: PMC5183629 DOI: 10.3389/fnmol.2016.00145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 11/30/2016] [Indexed: 12/30/2022] Open
Abstract
Spinal ventral interneurons regulate the activity of motor neurons, thereby controlling motor activities. Interneurons arise during embryonic development from distinct progenitor domains distributed orderly along the dorso-ventral axis of the neural tube. A single ventral progenitor population named p2 generates at least five V2 interneuron subsets. Whether the diversification of V2 precursors into multiple subsets occurs within the p2 progenitor domain or involves a later compartment of early-born V2 interneurons remains unsolved. Here, we provide evidence that the p2 domain produces an intermediate V2 precursor compartment characterized by the transient expression of the transcriptional repressor Vsx1. These cells display an original repertoire of cellular markers distinct from that of any V2 interneuron population. They have exited the cell cycle but have not initiated neuronal differentiation. They coexpress Vsx1 and Foxn4, suggesting that they can generate the known V2 interneuron populations as well as possible additional V2 subsets. Unlike V2 interneurons, the generation of Vsx1-positive precursors does not depend on the Notch signaling pathway but expression of Vsx1 in these cells requires Pax6. Hence, the p2 progenitor domain generates an intermediate V2 precursor compartment, characterized by the presence of the transcriptional repressor Vsx1, that contributes to V2 interneuron development.
Collapse
Affiliation(s)
- Cédric Francius
- Laboratory of Neural Differentiation, Institute of Neuroscience, Université catholique de LouvainBrussels, Belgium
| | - María Hidalgo-Figueroa
- Laboratory of Neural Differentiation, Institute of Neuroscience, Université catholique de LouvainBrussels, Belgium
| | - Stéphanie Debrulle
- Laboratory of Neural Differentiation, Institute of Neuroscience, Université catholique de LouvainBrussels, Belgium
| | - Barbara Pelosi
- Laboratory of Neural Differentiation, Institute of Neuroscience, Université catholique de LouvainBrussels, Belgium
| | - Vincent Rucchin
- Laboratory of Neural Differentiation, Institute of Neuroscience, Université catholique de LouvainBrussels, Belgium
| | | | | | | | - Kamana Misra
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University - Robert Wood Johnson Medical SchoolPiscataway, NJ, USA
| | - Audrey Harris
- Laboratory of Neural Differentiation, Institute of Neuroscience, Université catholique de LouvainBrussels, Belgium
| | - Hessameh Hassani
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC University Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM)Paris, France
| | - Olivier Schakman
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de LouvainBrussels, Belgium
| | - Carlos Parras
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC University Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM)Paris, France
| | - Mengqing Xiang
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University - Robert Wood Johnson Medical SchoolPiscataway, NJ, USA
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou, China
| | - Stavros Malas
- The Cyprus Institute of Neurology and GeneticsNicosia, Cyprus
| | - Robert L. Chow
- Department of Biology, University of VictoriaVictoria, BC, Canada
| | - Frédéric Clotman
- Laboratory of Neural Differentiation, Institute of Neuroscience, Université catholique de LouvainBrussels, Belgium
| |
Collapse
|
124
|
Ruder L, Takeoka A, Arber S. Long-Distance Descending Spinal Neurons Ensure Quadrupedal Locomotor Stability. Neuron 2016; 92:1063-1078. [PMID: 27866798 DOI: 10.1016/j.neuron.2016.10.032] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/07/2016] [Accepted: 10/13/2016] [Indexed: 12/18/2022]
Abstract
Locomotion is an essential animal behavior used for translocation. The spinal cord acts as key executing center, but how it coordinates many body parts located across distance remains poorly understood. Here we employed mouse genetic and viral approaches to reveal organizational principles of long-projecting spinal circuits and their role in quadrupedal locomotion. Using neurotransmitter identity, developmental origin, and projection patterns as criteria, we uncover that spinal segments controlling forelimbs and hindlimbs are bidirectionally connected by symmetrically organized direct synaptic pathways that encompass multiple genetically tractable neuronal subpopulations. We demonstrate that selective ablation of descending spinal neurons linking cervical to lumbar segments impairs coherent locomotion, by reducing postural stability and speed during exploratory locomotion, as well as perturbing interlimb coordination during reinforced high-speed stepping. Together, our results implicate a highly organized long-distance projection system of spinal origin in the control of postural body stabilization and reliability during quadrupedal locomotion.
Collapse
Affiliation(s)
- Ludwig Ruder
- Biozentrum, Department of Cell Biology, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Aya Takeoka
- Biozentrum, Department of Cell Biology, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Silvia Arber
- Biozentrum, Department of Cell Biology, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| |
Collapse
|
125
|
Kobayashi R, Nishimaru H, Nishijo H. Estimation of excitatory and inhibitory synaptic conductance variations in motoneurons during locomotor-like rhythmic activity. Neuroscience 2016; 335:72-81. [PMID: 27561702 DOI: 10.1016/j.neuroscience.2016.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/06/2016] [Accepted: 08/12/2016] [Indexed: 11/28/2022]
Abstract
The rhythmic activity of motoneurons (MNs) that underlies locomotion in mammals is generated by synaptic inputs from the locomotor network in the spinal cord. Thus, the quantitative estimation of excitatory and inhibitory synaptic conductances is essential to understand the mechanism by which the network generates the functional motor output. Conductance estimation is obtained from the voltage-current relationship measured by voltage-clamp- or current-clamp-recording with knowledge of the leak parameters of the recorded neuron. However, it is often difficult to obtain sufficient data to estimate synaptic conductances due to technical difficulties in electrophysiological experiments using in vivo or in vitro preparations. To address this problem, we estimated the average variations in excitatory and inhibitory synaptic conductance during a locomotion cycle from a single voltage trace without measuring the leak parameters. We found that the conductance variations can be accurately reconstructed from a voltage trace of 10 cycles by analyzing synthetic data generated from a computational model. Next, the conductance variations were estimated from mouse spinal MNs in vitro during drug-induced-locomotor-like activity. We found that the peak of excitatory conductance occurred during the depolarizing phase of the locomotor cycle, whereas the peak of inhibitory conductance occurred during the hyperpolarizing phase. These results suggest that the locomotor-like activity is generated by push-pull modulation via excitatory and inhibitory synaptic inputs.
Collapse
Affiliation(s)
- Ryota Kobayashi
- Principles of Informatics Research Division, National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-0003, Japan; Department of Informatics, SOKENDAI (The Graduate University for Advanced Studies), 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan.
| | - Hiroshi Nishimaru
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan; Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan.
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| |
Collapse
|
126
|
Cabaj AM, Majczyński H, Couto E, Gardiner PF, Stecina K, Sławińska U, Jordan LM. Serotonin controls initiation of locomotion and afferent modulation of coordination via 5-HT 7 receptors in adult rats. J Physiol 2016; 595:301-320. [PMID: 27393215 DOI: 10.1113/jp272271] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/30/2016] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Experiments on neonatal rodent spinal cord showed that serotonin (5-HT), acting via 5-HT7 receptors, is required for initiation of locomotion and for controlling the action of interneurons responsible for inter- and intralimb coordination, but the importance of the 5-HT system in adult locomotion is not clear. Blockade of spinal 5-HT7 receptors interfered with voluntary locomotion in adult rats and fictive locomotion in paralysed decerebrate rats with no afferent feedback, consistent with a requirement for activation of descending 5-HT neurons for production of locomotion. The direct control of coordinating interneurons by 5-HT7 receptors observed in neonatal animals was not found during fictive locomotion, revealing a developmental shift from direct control of locomotor interneurons in neonates to control of afferent input from the moving limb in adults. An understanding of the afferents controlled by 5-HT during locomotion is required for optimal use of rehabilitation therapies involving the use of serotonergic drugs. ABSTRACT Serotonergic pathways to the spinal cord are implicated in the control of locomotion based on studies using serotonin type 7 (5-HT7 ) receptor agonists and antagonists and 5-HT7 receptor knockout mice. Blockade of these receptors is thought to interfere with the activity of coordinating interneurons, a conclusion derived primarily from in vitro studies on isolated spinal cord of neonatal rats and mice. Developmental changes in the effects of serotonin (5-HT) on spinal neurons have recently been described, and there is increasing data on control of sensory input by 5-HT7 receptors on dorsal root ganglion cells and/or dorsal horn neurons, leading us to determine the effects of 5-HT7 receptor blockade on voluntary overground locomotion and on locomotion without afferent input from the moving limb (fictive locomotion) in adult animals. Intrathecal injections of the selective 5-HT7 antagonist SB269970 in adult intact rats suppressed locomotion by partial paralysis of hindlimbs. This occurred without a direct effect on motoneurons as revealed by an investigation of reflex activity. The antagonist disrupted intra- and interlimb coordination during locomotion in all intact animals but not during fictive locomotion induced by stimulation of the mesencephalic locomotor region (MLR). MLR-evoked fictive locomotion was transiently blocked, then the amplitude and frequency of rhythmic activity were reduced by SB269970, consistent with the notion that the MLR activates 5-HT neurons, leading to excitation of central pattern generator neurons with 5-HT7 receptors. Effects on coordination in adults required the presence of afferent input, suggesting a switch to 5-HT7 receptor-mediated control of sensory pathways during development.
Collapse
Affiliation(s)
- Anna M Cabaj
- Department of Neurophysiology, Nencki Institute of Experimental Biology PAS, 02-093, Warsaw, Poland.,Department of Nerve-Muscle Engineering, Institute of Biocybernetics and Biomedical Engineering PAS, 02-109, Warsaw, Poland
| | - Henryk Majczyński
- Department of Neurophysiology, Nencki Institute of Experimental Biology PAS, 02-093, Warsaw, Poland
| | - Erika Couto
- Department of Physiology & Pathophysiology, Spinal Cord Research Centre, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Phillip F Gardiner
- Department of Physiology & Pathophysiology, Spinal Cord Research Centre, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Katinka Stecina
- Department of Physiology & Pathophysiology, Spinal Cord Research Centre, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Urszula Sławińska
- Department of Neurophysiology, Nencki Institute of Experimental Biology PAS, 02-093, Warsaw, Poland
| | - Larry M Jordan
- Department of Physiology & Pathophysiology, Spinal Cord Research Centre, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| |
Collapse
|
127
|
Shevtsova NA, Rybak IA. Organization of flexor-extensor interactions in the mammalian spinal cord: insights from computational modelling. J Physiol 2016; 594:6117-6131. [PMID: 27292055 DOI: 10.1113/jp272437] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/07/2016] [Indexed: 12/28/2022] Open
Abstract
KEY POINTS Alternation of flexor and extensor activity in the mammalian spinal cord is mediated by two classes of genetically identified inhibitory interneurons, V1 and V2b. The V1 interneurons are essential for high-speed locomotor activity. They secure flexor-extensor alternations in the intact cord but lose this function after hemisection, suggesting that they are activated by inputs from the contralateral side of the cord. The V2b interneurons are involved in flexor-extensor alternations in both intact cord and hemicords. We used a computational model of the spinal network, simulating the left and right rhythm-generating circuits interacting via several commissural pathways, and extended this model by incorporating V1 and V2b neuron populations involved in flexor-extensor interactions on each cord side. The model reproduces multiple experimental data on selective silencing and activation of V1 and/or V2b neurons and proposes the organization of their connectivity providing flexor-extensor alternation in the spinal cord. ABSTRACT Alternating flexor and extensor activity represents the fundamental property underlying many motor behaviours including locomotion. During locomotion this alternation appears to arise in rhythm-generating circuits and transpires at all levels of the spinal cord including motoneurons. Recent studies in vitro and in vivo have shown that flexor-extensor alternation during locomotion involves two classes of genetically identified, inhibitory interneurons: V1 and V2b. Particularly, in the isolated mouse spinal cord, abrogation of neurotransmission derived by both V1 and V2b interneurons resulted in flexor-extensor synchronization, whereas selective inactivation of only one of these neuron types did not abolish flexor-extensor alternation. After hemisection, inactivation of only V2b interneurons led to the flexor-extensor synchronization, while inactivation of V1 interneurons did not affect flexor-extensor alternation. Moreover, optogenetic activation of V2b interneurons suppressed extensor-related activity, while similar activation of V1 interneurons suppressed both flexor and extensor oscillations. Here, we address these issues using the previously published computational model of spinal circuitry simulating bilateral interactions between left and right rhythm-generating circuits. In the present study, we incorporate V1 and V2b neuron populations on both sides of the cord to make them critically involved in flexor-extensor interactions. The model reproduces multiple experimental data on the effects of hemisection and selective silencing or activation of V1 and V2b neurons and suggests connectivity profiles of these neurons and their specific roles in left-right (V1) and flexor-extensor (both V2b and V1) interactions in the spinal cord that can be tested experimentally.
Collapse
Affiliation(s)
- Natalia A Shevtsova
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
128
|
Arshavsky YI, Deliagina TG, Orlovsky GN. Central Pattern Generators: Mechanisms of Operation and Their Role in Controlling Automatic Movements. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s11055-016-0299-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
129
|
Jankowska E. On the distribution of information from muscle spindles in the spinal cord; how much does it depend on random factors? J Anat 2016; 227:184-93. [PMID: 26179024 DOI: 10.1111/joa.12331] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2015] [Indexed: 11/27/2022] Open
Abstract
Information forwarded by individual muscle spindles is modulated by the dynamic and static gamma motoneurons in a differentiated way, depending on the coupling between the fusimotor neurons and the various intrafusal muscle fibres. Further modulation of this information at the level of spinal neurons is also differentiated because connections between individual muscle spindles and their spinal target cells are quite variable. This review illustrates this variability with respect to the spinal trajectory of muscle spindle primary afferents and the distribution of their synaptic contacts on motoneurons and other spinal neurons. It also discusses some of the consequences of this variability for the processing of information from proprioceptors.
Collapse
Affiliation(s)
- E Jankowska
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
130
|
Stein PSG, Daniels-McQueen S, Lai J, Liu Z, Corman TS. Modular organization of the multipartite central pattern generator for turtle rostral scratch: knee-related interneurons during deletions. J Neurophysiol 2016; 115:3130-9. [PMID: 27030737 DOI: 10.1152/jn.00871.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/27/2016] [Indexed: 11/22/2022] Open
Abstract
Central pattern generators (CPGs) are neuronal networks in the spinal cord that generate rhythmic patterns of motor activity in the absence of movement-related sensory feedback. For many vertebrate rhythmic behaviors, CPGs generate normal patterns of motor neuron activities as well as variations of the normal patterns, termed deletions, in which bursts in one or more motor nerves are absent from one or more cycles of the rhythm. Prior work with hip-extensor deletions during turtle rostral scratch supports hypotheses of hip-extensor interneurons in a hip-extensor module and of hip-flexor interneurons in a hip-flexor module. We present here single-unit interneuronal recording data that support hypotheses of knee-extensor interneurons in a knee-extensor module and of knee-flexor interneurons in a knee-flexor module. Members of knee-related modules are not members of hip-related modules and vice versa. These results in turtle provide experimental support at the single-unit interneuronal level for the organizational concept that the rostral-scratch CPG for the turtle hindlimb is multipartite, that is, composed of more than two modules. This work, when combined with experimental and computational work in other vertebrates, does not support the classical view that the vertebrate limb CPG is bipartite with only two modules, one controlling all the flexors of the limb and the other controlling all the extensors of the limb. Instead, these results support the general principle that spinal CPGs are multipartite.
Collapse
Affiliation(s)
- Paul S G Stein
- Department of Biology, Washington University, St. Louis, Missouri
| | | | - Jessica Lai
- Department of Biology, Washington University, St. Louis, Missouri
| | - Z Liu
- Department of Biology, Washington University, St. Louis, Missouri
| | - Tanya S Corman
- Department of Biology, Washington University, St. Louis, Missouri
| |
Collapse
|
131
|
Bikoff JB, Gabitto MI, Rivard AF, Drobac E, Machado TA, Miri A, Brenner-Morton S, Famojure E, Diaz C, Alvarez FJ, Mentis GZ, Jessell TM. Spinal Inhibitory Interneuron Diversity Delineates Variant Motor Microcircuits. Cell 2016; 165:207-219. [PMID: 26949184 DOI: 10.1016/j.cell.2016.01.027] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/30/2015] [Accepted: 01/15/2016] [Indexed: 12/11/2022]
Abstract
Animals generate movement by engaging spinal circuits that direct precise sequences of muscle contraction, but the identity and organizational logic of local interneurons that lie at the core of these circuits remain unresolved. Here, we show that V1 interneurons, a major inhibitory population that controls motor output, fractionate into highly diverse subsets on the basis of the expression of 19 transcription factors. Transcriptionally defined V1 subsets exhibit distinct physiological signatures and highly structured spatial distributions with mediolateral and dorsoventral positional biases. These positional distinctions constrain patterns of input from sensory and motor neurons and, as such, suggest that interneuron position is a determinant of microcircuit organization. Moreover, V1 diversity indicates that different inhibitory microcircuits exist for motor pools controlling hip, ankle, and foot muscles, revealing a variable circuit architecture for interneurons that control limb movement.
Collapse
Affiliation(s)
- Jay B Bikoff
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA; Departments of Neuroscience and Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| | - Mariano I Gabitto
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA; Departments of Neuroscience and Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Andre F Rivard
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30319, USA
| | - Estelle Drobac
- Center for Motor Neuron Biology and Disease, Departments of Pathology and Cell Biology and Neurology, Columbia University, New York, NY 10032, USA
| | - Timothy A Machado
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA; Departments of Neuroscience and Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Andrew Miri
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA; Departments of Neuroscience and Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Susan Brenner-Morton
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA; Departments of Neuroscience and Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Erica Famojure
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA; Departments of Neuroscience and Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Carolyn Diaz
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA; Departments of Neuroscience and Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Francisco J Alvarez
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30319, USA
| | - George Z Mentis
- Center for Motor Neuron Biology and Disease, Departments of Pathology and Cell Biology and Neurology, Columbia University, New York, NY 10032, USA
| | - Thomas M Jessell
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA; Departments of Neuroscience and Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
132
|
Gabitto MI, Pakman A, Bikoff JB, Abbott LF, Jessell TM, Paninski L. Bayesian Sparse Regression Analysis Documents the Diversity of Spinal Inhibitory Interneurons. Cell 2016; 165:220-233. [PMID: 26949187 DOI: 10.1016/j.cell.2016.01.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/30/2015] [Accepted: 01/15/2016] [Indexed: 12/14/2022]
Abstract
Documenting the extent of cellular diversity is a critical step in defining the functional organization of tissues and organs. To infer cell-type diversity from partial or incomplete transcription factor expression data, we devised a sparse Bayesian framework that is able to handle estimation uncertainty and can incorporate diverse cellular characteristics to optimize experimental design. Focusing on spinal V1 inhibitory interneurons, for which the spatial expression of 19 transcription factors has been mapped, we infer the existence of ~50 candidate V1 neuronal types, many of which localize in compact spatial domains in the ventral spinal cord. We have validated the existence of inferred cell types by direct experimental measurement, establishing this Bayesian framework as an effective platform for cell-type characterization in the nervous system and elsewhere.
Collapse
Affiliation(s)
- Mariano I Gabitto
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Kavli Institute for Brain Science, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA.
| | - Ari Pakman
- Department of Statistics and Grossman Center for the Statistics of Mind, Columbia University, New York, NY 10027, USA
| | - Jay B Bikoff
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Kavli Institute for Brain Science, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - L F Abbott
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Thomas M Jessell
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Kavli Institute for Brain Science, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Liam Paninski
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Department of Statistics and Grossman Center for the Statistics of Mind, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
133
|
Abstract
Unravelling the functional operation of neuronal networks and linking cellular activity to specific behavioural outcomes are among the biggest challenges in neuroscience. In this broad field of research, substantial progress has been made in studies of the spinal networks that control locomotion. Through united efforts using electrophysiological and molecular genetic network approaches and behavioural studies in phylogenetically diverse experimental models, the organization of locomotor networks has begun to be decoded. The emergent themes from this research are that the locomotor networks have a modular organization with distinct transmitter and molecular codes and that their organization is reconfigured with changes to the speed of locomotion or changes in gait.
Collapse
Affiliation(s)
- Ole Kiehn
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Retziusväg 8, 17177 Stockholm, Sweden
| |
Collapse
|
134
|
Lemieux M, Josset N, Roussel M, Couraud S, Bretzner F. Speed-Dependent Modulation of the Locomotor Behavior in Adult Mice Reveals Attractor and Transitional Gaits. Front Neurosci 2016; 10:42. [PMID: 26941592 PMCID: PMC4763020 DOI: 10.3389/fnins.2016.00042] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/01/2016] [Indexed: 01/21/2023] Open
Abstract
Locomotion results from an interplay between biomechanical constraints of the muscles attached to the skeleton and the neuronal circuits controlling and coordinating muscle activities. Quadrupeds exhibit a wide range of locomotor gaits. Given our advances in the genetic identification of spinal and supraspinal circuits important to locomotion in the mouse, it is now important to get a better understanding of the full repertoire of gaits in the freely walking mouse. To assess this range, young adult C57BL/6J mice were trained to walk and run on a treadmill at different locomotor speeds. Instead of using the classical paradigm defining gaits according to their footfall pattern, we combined the inter-limb coupling and the duty cycle of the stance phase, thus identifying several types of gaits: lateral walk, trot, out-of-phase walk, rotary gallop, transverse gallop, hop, half-bound, and full-bound. Out-of-phase walk, trot, and full-bound were robust and appeared to function as attractor gaits (i.e., a state to which the network flows and stabilizes) at low, intermediate, and high speeds respectively. In contrast, lateral walk, hop, transverse gallop, rotary gallop, and half-bound were more transient and therefore considered transitional gaits (i.e., a labile state of the network from which it flows to the attractor state). Surprisingly, lateral walk was less frequently observed. Using graph analysis, we demonstrated that transitions between gaits were predictable, not random. In summary, the wild-type mouse exhibits a wider repertoire of locomotor gaits than expected. Future locomotor studies should benefit from this paradigm in assessing transgenic mice or wild-type mice with neurotraumatic injury or neurodegenerative disease affecting gait.
Collapse
Affiliation(s)
- Maxime Lemieux
- Centre de Recherche du CHU de Québec, CHUL-Neurosciences Québec, QC, Canada
| | - Nicolas Josset
- Centre de Recherche du CHU de Québec, CHUL-Neurosciences Québec, QC, Canada
| | - Marie Roussel
- Centre de Recherche du CHU de Québec, CHUL-Neurosciences Québec, QC, Canada
| | - Sébastien Couraud
- Centre de Recherche du CHU de Québec, CHUL-Neurosciences Québec, QC, Canada
| | - Frédéric Bretzner
- Centre de Recherche du CHU de Québec, CHUL-NeurosciencesQuébec, QC, Canada; Department of Psychiatry and Neurosciences, Faculty of Medicine, Université LavalQuébec, QC, Canada
| |
Collapse
|
135
|
Petracca YL, Sartoretti MM, Di Bella DJ, Marin-Burgin A, Carcagno AL, Schinder AF, Lanuza GM. The late and dual origin of cerebrospinal fluid-contacting neurons in the mouse spinal cord. Development 2016; 143:880-91. [PMID: 26839365 DOI: 10.1242/dev.129254] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/25/2016] [Indexed: 12/16/2022]
Abstract
Considerable progress has been made in understanding the mechanisms that control the production of specialized neuronal types. However, how the timing of differentiation contributes to neuronal diversity in the developing spinal cord is still a pending question. In this study, we show that cerebrospinal fluid-contacting neurons (CSF-cNs), an anatomically discrete cell type of the ependymal area, originate from surprisingly late neurogenic events in the ventral spinal cord. CSF-cNs are identified by the expression of the transcription factors Gata2 and Gata3, and the ionic channels Pkd2l1 and Pkd1l2. Contrasting with Gata2/3(+) V2b interneurons, differentiation of CSF-cNs is independent of Foxn4 and takes place during advanced developmental stages previously assumed to be exclusively gliogenic. CSF-cNs are produced from two distinct dorsoventral regions of the mouse spinal cord. Most CSF-cNs derive from progenitors circumscribed to the late-p2 and the oligodendrogenic (pOL) domains, whereas a second subset of CSF-cNs arises from cells bordering the floor plate. The development of these two subgroups of CSF-cNs is differentially controlled by Pax6, they adopt separate locations around the postnatal central canal and they display electrophysiological differences. Our results highlight that spatiotemporal mechanisms are instrumental in creating neural cell diversity in the ventral spinal cord to produce distinct classes of interneurons, motoneurons, CSF-cNs, glial cells and ependymal cells.
Collapse
Affiliation(s)
- Yanina L Petracca
- Developmental Neurobiology Lab, Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Maria Micaela Sartoretti
- Developmental Neurobiology Lab, Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Daniela J Di Bella
- Developmental Neurobiology Lab, Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Antonia Marin-Burgin
- Neuronal Plasticity Lab, Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Abel L Carcagno
- Developmental Neurobiology Lab, Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Alejandro F Schinder
- Neuronal Plasticity Lab, Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Guillermo M Lanuza
- Developmental Neurobiology Lab, Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires 1405, Argentina
| |
Collapse
|
136
|
Thélie A, Desiderio S, Hanotel J, Quigley I, Van Driessche B, Rodari A, Borromeo MD, Kricha S, Lahaye F, Croce J, Cerda-Moya G, Ordoño Fernandez J, Bolle B, Lewis KE, Sander M, Pierani A, Schubert M, Johnson JE, Kintner CR, Pieler T, Van Lint C, Henningfeld KA, Bellefroid EJ, Van Campenhout C. Prdm12 specifies V1 interneurons through cross-repressive interactions with Dbx1 and Nkx6 genes in Xenopus. Development 2016; 142:3416-28. [PMID: 26443638 DOI: 10.1242/dev.121871] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
V1 interneurons are inhibitory neurons that play an essential role in vertebrate locomotion. The molecular mechanisms underlying their genesis remain, however, largely undefined. Here, we show that the transcription factor Prdm12 is selectively expressed in p1 progenitors of the hindbrain and spinal cord in the frog embryo, and that a similar restricted expression profile is observed in the nerve cord of other vertebrates as well as of the cephalochordate amphioxus. Using frog, chick and mice, we analyzed the regulation of Prdm12 and found that its expression in the caudal neural tube is dependent on retinoic acid and Pax6, and that it is restricted to p1 progenitors, due to the repressive action of Dbx1 and Nkx6-1/2 expressed in the adjacent p0 and p2 domains. Functional studies in the frog, including genome-wide identification of its targets by RNA-seq and ChIP-Seq, reveal that vertebrate Prdm12 proteins act as a general determinant of V1 cell fate, at least in part, by directly repressing Dbx1 and Nkx6 genes. This probably occurs by recruiting the methyltransferase G9a, an activity that is not displayed by the amphioxus Prdm12 protein. Together, these findings indicate that Prdm12 promotes V1 interneurons through cross-repressive interactions with Dbx1 and Nkx6 genes, and suggest that this function might have only been acquired after the split of the vertebrate and cephalochordate lineages.
Collapse
Affiliation(s)
- Aurore Thélie
- Laboratory of Developmental Genetics, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medecine (IBMM) and ULB Neuroscience Institute, Gosselies B-6041, Belgium
| | - Simon Desiderio
- Laboratory of Developmental Genetics, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medecine (IBMM) and ULB Neuroscience Institute, Gosselies B-6041, Belgium
| | - Julie Hanotel
- Laboratory of Developmental Genetics, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medecine (IBMM) and ULB Neuroscience Institute, Gosselies B-6041, Belgium
| | - Ian Quigley
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | - Anthony Rodari
- Laboratory of Molecular Virology, ULB, IBMM, Gosselies B-6041, Belgium
| | - Mark D Borromeo
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sadia Kricha
- Laboratory of Developmental Genetics, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medecine (IBMM) and ULB Neuroscience Institute, Gosselies B-6041, Belgium
| | - François Lahaye
- Sorbonne Universités, UPMC Université Paris 06, CNRS UMR 7009, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (UMR 7009), Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer 06230, France
| | - Jenifer Croce
- Sorbonne Universités, UPMC Université Paris 06, CNRS UMR 7009, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (UMR 7009), Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer 06230, France
| | - Gustavo Cerda-Moya
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Jesús Ordoño Fernandez
- Laboratory of Developmental Genetics, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medecine (IBMM) and ULB Neuroscience Institute, Gosselies B-6041, Belgium
| | - Barbara Bolle
- Laboratory of Developmental Genetics, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medecine (IBMM) and ULB Neuroscience Institute, Gosselies B-6041, Belgium
| | - Katharine E Lewis
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Maike Sander
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093-0695, USA
| | - Alessandra Pierani
- Génétique et développement du cortex cerebral, Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris Cedex 13 75205, France
| | - Michael Schubert
- Sorbonne Universités, UPMC Université Paris 06, CNRS UMR 7009, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (UMR 7009), Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer 06230, France
| | - Jane E Johnson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christopher R Kintner
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tomas Pieler
- Department of Developmental Biochemistry, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, 37077 Göttingen, Germany
| | - Carine Van Lint
- Laboratory of Molecular Virology, ULB, IBMM, Gosselies B-6041, Belgium
| | - Kristine A Henningfeld
- Department of Developmental Biochemistry, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, 37077 Göttingen, Germany
| | - Eric J Bellefroid
- Laboratory of Developmental Genetics, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medecine (IBMM) and ULB Neuroscience Institute, Gosselies B-6041, Belgium
| | - Claude Van Campenhout
- Laboratory of Developmental Genetics, Université Libre de Bruxelles (ULB), Institute of Molecular Biology and Medecine (IBMM) and ULB Neuroscience Institute, Gosselies B-6041, Belgium
| |
Collapse
|
137
|
Liu YB, Tewari A, Salameh J, Arystarkhova E, Hampton TG, Brashear A, Ozelius LJ, Khodakhah K, Sweadner KJ. A dystonia-like movement disorder with brain and spinal neuronal defects is caused by mutation of the mouse laminin β1 subunit, Lamb1. eLife 2015; 4. [PMID: 26705335 PMCID: PMC4749547 DOI: 10.7554/elife.11102] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/15/2015] [Indexed: 12/30/2022] Open
Abstract
A new mutant mouse (lamb1t) exhibits intermittent dystonic hindlimb movements and postures when awake, and hyperextension when asleep. Experiments showed co-contraction of opposing muscle groups, and indicated that symptoms depended on the interaction of brain and spinal cord. SNP mapping and exome sequencing identified the dominant causative mutation in the Lamb1 gene. Laminins are extracellular matrix proteins, widely expressed but also known to be important in synapse structure and plasticity. In accordance, awake recording in the cerebellum detected abnormal output from a circuit of two Lamb1-expressing neurons, Purkinje cells and their deep cerebellar nucleus targets, during abnormal postures. We propose that dystonia-like symptoms result from lapses in descending inhibition, exposing excess activity in intrinsic spinal circuits that coordinate muscles. The mouse is a new model for testing how dysfunction in the CNS causes specific abnormal movements and postures.
Collapse
Affiliation(s)
- Yi Bessie Liu
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Ambika Tewari
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - Johnny Salameh
- Department of Neurology, University of Massachusetts Medical School, Worcester, United States
| | - Elena Arystarkhova
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Thomas G Hampton
- Neuroscience Discovery Core, Mouse Specifics Inc., Framingham, United States
| | - Allison Brashear
- Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, United States
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Kamran Khodakhah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - Kathleen J Sweadner
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| |
Collapse
|
138
|
Hinckley CA, Alaynick WA, Gallarda BW, Hayashi M, Hilde KL, Driscoll SP, Dekker JD, Tucker HO, Sharpee TO, Pfaff SL. Spinal Locomotor Circuits Develop Using Hierarchical Rules Based on Motorneuron Position and Identity. Neuron 2015; 87:1008-21. [PMID: 26335645 DOI: 10.1016/j.neuron.2015.08.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/29/2015] [Accepted: 08/03/2015] [Indexed: 11/28/2022]
Abstract
The coordination of multi-muscle movements originates in the circuitry that regulates the firing patterns of spinal motorneurons. Sensory neurons rely on the musculotopic organization of motorneurons to establish orderly connections, prompting us to examine whether the intraspinal circuitry that coordinates motor activity likewise uses cell position as an internal wiring reference. We generated a motorneuron-specific GCaMP6f mouse line and employed two-photon imaging to monitor the activity of lumbar motorneurons. We show that the central pattern generator neural network coordinately drives rhythmic columnar-specific motorneuron bursts at distinct phases of the locomotor cycle. Using multiple genetic strategies to perturb the subtype identity and orderly position of motorneurons, we found that neurons retained their rhythmic activity-but cell position was decoupled from the normal phasing pattern underlying flexion and extension. These findings suggest a hierarchical basis of motor circuit formation that relies on increasingly stringent matching of neuronal identity and position.
Collapse
Affiliation(s)
- Christopher A Hinckley
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - William A Alaynick
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - Benjamin W Gallarda
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - Marito Hayashi
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - Kathryn L Hilde
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - Shawn P Driscoll
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - Joseph D Dekker
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Haley O Tucker
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tatyana O Sharpee
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA; Computational Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - Samuel L Pfaff
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA.
| |
Collapse
|
139
|
Bouvier J, Caggiano V, Leiras R, Caldeira V, Bellardita C, Balueva K, Fuchs A, Kiehn O. Descending Command Neurons in the Brainstem that Halt Locomotion. Cell 2015; 163:1191-1203. [PMID: 26590422 PMCID: PMC4899047 DOI: 10.1016/j.cell.2015.10.074] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/21/2015] [Accepted: 10/28/2015] [Indexed: 01/21/2023]
Abstract
The episodic nature of locomotion is thought to be controlled by descending inputs from the brainstem. Most studies have largely attributed this control to initiating excitatory signals, but little is known about putative commands that may specifically determine locomotor offset. To link identifiable brainstem populations to a potential locomotor stop signal, we used developmental genetics and considered a discrete neuronal population in the reticular formation: the V2a neurons. We find that those neurons constitute a major excitatory pathway to locomotor areas of the ventral spinal cord. Selective activation of V2a neurons of the rostral medulla stops ongoing locomotor activity, owing to an inhibition of premotor locomotor networks in the spinal cord. Moreover, inactivation of such neurons decreases spontaneous stopping in vivo. Therefore, the V2a "stop neurons" represent a glutamatergic descending pathway that favors immobility and may thus help control the episodic nature of locomotion.
Collapse
Affiliation(s)
- Julien Bouvier
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Paris-Saclay Institute of Neuroscience, UMR 9197 - CNRS and Université-Paris 11, 91190 Gif-sur-Yvette, France.
| | - Vittorio Caggiano
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Roberto Leiras
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Vanessa Caldeira
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Carmelo Bellardita
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Kira Balueva
- Institute of Physiology, Christian Albrechts University of Kiel, 24098 Kiel, Germany
| | - Andrea Fuchs
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Ole Kiehn
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
140
|
Zannino DA, Sagerström CG. An emerging role for prdm family genes in dorsoventral patterning of the vertebrate nervous system. Neural Dev 2015; 10:24. [PMID: 26499851 PMCID: PMC4620005 DOI: 10.1186/s13064-015-0052-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/13/2015] [Indexed: 12/13/2022] Open
Abstract
The embryonic vertebrate neural tube is divided along its dorsoventral (DV) axis into eleven molecularly discrete progenitor domains. Each of these domains gives rise to distinct neuronal cell types; the ventral-most six domains contribute to motor circuits, while the five dorsal domains contribute to sensory circuits. Following the initial neurogenesis step, these domains also generate glial cell types—either astrocytes or oligodendrocytes. This DV pattern is initiated by two morphogens—Sonic Hedgehog released from notochord and floor plate and Bone Morphogenetic Protein produced in the roof plate—that act in concentration gradients to induce expression of genes along the DV axis. Subsequently, these DV-restricted genes cooperate to define progenitor domains and to control neuronal cell fate specification and differentiation in each domain. Many genes involved in this process have been identified, but significant gaps remain in our understanding of the underlying genetic program. Here we review recent work identifying members of the Prdm gene family as novel regulators of DV patterning in the neural tube. Many Prdm proteins regulate transcription by controlling histone modifications (either via intrinsic histone methyltransferase activity, or by recruiting histone modifying enzymes). Prdm genes are expressed in spatially restricted domains along the DV axis of the neural tube and play important roles in the specification of progenitor domains, as well as in the subsequent differentiation of motor neurons and various types of interneurons. Strikingly, Prdm proteins appear to function by binding to, and modulating the activity of, other transcription factors (particularly bHLH proteins). The identity of key transcription factors in DV patterning of the neural tube has been elucidated previously (e.g. the nkx, bHLH and pax families), but it now appears that an additional family is also required and that it acts in a potentially novel manner.
Collapse
Affiliation(s)
- Denise A Zannino
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St./LRB815, Worcester, MA, 01605-2324, USA.
| | - Charles G Sagerström
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St./LRB815, Worcester, MA, 01605-2324, USA.
| |
Collapse
|
141
|
Britz O, Zhang J, Grossmann KS, Dyck J, Kim JC, Dymecki S, Gosgnach S, Goulding M. A genetically defined asymmetry underlies the inhibitory control of flexor-extensor locomotor movements. eLife 2015; 4. [PMID: 26465208 PMCID: PMC4604447 DOI: 10.7554/elife.04718] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 08/29/2015] [Indexed: 11/13/2022] Open
Abstract
V1 and V2b interneurons (INs) are essential for the production of an alternating flexor–extensor motor output. Using a tripartite genetic system to selectively ablate either V1 or V2b INs in the caudal spinal cord and assess their specific functions in awake behaving animals, we find that V1 and V2b INs function in an opposing manner to control flexor–extensor-driven movements. Ablation of V1 INs results in limb hyperflexion, suggesting that V1 IN-derived inhibition is needed for proper extension movements of the limb. The loss of V2b INs results in hindlimb hyperextension and a delay in the transition from stance phase to swing phase, demonstrating V2b INs are required for the timely initiation and execution of limb flexion movements. Our findings also reveal a bias in the innervation of flexor- and extensor-related motor neurons by V1 and V2b INs that likely contributes to their differential actions on flexion–extension movements. DOI:http://dx.doi.org/10.7554/eLife.04718.001 Although there are many different movements an animal can make with its limbs—from reaching to walking—they all basically involve two sets of muscles that act as opposing levers around each joint. ‘Flexor’ muscles contract to bend the limb, and ‘extensor’ muscles contract to extend the limb. When an animal is walking these two sets of muscles contract repeatedly, one after the other. Inhibitory neurons in the spinal cord coordinate these walking movements by preventing the flexor or extensor muscles from contracting at the same time. In 2014, researchers discovered that two groups of inhibitory neurons, known as the V1 and V2b interneurons, are essential for this alternating pattern of flexing and extending of the limbs of newborn mice. However, these experiments were not able to assess the particular contribution that the V1 and V2b neurons each make to limb movements. Now, Britz et al.—including several of the researchers involved in the 2014 study—have used a sophisticated genetic technique in mice to investigate the role that each group of neurons plays separately. This involved introducing a gene into either the V1 or V2b neurons that makes them susceptible to being killed with the diphtheria toxin. Injecting the mice with diphtheria toxin selectively removed these cells from the regions of the spinal cord that controls hindlimb movements. Britz et al. found that removing either group of neurons prevented the mice from walking normally. Eliminating the V1 neurons caused extreme flexing of the hindlimbs, revealing that the V1 neurons are needed to extend the limb by inhibiting the motor neurons that contract the flexor muscles. In contrast, the loss of V2b neurons caused exaggerated hindlimb extension, indicating that the V2b neurons inhibit the motor neurons that innervate extensor muscles. Both the V1 and V2b groups of neurons contain a wide range of different cell types. Future studies will therefore need to explore how these different cells are involved in coordinating the motions involved in walking. DOI:http://dx.doi.org/10.7554/eLife.04718.002
Collapse
Affiliation(s)
- Olivier Britz
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - Jingming Zhang
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - Katja S Grossmann
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - Jason Dyck
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Jun C Kim
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Susan Dymecki
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Simon Gosgnach
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| |
Collapse
|
142
|
Bui TV, Stifani N, Panek I, Farah C. Genetically identified spinal interneurons integrating tactile afferents for motor control. J Neurophysiol 2015; 114:3050-63. [PMID: 26445867 DOI: 10.1152/jn.00522.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/28/2015] [Indexed: 11/22/2022] Open
Abstract
Our movements are shaped by our perception of the world as communicated by our senses. Perception of sensory information has been largely attributed to cortical activity. However, a prior level of sensory processing occurs in the spinal cord. Indeed, sensory inputs directly project to many spinal circuits, some of which communicate with motor circuits within the spinal cord. Therefore, the processing of sensory information for the purpose of ensuring proper movements is distributed between spinal and supraspinal circuits. The mechanisms underlying the integration of sensory information for motor control at the level of the spinal cord have yet to be fully described. Recent research has led to the characterization of spinal neuron populations that share common molecular identities. Identification of molecular markers that define specific populations of spinal neurons is a prerequisite to the application of genetic techniques devised to both delineate the function of these spinal neurons and their connectivity. This strategy has been used in the study of spinal neurons that receive tactile inputs from sensory neurons innervating the skin. As a result, the circuits that include these spinal neurons have been revealed to play important roles in specific aspects of motor function. We describe these genetically identified spinal neurons that integrate tactile information and the contribution of these studies to our understanding of how tactile information shapes motor output. Furthermore, we describe future opportunities that these circuits present for shedding light on the neural mechanisms of tactile processing.
Collapse
Affiliation(s)
- Tuan V Bui
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada; Center for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Nicolas Stifani
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Izabela Panek
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carl Farah
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
143
|
Organization of the Mammalian Locomotor CPG: Review of Computational Model and Circuit Architectures Based on Genetically Identified Spinal Interneurons(1,2,3). eNeuro 2015; 2:eN-REV-0069-15. [PMID: 26478909 PMCID: PMC4603253 DOI: 10.1523/eneuro.0069-15.2015] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/25/2015] [Accepted: 08/29/2015] [Indexed: 12/05/2022] Open
Abstract
The organization of neural circuits that form the locomotor central pattern generator (CPG) and provide flexor–extensor and left–right coordination of neuronal activity remains largely unknown. However, significant progress has been made in the molecular/genetic identification of several types of spinal interneurons, including V0 (V0D and V0V subtypes), V1, V2a, V2b, V3, and Shox2, among others. The possible functional roles of these interneurons can be suggested from changes in the locomotor pattern generated in mutant mice lacking particular neuron types. Computational modeling of spinal circuits may complement these studies by bringing together data from different experimental studies and proposing the possible connectivity of these interneurons that may define rhythm generation, flexor–extensor interactions on each side of the cord, and commissural interactions between left and right circuits. This review focuses on the analysis of potential architectures of spinal circuits that can reproduce recent results and suggest common explanations for a series of experimental data on genetically identified spinal interneurons, including the consequences of their genetic ablation, and provides important insights into the organization of the spinal CPG and neural control of locomotion.
Collapse
|
144
|
Abstract
Control of movement is a fundamental and complex task of the vertebrate nervous system, which relies on communication between circuits distributed throughout the brain and spinal cord. Many of the networks essential for the execution of basic locomotor behaviors are composed of discrete neuronal populations residing within the spinal cord. The organization and connectivity of these circuits is established through programs that generate functionally diverse neuronal subtypes, each contributing to a specific facet of motor output. Significant progress has been made in deciphering how neuronal subtypes are specified and in delineating the guidance and synaptic specificity determinants at the core of motor circuit assembly. Recent studies have shed light on the basic principles linking locomotor circuit connectivity with function, and they are beginning to reveal how more sophisticated motor behaviors are encoded. In this review, we discuss the impact of developmental programs in specifying motor behaviors governed by spinal circuits.
Collapse
Affiliation(s)
- Catarina Catela
- Neuroscience Institute and Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016;
| | - Maggie M Shin
- Neuroscience Institute and Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016;
| | - Jeremy S Dasen
- Neuroscience Institute and Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016;
| |
Collapse
|
145
|
Machado TA, Pnevmatikakis E, Paninski L, Jessell TM, Miri A. Primacy of Flexor Locomotor Pattern Revealed by Ancestral Reversion of Motor Neuron Identity. Cell 2015; 162:338-350. [PMID: 26186188 PMCID: PMC4540486 DOI: 10.1016/j.cell.2015.06.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/01/2015] [Accepted: 05/21/2015] [Indexed: 02/07/2023]
Abstract
Spinal circuits can generate locomotor output in the absence of sensory or descending input, but the principles of locomotor circuit organization remain unclear. We sought insight into these principles by considering the elaboration of locomotor circuits across evolution. The identity of limb-innervating motor neurons was reverted to a state resembling that of motor neurons that direct undulatory swimming in primitive aquatic vertebrates, permitting assessment of the role of motor neuron identity in determining locomotor pattern. Two-photon imaging was coupled with spike inference to measure locomotor firing in hundreds of motor neurons in isolated mouse spinal cords. In wild-type preparations, we observed sequential recruitment of motor neurons innervating flexor muscles controlling progressively more distal joints. Strikingly, after reversion of motor neuron identity, virtually all firing patterns became distinctly flexor like. Our findings show that motor neuron identity directs locomotor circuit wiring and indicate the evolutionary primacy of flexor pattern generation.
Collapse
Affiliation(s)
- Timothy A Machado
- Departments of Neuroscience and Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Kavli Institute of Brain Science, Columbia University, New York, NY 10032, USA; Department of Statistics, Center for Theoretical Neuroscience and Grossman Center for the Statistics of Mind, Columbia University, New York, NY 10027, USA.
| | - Eftychios Pnevmatikakis
- Department of Statistics, Center for Theoretical Neuroscience and Grossman Center for the Statistics of Mind, Columbia University, New York, NY 10027, USA; Simons Center for Data Analysis, Simons Foundation, New York, NY 10010, USA
| | - Liam Paninski
- Department of Statistics, Center for Theoretical Neuroscience and Grossman Center for the Statistics of Mind, Columbia University, New York, NY 10027, USA
| | - Thomas M Jessell
- Departments of Neuroscience and Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Kavli Institute of Brain Science, Columbia University, New York, NY 10032, USA.
| | - Andrew Miri
- Departments of Neuroscience and Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Kavli Institute of Brain Science, Columbia University, New York, NY 10032, USA
| |
Collapse
|
146
|
Lu DC, Niu T, Alaynick WA. Molecular and cellular development of spinal cord locomotor circuitry. Front Mol Neurosci 2015; 8:25. [PMID: 26136656 PMCID: PMC4468382 DOI: 10.3389/fnmol.2015.00025] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/30/2015] [Indexed: 01/20/2023] Open
Abstract
The spinal cord of vertebrate animals is comprised of intrinsic circuits that are capable of sensing the environment and generating complex motor behaviors. There are two major perspectives for understanding the biology of this complicated structure. The first approaches the spinal cord from the point of view of function and is based on classic and ongoing research in electrophysiology, adult behavior, and spinal cord injury. The second view considers the spinal cord from a developmental perspective and is founded mostly on gene expression and gain-of-function and loss-of-function genetic experiments. Together these studies have uncovered functional classes of neurons and their lineage relationships. In this review, we summarize our knowledge of developmental classes, with an eye toward understanding the functional roles of each group.
Collapse
Affiliation(s)
- Daniel C Lu
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - Tianyi Niu
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - William A Alaynick
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| |
Collapse
|
147
|
McLean DL, Dougherty KJ. Peeling back the layers of locomotor control in the spinal cord. Curr Opin Neurobiol 2015; 33:63-70. [PMID: 25820136 DOI: 10.1016/j.conb.2015.03.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 11/18/2022]
Abstract
Vertebrate locomotion is executed by networks of neurons within the spinal cord. Here, we describe recent advances in our understanding of spinal locomotor control provided by work using optical and genetic approaches in mice and zebrafish. In particular, we highlight common observations that demonstrate simplification of limb and axial motor pool coordination by spinal network modularity, differences in the deployment of spinal modules at increasing speeds of locomotion, and functional hierarchies in the regulation of locomotor rhythm and pattern. We also discuss the promise of intersectional genetic strategies for better resolution of network components and connectivity, which should help us continue to close the gap between theory and function.
Collapse
Affiliation(s)
- David L McLean
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| | - Kimberly J Dougherty
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
148
|
Takeoka A, Vollenweider I, Courtine G, Arber S. Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury. Cell 2015; 159:1626-39. [PMID: 25525880 DOI: 10.1016/j.cell.2014.11.019] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/05/2014] [Accepted: 11/11/2014] [Indexed: 10/24/2022]
Abstract
Spinal cord injuries alter motor function by disconnecting neural circuits above and below the lesion, rendering sensory inputs a primary source of direct external drive to neuronal networks caudal to the injury. Here, we studied mice lacking functional muscle spindle feedback to determine the role of this sensory channel in gait control and locomotor recovery after spinal cord injury. High-resolution kinematic analysis of intact mutant mice revealed proficient execution in basic locomotor tasks but poor performance in a precision task. After injury, wild-type mice spontaneously recovered basic locomotor function, whereas mice with deficient muscle spindle feedback failed to regain control over the hindlimb on the lesioned side. Virus-mediated tracing demonstrated that mutant mice exhibit defective rearrangements of descending circuits projecting to deprived spinal segments during recovery. Our findings reveal an essential role for muscle spindle feedback in directing basic locomotor recovery and facilitating circuit reorganization after spinal cord injury.
Collapse
Affiliation(s)
- Aya Takeoka
- Biozentrum, Department of Cell Biology, University of Basel, 4056 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Isabel Vollenweider
- Brain Mind Institute and Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Grégoire Courtine
- Brain Mind Institute and Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Silvia Arber
- Biozentrum, Department of Cell Biology, University of Basel, 4056 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
149
|
Blacklaws J, Deska-Gauthier D, Jones CT, Petracca YL, Liu M, Zhang H, Fawcett JP, Glover JC, Lanuza GM, Zhang Y. Sim1 is required for the migration and axonal projections of V3 interneurons in the developing mouse spinal cord. Dev Neurobiol 2015; 75:1003-17. [PMID: 25652362 DOI: 10.1002/dneu.22266] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 11/09/2022]
Abstract
V3 spinal interneurons (INs) are a group of excitatory INs that play a crucial role in producing balanced and stable gaits in vertebrate animals. In the developing mouse spinal cord, V3 INs arise from the most ventral progenitor domain and form anatomically distinctive subpopulations in adult spinal cords. They are marked by the expression of transcription factor Sim1 postmitotically, but the function of Sim1 in V3 development remains unknown. Here, we used Sim1(Cre) ;tdTomato mice to trace the fate of V3 INs in a Sim1 mutant versus control genetic background during development. In Sim1 mutants, V3 INs are produced normally and maintain a similar position and organization as in wild types before E12.5. Further temporal analysis revealed that the V3 INs in the mutants failed to migrate properly to form V3 subgroups along the dorsoventral axis of the spinal cord. At birth, in the Sim1 mutant the number of V3 INs in the ventral subgroup was normal, but they were significantly reduced in the dorsal subgroup with a concomitant increase in the intermediate subgroup. Retrograde labeling at lumbar level revealed that loss of Sim1 led to a reduction in extension of contralateral axon projections both at E14.5 and P0 without affecting ipsilateral axon projections. These results demonstrate that Sim1 is essential for proper migration and the guidance of commissural axons of the spinal V3 INs.
Collapse
Affiliation(s)
- Jake Blacklaws
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2
| | - Dylan Deska-Gauthier
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2
| | - Christopher T Jones
- Department of Mathematics & Statistics, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2
| | - Yanina L Petracca
- Developmental Neurobiology Lab, Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET). Av Patricias Argentinas 435, Buenos Aires, 1405, Argentina
| | - Mingwei Liu
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2
| | - Han Zhang
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2
| | - James P Fawcett
- Departments of Pharmacology and Surgery, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2
| | - Joel C Glover
- Department of Physiology, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Guillermo M Lanuza
- Developmental Neurobiology Lab, Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET). Av Patricias Argentinas 435, Buenos Aires, 1405, Argentina
| | - Ying Zhang
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2
| |
Collapse
|
150
|
Bourane S, Grossmann KS, Britz O, Dalet A, Del Barrio MG, Stam FJ, Garcia-Campmany L, Koch S, Goulding M. Identification of a spinal circuit for light touch and fine motor control. Cell 2015; 160:503-15. [PMID: 25635458 PMCID: PMC4431637 DOI: 10.1016/j.cell.2015.01.011] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/02/2014] [Accepted: 12/24/2014] [Indexed: 10/24/2022]
Abstract
Sensory circuits in the dorsal spinal cord integrate and transmit multiple cutaneous sensory modalities including the sense of light touch. Here, we identify a population of excitatory interneurons (INs) in the dorsal horn that are important for transmitting innocuous light touch sensation. These neurons express the ROR alpha (RORα) nuclear orphan receptor and are selectively innervated by cutaneous low threshold mechanoreceptors (LTMs). Targeted removal of RORα INs in the dorsal spinal cord leads to a marked reduction in behavioral responsiveness to light touch without affecting responses to noxious and itch stimuli. RORα IN-deficient mice also display a selective deficit in corrective foot movements. This phenotype, together with our demonstration that the RORα INs are innervated by corticospinal and vestibulospinal projection neurons, argues that the RORα INs direct corrective reflex movements by integrating touch information with descending motor commands from the cortex and cerebellum.
Collapse
Affiliation(s)
- Steeve Bourane
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Katja S Grossmann
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Olivier Britz
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Antoine Dalet
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Marta Garcia Del Barrio
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Floor J Stam
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lidia Garcia-Campmany
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Stephanie Koch
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|