101
|
Bouarab C, Thompson B, Polter AM. VTA GABA Neurons at the Interface of Stress and Reward. Front Neural Circuits 2019; 13:78. [PMID: 31866835 PMCID: PMC6906177 DOI: 10.3389/fncir.2019.00078] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/18/2019] [Indexed: 01/20/2023] Open
Abstract
The ventral tegmental area (VTA) is best known for its robust dopaminergic projections to forebrain regions and their critical role in regulating reward, motivation, cognition, and aversion. However, the VTA is not only made of dopamine (DA) cells, as approximately 30% of cells in the VTA are GABA neurons. These neurons play a dual role, as VTA GABA neurons provide both local inhibition of VTA DA neurons and long-range inhibition of several distal brain regions. VTA GABA neurons have increasingly been recognized as potent mediators of reward and aversion in their own right, as well as potential targets for the treatment of addiction, depression, and other stress-linked disorders. In this review article, we dissect the circuit architecture, physiology, and behavioral roles of VTA GABA neurons and suggest critical gaps to be addressed.
Collapse
Affiliation(s)
- Chloé Bouarab
- Department of Pharmacology and Physiology, Institute for Neuroscience, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Brittney Thompson
- Department of Pharmacology and Physiology, Institute for Neuroscience, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Abigail M Polter
- Department of Pharmacology and Physiology, Institute for Neuroscience, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
102
|
Jordan CJ, Cao J, Newman AH, Xi ZX. Progress in agonist therapy for substance use disorders: Lessons learned from methadone and buprenorphine. Neuropharmacology 2019; 158:107609. [PMID: 31009632 PMCID: PMC6745247 DOI: 10.1016/j.neuropharm.2019.04.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/25/2019] [Accepted: 04/12/2019] [Indexed: 12/12/2022]
Abstract
Substance use disorders (SUD) are serious public health problems worldwide. Although significant progress has been made in understanding the neurobiology of drug reward and the transition to addiction, effective pharmacotherapies for SUD remain limited and a majority of drug users relapse even after a period of treatment. The United States Food and Drug Administration (FDA) has approved several medications for opioid, nicotine, and alcohol use disorders, whereas none are approved for the treatment of cocaine or other psychostimulant use disorders. The medications approved by the FDA for the treatment of SUD can be divided into two major classes - agonist replacement therapies, such as methadone and buprenorphine for opioid use disorders (OUD), nicotine replacement therapy (NRT) and varenicline for nicotine use disorders (NUD), and antagonist therapies, such as naloxone for opioid overdose and naltrexone for promoting abstinence. In the present review, we primarily focus on the pharmacological rationale of agonist replacement strategies in treatment of opioid dependence, and the potential translation of this rationale to new therapies for cocaine use disorders. We begin by describing the neural mechanisms underlying opioid reward, followed by preclinical and clinical findings supporting the utility of agonist therapies in the treatment of OUD. We then discuss recent progress of agonist therapies for cocaine use disorders based on lessons learned from methadone and buprenorphine. We contend that future studies should identify agonist pharmacotherapies that can facilitate abstinence in patients who are motivated to quit their illicit drug use. Focusing on those that are able to achieve abstinence from cocaine will provide a platform to broaden the effectiveness of medication and psychosocial treatment strategies for this underserved population. This article is part of the Special Issue entitled 'New Vistas in Opioid Pharmacology'.
Collapse
Affiliation(s)
- Chloe J Jordan
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Jianjing Cao
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Amy Hauck Newman
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA.
| |
Collapse
|
103
|
Arttamangkul S, Plazek A, Platt EJ, Jin H, Murray TF, Birdsong WT, Rice KC, Farrens DL, Williams JT. Visualizing endogenous opioid receptors in living neurons using ligand-directed chemistry. eLife 2019; 8:49319. [PMID: 31589142 PMCID: PMC6809603 DOI: 10.7554/elife.49319] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/06/2019] [Indexed: 12/11/2022] Open
Abstract
Identifying neurons that have functional opioid receptors is fundamental for the understanding of the cellular, synaptic and systems actions of opioids. Current techniques are limited to post hoc analyses of fixed tissues. Here we developed a fluorescent probe, naltrexamine-acylimidazole (NAI), to label opioid receptors based on a chemical approach termed ‘traceless affinity labeling’. In this approach, a high affinity antagonist naltrexamine is used as the guide molecule for a transferring reaction of acylimidazole at the receptor. This reaction generates a fluorescent dye covalently linked to the receptor while naltrexamine is liberated and leaves the binding site. The labeling induced by this reagent allowed visualization of opioid-sensitive neurons in rat and mouse brains without loss of function of the fluorescently labeled receptors. The ability to locate endogenous receptors in living tissues will aid considerably in establishing the distribution and physiological role of opioid receptors in the CNS of wild type animals.
Collapse
Affiliation(s)
- Seksiri Arttamangkul
- The Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Andrew Plazek
- Medicinal Chemistry Core, Oregon Health & Science University, Portland, United States
| | - Emily J Platt
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health & Science University, Portland, United States
| | - Haihong Jin
- Medicinal Chemistry Core, Oregon Health & Science University, Portland, United States
| | - Thomas F Murray
- Department of Pharmacology, School of Medicine, Creighton University, Omaha, United States
| | - William T Birdsong
- The Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Kenner C Rice
- Drug Design and Synthesis Section, Intramural Research Program, NIDA and NIAAA, Bethesda, United States
| | - David L Farrens
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health & Science University, Portland, United States
| | - John T Williams
- The Vollum Institute, Oregon Health & Science University, Portland, United States
| |
Collapse
|
104
|
Coccurello R. Anhedonia in depression symptomatology: Appetite dysregulation and defective brain reward processing. Behav Brain Res 2019; 372:112041. [DOI: 10.1016/j.bbr.2019.112041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022]
|
105
|
Chang S, Kim DH, Jang EY, Yoon SS, Gwak YS, Yi YJ, Lee JY, Ahn SH, Kim JM, Ryu YH, Kim SN, Roh HS, Lee MY, Kim SC, Lee BH, Kim HY, Yang CH. Acupuncture attenuates alcohol dependence through activation of endorphinergic input to the nucleus accumbens from the arcuate nucleus. SCIENCE ADVANCES 2019; 5:eaax1342. [PMID: 31517050 PMCID: PMC6726441 DOI: 10.1126/sciadv.aax1342] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/02/2019] [Indexed: 05/08/2023]
Abstract
A withdrawal-associated impairment in β-endorphin neurotransmission in the arcuate nucleus (ARC) of the hypothalamus is associated with alcohol dependence characterized by a chronic relapsing disorder. Although acupuncture activates β-endorphin neurons in the ARC projecting to the nucleus accumbens (NAc), a role for ARC β-endorphin neurons in alcohol dependence and acupuncture effects has not been examined. Here, we show that acupuncture at Shenmen (HT7) points attenuates behavioral manifestation of alcohol dependence by activating endorphinergic input to the NAc from the ARC. Acupuncture attenuated ethanol withdrawal tremor, anxiety-like behaviors, and ethanol self-administration in ethanol-dependent rats, which are mimicked by local injection of β-endorphin into the NAc. Acupuncture also reversed the decreased β-endorphin levels in the NAc and a reduction of neuronal activity in the ARC during ethanol withdrawal. These results suggest that acupuncture may provide a novel, potential treatment strategy for alcohol use disorder by direct activation of the brain pathway.
Collapse
Affiliation(s)
- Suchan Chang
- College of Korean Medicine, Daegu Haany University, Daegu 42158, Republic of Korea
| | - Dan Hyo Kim
- College of Korean Medicine, Daegu Haany University, Daegu 42158, Republic of Korea
| | - Eun Young Jang
- College of Korean Medicine, Daegu Haany University, Daegu 42158, Republic of Korea
| | - Seong Shoon Yoon
- College of Korean Medicine, Daegu Haany University, Daegu 42158, Republic of Korea
| | - Young Seob Gwak
- Department of Anesthesiology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| | - Yoo Jung Yi
- College of Korean Medicine, Daegu Haany University, Daegu 42158, Republic of Korea
| | - Jun Yeon Lee
- College of Korean Medicine, Daegu Haany University, Daegu 42158, Republic of Korea
| | - Song Hee Ahn
- College of Korean Medicine, Daegu Haany University, Daegu 42158, Republic of Korea
| | - Jin Mook Kim
- College of Korean Medicine, Daegu Haany University, Daegu 42158, Republic of Korea
| | - Yeon-Hee Ryu
- Acupuncture, Moxibustion & Meridian Research Center, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Seung-Nam Kim
- College of Korean Medicine, Dongguk University, Goyang 10326, Republic of Korea
| | - Hyo Sun Roh
- College of Korean Medicine, Dongguk University, Goyang 10326, Republic of Korea
| | - Mi-Young Lee
- College of Biomedical Science, Daegu Haany University, Gyeongbuk 38610, Republic of Korea
| | - Sang Chan Kim
- College of Korean Medicine, Daegu Haany University, Daegu 42158, Republic of Korea
| | - Bong Hyo Lee
- College of Korean Medicine, Daegu Haany University, Daegu 42158, Republic of Korea
| | - Hee Young Kim
- College of Korean Medicine, Daegu Haany University, Daegu 42158, Republic of Korea
- Corresponding author. (C.H.Y.); (H.Y.K.)
| | - Chae Ha Yang
- College of Korean Medicine, Daegu Haany University, Daegu 42158, Republic of Korea
- Corresponding author. (C.H.Y.); (H.Y.K.)
| |
Collapse
|
106
|
Parental morphine exposure enhances morphine (but not methamphetamine) preference and increases monoamine oxidase-B level in the nucleus accumbens. Behav Pharmacol 2019; 30:435-445. [DOI: 10.1097/fbp.0000000000000465] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
107
|
Bobzean SAM, Kokane SS, Butler BD, Perrotti LI. Sex differences in the expression of morphine withdrawal symptoms and associated activity in the tail of the ventral tegmental area. Neurosci Lett 2019; 705:124-130. [PMID: 31042569 PMCID: PMC6662583 DOI: 10.1016/j.neulet.2019.04.057] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/17/2019] [Accepted: 04/26/2019] [Indexed: 01/18/2023]
Abstract
Recent studies, in male rodents, have begun to elucidate a role for the GABAergic neurons in the tail of the ventral tegmental area (tVTA) in morphine withdrawal. To date, the mechanisms underlying morphine withdrawal have been studied almost exclusively in male animals. As a result, there is a considerable gap in our current understanding of the processes underlying sex differences in morphine withdrawal behaviors and its effects on cellular activity in the tVTA in females. The purpose of the present study was to investigate the influence of sex on the expression and duration of spontaneous somatic morphine withdrawal syndrome, and to characterize the relationship between spontaneous somatic withdrawal symptoms and cellular activation (measured as phosphorylated CREB; pCREB), in the GABAergic tVTA in male and female rats. Morphine-dependent adult male and female Long Evans rats underwent 72 h of spontaneous withdrawal, and somatic withdrawal symptoms were assessed every 12 h. Male morphine-dependent rats expressed more severe symptoms during the early phases of withdrawal compared to females. Although, females demonstrated lower overall symptom severity, their symptoms persisted for a longer period of time, thus demonstrating higher withdrawal-symptom severity than males during late withdrawal. pCREB activity in the tVTA was elevated in morphine-withdrawn rats and was positively correlated with the severity of withdrawal symptoms. These results demonstrate sex differences in the timing of the expression of somatic withdrawal. Our data add to the growing body of evidence demonstrating a role for the tVTA in morphine withdrawal and begin to establish a sex-dependent behavioral and molecular profile within this brain region.
Collapse
Affiliation(s)
- Samara A M Bobzean
- Department of Psychology, College of Science, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Saurabh S Kokane
- Department of Psychology, College of Science, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Brandon D Butler
- Department of Psychology, College of Science, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Linda I Perrotti
- Department of Psychology, College of Science, The University of Texas at Arlington, Arlington, TX, 76019, USA.
| |
Collapse
|
108
|
Fu R, Zuo W, Shiwalkar N, Mei Q, Fan Q, Chen X, Li J, Bekker A, Ye JH. Alcohol withdrawal drives depressive behaviors by activating neurons in the rostromedial tegmental nucleus. Neuropsychopharmacology 2019; 44:1464-1475. [PMID: 30928995 PMCID: PMC6784902 DOI: 10.1038/s41386-019-0378-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 03/18/2019] [Accepted: 03/24/2019] [Indexed: 01/01/2023]
Abstract
Rostromedial tegmental nucleus (RMTg) GABA neurons exert a primary inhibitory drive onto midbrain dopamine neurons and are excited by a variety of aversive stimuli. There is, however, little evidence that the RMTg-ventral tegmental area (VTA)-nucleus accumbens shell (Acb) circuit plays a role in the aversive consequences of alcohol withdrawal. This study was performed in adult male Long-Evans rats at 48-h withdrawal from chronic alcohol drinking in the intermittent schedule. These rats displayed clear anhedonia and depression-like behaviors, as measured with the sucrose preference, and forced swimming tests. These aberrant behaviors were accompanied by a substantial increase in cFos expression in the VTA-projecting RMTg neurons, identified by a combination of immunohistochemistry and retrograde-tracing techniques. Pharmacological or chemogenetic inhibition of RMTg neurons mitigated the anhedonia and depression-like behaviors. Ex vivo electrophysiological data showed that chemogenetic inactivation of RMTg neurons reduced GABA release and accelerated spontaneous firings of VTA dopamine neurons. Finally, using a functional hemispheric disconnection procedure, we demonstrated that inhibition of unilateral RMTg, when combined with activation of D1 and D2 dopamine receptors in the contralateral (but not ipsilateral) Acb, mitigated the anhedonia and depression-like behaviors in alcohol-withdrawal rats. These data show that the integrity in the RMTg-VTA-Acb pathway in a single hemisphere is sufficient to elicit depression-like behavior during ethanol-withdrawal. Overall, the present results reveal that the RMTg-VTA-Acb pathway plays a crucial role in the depression-like behavior in animals undergoing alcohol withdrawal, further advocating the RMTg as a potential therapeutic target for alcoholism.
Collapse
Affiliation(s)
- Rao Fu
- Department of Anesthesiology, Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Wanhong Zuo
- Department of Anesthesiology, Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Nimisha Shiwalkar
- Department of Anesthesiology, Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Qinghua Mei
- Department of Anesthesiology, Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Qing Fan
- Department of Anesthesiology, Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Xuejun Chen
- Department of Anesthesiology, Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Jing Li
- Department of Anesthesiology, Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Alex Bekker
- Department of Anesthesiology, Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Ave, Newark, NJ, 07103, USA.
| |
Collapse
|
109
|
Coutens B, Mouledous L, Stella M, Rampon C, Lapeyre-Mestre M, Roussin A, Guiard BP, Jouanjus E. Lack of correlation between the activity of the mesolimbic dopaminergic system and the rewarding properties of pregabalin in mouse. Psychopharmacology (Berl) 2019; 236:2069-2082. [PMID: 30879119 DOI: 10.1007/s00213-019-05198-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/13/2019] [Indexed: 12/21/2022]
Abstract
RATIONALE Pregabalin is a psychoactive drug indicated in the treatment of epilepsy, neuropathic pain, and generalized anxiety disorders. Pregabalin acts on different neurotransmission systems by inactivating the alpha2-delta subunit of voltage-gated calcium channels. In light of this pharmacological property, the hypothesis has been raised that pregabalin may regulate the mesolimbic dopamine pathway and thereby display a potential for misuse or abuse as recently observed in humans. Although some preclinical data support this possibility, the rewarding properties of gabapentinoid are still a matter for debate. OBJECTIVE The aim of this work was to evaluate the rewarding properties of pregabalin and to determine its putative mechanism of action in healthy mice. RESULTS Pregabalin alone (60 mg/kg; s.c.) produced a rewarding effect in the conditioned place preference (CPP) test albeit to a lower extent than cocaine (30 mg/kg; s.c.). Interestingly, when assessing locomotor activity in the CPP, the PGB60 group, similarly to the cocaine group, showed an increased locomotor activity. In vivo single unit extracellular recording showed that pregabalin had mixed effects on dopamine (DA) neuronal activity in the ventral tegmental area since it decreased the activity of 50% of neurons and increased 28.5% of them. In contrast, cocaine decreased 75% of VTA DA neuronal activity whereas none of the neurons were activated. Intracerebal microdialysis was then conducted in awake freely mice to determine to what extent such electrophysiological parameters influence the extracellular DA concentrations ([DA]ext) in the nucleus accumbens. Although pregabalin failed to modify this parameter, cocaine produced a robust increase (800%) in [DA]ext. CONCLUSIONS Collectively, these electrophysiological and neurochemical experiments suggest that the rewarding properties of pregabalin result from a different mode of action than that observed with cocaine. Further experiments are warranted to determine whether such undesirable effects can be potentiated under pathological conditions such as neuropathic pain, mood disorders, or addiction and to identify the key neurotransmitter system involved.
Collapse
Affiliation(s)
- Basile Coutens
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Paul Sabatier Toulouse III, Bât4R3, 118 Route de Narbonne, 31062, Toulouse, Cedex 09, France
| | - Lionel Mouledous
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Paul Sabatier Toulouse III, Bât4R3, 118 Route de Narbonne, 31062, Toulouse, Cedex 09, France
| | - Manta Stella
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Paul Sabatier Toulouse III, Bât4R3, 118 Route de Narbonne, 31062, Toulouse, Cedex 09, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Paul Sabatier Toulouse III, Bât4R3, 118 Route de Narbonne, 31062, Toulouse, Cedex 09, France
| | - Maryse Lapeyre-Mestre
- Pharmacoepidemiology Research Unit, INSERM-Université Toulouse 3, UMR 1027, 31000, Toulouse, France
| | - Anne Roussin
- Pharmacoepidemiology Research Unit, INSERM-Université Toulouse 3, UMR 1027, 31000, Toulouse, France
| | - Bruno P Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Paul Sabatier Toulouse III, Bât4R3, 118 Route de Narbonne, 31062, Toulouse, Cedex 09, France. .,Faculté de Pharmacie, Université Paris Sud, Université Paris-Saclay, 92290, Chatenay-Malabry, France. .,CNRS UMR-5169, UPS, 31000, Toulouse, France.
| | - Emilie Jouanjus
- Pharmacoepidemiology Research Unit, INSERM-Université Toulouse 3, UMR 1027, 31000, Toulouse, France
| |
Collapse
|
110
|
Dynorphin/kappa-opioid receptor control of dopamine dynamics: Implications for negative affective states and psychiatric disorders. Brain Res 2019; 1713:91-101. [DOI: 10.1016/j.brainres.2018.09.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
|
111
|
Synaptic Regulation by OPRM1 Variants in Reward Neurocircuitry. J Neurosci 2019; 39:5685-5696. [PMID: 31109961 DOI: 10.1523/jneurosci.2317-18.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
Abstract
Mu-opioid receptors (MORs) are the primary site of action of opioid drugs, both licit and illicit. Susceptibility to opioid addiction is associated with variants in the gene encoding the MOR, OPRM1 Varying with ethnicity, ∼25% of humans carry a single nucleotide polymorphism (SNP) in OPRM1 (A118G). This SNP produces a nonsynonymous amino acid substitution, replacing asparagine (N40) with aspartate (D40), and has been linked with an increased risk for drug addiction. While a murine model of human OPRM1 A118G (A112G in mouse) recapitulates most of the phenotypes reported in humans, the neuronal mechanisms underlying these phenotypes remain elusive. Here, we investigated the impact of A118G on opioid regulation of synaptic transmission in mesolimbic VTA dopaminergic neurons. Using electrophysiology, we showed that both inhibitory and excitatory inputs to VTA dopaminergic neurons projecting to the NAc medial shell were suppressed by the MOR agonists DAMGO and morphine, which caused a shift in the excitatory/inhibitory balance and an increased action potential firing rate. Mice carrying the 112G/G allele exhibited lower sensitivity to DAMGO and morphine compared with major allele carriers (112A/A). Paradoxically, DAMGO produced facilitatory effects on mEPSCs, which were mediated by presynaptic GABAB receptors. However, this was only prominent in homozygous major allele carriers, which could explain a stronger shift in action potential firing in 112A/A mice. This study provides a better understanding on the neurobiological mechanisms that may underlie risk of addiction development in carriers of the A118G SNP in OPRM1 SIGNIFICANCE STATEMENT The pandemic of opioid drug abuse is associated with many socioeconomic burdens. The primary brain target of opioid drugs is the μ-opioid receptor (MOR), encoded by the OPRM1 gene, which is highly polymorphic in humans. Using a mouse model of the human OPRM1 A118G single nucleotide polymorphism (SNP) (A112G in mice), we demonstrated that MOR and GABAB signaling coordinate in regulating mesolimbic dopamine neuronal firing via presynaptic regulation. The A118G SNP affects MOR-mediated suppression of GABA and glutamate release, showing weaker efficacy of synaptic regulation by MORs. These results may shed light on whether MOR SNPs need to be considered for devising effective therapeutic interventions.
Collapse
|
112
|
Abstract
Pain has a useful protective role; through avoidance learning, it helps to decrease the probability of engaging in tissue-damaging, or otherwise dangerous experiences. In our modern society, the experience of acute post-surgical pain and the development of chronic pain states represent an unnecessary negative outcome. This has become an important health issue as more than 30% of the US population reports experiencing "unnecessary" pain at any given time. Opioid therapies are often efficacious treatments for severe and acute pain; however, in addition to their powerful analgesic properties, opioids produce potent reinforcing properties and their inappropriate use has led to the current opioid overdose epidemic in North America. Dissecting the allostatic changes occurring in nociceptors and neuronal pathways in response to pain are the first and most important steps in understanding the physiologic changes underlying the opioid epidemic. Full characterization of these adaptations will provide novel targets for the development of safer pharmacotherapies. In this review, we highlight the current efforts toward safer opioid treatments and describe our current knowledge of the interaction between pain and opioid systems.
Collapse
Affiliation(s)
- Nicolas Massaly
- Department of Anesthesiology; Washington University in St. Louis; St. Louis, MO, 63110 ; USA
- Washington University Pain Center; St. Louis, MO, 63110 ; USA
- Washington University in St Louis; School of Medicine; St. Louis, MO, 63110 ; USA
| | - Jose A Morón
- Department of Anesthesiology; Washington University in St. Louis; St. Louis, MO, 63110 ; USA
- Washington University Pain Center; St. Louis, MO, 63110 ; USA
- Washington University in St Louis; School of Medicine; St. Louis, MO, 63110 ; USA
- Department of Neuroscience; Washington University in St. Louis; St. Louis, MO, 63110 ; USA
| |
Collapse
|
113
|
Kaufling J. Alterations and adaptation of ventral tegmental area dopaminergic neurons in animal models of depression. Cell Tissue Res 2019; 377:59-71. [PMID: 30848354 DOI: 10.1007/s00441-019-03007-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/11/2019] [Indexed: 01/01/2023]
Abstract
Depression is one of the most prevalent psychiatric diseases, affecting the quality of life of millions of people. Ventral tegmental area (VTA) dopaminergic (DA) neurons are notably involved in evaluating the emotional and motivational value of a stimulus, in detecting reward prediction errors, in motivated learning, or in the propensity to initiate or withhold an action. DA neurons are thus involved in psychopathologies associated with perturbations of emotional and motivational states, such as depression. In this review, we focus on adaptations/alterations of the VTA, particularly of the VTA DA neurons, in the three most frequently used animal models of depression: learned helplessness, chronic mild stress and chronic social defeat.
Collapse
Affiliation(s)
- Jennifer Kaufling
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, 8 Allée du Générale Rouvillois, 67000, Strasbourg, France.
| |
Collapse
|
114
|
Repetitive transcranial magnetic stimulation: Re-wiring the alcoholic human brain. Alcohol 2019; 74:113-124. [PMID: 30420113 DOI: 10.1016/j.alcohol.2018.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/15/2018] [Accepted: 05/28/2018] [Indexed: 12/28/2022]
Abstract
Alcohol use disorders (AUDs) are one of the leading causes of mortality and morbidity worldwide. In spite of significant advances in understanding the neural underpinnings of AUDs, therapeutic options remain limited. Recent studies have highlighted the potential of repetitive transcranial magnetic stimulation (rTMS) as an innovative, safe, and cost-effective treatment for AUDs. Here, we summarize the fundamental principles of rTMS and its putative mechanisms of action via neurocircuitries related to alcohol addiction. We will also discuss advantages and limitations of rTMS, and argue that Hebbian plasticity and connectivity changes, as well as state-dependency, play a role in shaping some of the long-term effects of rTMS. Visual imaging studies will be linked to recent clinical pilot studies describing the effect of rTMS on alcohol craving and intake, pinpointing new advances, and highlighting conceptual gaps to be filled by future controlled studies.
Collapse
|
115
|
Li Y, Li CY, Xi W, Jin S, Wu ZH, Jiang P, Dong P, He XB, Xu FQ, Duan S, Zhou YD, Li XM. Rostral and Caudal Ventral Tegmental Area GABAergic Inputs to Different Dorsal Raphe Neurons Participate in Opioid Dependence. Neuron 2019; 101:748-761.e5. [PMID: 30638902 DOI: 10.1016/j.neuron.2018.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/26/2018] [Accepted: 12/07/2018] [Indexed: 12/14/2022]
Abstract
Both the ventral tegmental area (VTA) and dorsal raphe nucleus (DRN) are involved in affective control and reward-related behaviors. Moreover, the neuronal activities of the VTA and DRN are modulated by opioids. However, the precise circuits from the VTA to DRN and how opioids modulate these circuits remain unknown. Here, we found that neurons projecting from the VTA to DRN are primarily GABAergic. Rostral VTA (rVTA) GABAergic neurons preferentially innervate DRN GABAergic neurons, thus disinhibiting DRN serotonergic neurons. Optogenetic activation of this circuit induces aversion. In contrast, caudal VTA (cVTA) GABAergic neurons mainly target DRN serotonergic neurons, and activation of this circuit promotes reward. Importantly, μ-opioid receptors (MOPs) are selectively expressed at rVTA→DRN GABAergic synapses, and morphine depresses the synaptic transmission. Chronically elevating the activity of the rVTA→DRN pathway specifically interrupts morphine-induced conditioned place preference. This opioid-modulated inhibitory circuit may yield insights into morphine reward and dependence pathogenesis.
Collapse
Affiliation(s)
- Yue Li
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chun-Yue Li
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wang Xi
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Sen Jin
- CAS Center for Excellence in Brain Science, Chinese Academy of Sciences, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China
| | - Zuo-Hang Wu
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ping Jiang
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ping Dong
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao-Bin He
- CAS Center for Excellence in Brain Science, Chinese Academy of Sciences, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China
| | - Fu-Qiang Xu
- CAS Center for Excellence in Brain Science, Chinese Academy of Sciences, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China
| | - Shumin Duan
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yu-Dong Zhou
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao-Ming Li
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
116
|
Burns JA, Kroll DS, Feldman DE, Kure Liu C, Manza P, Wiers CE, Volkow ND, Wang GJ. Molecular Imaging of Opioid and Dopamine Systems: Insights Into the Pharmacogenetics of Opioid Use Disorders. Front Psychiatry 2019; 10:626. [PMID: 31620026 PMCID: PMC6759955 DOI: 10.3389/fpsyt.2019.00626] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
Opioid use in the United States has steadily risen since the 1990s, along with staggering increases in addiction and overdose fatalities. With this surge in prescription and illicit opioid abuse, it is paramount to understand the genetic risk factors and neuropsychological effects of opioid use disorder (OUD). Polymorphisms disrupting the opioid and dopamine systems have been associated with increased risk for developing substance use disorders. Molecular imaging studies have revealed how these polymorphisms impact the brain and contribute to cognitive and behavioral differences across individuals. Here, we review the current molecular imaging literature to assess how genetic variations in the opioid and dopamine systems affect function in the brain's reward, cognition, and stress pathways, potentially resulting in vulnerabilities to OUD. Continued research of the functional consequences of genetic variants and corresponding alterations in neural mechanisms will inform prevention and treatment of OUD.
Collapse
Affiliation(s)
- Jamie A Burns
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Danielle S Kroll
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Dana E Feldman
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | | | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States.,National Institute on Drug Abuse, Bethesda, MD, United States
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| |
Collapse
|
117
|
Taylor NE, Pei J, Zhang J, Vlasov KY, Davis T, Taylor E, Weng FJ, Van Dort CJ, Solt K, Brown EN. The Role of Glutamatergic and Dopaminergic Neurons in the Periaqueductal Gray/Dorsal Raphe: Separating Analgesia and Anxiety. eNeuro 2019; 6:ENEURO.0018-18.2019. [PMID: 31058210 PMCID: PMC6498422 DOI: 10.1523/eneuro.0018-18.2019] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/08/2019] [Accepted: 01/29/2019] [Indexed: 12/23/2022] Open
Abstract
The periaqueductal gray (PAG) is a significant modulator of both analgesic and fear behaviors in both humans and rodents, but the underlying circuitry responsible for these two phenotypes is incompletely understood. Importantly, it is not known if there is a way to produce analgesia without anxiety by targeting the PAG, as modulation of glutamate or GABA neurons in this area initiates both antinociceptive and anxiogenic behavior. While dopamine (DA) neurons in the ventrolateral PAG (vlPAG)/dorsal raphe display a supraspinal antinociceptive effect, their influence on anxiety and fear are unknown. Using DAT-cre and Vglut2-cre male mice, we introduced designer receptors exclusively activated by designer drugs (DREADD) to DA and glutamate neurons within the vlPAG using viral-mediated delivery and found that levels of analgesia were significant and quantitatively similar when DA and glutamate neurons were selectively stimulated. Activation of glutamatergic neurons, however, reliably produced higher indices of anxiety, with increased freezing time and more time spent in the safety of a dark enclosure. In contrast, animals in which PAG/dorsal raphe DA neurons were stimulated failed to show fear behaviors. DA-mediated antinociception was inhibitable by haloperidol and was sufficient to prevent persistent inflammatory pain induced by carrageenan. In summary, only activation of DA neurons in the PAG/dorsal raphe produced profound analgesia without signs of anxiety, indicating that PAG/dorsal raphe DA neurons are an important target involved in analgesia that may lead to new treatments for pain.
Collapse
Affiliation(s)
| | - JunZhu Pei
- Massachusetts Institute of Technology, Cambridge 02139, MA
| | - Jie Zhang
- University of Utah, Salt Lake City 84112, UT
| | | | | | - Emma Taylor
- University of Massachusetts, Lowell 01854, MA
| | - Feng-Ju Weng
- Massachusetts Institute of Technology, Cambridge 02139, MA
| | | | - Ken Solt
- Massachusetts General Hospital, Boston 02114, MA
| | - Emery N Brown
- Massachusetts General Hospital, Boston 02114, MA
- Massachusetts General Hospital, Boston 02114, MA
| |
Collapse
|
118
|
Untangling the complexity of opioid receptor function. Neuropsychopharmacology 2018; 43:2514-2520. [PMID: 30250308 PMCID: PMC6224460 DOI: 10.1038/s41386-018-0225-3] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
Abstract
Mu opioid receptor agonists are among the most powerful analgesic medications but also among the most addictive. The current opioid crisis has energized a quest to develop opioid analgesics that are devoid of untoward effects. Since their discovery in the 1970's, there have been major advances in our understanding of the endogenous opioid systems that these drugs target. Yet many questions remain and the development of non-addictive opioid analgesics has not been achieved. However, access to new molecular, genetic and computational tools have begun to elucidate the structural dynamics of opioid receptors, the scaffolding that links them to intracellular signaling cascades, their cellular trafficking and the distinct ways that various opioid drugs modify them. This mini-review highlights some of the chemical and pharmacological findings and new perspectives that have arisen from studies using these tools. They reveal multiple layers of complexity of opioid receptor function, including a spatiotemporal specificity in opioid receptor-induced cellular signaling, ligand-directed biased signaling, allosteric modulation of ligand interactions, heterodimerization of different opioid receptors, and the existence of slice variants with different ligand specificity. By untangling these layers, basic research into the chemistry and pharmacology of opioid receptors is guiding the way towards deciphering the mysteries of tolerance and physical dependence that have plagued the field and is providing a platform for the development of more effective and safer opioids.
Collapse
|
119
|
Ostroumov A, Dani JA. Inhibitory Plasticity of Mesocorticolimbic Circuits in Addiction and Mental Illness. Trends Neurosci 2018; 41:898-910. [PMID: 30149979 PMCID: PMC6252277 DOI: 10.1016/j.tins.2018.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/12/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022]
Abstract
Behavioral adaptations occur through remodeling of brain circuits, as arising, for instance, from experience-dependent synaptic plasticity. Drugs of abuse and aversive stimuli, such as stress, act on the mesocorticolimbic system, dysregulating adaptive mechanisms and leading to a variety of aberrant behaviors associated with neuropsychiatric disorders. Until recently, research in the field has commonly focused on experience-dependent synaptic plasticity at excitatory synapses. However, there is growing evidence that synaptic plasticity within inhibitory circuits is an important contributor to maladaptive behaviors. We speculate that restoring normal inhibitory synaptic transmission is a promising therapeutic target for correcting some of the circuit abnormalities underlying neuropsychiatric disorders.
Collapse
Affiliation(s)
- Alexey Ostroumov
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, Philadelphia, PA 19104, USA.
| | - John A Dani
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
120
|
Gene expression and neurochemical characterization of the rostromedial tegmental nucleus (RMTg) in rats and mice. Brain Struct Funct 2018; 224:219-238. [PMID: 30302539 DOI: 10.1007/s00429-018-1761-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/21/2018] [Indexed: 01/25/2023]
Abstract
The rostromedial tegmental nucleus (RMTg), also known as the tail of the ventral tegmental area (tVTA), is a GABAergic structure identified in 2009 that receives strong inputs from the lateral habenula and other sources, sends dense inhibitory projections to midbrain dopamine (DA) neurons, and plays increasingly recognized roles in aversive learning, addiction, and other motivated behaviors. In general, little is known about the genetic identity of these neurons. However, recent work has identified the transcription factor FoxP1 as enhanced in the mouse RMTg (Lahti et al. in Development 143(3):516-529, 2016). Hence, in the current study, we used RNA sequencing to identify genes significantly enhanced in the rat RMTg as compared to adjacent VTA, and then examined the detailed distribution of two genes in particular, prepronociceptin (Pnoc) and FoxP1. In rats and mice, both Pnoc and FoxP1 were expressed at high levels in the RMTg and colocalized strongly with previously established RMTg markers. FoxP1 was particularly selective for RMTg neurons, as it was absent in most adjacent brain regions. We used these gene expression patterns to refine the anatomic characterization of RMTg in rats, extend this characterization to mice, and show that optogenetic manipulation of RMTg in mice bidirectionally modulates real-time place preference. Hence, RMTg neurons in both rats and mice exhibit distinct genetic profiles that correlate with their distinct connectivity and function.
Collapse
|
121
|
Serotonin-1A receptor dependent modulation of pain and reward for improving therapy of chronic pain. Pharmacol Res 2018; 134:212-219. [DOI: 10.1016/j.phrs.2018.06.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/12/2018] [Accepted: 06/29/2018] [Indexed: 12/24/2022]
|
122
|
Siivonen MS, de Miguel E, Aaltio J, Manner AK, Vahermo M, Yli-Kauhaluoma J, Linden AM, Aitta-Aho T, Korpi ER. Conditioned Reward of Opioids, but not Psychostimulants, is Impaired in GABA-A Receptor δ Subunit Knockout Mice. Basic Clin Pharmacol Toxicol 2018; 123:558-566. [PMID: 29781560 DOI: 10.1111/bcpt.13043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/07/2018] [Indexed: 12/17/2022]
Abstract
Extrasynaptic δ subunit-containing γ-aminobutyric acid type A receptors (δ-GABAA Rs) are emerging as targets for a number of neuropsychopharmacological drugs, including the direct GABA site agonist gaboxadol and neuroactive steroids. Among other regions, these δ-GABAA Rs are functionally expressed in the ventral tegmental area (VTA), the cell body region of mesocorticolimbic dopamine (DA) system important for motivated behaviours, and in the target region, the nucleus accumbens. Gaboxadol and neurosteroids induce VTA DA neuron plasticity ex vivo, by inhibiting the VTA GABA neurons, and aversive place conditioning, which are absent in the δ-GABAA R knockout mice (δ-KO). It is not known whether δ-GABAA Rs are important for the effects of other drugs, such as opioids (that also inhibit GABA neurons) and stimulants (that primarily elevate monoamine levels). Here, we used δ-KO mice and conditioned place preference (CPP) test to study the rewarding effects of morphine (20 mg/kg), methamphetamine (1 mg/kg) and mephedrone (5 mg/kg). Morphine-induced nociception was also assessed using tail-flick and hot-plate tests. We found that the δ-KO mice failed to express morphine-induced CPP, but that they were more sensitive to morphine-induced analgesia in the tail-flick test. In contrast, stimulant-induced CPP in the δ-KO mice was similar to that in the wild-type controls. Thus, the conditioned rewarding effect by opioids, but not that of stimulants, was impaired in the absence of δ-GABAA Rs. Further studies are warranted to assess the potential of δ-GABAA R antagonists as possible targets for reducing morphine reward and potentiating morphine analgesia.
Collapse
Affiliation(s)
- Milo S Siivonen
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Elena de Miguel
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juho Aaltio
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Aino K Manner
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikko Vahermo
- Drug Discovery Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Discovery Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Anni-Maija Linden
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Teemu Aitta-Aho
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
123
|
Patriarchi T, Cho JR, Merten K, Howe MW, Marley A, Xiong WH, Folk RW, Broussard GJ, Liang R, Jang MJ, Zhong H, Dombeck D, von Zastrow M, Nimmerjahn A, Gradinaru V, Williams JT, Tian L. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 2018; 360:eaat4422. [PMID: 29853555 PMCID: PMC6287765 DOI: 10.1126/science.aat4422] [Citation(s) in RCA: 678] [Impact Index Per Article: 96.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
Abstract
Neuromodulatory systems exert profound influences on brain function. Understanding how these systems modify the operating mode of target circuits requires spatiotemporally precise measurement of neuromodulator release. We developed dLight1, an intensity-based genetically encoded dopamine indicator, to enable optical recording of dopamine dynamics with high spatiotemporal resolution in behaving mice. We demonstrated the utility of dLight1 by imaging dopamine dynamics simultaneously with pharmacological manipulation, electrophysiological or optogenetic stimulation, and calcium imaging of local neuronal activity. dLight1 enabled chronic tracking of learning-induced changes in millisecond dopamine transients in mouse striatum. Further, we used dLight1 to image spatially distinct, functionally heterogeneous dopamine transients relevant to learning and motor control in mouse cortex. We also validated our sensor design platform for developing norepinephrine, serotonin, melatonin, and opioid neuropeptide indicators.
Collapse
Affiliation(s)
- Tommaso Patriarchi
- Department of Biochemistry and Molecular Medicine, University of California, Davis, 2700 Stockton Boulevard, Sacramento, CA 95817, USA
| | - Jounhong Ryan Cho
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Katharina Merten
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mark W Howe
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Aaron Marley
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94131, USA
| | - Wei-Hong Xiong
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Robert W Folk
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Gerard Joey Broussard
- Department of Biochemistry and Molecular Medicine, University of California, Davis, 2700 Stockton Boulevard, Sacramento, CA 95817, USA
| | - Ruqiang Liang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, 2700 Stockton Boulevard, Sacramento, CA 95817, USA
| | - Min Jee Jang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Haining Zhong
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Daniel Dombeck
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Mark von Zastrow
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94131, USA
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - John T Williams
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, University of California, Davis, 2700 Stockton Boulevard, Sacramento, CA 95817, USA.
| |
Collapse
|
124
|
Polter AM, Barcomb K, Tsuda AC, Kauer JA. Synaptic function and plasticity in identified inhibitory inputs onto VTA dopamine neurons. Eur J Neurosci 2018; 47:1208-1218. [PMID: 29480954 PMCID: PMC6487867 DOI: 10.1111/ejn.13879] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/30/2022]
Abstract
Ventral tegmental area (VTA) dopaminergic neurons are key components of the reward pathway, and their activity is powerfully controlled by a diverse array of inhibitory GABAergic inputs. Two major sources of GABAergic nerve terminals within the VTA are local VTA interneurons and neurons in the rostromedial tegmental nucleus (RMTg). Here, using optogenetics, we compared synaptic properties of GABAergic synapses on VTA dopamine neurons using selective activation of afferents that originate from these two cell populations. We found little evidence of co-release of glutamate from either input, but RMTg-originating synaptic currents were reduced by strychnine, suggesting co-release of glycine and GABA. VTA-originating synapses displayed a lower initial release probability, and at higher frequency stimulation, short-term depression was more marked in VTA- but not RMTg-originating synapses. We previously reported that nitric oxide (NO)-induced potentiation of GABAergic synapses on VTA dopaminergic cells is lost after exposure to drugs of abuse or acute stress; in these experiments, multiple GABAergic afferents were simultaneously activated by electrical stimulation. Here we found that optogenetically-activated VTA-originating synapses on presumptive dopamine neurons also exhibited NO-induced potentiation, whereas RMTg-originating synapses did not. Despite providing a robust inhibitory input to the VTA, RMTg GABAergic synapses are most likely not those previously shown by our work to be persistently altered by addictive drugs and stress. Our work emphasises the idea that dopamine neuron excitability is controlled by diverse inhibitory inputs expected to exert varying degrees of inhibition and to participate differently in a range of behaviours.
Collapse
Affiliation(s)
- Abigail M. Polter
- Brown University, Department of Molecular Pharmacology, Physiology and Biotechnology Providence, RI 02912
- current address: George Washington University, Department of Pharmacology and Physiology, Washington, DC 20037
- contributed equally
| | - Kelsey Barcomb
- Brown University, Department of Molecular Pharmacology, Physiology and Biotechnology Providence, RI 02912
- contributed equally
| | - Ayumi C. Tsuda
- Brown University, Department of Molecular Pharmacology, Physiology and Biotechnology Providence, RI 02912
| | - Julie A. Kauer
- Brown University, Department of Molecular Pharmacology, Physiology and Biotechnology Providence, RI 02912
| |
Collapse
|
125
|
Gantz SC, Ford CP, Morikawa H, Williams JT. The Evolving Understanding of Dopamine Neurons in the Substantia Nigra and Ventral Tegmental Area. Annu Rev Physiol 2018; 80:219-241. [PMID: 28938084 DOI: 10.1146/annurev-physiol-021317-121615] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In recent years, the population of neurons in the ventral tegmental area (VTA) and substantia nigra (SN) has been examined at multiple levels. The results indicate that the projections, neurochemistry, and receptor and ion channel expression in this cell population vary widely. This review centers on the intrinsic properties and synaptic regulation that control the activity of dopamine neurons. Although all dopamine neurons fire action potentials in a pacemaker pattern in the absence of synaptic input, the intrinsic properties that underlie this activity differ considerably. Likewise, the transition into a burst/pause pattern results from combinations of intrinsic ion conductances, inhibitory and excitatory synaptic inputs that differ among this cell population. Finally, synaptic plasticity is a key regulator of the rate and pattern of activity in different groups of dopamine neurons. Through these fundamental properties, the activity of dopamine neurons is regulated and underlies the wide-ranging functions that have been attributed to dopamine.
Collapse
Affiliation(s)
- Stephanie C Gantz
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland 21224, USA
| | - Christopher P Ford
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Hitoshi Morikawa
- Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, Texas 78712, USA
| | - John T Williams
- Vollum Institute, Oregon Health Sciences University, Portland, Oregon 97239, USA;
| |
Collapse
|
126
|
Yang H, de Jong JW, Tak Y, Peck J, Bateup HS, Lammel S. Nucleus Accumbens Subnuclei Regulate Motivated Behavior via Direct Inhibition and Disinhibition of VTA Dopamine Subpopulations. Neuron 2018; 97:434-449.e4. [PMID: 29307710 DOI: 10.1016/j.neuron.2017.12.022] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/01/2017] [Accepted: 12/14/2017] [Indexed: 11/18/2022]
Abstract
Mesolimbic dopamine (DA) neurons play a central role in motivation and reward processing. Although the activity of these mesolimbic DA neurons is controlled by afferent inputs, little is known about the circuits in which they are embedded. Using retrograde tracing, electrophysiology, optogenetics, and behavioral assays, we identify principles of afferent-specific control in the mesolimbic DA system. Neurons in the medial shell subdivision of the nucleus accumbens (NAc) exert direct inhibitory control over two separate populations of mesolimbic DA neurons by activating different GABA receptor subtypes. In contrast, NAc lateral shell neurons mainly synapse onto ventral tegmental area (VTA) GABA neurons, resulting in disinhibition of DA neurons that project back to the NAc lateral shell. Lastly, we establish a critical role for NAc subregion-specific input to the VTA underlying motivated behavior. Collectively, our results suggest a distinction in the incorporation of inhibitory inputs between different subtypes of mesolimbic DA neurons.
Collapse
Affiliation(s)
- Hongbin Yang
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, 142 Life Science Addition #3200, CA 94720, USA
| | - Johannes W de Jong
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, 142 Life Science Addition #3200, CA 94720, USA
| | - YeEun Tak
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, 142 Life Science Addition #3200, CA 94720, USA
| | - James Peck
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, 142 Life Science Addition #3200, CA 94720, USA
| | - Helen S Bateup
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, 142 Life Science Addition #3200, CA 94720, USA
| | - Stephan Lammel
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, 142 Life Science Addition #3200, CA 94720, USA.
| |
Collapse
|
127
|
Thobois S, Brefel-Courbon C, Le Bars D, Sgambato-Faure V. Molecular Imaging of Opioid System in Idiopathic Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 141:275-303. [DOI: 10.1016/bs.irn.2018.07.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
128
|
Thomas TS, Baimel C, Borgland SL. Opioid and hypocretin neuromodulation of ventral tegmental area neuronal subpopulations. Br J Pharmacol 2017; 175:2825-2833. [PMID: 28849596 DOI: 10.1111/bph.13993] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 11/29/2022] Open
Abstract
The current view of the midbrain dopaminergic system is evolving towards a complex system of subpopulations of neurons with distinct afferent and efferent connections and, importantly, functionally different intrinsic characteristics. Recent literature on the phenotypic diversity of dopaminergic neurons has outlined that in the ventral tegmental area dopaminergic neurons are not as anatomically or electrophysiologically homogeneous as they were once thought to be. Instead, the midbrain dopaminergic system is now understood to be composed of anatomically and functionally heterogeneous dopaminergic subpopulations receiving specific afferent inputs and with different axonal projections. An additional layer of complexity is the neuromodulation of each of these dopaminergic circuits. This review will examine the distinguishing electrophysiological and neuromodulatory characteristics of the afferent and efferent connections of midbrain dopaminergic neurons. LINKED ARTICLES This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.
Collapse
Affiliation(s)
- Taylor S Thomas
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Corey Baimel
- Center for Neural Science, New York University, New York, NY, USA
| | | |
Collapse
|
129
|
Opioid-induced rewards, locomotion, and dopamine activation: A proposed model for control by mesopontine and rostromedial tegmental neurons. Neurosci Biobehav Rev 2017; 83:72-82. [PMID: 28951251 DOI: 10.1016/j.neubiorev.2017.09.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/12/2017] [Accepted: 09/21/2017] [Indexed: 01/06/2023]
Abstract
Opioids, such as morphine or heroin, increase forebrain dopamine (DA) release and locomotion, and support the acquisition of conditioned place preference (CPP) or self-administration. The most sensitive sites for these opioid effects in rodents are in the ventral tegmental area (VTA) and rostromedial tegmental nucleus (RMTg). Opioid inhibition of GABA neurons in these sites is hypothesized to lead to arousing and rewarding effects through disinhibition of VTA DA neurons. We review findings that the laterodorsal tegmental (LDTg) and pedunculopontine tegmental (PPTg) nuclei, which each contain cholinergic, GABAergic, and glutamatergic cells, are important for these effects. LDTg and/or PPTg cholinergic inputs to VTA mediate opioid-induced locomotion and DA activation via VTA M5 muscarinic receptors. LDTg and/or PPTg cholinergic inputs to RMTg also modulate opioid-induced locomotion. Lesions or inhibition of LDTg or PPTg neurons reduce morphine-induced increases in forebrain DA release, acquisition of morphine CPP or self-administration. We propose a circuit model that links VTA and RMTg GABA with LDTg and PPTg neurons critical for DA-dependent opioid effects in drug-naïve rodents.
Collapse
|
130
|
Morphine activation of mu opioid receptors causes disinhibition of neurons in the ventral tegmental area mediated by β-arrestin2 and c-Src. Sci Rep 2017; 7:9969. [PMID: 28855588 PMCID: PMC5577270 DOI: 10.1038/s41598-017-10360-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 08/09/2017] [Indexed: 12/31/2022] Open
Abstract
The tyrosine kinase, c-Src, participates in mu opioid receptor (MOP) mediated inhibition in sensory neurons in which β-arrestin2 (β-arr2) is implicated in its recruitment. Mice lacking β-arr2 exhibit increased sensitivity to morphine reinforcement; however, whether β-arr2 and/or c-Src participate in the actions of opioids in neurons within the reward pathway is unknown. It is also unclear whether morphine acts exclusively through MOPs, or involves delta opioid receptors (DOPs). We examined the involvement of MOPs, DOPs, β-arr2 and c-Src in the inhibition by morphine of GABAergic inhibitory postsynaptic currents (IPSCs) recorded from neurons in the mouse ventral tegmental area. Morphine inhibited spontaneous IPSC frequency, mainly through MOPs, with only a negligible effect remaining in MOP−/− neurons. However, a reduction in the inhibition by morphine for DOP−/− c.f. WT neurons and a DPDPE-induced decrease of IPSC frequency revealed a role for DOPs. The application of the c-Src inhibitor, PP2, to WT neurons also reduced inhibition by morphine, while the inactive PP3, and the MEK inhibitor, SL327, had no effect. Inhibition of IPSC frequency by morphine was also reduced in β-arr2−/− neurons in which PP2 caused no further reduction. These data suggest that inhibition of IPSCs by morphine involves a β-arr2/c-Src mediated mechanism.
Collapse
|
131
|
Pathway- and Cell-Specific Kappa-Opioid Receptor Modulation of Excitation-Inhibition Balance Differentially Gates D1 and D2 Accumbens Neuron Activity. Neuron 2017; 93:147-163. [PMID: 28056342 DOI: 10.1016/j.neuron.2016.12.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/14/2016] [Accepted: 12/02/2016] [Indexed: 12/31/2022]
Abstract
Endogenous dynorphin signaling via the kappa-opioid receptor (KOR) in the nucleus accumbens (NAcc) powerfully mediates negative affective states and stress reactivity. Excitatory inputs from the hippocampus and amygdala play a fundamental role in shaping the activity of both NAcc D1 and D2 MSNs, which encode positive and negative motivational valences, respectively. However, a circuit-based mechanism by which KOR modulation of excitation-inhibition balance modifies D1 and D2 MSN activity is lacking. Here, we provide a comprehensive synaptic framework wherein presynaptic KOR inhibition decreases the excitatory drive of D1 MSN activity by the amygdala, but not the hippocampus. Conversely, presynaptic inhibition by KORs of inhibitory synapses on D2 MSNs enhances integration of excitatory drive by the amygdala and hippocampus. In conclusion, we describe a circuit-based mechanism showing differential gating of afferent control of D1 and D2 MSN activity by KORs in a pathway-specific manner.
Collapse
|
132
|
Tao YM, Yu C, Wang WS, Hou YY, Xu XJ, Chi ZQ, Ding YQ, Wang YJ, Liu JG. Heteromers of μ opioid and dopamine D 1 receptors modulate opioid-induced locomotor sensitization in a dopamine-independent manner. Br J Pharmacol 2017; 174:2842-2861. [PMID: 28608532 DOI: 10.1111/bph.13908] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 05/15/2017] [Accepted: 05/26/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Exposure to opiates induces locomotor sensitization in rodents, which has been proposed to correspond to the compulsive drug-seeking behaviour. Numerous studies have demonstrated that locomotor sensitization can occur in a dopamine transmission-independent manner; however, the underlying mechanisms are unclear. EXPERIMENTAL APPROACH Co-immunoprecipitation, BRET and cross-antagonism assays were used to demonstrate the existence of receptor heterodimers. Function of heterodimers was evaluated by behavioural studies of locomotor sensitization. KEY RESULTS The dopamine D1 receptor antagonist SCH23390 antagonized the signalling initiated by stimulation of μ opioid receptors with agonists in transfected cells expressing two receptors and in striatal tissues from wild-type but not D1 receptor knockout (KO) mice, suggesting that SCH23390 modified μ receptor function via receptor heteromers, as the ability of an antagonist of one of the receptors to inhibit signals originated by stimulation of the partner receptor was a characteristic of receptor heteromers. The existence of μ receptor-D1 receptor heterodimers was further supported by biochemical and biophysical assays. In vivo, when dopamine release was absent (by destruction of the dopaminergic projection from the ventral tegmental area to the striatum), SCH23390 still significantly inhibited μ receptor agonist-induced behavioural responses in rats. Additionally, we demonstrated that D1 or μ receptor KO mice and thus unable to form μ receptor-D1 receptor heterodimers, failed to show locomotor sensitization to morphine. CONCLUSION AND IMPLICATIONS Our results suggest that μ receptor-D1 receptor heterodimers may be involved in the dopamine-independent expression of locomotor sensitization to opiates.
Collapse
Affiliation(s)
- Yi-Min Tao
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Collaborative Innovation Center for Brain Science, Shanghai, China
| | - Chuan Yu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Collaborative Innovation Center for Brain Science, Shanghai, China
| | - Wei-Sheng Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Collaborative Innovation Center for Brain Science, Shanghai, China
| | - Yuan-Yuan Hou
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Collaborative Innovation Center for Brain Science, Shanghai, China
| | - Xue-Jun Xu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Collaborative Innovation Center for Brain Science, Shanghai, China
| | - Zhi-Qiang Chi
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Collaborative Innovation Center for Brain Science, Shanghai, China
| | - Yu-Qiang Ding
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Yu-Jun Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Collaborative Innovation Center for Brain Science, Shanghai, China
| | - Jing-Gen Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Collaborative Innovation Center for Brain Science, Shanghai, China
| |
Collapse
|
133
|
Charbogne P, Gardon O, Martín-García E, Keyworth HL, Matsui A, Mechling AE, Bienert T, Nasseef T, Robé A, Moquin L, Darcq E, Ben Hamida S, Robledo P, Matifas A, Befort K, Gavériaux-Ruff C, Harsan LA, Von Everfeldt D, Hennig J, Gratton A, Kitchen I, Bailey A, Alvarez VA, Maldonado R, Kieffer BL. Mu Opioid Receptors in Gamma-Aminobutyric Acidergic Forebrain Neurons Moderate Motivation for Heroin and Palatable Food. Biol Psychiatry 2017; 81:778-788. [PMID: 28185645 PMCID: PMC5386808 DOI: 10.1016/j.biopsych.2016.12.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/12/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mu opioid receptors (MORs) are central to pain control, drug reward, and addictive behaviors, but underlying circuit mechanisms have been poorly explored by genetic approaches. Here we investigate the contribution of MORs expressed in gamma-aminobutyric acidergic forebrain neurons to major biological effects of opiates, and also challenge the canonical disinhibition model of opiate reward. METHODS We used Dlx5/6-mediated recombination to create conditional Oprm1 mice in gamma-aminobutyric acidergic forebrain neurons. We characterized the genetic deletion by histology, electrophysiology, and microdialysis; probed neuronal activation by c-Fos immunohistochemistry and resting-state functional magnetic resonance imaging; and investigated main behavioral responses to opiates, including motivation to obtain heroin and palatable food. RESULTS Mutant mice showed MOR transcript deletion mainly in the striatum. In the ventral tegmental area, local MOR activity was intact, and reduced activity was only observed at the level of striatonigral afferents. Heroin-induced neuronal activation was modified at both sites, and whole-brain functional networks were altered in live animals. Morphine analgesia was not altered, and neither was physical dependence to chronic morphine. In contrast, locomotor effects of heroin were abolished, and heroin-induced catalepsy was increased. Place preference to heroin was not modified, but remarkably, motivation to obtain heroin and palatable food was enhanced in operant self-administration procedures. CONCLUSIONS Our study reveals dissociable MOR functions across mesocorticolimbic networks. Thus, beyond a well-established role in reward processing, operating at the level of local ventral tegmental area neurons, MORs also moderate motivation for appetitive stimuli within forebrain circuits that drive motivated behaviors.
Collapse
Affiliation(s)
- Pauline Charbogne
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France,Douglas Mental Health Institute, Department of Psychiatry, McGill University, 6875 boulevard LaSalle, H4H 1R3 Montreal, QC, Canada
| | - Olivier Gardon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Elena Martín-García
- Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, PRBB, C/Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Helen L. Keyworth
- Faculty of Health and Medical Sciences, AY Building, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Aya Matsui
- Section on Neuronal Structure, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Anna E. Mechling
- Department of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Thomas Bienert
- Department of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Taufiq Nasseef
- Douglas Mental Health Institute, Department of Psychiatry, McGill University, 6875 boulevard LaSalle, H4H 1R3 Montreal, QC, Canada
| | - Anne Robé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Luc Moquin
- Douglas Mental Health Institute, Department of Psychiatry, McGill University, 6875 boulevard LaSalle, H4H 1R3 Montreal, QC, Canada
| | - Emmanuel Darcq
- Douglas Mental Health Institute, Department of Psychiatry, McGill University, 6875 boulevard LaSalle, H4H 1R3 Montreal, QC, Canada
| | - Sami Ben Hamida
- Douglas Mental Health Institute, Department of Psychiatry, McGill University, 6875 boulevard LaSalle, H4H 1R3 Montreal, QC, Canada
| | - Patricia Robledo
- Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, PRBB, C/Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Audrey Matifas
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Katia Befort
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Claire Gavériaux-Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Laura-Adela Harsan
- Department of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany,Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (IMIS), UMR 7357, University of Strasbourg, France,University Hospital Strasbourg, Department of Biophysics and Nuclear Medicine, Strasbourg, France
| | - Dominik Von Everfeldt
- Department of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jurgen Hennig
- Department of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Alain Gratton
- Douglas Mental Health Institute, Department of Psychiatry, McGill University, 6875 boulevard LaSalle, H4H 1R3 Montreal, QC, Canada
| | - Ian Kitchen
- Faculty of Health and Medical Sciences, AY Building, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Alexis Bailey
- Faculty of Health and Medical Sciences, AY Building, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Veronica A. Alvarez
- Section on Neuronal Structure, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Rafael Maldonado
- Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, PRBB, C/Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Brigitte L. Kieffer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France,Douglas Mental Health Institute, Department of Psychiatry, McGill University, 6875 boulevard LaSalle, H4H 1R3 Montreal, QC, Canada,Corresponding author. Douglas Mental Health Institute, Department of Psychiatry, McGill, University, 6875 boulevard LaSalle, H4H 1R3 Montreal, QC, Canada, Phone: 514 761-6131 ext.: 3175; fax: 514 762-3033,
| |
Collapse
|
134
|
Ferré S. Hormones and Neuropeptide Receptor Heteromers in the Ventral Tegmental Area. Targets for the Treatment of Loss of Control of Food Intake and Substance Use Disorders. ACTA ACUST UNITED AC 2017; 4:167-183. [PMID: 28580231 PMCID: PMC5432584 DOI: 10.1007/s40501-017-0109-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Hormones and neuropeptides represent biological correlates of internal homeostatic signals detected and integrated in the hypothalamus, which establishes a robust functional connection with the ventral tegmental area (VTA). The hypothalamus-VTA connection determines the ability of these signals to influence central dopaminergic neurotransmission and, therefore, their ability to increase responsiveness to their reward-associated stimuli and to establish appropriate associative learning. The hypothalamus also provides the main source of the multiple neuropeptides that are released in the VTA. With volume transmission of neuropeptides and hormones, extrasynaptic receptors within the VTA provide a fine-tune mechanism, which depends on the ability of molecularly different G protein-coupled receptors (GPCRs) to form heteromers. GPCR heteromer is defined as a macromolecular complex composed of at least two different receptor units (protomers) with biochemical properties that are demonstrably different from those of its individual components. GPCR heteromers can provide unique allosteric properties to specific ligands, which provides new avenues for drug development. We have identified specific GPCR heteromers in the VTA that integrate orexin and CRF neurotransmission and opioid and galanin neurotransmission, which play a very significant role in the modulation of dopaminergic neuronal activity and which can constitute targets for the treatment of loss of control of food intake and substance use disorders.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Triad Technology Building, 333 Cassell Drive, Baltimore, MD 21224 USA
| |
Collapse
|
135
|
Cardozo Pinto DF, Lammel S. Viral vector strategies for investigating midbrain dopamine circuits underlying motivated behaviors. Pharmacol Biochem Behav 2017; 174:23-32. [PMID: 28257849 DOI: 10.1016/j.pbb.2017.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/07/2017] [Accepted: 02/23/2017] [Indexed: 12/21/2022]
Abstract
Midbrain dopamine (DA) neurons have received significant attention in brain research because of their central role in reward processing and their dysfunction in neuropsychiatric disorders such as Parkinson's disease, drug addiction, depression and schizophrenia. Until recently, it has been thought that DA neurons form a homogeneous population whose primary function is the computation of reward prediction errors. However, through the implementation of viral vector strategies, an unexpected complexity and diversity has been revealed at the anatomical, molecular and functional level. In this review, we discuss recent viral vector approaches that have been leveraged to dissect how different circuits involving distinct DA neuron subpopulations may contribute to the role of DA in reward- and aversion-related behaviors. We focus on studies that have used cell type- and projection-specific optogenetic manipulations, discuss the strengths and limitations of each approach, and critically examine emergent organizational principles that have led to a reclassification of midbrain DA neurons.
Collapse
Affiliation(s)
- Daniel F Cardozo Pinto
- Department of Molecular and Cell Biology, University of California, Berkeley, 142 Life Science Addition #3200, CA 94720, USA
| | - Stephan Lammel
- Department of Molecular and Cell Biology, University of California, Berkeley, 142 Life Science Addition #3200, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, 142 Life Science Addition #3200, CA 94720, USA.
| |
Collapse
|
136
|
Sánchez-Catalán MJ, Faivre F, Yalcin I, Muller MA, Massotte D, Majchrzak M, Barrot M. Response of the Tail of the Ventral Tegmental Area to Aversive Stimuli. Neuropsychopharmacology 2017; 42:638-648. [PMID: 27468916 PMCID: PMC5240171 DOI: 10.1038/npp.2016.139] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/19/2016] [Accepted: 07/22/2016] [Indexed: 12/26/2022]
Abstract
The GABAergic tail of the ventral tegmental area (tVTA), also named rostromedial tegmental nucleus (RMTg), exerts an inhibitory control on dopamine neurons of the VTA and substantia nigra. The tVTA has been implicated in avoidance behaviors, response to drugs of abuse, reward prediction error, and motor functions. Stimulation of the lateral habenula (LHb) inputs to the tVTA, or of the tVTA itself, induces avoidance behaviors, which suggests a role of the tVTA in processing aversive information. Our aim was to test the impact of aversive stimuli on the molecular recruitment of the tVTA, and the behavioral consequences of tVTA lesions. In rats, we assessed Fos response to lithium chloride (LiCl), β-carboline, naloxone, lipopolysaccharide (LPS), inflammatory pain, neuropathic pain, foot-shock, restraint stress, forced swimming, predator odor, and opiate withdrawal. We also determined the effect of tVTA bilateral ablation on physical signs of opiate withdrawal, and on LPS- and LiCl-induced conditioned taste aversion (CTA). Naloxone-precipitated opiate withdrawal induced Fos in μ-opioid receptor-positive (15%) and -negative (85%) tVTA cells, suggesting the presence of both direct and indirect mechanisms in tVTA recruitment during withdrawal. However, tVTA lesion did not impact physical signs of opiate withdrawal. Fos induction was also present with repeated, but not single, foot-shock delivery. However, such induction was mostly absent with other aversive stimuli. Moreover, tVTA ablation had no impact on CTA. Although stimulation of the tVTA favors avoidance behaviors, present findings suggest that this structure may be important to the response to some, but not all, aversive stimuli.
Collapse
Affiliation(s)
- María-José Sánchez-Catalán
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France,Unitat Predepartamental de Medicina, Universitat Jaume I, Castelló de la Plana, Spain,Unitat Predepartamental de Medicina, Universitat Jaume I, Avenue Vicent Sos Baynat, s/n, 13071 Castelló de la Plana, Spain, Tel: +34 964 38 74 40, Fax: +34 964 72 90 16, E-mail:
| | - Fanny Faivre
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France,Université de Strasbourg, Strasbourg, France
| | - Ipek Yalcin
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Marc-Antoine Muller
- Université de Strasbourg, Strasbourg, France,Laboratoire de Neurosciences Cognitives et Adaptatives, Faculté de Psychologie, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Dominique Massotte
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Monique Majchrzak
- Université de Strasbourg, Strasbourg, France,Laboratoire de Neurosciences Cognitives et Adaptatives, Faculté de Psychologie, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Michel Barrot
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| |
Collapse
|
137
|
Edwards NJ, Tejeda HA, Pignatelli M, Zhang S, McDevitt RA, Wu J, Bass CE, Bettler B, Morales M, Bonci A. Circuit specificity in the inhibitory architecture of the VTA regulates cocaine-induced behavior. Nat Neurosci 2017; 20:438-448. [DOI: 10.1038/nn.4482] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/20/2016] [Indexed: 12/17/2022]
|
138
|
Functional μ-Opioid-Galanin Receptor Heteromers in the Ventral Tegmental Area. J Neurosci 2016; 37:1176-1186. [PMID: 28007761 DOI: 10.1523/jneurosci.2442-16.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/15/2016] [Accepted: 12/14/2016] [Indexed: 11/21/2022] Open
Abstract
The neuropeptide galanin has been shown to interact with the opioid system. More specifically, galanin counteracts the behavioral effects of the systemic administration of μ-opioid receptor (MOR) agonists. Yet the mechanism responsible for this galanin-opioid interaction has remained elusive. Using biophysical techniques in mammalian transfected cells, we found evidence for selective heteromerization of MOR and the galanin receptor subtype Gal1 (Gal1R). Also in transfected cells, a synthetic peptide selectively disrupted MOR-Gal1R heteromerization as well as specific interactions between MOR and Gal1R ligands: a negative cross talk, by which galanin counteracted MAPK activation induced by the endogenous MOR agonist endomorphin-1, and a cross-antagonism, by which a MOR antagonist counteracted MAPK activation induced by galanin. These specific interactions, which represented biochemical properties of the MOR-Gal1R heteromer, could then be identified in situ in slices of rat ventral tegmental area (VTA) with MAPK activation and two additional cell signaling pathways, AKT and CREB phosphorylation. Furthermore, in vivo microdialysis experiments showed that the disruptive peptide selectively counteracted the ability of galanin to block the dendritic dopamine release in the rat VTA induced by local infusion of endomorphin-1, demonstrating a key role of MOR-Gal1R heteromers localized in the VTA in the direct control of dopamine cell function and their ability to mediate antagonistic interactions between MOR and Gal1R ligands. The results also indicate that MOR-Gal1R heteromers should be viewed as targets for the treatment of opioid use disorders. SIGNIFICANCE STATEMENT The μ-opioid receptor (MOR) localized in the ventral tegmental area (VTA) plays a key role in the reinforcing and addictive properties of opioids. With parallel in vitro experiments in mammalian transfected cells and in situ and in vivo experiments in rat VTA, we demonstrate that a significant population of these MORs form functional heteromers with the galanin receptor subtype Gal1 (Gal1R), which modulate the activity of the VTA dopaminergic neurons. The MOR-Gal1R heteromer can explain previous results showing antagonistic galanin-opioid interactions and offers a new therapeutic target for the treatment of opioid use disorder.
Collapse
|
139
|
Yoo JH, Zell V, Gutierrez-Reed N, Wu J, Ressler R, Shenasa MA, Johnson AB, Fife KH, Faget L, Hnasko TS. Ventral tegmental area glutamate neurons co-release GABA and promote positive reinforcement. Nat Commun 2016; 7:13697. [PMID: 27976722 PMCID: PMC5171775 DOI: 10.1038/ncomms13697] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/26/2016] [Indexed: 02/08/2023] Open
Abstract
In addition to dopamine neurons, the ventral tegmental area (VTA) contains GABA-, glutamate- and co-releasing neurons, and recent reports suggest a complex role for the glutamate neurons in behavioural reinforcement. We report that optogenetic stimulation of VTA glutamate neurons or terminals serves as a positive reinforcer on operant behavioural assays. Mice display marked preference for brief over sustained VTA glutamate neuron stimulation resulting in behavioural responses that are notably distinct from dopamine neuron stimulation and resistant to dopamine receptor antagonists. Whole-cell recordings reveal EPSCs following stimulation of VTA glutamate terminals in the nucleus accumbens or local VTA collaterals; but reveal both excitatory and monosynaptic inhibitory currents in the ventral pallidum and lateral habenula, though the net effects on postsynaptic firing in each region are consistent with the observed rewarding behavioural effects. These data indicate that VTA glutamate neurons co-release GABA in a projection-target-dependent manner and that their transient activation drives positive reinforcement.
Ventral tegmental area (VTA) is involved in reward behaviours, but the precise contribution of VTA glutamatergic neurons to this process is not known. Here the authors show that phasic but not sustained optogenetic stimulation of VTA glutamatergic neurons is rewarding and involves co-release of GABA.
Collapse
Affiliation(s)
- Ji Hoon Yoo
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Vivien Zell
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Navarre Gutierrez-Reed
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093, USA
| | - Johnathan Wu
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Reed Ressler
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Mohammad Ali Shenasa
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Alexander B Johnson
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Kathryn H Fife
- Neuroscience Graduate Program, University of California, San Diego, La Jolla, California 92093, USA
| | - Lauren Faget
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
140
|
Bariselli S, Glangetas C, Tzanoulinou S, Bellone C. Ventral tegmental area subcircuits process rewarding and aversive experiences. J Neurochem 2016; 139:1071-1080. [DOI: 10.1111/jnc.13779] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Sebastiano Bariselli
- Department of Fundamental Neuroscience; University of Lausanne; Lausanne Switzerland
| | - Christelle Glangetas
- Department of Fundamental Neuroscience; University of Lausanne; Lausanne Switzerland
| | - Stamatina Tzanoulinou
- Department of Fundamental Neuroscience; University of Lausanne; Lausanne Switzerland
| | - Camilla Bellone
- Department of Fundamental Neuroscience; University of Lausanne; Lausanne Switzerland
| |
Collapse
|
141
|
Cahill CM, Walwyn W, Taylor AMW, Pradhan AAA, Evans CJ. Allostatic Mechanisms of Opioid Tolerance Beyond Desensitization and Downregulation. Trends Pharmacol Sci 2016; 37:963-976. [PMID: 27670390 DOI: 10.1016/j.tips.2016.08.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022]
Abstract
Mechanisms of opioid tolerance have focused on adaptive modifications within cells containing opioid receptors, defined here as cellular allostasis, emphasizing regulation of the opioid receptor signalosome. We review additional regulatory and opponent processes involved in behavioral tolerance, and include mechanistic differences both between agonists (agonist bias), and between μ- and δ-opioid receptors. In a process we will refer to as pass-forward allostasis, cells modified directly by opioid drugs impute allostatic changes to downstream circuitry. Because of the broad distribution of opioid systems, every brain cell may be touched by pass-forward allostasis in the opioid-dependent/tolerant state. We will implicate neurons and microglia as interactive contributors to the cumulative allostatic processes creating analgesic and hedonic tolerance to opioid drugs.
Collapse
Affiliation(s)
- Catherine M Cahill
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, 837 Health Sciences Road, Irvine, CA 92697, USA
| | - Wendy Walwyn
- Hatos Center for Neuropharmacology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 675 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Anna M W Taylor
- Hatos Center for Neuropharmacology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 675 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Amynah A A Pradhan
- Department of Psychiatry, University of Illinois at Chicago, 1601 West Taylor Street, Chicago, IL 60612, USA
| | - Christopher J Evans
- Hatos Center for Neuropharmacology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 675 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
| |
Collapse
|
142
|
Diversity of Dopaminergic Neural Circuits in Response to Drug Exposure. Neuropsychopharmacology 2016; 41:2424-46. [PMID: 26934955 PMCID: PMC4987841 DOI: 10.1038/npp.2016.32] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/05/2016] [Accepted: 02/22/2016] [Indexed: 01/09/2023]
Abstract
Addictive substances are known to increase dopaminergic signaling in the mesocorticolimbic system. The origin of this dopamine (DA) signaling originates in the ventral tegmental area (VTA), which sends afferents to various targets, including the nucleus accumbens, the medial prefrontal cortex, and the basolateral amygdala. VTA DA neurons mediate stimuli saliency and goal-directed behaviors. These neurons undergo robust drug-induced intrinsic and extrinsic synaptic mechanisms following acute and chronic drug exposure, which are part of brain-wide adaptations that ultimately lead to the transition into a drug-dependent state. Interestingly, recent investigations of the differential subpopulations of VTA DA neurons have revealed projection-specific functional roles in mediating reward, aversion, and stress. It is now critical to view drug-induced neuroadaptations from a circuit-level perspective to gain insight into how differential dopaminergic adaptations and signaling to targets of the mesocorticolimbic system mediates drug reward. This review hopes to describe the projection-specific intrinsic characteristics of these subpopulations, the differential afferent inputs onto these VTA DA neuron subpopulations, and consolidate findings of drug-induced plasticity of VTA DA neurons and highlight the importance of future projection-based studies of this system.
Collapse
|
143
|
Yau HJ, Wang DV, Tsou JH, Chuang YF, Chen BT, Deisseroth K, Ikemoto S, Bonci A. Pontomesencephalic Tegmental Afferents to VTA Non-dopamine Neurons Are Necessary for Appetitive Pavlovian Learning. Cell Rep 2016; 16:2699-2710. [PMID: 27568569 DOI: 10.1016/j.celrep.2016.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/28/2016] [Accepted: 07/31/2016] [Indexed: 12/23/2022] Open
Abstract
The ventral tegmental area (VTA) receives phenotypically distinct innervations from the pedunculopontine tegmental nucleus (PPTg). While PPTg-to-VTA inputs are thought to play a critical role in stimulus-reward learning, direct evidence linking PPTg-to-VTA phenotypically distinct inputs in the learning process remains lacking. Here, we used optogenetic approaches to investigate the functional contribution of PPTg excitatory and inhibitory inputs to the VTA in appetitive Pavlovian conditioning. We show that photoinhibition of PPTg-to-VTA cholinergic or glutamatergic inputs during cue presentation dampens the development of anticipatory approach responding to the food receptacle during the cue. Furthermore, we employed in vivo optetrode recordings to show that photoinhibition of PPTg cholinergic or glutamatergic inputs significantly decreases VTA non-dopamine (non-DA) neural activity. Consistently, photoinhibition of VTA non-DA neurons disrupts the development of cue-elicited anticipatory approach responding. Taken together, our study reveals a crucial regulatory mechanism by PPTg excitatory inputs onto VTA non-DA neurons during appetitive Pavlovian conditioning.
Collapse
Affiliation(s)
- Hau-Jie Yau
- Synaptic Plasticity Section, Intramural Research Program, National Institute on Drug Abuse, NIH, U.S. Department of Health and Human Services, Baltimore, MD 21224, USA; Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei 10051, Taiwan
| | - Dong V Wang
- Neurocircuitry of Motivation Section, Intramural Research Program, National Institute on Drug Abuse, NIH, U.S. Department of Health and Human Services, Baltimore, MD 21224, USA
| | - Jen-Hui Tsou
- Synaptic Plasticity Section, Intramural Research Program, National Institute on Drug Abuse, NIH, U.S. Department of Health and Human Services, Baltimore, MD 21224, USA
| | - Yi-Fang Chuang
- Institute of Public Health, National Yang-Ming University, Taipei 112, Taiwan
| | - Billy T Chen
- Synaptic Plasticity Section, Intramural Research Program, National Institute on Drug Abuse, NIH, U.S. Department of Health and Human Services, Baltimore, MD 21224, USA; Ionis Pharmaceuticals Inc., Carlsbad, CA 92010, USA
| | - Karl Deisseroth
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering and Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Satoshi Ikemoto
- Neurocircuitry of Motivation Section, Intramural Research Program, National Institute on Drug Abuse, NIH, U.S. Department of Health and Human Services, Baltimore, MD 21224, USA
| | - Antonello Bonci
- Synaptic Plasticity Section, Intramural Research Program, National Institute on Drug Abuse, NIH, U.S. Department of Health and Human Services, Baltimore, MD 21224, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University, Baltimore, MD 21287, USA.
| |
Collapse
|
144
|
Kaufling J, Freund-Mercier MJ, Barrot M. [Impact of opiates on dopaminergic neurons]. Med Sci (Paris) 2016; 32:619-24. [PMID: 27406773 DOI: 10.1051/medsci/20163206026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Since the work of Johnson and North, it is known that opiates increase the activity of dopaminergic neurons by a GABA neuron-mediated desinhibition. This model should however be updated based on recent advances. Thus, the neuroanatomical location of the GABA neurons responsible for this desinhibition has been recently detailed: they belong to a brain structure in continuity with the posterior part of the ventral tegmental area and discovered this past decade. Other data also highlighted the critical role played by glutamatergic transmission in the opioid regulation of dopaminergic neuron activity. During protracted opiate withdrawal, the inhibitory/excitatory balance exerted on dopaminergic neurons is altered. These results are now leading to propose an original hypothesis for explaining the impact of protracted opiate withdrawal on mood.
Collapse
Affiliation(s)
- Jennifer Kaufling
- MRC Brain network dynamics unit, université d'Oxford, Mansfield road, Oxford OX1 3TH, Royaume-Uni
| | - Marie-José Freund-Mercier
- Institut des neurosciences cellulaires et intégratives, UPR3212 CNRS, 5, rue Blaise Pascal, 67084 Strasbourg, France - Université de Strasbourg, France
| | - Michel Barrot
- Institut des neurosciences cellulaires et intégratives, UPR3212 CNRS, 5, rue Blaise Pascal, 67084 Strasbourg, France
| |
Collapse
|
145
|
Scofield MD, Heinsbroek JA, Gipson CD, Kupchik YM, Spencer S, Smith ACW, Roberts-Wolfe D, Kalivas PW. The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis. Pharmacol Rev 2016; 68:816-71. [PMID: 27363441 PMCID: PMC4931870 DOI: 10.1124/pr.116.012484] [Citation(s) in RCA: 415] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The nucleus accumbens is a major input structure of the basal ganglia and integrates information from cortical and limbic structures to mediate goal-directed behaviors. Chronic exposure to several classes of drugs of abuse disrupts plasticity in this region, allowing drug-associated cues to engender a pathologic motivation for drug seeking. A number of alterations in glutamatergic transmission occur within the nucleus accumbens after withdrawal from chronic drug exposure. These drug-induced neuroadaptations serve as the molecular basis for relapse vulnerability. In this review, we focus on the role that glutamate signal transduction in the nucleus accumbens plays in addiction-related behaviors. First, we explore the nucleus accumbens, including the cell types and neuronal populations present as well as afferent and efferent connections. Next we discuss rodent models of addiction and assess the viability of these models for testing candidate pharmacotherapies for the prevention of relapse. Then we provide a review of the literature describing how synaptic plasticity in the accumbens is altered after exposure to drugs of abuse and withdrawal and also how pharmacological manipulation of glutamate systems in the accumbens can inhibit drug seeking in the laboratory setting. Finally, we examine results from clinical trials in which pharmacotherapies designed to manipulate glutamate systems have been effective in treating relapse in human patients. Further elucidation of how drugs of abuse alter glutamatergic plasticity within the accumbens will be necessary for the development of new therapeutics for the treatment of addiction across all classes of addictive substances.
Collapse
Affiliation(s)
- M D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - J A Heinsbroek
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - C D Gipson
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - Y M Kupchik
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - S Spencer
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - A C W Smith
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - D Roberts-Wolfe
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - P W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| |
Collapse
|
146
|
Enrico P, Migliore M, Spiga S, Mulas G, Caboni F, Diana M. Morphofunctional alterations in ventral tegmental area dopamine neurons in acute and prolonged opiates withdrawal. A computational perspective. Neuroscience 2016; 322:195-207. [DOI: 10.1016/j.neuroscience.2016.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 01/14/2016] [Accepted: 02/02/2016] [Indexed: 11/28/2022]
|
147
|
Barrot M. Ineffective VTA Disinhibition in Protracted Opiate Withdrawal. Trends Neurosci 2016; 38:672-673. [PMID: 26549881 DOI: 10.1016/j.tins.2015.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 10/22/2022]
Abstract
Recently, Kaufling and Aston-Jones showed that, under protracted opiate withdrawal, control of dopamine activity by the tail of the ventral tegmental area shifts from a bidirectional influence towards one-way inhibition. Beyond dysphoric states accompanying withdrawal, these results may also impact research on depression and individual differences in coping and affect.
Collapse
Affiliation(s)
- Michel Barrot
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, 5 rue Blaise Pascal, 67084 Strasbourg, France; Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
148
|
Yao Y, Li X, Zhang B, Yin C, Liu Y, Chen W, Zeng S, Du J. Visual Cue-Discriminative Dopaminergic Control of Visuomotor Transformation and Behavior Selection. Neuron 2016; 89:598-612. [PMID: 26804989 DOI: 10.1016/j.neuron.2015.12.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 11/01/2015] [Accepted: 12/18/2015] [Indexed: 01/03/2023]
Abstract
Animals behave differently in response to visual cues with distinct ethological meaning, a process usually thought to be achieved through differential visual processing. Using a defined zebrafish escape circuit as a model, we found that behavior selection can be implemented at the visuomotor transformation stage through a visually responsive dopaminergic-inhibitory circuit module. In response to non-threatening visual stimuli, hypothalamic dopaminergic neurons and their positively regulated hindbrain inhibitory interneurons increase activity, suppressing synaptic transmission from the visual center to the escape circuit. By contrast, threatening visual stimuli inactivate some of these neurons, resulting in dis-inhibition of the visuomotor transformation and escape generation. The distinct patterns of dopaminergic-inhibitory neural module's visual responses account for this stimulus-specific visuomotor transformation and behavioral control. Thus, our study identifies a behavioral relevance-dependent mechanism that controls visuomotor transformation and behavior selection and reveals that neuromodulation can be tuned by visual cues to help animals generate appropriate responses.
Collapse
Affiliation(s)
- Yuanyuan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; Graduate School, University of Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Xiaoquan Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Baibing Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; Graduate School, University of Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Chen Yin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; Graduate School, University of Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Yafeng Liu
- Britton Chance Center for Biomedical Photonics and Department of Biomedical Engineering, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
| | - Weiyu Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; Graduate School, University of Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Shaoqun Zeng
- Britton Chance Center for Biomedical Photonics and Department of Biomedical Engineering, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
| | - Jiulin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; Graduate School, University of Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 319 Yue-Yang Road, Shanghai 200031, China.
| |
Collapse
|
149
|
Abstract
UNLABELLED Treating pain is one of the most difficult challenges in medicine and a key facet of disease management. The isolation of morphine by Friedrich Sertürner in 1804 added an essential pharmacological tool in the treatment of pain and spawned the discovery of a new class of drugs known collectively as opioid analgesics. Revered for their potent pain-relieving effects, even Morpheus the god of dreams could not have dreamt that his opium tincture would be both a gift and a burden to humankind. To date, morphine and other opioids remain essential analgesics for alleviating pain. However, their use is plagued by major side effects, such as analgesic tolerance (diminished pain-relieving effects), hyperalgesia (increased pain sensitivity), and drug dependence. This review highlights recent advances in understanding the key causes of these adverse effects and explores the effect of chronic pain on opioid reward. SIGNIFICANCE STATEMENT Chronic pain is pervasive and afflicts >100 million Americans. Treating pain in these individuals is notoriously difficult and often requires opioids, one of the most powerful and effective classes of drugs used for controlling pain. However, their use is plagued by major side effects, such as a loss of pain-relieving effects (analgesic tolerance), paradoxical pain (hyperalgesia), and addiction. Despite the potential side effects, opioids remain the pharmacological cornerstone of modern pain therapy. This review highlights recent breakthroughs in understanding the key causes of these adverse effects and explores the cellular control of opioid systems in reward and aversion. The findings will challenge traditional views of the good, the bad, and the ugly of opioids.
Collapse
|
150
|
Paladini C, Tepper J. Neurophysiology of Substantia Nigra Dopamine Neurons: Modulation by GABA and Glutamate. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2016. [DOI: 10.1016/b978-0-12-802206-1.00017-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|