101
|
Victor MB, Richner M, Olsen HE, Lee SW, Monteys AM, Ma C, Huh CJ, Zhang B, Davidson BL, Yang XW, Yoo AS. Striatal neurons directly converted from Huntington's disease patient fibroblasts recapitulate age-associated disease phenotypes. Nat Neurosci 2018; 21:341-352. [PMID: 29403030 PMCID: PMC5857213 DOI: 10.1038/s41593-018-0075-7] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 12/28/2017] [Indexed: 12/15/2022]
Abstract
In Huntington's disease (HD), expansion of CAG codons in the huntingtin gene (HTT) leads to the aberrant formation of protein aggregates and the differential degeneration of striatal medium spiny neurons (MSNs). Modeling HD using patient-specific MSNs has been challenging, as neurons differentiated from induced pluripotent stem cells are free of aggregates and lack an overt cell death phenotype. Here we generated MSNs from HD patient fibroblasts through microRNA-based direct neuronal conversion, bypassing the induction of pluripotency and retaining age signatures of the original fibroblasts. We found that patient MSNs consistently exhibited mutant HTT (mHTT) aggregates, mHTT-dependent DNA damage, mitochondrial dysfunction and spontaneous degeneration in culture over time. We further provide evidence that erasure of age stored in starting fibroblasts or neuronal conversion of presymptomatic HD patient fibroblasts results in differential manifestation of cellular phenotypes associated with HD, highlighting the importance of age in modeling late-onset neurological disorders.
Collapse
Affiliation(s)
- Matheus B Victor
- Department of Developmental Biology, Center for Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Graduate Program in Neuroscience, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Michelle Richner
- Department of Developmental Biology, Center for Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Hannah E Olsen
- Department of Developmental Biology, Center for Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Seong Won Lee
- Department of Developmental Biology, Center for Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Alejandro M Monteys
- The Raymond G Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chunyu Ma
- Department of Developmental Biology, Center for Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Christine J Huh
- Department of Developmental Biology, Center for Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bo Zhang
- Department of Developmental Biology, Center for Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Beverly L Davidson
- The Raymond G Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - X William Yang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Andrew S Yoo
- Department of Developmental Biology, Center for Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
102
|
Mackay JP, Nassrallah WB, Raymond LA. Cause or compensation?-Altered neuronal Ca 2+ handling in Huntington's disease. CNS Neurosci Ther 2018; 24:301-310. [PMID: 29427371 DOI: 10.1111/cns.12817] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 02/03/2023] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder of typically middle-aged onset for which there is no disease-modifying treatment. Caudate and putamen medium-sized spiny projection neurons (SPNs) most severely degenerate in HD. However, it is unclear why mutant huntingtin protein (mHTT) is preferentially toxic to these neurons or why symptoms manifest only relatively late in life. mHTT interacts with numerous neuronal proteins. Likewise, multiple SPN cellular processes have been described as altered in various HD models. Among these, altered neuronal Ca2+ influx and intracellular Ca2+ handling feature prominently and are addressed here. Specifically, we focus on extrasynaptic NMDA-type glutamate receptors, endoplasmic reticulum IP3 receptors, and mitochondria. As mHTT is expressed throughout development, compensatory processes will likely be mounted to mitigate any deleterious effects. Although some compensations can lessen mHTT's disruptive effects, others-such as upregulation of the ER-refilling store-operated Ca2+ channel response-contribute to pathogenesis. A causation-based approach is therefore necessary to decipher the complex sequence of events linking mHTT to neurodegeneration, and to design rational therapeutic interventions. With this in mind, we highlight evidence, or lack thereof, that the above alterations in Ca2+ handling occur early in the disease process, clearly interact with mHTT, and show disease-modifying potential when reversed in animals.
Collapse
Affiliation(s)
- James P Mackay
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wissam B Nassrallah
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.,Graduate Program in Neuroscience and MD/PhD Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lynn A Raymond
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
103
|
Puigdellívol M, Saavedra A, Pérez-Navarro E. Cognitive dysfunction in Huntington's disease: mechanisms and therapeutic strategies beyond BDNF. Brain Pathol 2018; 26:752-771. [PMID: 27529673 DOI: 10.1111/bpa.12432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/08/2016] [Indexed: 12/15/2022] Open
Abstract
One of the main focuses in Huntington's disease (HD) research, as well as in most neurodegenerative diseases, is the development of new therapeutic strategies, as currently there is no treatment to delay or prevent the progression of the disease. Neuronal dysfunction and neuronal death in HD are caused by a combination of interrelated pathogenic processes that lead to motor, cognitive and psychiatric symptoms. Understanding how mutant huntingtin impacts on a plethora of cellular functions could help to identify new molecular targets. Although HD has been classically classified as a neurodegenerative disease affecting voluntary movement, lately cognitive dysfunction is receiving increased attention as it is very invalidating for patients. Thus, an ambitious goal in HD research is to find altered molecular mechanisms that contribute to cognitive decline. In this review, we have focused on those findings related to corticostriatal and hippocampal cognitive dysfunction in HD, as well as on the underlying molecular mechanisms, which constitute potential therapeutic targets. These include alterations in synaptic plasticity, transcriptional machinery and neurotrophic and neurotransmitter signaling.
Collapse
Affiliation(s)
- Mar Puigdellívol
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Ana Saavedra
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Institut de Neurociències, Universitat de Barcelona, Catalonia, Spain
| | - Esther Pérez-Navarro
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Institut de Neurociències, Universitat de Barcelona, Catalonia, Spain
| |
Collapse
|
104
|
Virlogeux A, Moutaux E, Christaller W, Genoux A, Bruyère J, Fino E, Charlot B, Cazorla M, Saudou F. Reconstituting Corticostriatal Network on-a-Chip Reveals the Contribution of the Presynaptic Compartment to Huntington’s Disease. Cell Rep 2018; 22:110-122. [DOI: 10.1016/j.celrep.2017.12.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/01/2017] [Accepted: 12/01/2017] [Indexed: 10/18/2022] Open
|
105
|
Ledda F, Paratcha G. Mechanisms regulating dendritic arbor patterning. Cell Mol Life Sci 2017; 74:4511-4537. [PMID: 28735442 PMCID: PMC11107629 DOI: 10.1007/s00018-017-2588-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 06/14/2017] [Accepted: 07/06/2017] [Indexed: 12/17/2022]
Abstract
The nervous system is populated by diverse types of neurons, each of which has dendritic trees with strikingly different morphologies. These neuron-specific morphologies determine how dendritic trees integrate thousands of synaptic inputs to generate different firing properties. To ensure proper neuronal function and connectivity, it is necessary that dendrite patterns are precisely controlled and coordinated with synaptic activity. Here, we summarize the molecular and cellular mechanisms that regulate the formation of cell type-specific dendrite patterns during development. We focus on different aspects of vertebrate dendrite patterning that are particularly important in determining the neuronal function; such as the shape, branching, orientation and size of the arbors as well as the development of dendritic spine protrusions that receive excitatory inputs and compartmentalize postsynaptic responses. Additionally, we briefly comment on the implications of aberrant dendritic morphology for nervous system disease.
Collapse
Affiliation(s)
- Fernanda Ledda
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Paraguay 2155, 3rd Floor, CABA, 1121, Buenos Aires, Argentina
| | - Gustavo Paratcha
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Paraguay 2155, 3rd Floor, CABA, 1121, Buenos Aires, Argentina.
| |
Collapse
|
106
|
Endocannabinoid-Specific Impairment in Synaptic Plasticity in Striatum of Huntington's Disease Mouse Model. J Neurosci 2017; 38:544-554. [PMID: 29192125 DOI: 10.1523/jneurosci.1739-17.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/27/2017] [Accepted: 11/12/2017] [Indexed: 01/12/2023] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease affecting predominantly striatum and cortex that results in motor and cognitive disorders. Before a motor phenotype, animal models of HD show aberrant cortical-striatal glutamate signaling. Here, we tested synaptic plasticity of cortical excitatory synapses onto striatal spiny projection neurons (SPNs) early in the YAC128 mouse model of HD. High-frequency stimulation-induced long-term depression, mediated by the endocannabinoid anandamide and cannabinoid receptor 1 (CB1), was significantly attenuated in male and female YAC128 SPNs. Indirect pathway SPNs, which are more vulnerable in HD, were most affected. Our experiments show metabotropic glutamate receptor and endocannabinoid 2-arachidonoylglycerol-dependent plasticity, as well as direct CB1 activation by agonists, was similar in YAC128 and FVB/N wild-type SPNs suggesting that presynaptic CB1 is functioning normally. These results are consistent with a specific impairment in postsynaptic anandamide synthesis in YAC128 SPN. Strikingly, although suppression of degradation of anandamide was not effective, elevating 2-arachidonoylglycerol levels restored long-term depression in YAC128 striatal neurons. Together, these results have potential implications for neuroprotection and ameliorating early cognitive and motor deficits in HD.SIGNIFICANCE STATEMENT Huntington's disease (HD) is an inherited neurodegenerative disease with no cure. Recent studies find impairment of the endocannabinoid system in animal models but the functional implication for synaptic plasticity in HD remains unclear. Sepers et al. show a selective deficit in synaptic plasticity mediated by the endocannabinoid anandamide, but not 2-arachidonoylglycerol in a mouse model of HD. The deficit is rescued by selectively elevating levels of 2-arachidonoylglycerol produced on-demand. This mechanism could be targeted in the development of future therapeutics for HD.
Collapse
|
107
|
Veldman MB, Yang XW. Molecular insights into cortico-striatal miscommunications in Huntington's disease. Curr Opin Neurobiol 2017; 48:79-89. [PMID: 29125980 DOI: 10.1016/j.conb.2017.10.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/18/2017] [Indexed: 12/12/2022]
Abstract
Huntington's disease (HD), a dominantly inherited neurodegenerative disease, is defined by its genetic cause, a CAG-repeat expansion in the HTT gene, its motor and psychiatric symptomology and primary loss of striatal medium spiny neurons (MSNs). However, the molecular mechanisms from genetic lesion to disease phenotype remain largely unclear. Mouse models of HD have been created that exhibit phenotypes partially recapitulating those in the patient, and specifically, cortico-striatal disconnectivity appears to be a shared pathogenic event shared by HD mouse models and patients. Molecular studies have begun to unveil converging molecular and cellular pathogenic mechanisms that may account for cortico-striatal miscommunication in various HD mouse models. Systems biological approaches help to illuminate synaptic molecular networks as a nexus for HD cortio-striatal pathogenesis, and may offer new candidate targets to modify the disease.
Collapse
Affiliation(s)
- Matthew B Veldman
- Center for Neurobehavioral Genetics and Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | - X William Yang
- Center for Neurobehavioral Genetics and Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States.
| |
Collapse
|
108
|
Maass PG, Glažar P, Memczak S, Dittmar G, Hollfinger I, Schreyer L, Sauer AV, Toka O, Aiuti A, Luft FC, Rajewsky N. A map of human circular RNAs in clinically relevant tissues. J Mol Med (Berl) 2017; 95:1179-1189. [PMID: 28842720 PMCID: PMC5660143 DOI: 10.1007/s00109-017-1582-9] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 08/03/2017] [Accepted: 08/18/2017] [Indexed: 01/09/2023]
Abstract
Abstract Cellular circular RNAs (circRNAs) are generated by head-to-tail splicing and are present in all multicellular organisms studied so far. Recently, circRNAs have emerged as a large class of RNA which can function as post-transcriptional regulators. It has also been shown that many circRNAs are tissue- and stage-specifically expressed. Moreover, the unusual stability and expression specificity make circRNAs important candidates for clinical biomarker research. Here, we present a circRNA expression resource of 20 human tissues highly relevant to disease-related research: vascular smooth muscle cells (VSMCs), human umbilical vein cells (HUVECs), artery endothelial cells (HUAECs), atrium, vena cava, neutrophils, platelets, cerebral cortex, placenta, and samples from mesenchymal stem cell differentiation. In eight different samples from a single donor, we found highly tissue-specific circRNA expression. Circular-to-linear RNA ratios revealed that many circRNAs were expressed higher than their linear host transcripts. Among the 71 validated circRNAs, we noticed potential biomarkers. In adenosine deaminase-deficient, severe combined immunodeficiency (ADA-SCID) patients and in Wiskott-Aldrich-Syndrome (WAS) patients’ samples, we found evidence for differential circRNA expression of genes that are involved in the molecular pathogenesis of both phenotypes. Our findings underscore the need to assess circRNAs in mechanisms of human disease. Key messages circRNA resource catalog of 20 clinically relevant tissues. circRNA expression is highly tissue-specific. circRNA transcripts are often more abundant than their linear host RNAs. circRNAs can be differentially expressed in disease-associated genes.
Electronic supplementary material The online version of this article (10.1007/s00109-017-1582-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Philipp G Maass
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Lindenberger Weg 80, 13125, Berlin, Germany. .,Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany. .,Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA, 02138, USA.
| | - Petar Glažar
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Sebastian Memczak
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Lindenberger Weg 80, 13125, Berlin, Germany.,Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Gunnar Dittmar
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Irene Hollfinger
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Lindenberger Weg 80, 13125, Berlin, Germany.,Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Luisa Schreyer
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Aisha V Sauer
- Scientific Institute HS Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), 20132, Milan, Italy
| | - Okan Toka
- Department of Pediatric Cardiology, Children's Hospital, Friedrich-Alexander University Erlangen, Loschge Strasse 15, 91054, Erlangen, Germany.,The German Registry for Congenital Heart Defects, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Alessandro Aiuti
- Scientific Institute HS Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), 20132, Milan, Italy.,Vita Salute San Raffaele University, Milan, Italy
| | - Friedrich C Luft
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Lindenberger Weg 80, 13125, Berlin, Germany.,Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37235, USA
| | - Nikolaus Rajewsky
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.
| |
Collapse
|
109
|
Zhai S, Tanimura A, Graves SM, Shen W, Surmeier DJ. Striatal synapses, circuits, and Parkinson's disease. Curr Opin Neurobiol 2017; 48:9-16. [PMID: 28843800 DOI: 10.1016/j.conb.2017.08.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/03/2017] [Indexed: 11/30/2022]
Abstract
The striatum is a hub in the basal ganglia circuitry controlling goal directed actions and habits. The loss of its dopaminergic (DAergic) innervation in Parkinson's disease (PD) disrupts the ability of the two principal striatal projection systems to respond appropriately to cortical and thalamic signals, resulting in the hypokinetic features of the disease. New tools to study brain circuitry have led to significant advances in our understanding of striatal circuits and how they adapt in PD models. This short review summarizes some of these recent studies and the gaps that remain to be filled.
Collapse
Affiliation(s)
- Shenyu Zhai
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Asami Tanimura
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Steven M Graves
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Weixing Shen
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
110
|
Abstract
The transgenic mouse model R6/2 exhibits Huntington's disease (HD)-like deficits and basic pathophysiological similarities. We also used the pheochromocytoma-12 (PC12)-cell-line-model to investigate the effect of laquinimod on metabolic activity. Laquinimod is an orally administered immunomodulatory substance currently under development for the treatment of multiple sclerosis (MS) and HD. As an essential effect, increased levels of BDNF were observed. Therefore, we investigated the therapeutic efficacy of laquinimod in the R6/2 model, focusing on its neuroprotective capacity. Weight course and survival were not influenced by laquinimod. Neither were any metabolic effects seen in an inducible PC12-cell-line model of HD. As a positive effect, motor functions of R6/2 mice at the age of 12 weeks significantly improved. Preservation of morphologically intact neurons was found after treatment in the striatum, as revealed by NeuN, DARPP-32, and ubiquitin. Biochemical analysis showed a significant increase in the brain-derived neurotrophic factor (BDNF) level in striatal but not in cortical neurons. The number of mutant huntingtin (mhtt) and inducible nitric oxide synthase (iNOS) positive cells was reduced in both the striatum and motor cortex following treatment. These findings suggest that laquinimod could provide a mild effect on motor function and striatal histopathology, but not on survival. Besides influences on the immune system, influence on BDNF-dependent pathways in HD are discussed.
Collapse
|
111
|
Jimenez-Sanchez M, Licitra F, Underwood BR, Rubinsztein DC. Huntington's Disease: Mechanisms of Pathogenesis and Therapeutic Strategies. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024240. [PMID: 27940602 DOI: 10.1101/cshperspect.a024240] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Huntington's disease is a late-onset neurodegenerative disease caused by a CAG trinucleotide repeat in the gene encoding the huntingtin protein. Despite its well-defined genetic origin, the molecular and cellular mechanisms underlying the disease are unclear and complex. Here, we review some of the currently known functions of the wild-type huntingtin protein and discuss the deleterious effects that arise from the expansion of the CAG repeats, which are translated into an abnormally long polyglutamine tract. Finally, we outline some of the therapeutic strategies that are currently being pursued to slow down the disease.
Collapse
Affiliation(s)
- Maria Jimenez-Sanchez
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 0XY, United Kingdom
| | - Floriana Licitra
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 0XY, United Kingdom
| | - Benjamin R Underwood
- Department of Old Age Psychiatry, Beechcroft, Fulbourn Hospital, Cambridge CB21 5EF, United Kingdom
| | - David C Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
112
|
Khakh BS, Beaumont V, Cachope R, Munoz-Sanjuan I, Goldman SA, Grantyn R. Unravelling and Exploiting Astrocyte Dysfunction in Huntington's Disease. Trends Neurosci 2017; 40:422-437. [PMID: 28578789 PMCID: PMC5706770 DOI: 10.1016/j.tins.2017.05.002] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/24/2017] [Accepted: 05/01/2017] [Indexed: 01/02/2023]
Abstract
Astrocytes are abundant within mature neural circuits and are involved in brain disorders. Here, we summarize our current understanding of astrocytes and Huntington's disease (HD), with a focus on correlative and causative dysfunctions of ion homeostasis, calcium signaling, and neurotransmitter clearance, as well as on the use of transplanted astrocytes to produce therapeutic benefit in mouse models of HD. Overall, the data suggest that astrocyte dysfunction is an important contributor to the onset and progression of some HD symptoms in mice. Additional exploration of astrocytes in HD mouse models and humans is needed and may provide new therapeutic opportunities to explore in conjunction with neuronal rescue and repair strategies.
Collapse
Affiliation(s)
- Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA; Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA.
| | - Vahri Beaumont
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, CA 90045, USA
| | - Roger Cachope
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, CA 90045, USA
| | | | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14642, USA; Center for Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Rosemarie Grantyn
- Exzellenzcluster NeuroCure & Abt. Experimentelle Neurologie, Charité - Universitätsmedizin Berlin, Robert-Koch-Platz 4, D-10115 Berlin, Germany
| |
Collapse
|
113
|
Npas1+ Pallidal Neurons Target Striatal Projection Neurons. J Neurosci 2017; 36:5472-88. [PMID: 27194328 DOI: 10.1523/jneurosci.1720-15.2016] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 04/03/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Compelling evidence demonstrates that the external globus pallidus (GPe) plays a key role in processing sensorimotor information. An anatomical projection from the GPe to the dorsal striatum has been described for decades. However, the cellular target and functional impact of this projection remain unknown. Using cell-specific transgenic mice, modern monosynaptic tracing techniques, and optogenetics-based mapping, we discovered that GPe neurons provide inhibitory inputs to direct and indirect pathway striatal projection neurons (SPNs). Our results indicate that the GPe input to SPNs arises primarily from Npas1-expressing neurons and is strengthened in a chronic Parkinson's disease (PD) model. Alterations of the GPe-SPN input in a PD model argue for the critical position of this connection in regulating basal ganglia motor output and PD symptomatology. Finally, chemogenetic activation of Npas1-expressing GPe neurons suppresses motor output, arguing that strengthening of the GPe-SPN connection is maladaptive and may underlie the hypokinetic symptoms in PD. SIGNIFICANCE STATEMENT An anatomical projection from the pallidum to the striatum has been described for decades, but little is known about its connectivity pattern. The authors dissect the presynaptic and postsynaptic neurons involved in this projection, and show its cell-specific remodeling and strengthening in parkinsonian mice. Chemogenetic activation of Npas1(+) pallidal neurons that give rise to the principal pallidostriatal projection increases the time that the mice spend motionless. This argues that maladaptive strengthening of this connection underlies the paucity of volitional movements, which is a hallmark of Parkinson's disease.
Collapse
|
114
|
Sebastianutto I, Cenci MA, Fieblinger T. Alterations of striatal indirect pathway neurons precede motor deficits in two mouse models of Huntington's disease. Neurobiol Dis 2017; 105:117-131. [PMID: 28578004 DOI: 10.1016/j.nbd.2017.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/26/2017] [Accepted: 05/29/2017] [Indexed: 11/15/2022] Open
Abstract
Striatal neurons forming the indirect pathway (iSPNs) are particularly vulnerable in Huntington's disease (HD). In this study we set out to investigate morphological and physiological alterations of iSPNs in two mouse models of HD with relatively slow disease progression (long CAG repeat R6/2 and zQ175-KI). Both were crossed with a transgenic mouse line expressing eGFP in iSPNs. Using the open-field and rotarod tests, we first defined two time points in relation to the occurrence of motor deficits in each model. Then, we investigated electrophysiological and morphological properties of iSPNs at both ages. Both HD models exhibited increased iSPN excitability already before the onset of motor deficits, associated with a reduced number of primary dendrites and decreased function of Kir- and voltage-gated potassium channels. Alterations that specifically occurred at symptomatic ages included increased calcium release by back-propagating action potentials in proximal dendrites, due to enhanced engagement of intracellular calcium stores. Moreover, motorically impaired mice of both HD models showed a reduction in iSPN spine density and progressive formation of huntingtin (Htt) aggregates in the striatum. Our study therefore reports iSPN-specific alterations relative to the development of a motor phenotype in two different mouse models of HD. While some alterations occur early and are partly non-progressive, others potentially provide a pathophysiological marker of an overt disease state.
Collapse
Affiliation(s)
- Irene Sebastianutto
- Basal Ganglia Pathophysiology Unit, Dept. of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Maria Angela Cenci
- Basal Ganglia Pathophysiology Unit, Dept. of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Tim Fieblinger
- Basal Ganglia Pathophysiology Unit, Dept. of Experimental Medical Science, Lund University, 22184 Lund, Sweden.
| |
Collapse
|
115
|
Ma Q, Yang J, Milner TA, Vonsattel JPG, Palko ME, Tessarollo L, Hempstead BL. SorCS2-mediated NR2A trafficking regulates motor deficits in Huntington's disease. JCI Insight 2017; 2:88995. [PMID: 28469074 PMCID: PMC5414556 DOI: 10.1172/jci.insight.88995] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 03/30/2017] [Indexed: 12/14/2022] Open
Abstract
Motor dysfunction is a prominent and disabling feature of Huntington's disease (HD), but the molecular mechanisms that dictate its onset and progression are unknown. The N-methyl-D-aspartate receptor 2A (NR2A) subunit regulates motor skill development and synaptic plasticity in medium spiny neurons (MSNs) of the striatum, cells that are most severely impacted by HD. Here, we document reduced NR2A receptor subunits on the dendritic membranes and at the synapses of MSNs in zQ175 mice that model HD. We identify that SorCS2, a vacuolar protein sorting 10 protein-domain (VPS10P-domain) receptor, interacts with VPS35, a core component of retromer, thereby regulating surface trafficking of NR2A in MSNs. In the zQ175 striatum, SorCS2 is markedly decreased in an age- and allele-dependent manner. Notably, SorCS2 selectively interacts with mutant huntingtin (mtHTT), but not WT huntingtin (wtHTT), and is mislocalized to perinuclear clusters in striatal neurons of human HD patients and zQ175 mice. Genetic deficiency of SorCS2 accelerates the onset and exacerbates the motor coordination deficit of zQ175 mice. Together, our results identify SorCS2 as an interacting protein of mtHTT and demonstrate that impaired SorCS2-mediated NR2A subunit trafficking to dendritic surface of MSNs is, to our knowledge, a novel mechanism contributing to motor coordination deficits of HD.
Collapse
Affiliation(s)
- Qian Ma
- Graduate Program of Neuroscience
| | - Jianmin Yang
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York, USA
| | - Jean-Paul G. Vonsattel
- The New York Brain Bank/Taub Institute Columbia University, Children’s Hospital, New York, New York, USA
| | - Mary Ellen Palko
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, Maryland, USA
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, Maryland, USA
| | - Barbara L. Hempstead
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
116
|
Abstract
In the last few years, exciting properties have emerged regarding the activation, signaling, mechanisms of action, and therapeutic targeting of the two types of neurotrophin receptors: the p75NTR with its intracellular and extracellular peptides, the Trks, their precursors and their complexes. This review summarizes these new developments, with particular focus on neurodegenerative diseases. Based on the evolving knowledge, innovative concepts have been formulated regarding the pathogenesis of these diseases, especially the Alzheimer's and two other, the Parkinson's and Huntington's diseases. The medical progresses include original procedures of diagnosis, started from studies in mice and now investigated for human application, based on innovative classes of receptor agonists and blockers. In parallel, comprehensive studies have been and are being carried out for the development of drugs. The relevance of these studies is based on the limitations of the therapies employed until recently, especially for the treatment of Alzheimer's patients. Starting from well known drugs, previously employed for non-neurodegenerative diseases, the ongoing progress has lead to the development of small molecules that cross rapidly the blood-brain barrier. Among these molecules the most promising are specific blockers of the p75NTR receptor. Additional drugs, that activate Trk receptors, were shown effective against synaptic loss and memory deficits. In the near future such approaches, coordinated with treatments with monoclonal antibodies and with developments in the microRNA field, are expected to improve the therapy of neurodegenerative diseases, and may be relevant also for other human disease conditions.
Collapse
Affiliation(s)
- Jacopo Meldolesi
- Department of Neuroscience, Vita-Salute San Raffaele University and Scientific Institute San Raffaele, via Olgettina 58, 20132 Milan, Italy.
| |
Collapse
|
117
|
Tyebji S, Hannan AJ. Synaptopathic mechanisms of neurodegeneration and dementia: Insights from Huntington's disease. Prog Neurobiol 2017; 153:18-45. [PMID: 28377290 DOI: 10.1016/j.pneurobio.2017.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 03/19/2017] [Accepted: 03/30/2017] [Indexed: 12/20/2022]
Abstract
Dementia encapsulates a set of symptoms that include loss of mental abilities such as memory, problem solving or language, and reduces a person's ability to perform daily activities. Alzheimer's disease is the most common form of dementia, however dementia can also occur in other neurological disorders such as Huntington's disease (HD). Many studies have demonstrated that loss of neuronal cell function manifests pre-symptomatically and thus is a relevant therapeutic target to alleviate symptoms. Synaptopathy, the physiological dysfunction of synapses, is now being approached as the target for many neurological and psychiatric disorders, including HD. HD is an autosomal dominant and progressive degenerative disorder, with clinical manifestations that encompass movement, cognition, mood and behaviour. HD is one of the most common tandem repeat disorders and is caused by a trinucleotide (CAG) repeat expansion, encoding an extended polyglutamine tract in the huntingtin protein. Animal models as well as human studies have provided detailed, although not exhaustive, evidence of synaptic dysfunction in HD. In this review, we discuss the neuropathology of HD and how the changes in synaptic signalling in the diseased brain lead to its symptoms, which include dementia. Here, we review and discuss the mechanisms by which the 'molecular orchestras' and their 'synaptic symphonies' are disrupted in neurodegeneration and dementia, focusing on HD as a model disease. We also explore the therapeutic strategies currently in pre-clinical and clinical testing that are targeted towards improving synaptic function in HD.
Collapse
Affiliation(s)
- Shiraz Tyebji
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
118
|
Sasi M, Vignoli B, Canossa M, Blum R. Neurobiology of local and intercellular BDNF signaling. Pflugers Arch 2017; 469:593-610. [PMID: 28280960 PMCID: PMC5438432 DOI: 10.1007/s00424-017-1964-4] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 01/07/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of secreted proteins. Signaling cascades induced by BDNF and its receptor, the receptor tyrosine kinase TrkB, link neuronal growth and differentiation with synaptic plasticity. For this reason, interference with BDNF signaling has emerged as a promising strategy for potential treatments in psychiatric and neurological disorders. In many brain circuits, synaptically released BDNF is essential for structural and functional long-term potentiation, two prototypical cellular models of learning and memory formation. Recent studies have revealed an unexpected complexity in the synaptic communication of mature BDNF and its precursor proBDNF, not only between local pre- and postsynaptic neuronal targets but also with participation of glial cells. Here, we consider recent findings on local actions of the BDNF family of ligands at the synapse and discuss converging lines of evidence which emerge from per se conflicting results.
Collapse
Affiliation(s)
- Manju Sasi
- Institute of Clinical Neurobiology, University Hospital, University of Würzburg, 97078, Würzburg, Germany
| | - Beatrice Vignoli
- Centre for Integrative Biology (CIBIO), University of Trento, 38123, Povo, TN, Italy
| | - Marco Canossa
- Centre for Integrative Biology (CIBIO), University of Trento, 38123, Povo, TN, Italy.,European Brain Research Institute (EBRI) "Rita Levi-Montalcini", 00143, Rome, Italy
| | - Robert Blum
- Institute of Clinical Neurobiology, University Hospital, University of Würzburg, 97078, Würzburg, Germany.
| |
Collapse
|
119
|
Sebel LE, Graves SM, Chan CS, Surmeier DJ. Haloperidol Selectively Remodels Striatal Indirect Pathway Circuits. Neuropsychopharmacology 2017; 42:963-973. [PMID: 27577602 PMCID: PMC5312058 DOI: 10.1038/npp.2016.173] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 01/20/2023]
Abstract
Typical antipsychotic drugs are widely thought to alleviate the positive symptoms of schizophrenia by antagonizing dopamine D2 receptors expressed by striatal spiny projection neurons (SPNs). What is less clear is why antipsychotics have a therapeutic latency of weeks. Using a combination of physiological and anatomical approaches in ex vivo brain slices from transgenic mice, it was found that 2 weeks of haloperidol treatment induced both intrinsic and synaptic adaptations specifically within indirect pathway SPNs (iSPNs). Perphenazine treatment had similar effects. Some of these adaptations were homeostatic, including a drop in intrinsic excitability and pruning of excitatory corticostriatal glutamatergic synapses. However, haloperidol treatment also led to strengthening of a subset of excitatory corticostriatal synapses. This slow remodeling of corticostriatal iSPN circuitry is likely to play a role in mediating the delayed therapeutic action of neuroleptics.
Collapse
Affiliation(s)
- Luke E Sebel
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Steven M Graves
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - C Savio Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA,Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E Superior, Chicago, IL 60611, USA, Tel: +1 312 503 4904, Fax: +1 312 503 5101, E-mail:
| |
Collapse
|
120
|
Tejeda GS, Díaz-Guerra M. Integral Characterization of Defective BDNF/TrkB Signalling in Neurological and Psychiatric Disorders Leads the Way to New Therapies. Int J Mol Sci 2017; 18:ijms18020268. [PMID: 28134845 PMCID: PMC5343804 DOI: 10.3390/ijms18020268] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/15/2017] [Accepted: 01/23/2017] [Indexed: 11/23/2022] Open
Abstract
Enhancement of brain-derived neurotrophic factor (BDNF) signalling has great potential in therapy for neurological and psychiatric disorders. This neurotrophin not only attenuates cell death but also promotes neuronal plasticity and function. However, an important challenge to this approach is the persistence of aberrant neurotrophic signalling due to a defective function of the BDNF high-affinity receptor, tropomyosin-related kinase B (TrkB), or downstream effectors. Such changes have been already described in several disorders, but their importance as pathological mechanisms has been frequently underestimated. This review highlights the relevance of an integrative characterization of aberrant BDNF/TrkB pathways for the rational design of therapies that by combining BDNF and TrkB targets could efficiently promote neurotrophic signalling.
Collapse
Affiliation(s)
- Gonzalo S Tejeda
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain.
| | - Margarita Díaz-Guerra
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain.
| |
Collapse
|
121
|
Ross CA, Kronenbuerger M, Duan W, Margolis RL. Mechanisms underlying neurodegeneration in Huntington disease: applications to novel disease-modifying therapies. HANDBOOK OF CLINICAL NEUROLOGY 2017; 144:15-28. [PMID: 28947113 DOI: 10.1016/b978-0-12-801893-4.00002-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The CAG repeat expansion mutation that causes Huntington Disease (HD) was discovered more than 20 years ago, yet no treatment has yet been developed to stop the relentless course of the disease. Nonetheless, substantial progress has been made in understanding HD pathogenesis. We review insights that have been gleaned from HD genetics, metabolism, and pathology; HD mouse and cell models; the structure, function and post-translational modification of normal and mutant huntingtin (htt) protein; gene expression profiles in HD cells and tissue; the neurotoxicy of mutant htt RNA; and the expression of an antisense transcript from the HD locus. We conclude that rationale therapeutics for HD is within sight, though many questions remain to be answered.
Collapse
Affiliation(s)
- Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Departments of Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Martin Kronenbuerger
- Division of Movement Disorders, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Translational Neurobiology Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Russell L Margolis
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Translational Neurobiology Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Laboratory of Genetic Neurobiology and Johns Hopkins Schizophrenia Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
122
|
Current Understanding of PDE10A in the Modulation of Basal Ganglia Circuitry. ADVANCES IN NEUROBIOLOGY 2017; 17:15-43. [DOI: 10.1007/978-3-319-58811-7_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
123
|
Tanimura A, Lim SAO, Aceves Buendia JDJ, Goldberg JA, Surmeier DJ. Cholinergic Interneurons Amplify Corticostriatal Synaptic Responses in the Q175 Model of Huntington's Disease. Front Syst Neurosci 2016; 10:102. [PMID: 28018188 PMCID: PMC5159611 DOI: 10.3389/fnsys.2016.00102] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/02/2016] [Indexed: 01/18/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder characterized by deficits in movement control that are widely viewed as stemming from pathophysiological changes in the striatum. Giant, aspiny cholinergic interneurons (ChIs) are key elements in the striatal circuitry controlling movement, but whether their physiological properties are intact in the HD brain is unclear. To address this issue, the synaptic properties of ChIs were examined using optogenetic approaches in the Q175 mouse model of HD. In ex vivo brain slices, synaptic facilitation at thalamostriatal synapses onto ChIs was reduced in Q175 mice. The alteration in thalamostriatal transmission was paralleled by an increased response to optogenetic stimulation of cortical axons, enabling these inputs to more readily induce burst-pause patterns of activity in ChIs. This adaptation was dependent upon amplification of cortically evoked responses by a post-synaptic upregulation of voltage-dependent Na+ channels. This upregulation also led to an increased ability of somatic spikes to invade ChI dendrites. However, there was not an alteration in the basal pacemaking rate of ChIs, possibly due to increased availability of Kv4 channels. Thus, there is a functional "re-wiring" of the striatal networks in Q175 mice, which results in greater cortical control of phasic ChI activity, which is widely thought to shape the impact of salient stimuli on striatal action selection.
Collapse
Affiliation(s)
- Asami Tanimura
- Department of Physiology, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| | - Sean Austin O Lim
- Department of Physiology, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| | - Jose de Jesus Aceves Buendia
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Joshua A Goldberg
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem Jerusalem, Israel
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| |
Collapse
|
124
|
Plotkin JL, Wu C. Neurotrophin biology at NGF 2016: From fundamental science to clinical applications. Int J Dev Neurosci 2016; 56:27-34. [PMID: 27888062 DOI: 10.1016/j.ijdevneu.2016.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022] Open
Affiliation(s)
- Joshua L Plotkin
- Department of Neurobiology & Behavior, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA.
| | - Chengbiao Wu
- Department of Neuroscience, University of California San Diego School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
125
|
Simmons DA, Belichenko NP, Ford EC, Semaan S, Monbureau M, Aiyaswamy S, Holman CM, Condon C, Shamloo M, Massa SM, Longo FM. A small molecule p75NTR ligand normalizes signalling and reduces Huntington's disease phenotypes in R6/2 and BACHD mice. Hum Mol Genet 2016; 25:4920-4938. [PMID: 28171570 PMCID: PMC5418739 DOI: 10.1093/hmg/ddw316] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/18/2016] [Accepted: 09/12/2016] [Indexed: 01/03/2023] Open
Abstract
Decreases in the ratio of neurotrophic versus neurodegenerative signalling play a critical role in Huntington’s disease (HD) pathogenesis and recent evidence suggests that the p75 neurotrophin receptor (NTR) contributes significantly to disease progression. p75NTR signalling intermediates substantially overlap with those promoting neuronal survival and synapse integrity and with those affected by the mutant huntingtin (muHtt) protein. MuHtt increases p75NTR-associated deleterious signalling and decreases survival signalling suggesting that p75NTR could be a valuable therapeutic target. This hypothesis was investigated by examining the effects of an orally bioavailable, small molecule p75NTR ligand, LM11A-31, on HD-related neuropathology in HD mouse models (R6/2, BACHD). LM11A-31 restored striatal AKT and other pro-survival signalling while inhibiting c-Jun kinase (JNK) and other degenerative signalling. Normalizing p75NTR signalling with LM11A-31 was accompanied by reduced Htt aggregates and striatal cholinergic interneuron degeneration as well as extended survival in R6/2 mice. The p75NTR ligand also decreased inflammation, increased striatal and hippocampal dendritic spine density, and improved motor performance and cognition in R6/2 and BACHD mice. These results support small molecule modulation of p75NTR as an effective HD therapeutic strategy. LM11A-31 has successfully completed Phase I safety and pharmacokinetic clinical trials and is therefore a viable candidate for clinical studies in HD.
Collapse
Affiliation(s)
- Danielle A. Simmons
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine
| | - Nadia P. Belichenko
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine
| | - Ellen C. Ford
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine
| | - Sarah Semaan
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine
| | - Marie Monbureau
- Behavioral and Functional Neuroscience Laboratory, Institute for Neuro-Innovation and Translational Neurosciences
| | - Sruti Aiyaswamy
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine
| | - Cameron M. Holman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine
| | - Christina Condon
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine
| | - Mehrdad Shamloo
- Behavioral and Functional Neuroscience Laboratory, Institute for Neuro-Innovation and Translational Neurosciences
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen M. Massa
- Department of Neurology and Laboratory for Computational Neurochemistry and Drug Discovery, Department of Veterans Affairs Medical Center and Department of Neurology, University of California–San Francisco, San Francisco, CA, USA
| | - Frank M. Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine
| |
Collapse
|
126
|
Zimmermann T, Remmers F, Lutz B, Leschik J. ESC-Derived BDNF-Overexpressing Neural Progenitors Differentially Promote Recovery in Huntington's Disease Models by Enhanced Striatal Differentiation. Stem Cell Reports 2016; 7:693-706. [PMID: 27693427 PMCID: PMC5063570 DOI: 10.1016/j.stemcr.2016.08.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022] Open
Abstract
Huntington's disease (HD) is characterized by fatal motoric failures induced by loss of striatal medium spiny neurons. Neuronal cell death has been linked to impaired expression and axonal transport of the neurotrophin BDNF (brain-derived neurotrophic factor). By transplanting embryonic stem cell-derived neural progenitors overexpressing BDNF, we combined cell replacement and BDNF supply as a potential HD therapy approach. Transplantation of purified neural progenitors was analyzed in a quinolinic acid (QA) chemical and two genetic HD mouse models (R6/2 and N171-82Q) on the basis of distinct behavioral parameters, including CatWalk gait analysis. Explicit rescue of motor function by BDNF neural progenitors was found in QA-lesioned mice, whereas genetic mouse models displayed only minor improvements. Tumor formation was absent, and regeneration was attributed to enhanced neuronal and striatal differentiation. In addition, adult neurogenesis was preserved in a BDNF-dependent manner. Our findings provide significant insight for establishing therapeutic strategies for HD to ameliorate neurodegenerative symptoms.
Collapse
Affiliation(s)
- Tina Zimmermann
- Institute of Physiological Chemistry, University Medical Center, Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Floortje Remmers
- Institute of Physiological Chemistry, University Medical Center, Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center, Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Julia Leschik
- Institute of Physiological Chemistry, University Medical Center, Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
127
|
Expression of brain-derived neurotrophic factor in astrocytes - Beneficial effects of glatiramer acetate in the R6/2 and YAC128 mouse models of Huntington's disease. Exp Neurol 2016; 285:12-23. [PMID: 27587303 DOI: 10.1016/j.expneurol.2016.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 07/31/2016] [Accepted: 08/21/2016] [Indexed: 12/18/2022]
Abstract
Glatiramer acetate (GA) is a FDA-approved drug which is licensed for the treatment of relapsing-remitting multiple sclerosis and which may exert neuroprotective effects via brain-derived neurotrophic factor (BDNF). In this study, we investigate effects of GA on BDNF expression especially in astrocytes in vitro and in vivo in brains of R6/2 and YAC128 transgenic mouse models of Huntington's disease (HD) where a pathogenic role of astroglial cells has recently been shown. We show that GA increases the expression of functionally active BDNF in astrocyte culture and in astrocytes of GA treated HD mice. In the brains of these mice, GA decreases neurodegeneration and restores BDNF levels. The beneficial effect of GA in R6/2 mice also comprises reduced weight loss and prolonged life span and, for both models, also improved motor performance. Further studies with this safe and effective drug in HD are warranted.
Collapse
|
128
|
Josephy-Hernandez S, Jmaeff S, Pirvulescu I, Aboulkassim T, Saragovi HU. Neurotrophin receptor agonists and antagonists as therapeutic agents: An evolving paradigm. Neurobiol Dis 2016; 97:139-155. [PMID: 27546056 DOI: 10.1016/j.nbd.2016.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 08/10/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders are prevalent, complex and devastating conditions, with very limited treatment options currently available. While they manifest in many forms, there are commonalities that link them together. In this review, we will focus on neurotrophins - a family of related factors involved in neuronal development and maintenance. Neurodegenerative diseases often present with a neurotrophin imbalance, in which there may be decreases in trophic signaling through Trk receptors for example, and/or increases in pro-apoptotic activity through p75. Clinical trials with neurotrophins have continuously failed due to their poor pharmacological properties as well as the unavoidable activation of p75. Thus, there is a need for drugs without such setbacks. Small molecule neurotrophin mimetics are favorable options since they can selectively activate Trks or inactivate p75. In this review, we will initially present a brief outline of how these molecules are synthesized and their mechanisms of action; followed by an update in the current state of neurotrophins and small molecules in major neurodegenerative diseases. Although there has been significant progress in the development of potential therapeutics, more studies are needed to establish clear mechanisms of action and target specificity in order to transition from animal models to the assessment of safety and use in humans.
Collapse
Affiliation(s)
- Sylvia Josephy-Hernandez
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Sean Jmaeff
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Iulia Pirvulescu
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Tahar Aboulkassim
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - H Uri Saragovi
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
129
|
Ledda F, Paratcha G. Assembly of Neuronal Connectivity by Neurotrophic Factors and Leucine-Rich Repeat Proteins. Front Cell Neurosci 2016; 10:199. [PMID: 27555809 PMCID: PMC4977320 DOI: 10.3389/fncel.2016.00199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/29/2016] [Indexed: 11/13/2022] Open
Abstract
Proper function of the nervous system critically relies on sophisticated neuronal networks interconnected in a highly specific pattern. The architecture of these connections arises from sequential developmental steps such as axonal growth and guidance, dendrite development, target determination, synapse formation and plasticity. Leucine-rich repeat (LRR) transmembrane proteins have been involved in cell-type specific signaling pathways that underlie these developmental processes. The members of this superfamily of proteins execute their functions acting as trans-synaptic cell adhesion molecules involved in target specificity and synapse formation or working in cis as cell-intrinsic modulators of neurotrophic factor receptor trafficking and signaling. In this review, we will focus on novel physiological mechanisms through which LRR proteins regulate neurotrophic factor receptor signaling, highlighting the importance of these modulatory events for proper axonal extension and guidance, tissue innervation and dendrite morphogenesis. Additionally, we discuss few examples linking this set of LRR proteins to neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Fernanda Ledda
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine-University of Buenos Aires (UBA) Buenos Aires, Argentina
| | - Gustavo Paratcha
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine-University of Buenos Aires (UBA) Buenos Aires, Argentina
| |
Collapse
|
130
|
Raymond LA. Striatal synaptic dysfunction and altered calcium regulation in Huntington disease. Biochem Biophys Res Commun 2016; 483:1051-1062. [PMID: 27423394 DOI: 10.1016/j.bbrc.2016.07.058] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/11/2016] [Indexed: 11/30/2022]
Abstract
Synaptic dysfunction and altered calcium homeostasis in the brain is common to many neurodegenerative disorders. Among these, Huntington disease (HD), which is inherited in an autosomal dominant fashion, can serve as a model for investigating these mechanisms. HD generally manifests in middle age as a disorder of movement, mood and cognition. An expanded polymorphic CAG repeat in the HTT gene results in progressive neurodegeneration that impacts striatal spiny projection neurons (SPNs) earliest and most severely. Striatal SPNs receive massive glutamatergic input from cortex and thalamus, and these excitatory synapses are a focus for early changes that can trigger aberrant downstream signaling to disrupt synaptic plasticity and lead to later degeneration. Mitochondrial dysfunction and altered intracellular calcium-induced calcium release and sequestration mechanisms add to the impairments in circuit function that may underlie prodromal cognitive and subtle motor deficits. These mechanisms and implications for developing disease-modifying therapy will be reviewed here.
Collapse
Affiliation(s)
- Lynn A Raymond
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 4834-2255 Wesbrook Mall, Vancouver, BC, Canada, V6T 1Z3.
| |
Collapse
|
131
|
Schroll H, Hamker FH. Basal Ganglia dysfunctions in movement disorders: What can be learned from computational simulations. Mov Disord 2016; 31:1591-1601. [PMID: 27393040 DOI: 10.1002/mds.26719] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/23/2016] [Accepted: 06/13/2016] [Indexed: 12/21/2022] Open
Abstract
The basal ganglia are a complex neuronal system that is impaired in several movement disorders, including Parkinson's disease, Huntington's disease, and dystonia. Empirical studies have provided valuable insights into the brain dysfunctions underlying these disorders. The systems-level perspective, however, of how patients' motor, cognitive, and emotional impairments originate from known brain dysfunctions has been a challenge to empirical investigations. These causal relations have been analyzed via computational modeling, a method that describes the simulation of interacting brain processes in a computer system. In this article, we review computational insights into the brain dysfunctions underlying Parkinson's disease, Huntington's disease, and dystonia, with particular foci on dysfunctions of the dopamine system, basal ganglia pathways, and neuronal oscillations. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Henning Schroll
- Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Computer Science, Chemnitz University of Technology, Chemnitz, Germany
| | - Fred H Hamker
- Computer Science, Chemnitz University of Technology, Chemnitz, Germany
| |
Collapse
|
132
|
Calabresi P, Pisani A, Rothwell J, Ghiglieri V, Obeso JA, Picconi B. Hyperkinetic disorders and loss of synaptic downscaling. Nat Neurosci 2016; 19:868-75. [DOI: 10.1038/nn.4306] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/18/2016] [Indexed: 12/14/2022]
|
133
|
Wehner AB, Milen AM, Albin RL, Pierchala BA. The p75 neurotrophin receptor augments survival signaling in the striatum of pre-symptomatic Q175(WT/HD) mice. Neuroscience 2016; 324:297-306. [PMID: 26947127 PMCID: PMC4849895 DOI: 10.1016/j.neuroscience.2016.02.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/26/2016] [Accepted: 02/28/2016] [Indexed: 12/19/2022]
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder characterized by a constellation of motor, cognitive, and psychiatric features. Striatal medium spiny neurons, one of the most affected populations, are dependent on brain-derived neurotrophic factor (BDNF) anterogradely transported from the cortex for proper function and survival. Recent studies suggest both receptors for BDNF, TrkB and p75 neurotrophin receptor (p75), are improperly regulated in the striata of HD patients and mouse models of HD. While BDNF-TrkB signaling almost exclusively promotes survival and metabolic function, p75 signaling is able to induce survival or apoptosis depending on the available ligand and associated co-receptor. We investigated the role of p75 in the Q175 knock-in mouse model of HD by examining the levels and activation of downstream signaling molecules, and subsequently examining Hdh(+/Q175);p75(-/-) mice to determine if p75 represents a promising therapeutic target. In Hdh(+/Q175);p75(+/+) mice, we observed enhanced survival signaling as evidenced by an increase in phosphorylation and activation of Akt and the p65 subunit of NFκB in the striatum at 5 months of age and an increase in XIAP expression compared to Hdh(+/+);p75(+/+) mice; this increase was lost in Hdh(+/Q175);p75(-/-) mice. Hdh(+/Q175);p75(-/-) mice also showed a decrease in Bcl-XL expression by immunoblotting compared to Hdh(+/Q175);p75(+/+) and Hdh(+/+);p75(+/+) littermates. Consistent with diminished survival signaling, DARPP-32 expression decreased both by immunoblotting and by immunohistochemistry in Hdh(+/Q175);p75(-/-) mice compared to Hdh(+/+);p75(+/+), Hdh(+/Q175);p75(+/+), and Hdh(+/+);p75(-/-) littermates. Additionally, striatal volume declined to a greater extent in Hdh(+/Q175);p75(-/-) when compared to Hdh(+/Q175);p75(+/+) littermates at 12 months, indicating a more aggressive onset of degeneration. These data suggest that p75 signaling plays an early role in augmenting pro-survival signaling in the striatum and that disruption of p75 signaling at a pre-symptomatic age may exacerbate pathologic changes in Hdh(+/Q175) mice.
Collapse
Affiliation(s)
- A B Wehner
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - A M Milen
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - R L Albin
- Neuroscience Graduate Program, University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - B A Pierchala
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
134
|
Selective expression of mutant huntingtin during development recapitulates characteristic features of Huntington's disease. Proc Natl Acad Sci U S A 2016; 113:5736-41. [PMID: 27140644 DOI: 10.1073/pnas.1603871113] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent studies have identified impairments in neural induction and in striatal and cortical neurogenesis in Huntington's disease (HD) knock-in mouse models and associated embryonic stem cell lines. However, the potential role of these developmental alterations for HD pathogenesis and progression is currently unknown. To address this issue, we used BACHD:CAG-Cre(ERT2) mice, which carry mutant huntingtin (mHtt) modified to harbor a floxed exon 1 containing the pathogenic polyglutamine expansion (Q97). Upon tamoxifen administration at postnatal day 21, the floxed mHtt-exon1 was removed and mHtt expression was terminated (Q97(CRE)). These conditional mice displayed similar profiles of impairments to those mice expressing mHtt throughout life: (i) striatal neurodegeneration, (ii) early vulnerability to NMDA-mediated excitotoxicity, (iii) impairments in motor coordination, (iv) temporally distinct abnormalities in striatal electrophysiological activity, and (v) altered corticostriatal functional connectivity and plasticity. These findings strongly suggest that developmental aberrations may play important roles in HD pathogenesis and progression.
Collapse
|
135
|
Real-time imaging of glutamate clearance reveals normal striatal uptake in Huntington disease mouse models. Nat Commun 2016; 7:11251. [PMID: 27052848 PMCID: PMC4829692 DOI: 10.1038/ncomms11251] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 03/07/2016] [Indexed: 12/17/2022] Open
Abstract
It has become well accepted that Huntington disease (HD) is associated with impaired glutamate uptake, resulting in a prolonged time-course of extracellular glutamate that contributes to excitotoxicity. However, the data supporting this view come largely from work in synaptosomes, which may overrepresent nerve-terminal uptake over astrocytic uptake. Here, we quantify real-time glutamate dynamics in HD mouse models by high-speed imaging of an intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) and electrophysiological recordings of synaptically activated transporter currents in astrocytes. These techniques reveal a disconnect between the results obtained in synaptosomes and those in situ. Exogenous glutamate uptake is impaired in synaptosomes, whereas real-time measures of glutamate clearance in the HD striatum are normal or even accelerated, particularly in the aggressive R6/2 model. Our results highlight the importance of quantifying glutamate dynamics under endogenous release conditions, and suggest that the widely cited uptake impairment in HD does not contribute to pathogenesis. Huntington disease (HD) has been linked via biochemical uptake assays to impaired glutamate clearance and resultant excitotoxicity. Here, utilizing a fluorescent reporter, the authors measure real-time glutamate dynamics in mouse model HD brain slices and find normal or even accelerated glutamate clearance.
Collapse
|
136
|
Nguyen KQ, Rymar VV, Sadikot AF. Impaired TrkB Signaling Underlies Reduced BDNF-Mediated Trophic Support of Striatal Neurons in the R6/2 Mouse Model of Huntington's Disease. Front Cell Neurosci 2016; 10:37. [PMID: 27013968 PMCID: PMC4783409 DOI: 10.3389/fncel.2016.00037] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 02/01/2016] [Indexed: 11/13/2022] Open
Abstract
The principal projection neurons of the striatum are critically dependent on an afferent supply of brain derived neurotrophic factor (BDNF) for neurotrophic support. These neurons express TrkB, the cognate receptor for BDNF, which activates signaling pathways associated with neuronal survival and phenotypic maintenance. Impairment of the BDNF-TrkB pathway is suspected to underlie the early dysfunction and prominent degeneration of striatal neurons in Huntington disease (HD). Some studies in HD models indicate that BDNF supply is reduced, while others suggest that TrkB signaling is impaired earlier in disease progression. It remains important to determine whether a primary defect in TrkB signaling underlies reduced neurotrophic support and the early vulnerability of striatal neurons in HD. Using the transgenic R6/2 mouse model of HD we found that prior to striatal degeneration there are early deficits in striatal protein levels of activated phospho-TrkB and the downstream-regulated protein DARPP-32. In contrast, total-TrkB and BDNF protein levels remained normal. Primary neurons cultured from R6/2 striatum exhibited reduced survival in response to exogenous BDNF applications. Moreover, BDNF activation of phospho-TrkB and downstream signal transduction was attenuated in R6/2 striatal cultures. These results suggest that neurotrophic support of striatal neurons is attenuated early in disease progression due to defects in TrkB signal transduction in the R6/2 model of HD.
Collapse
Affiliation(s)
- Khanh Q Nguyen
- Cone Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University Montreal, QC, Canada
| | - Vladimir V Rymar
- Cone Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University Montreal, QC, Canada
| | - Abbas F Sadikot
- Cone Laboratory, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University Montreal, QC, Canada
| |
Collapse
|
137
|
Shen W, Plotkin JL, Francardo V, Ko WKD, Xie Z, Li Q, Fieblinger T, Wess J, Neubig RR, Lindsley CW, Conn PJ, Greengard P, Bezard E, Cenci MA, Surmeier DJ. M4 Muscarinic Receptor Signaling Ameliorates Striatal Plasticity Deficits in Models of L-DOPA-Induced Dyskinesia. Neuron 2016; 88:762-73. [PMID: 26590347 DOI: 10.1016/j.neuron.2015.10.039] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 09/09/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
Abstract
A balanced interaction between dopaminergic and cholinergic signaling in the striatum is critical to goal-directed behavior. But how this interaction modulates corticostriatal synaptic plasticity underlying learned actions remains unclear--particularly in direct-pathway spiny projection neurons (dSPNs). Our studies show that in dSPNs, endogenous cholinergic signaling through M4 muscarinic receptors (M4Rs) promoted long-term depression of corticostriatal glutamatergic synapses, by suppressing regulator of G protein signaling type 4 (RGS4) activity, and blocked D1 dopamine receptor dependent long-term potentiation (LTP). Furthermore, in a mouse model of L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) in Parkinson's disease (PD), boosting M4R signaling with positive allosteric modulator (PAM) blocked aberrant LTP in dSPNs, enabled LTP reversal, and attenuated dyskinetic behaviors. An M4R PAM also was effective in a primate LID model. Taken together, these studies identify an important signaling pathway controlling striatal synaptic plasticity and point to a novel pharmacological strategy for alleviating LID in PD patients.
Collapse
Affiliation(s)
- Weixing Shen
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joshua L Plotkin
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Wai Kin D Ko
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; Motac Neuroscience, Manchester M13 9XX, UK
| | - Zhong Xie
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Qin Li
- Motac Neuroscience, Manchester M13 9XX, UK
| | - Tim Fieblinger
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Craig W Lindsley
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, NY 10065, USA
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; Motac Neuroscience, Manchester M13 9XX, UK
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
138
|
Riechers SP, Butland S, Deng Y, Skotte N, Ehrnhoefer DE, Russ J, Laine J, Laroche M, Pouladi MA, Wanker EE, Hayden MR, Graham RK. Interactome network analysis identifies multiple caspase-6 interactors involved in the pathogenesis of HD. Hum Mol Genet 2016; 25:1600-18. [DOI: 10.1093/hmg/ddw036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/05/2016] [Indexed: 11/14/2022] Open
|
139
|
Dallérac GM, Cummings DM, Hirst MC, Milnerwood AJ, Murphy KPSJ. Changes in Dopamine Signalling Do Not Underlie Aberrant Hippocampal Plasticity in a Mouse Model of Huntington's Disease. Neuromolecular Med 2016; 18:146-53. [PMID: 26782175 DOI: 10.1007/s12017-016-8384-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 01/06/2016] [Indexed: 12/13/2022]
Abstract
Altered dopamine receptor labelling has been demonstrated in presymptomatic and symptomatic Huntington's disease (HD) gene carriers, indicating that alterations in dopaminergic signalling are an early event in HD. We have previously described early alterations in synaptic transmission and plasticity in both the cortex and hippocampus of the R6/1 mouse model of Huntington's disease. Deficits in cortical synaptic plasticity were associated with altered dopaminergic signalling and could be reversed by D1- or D2-like dopamine receptor activation. In light of these findings we here investigated whether defects in dopamine signalling could also contribute to the marked alteration in hippocampal synaptic function. To this end we performed dopamine receptor labelling and pharmacology in the R6/1 hippocampus and report a marked, age-dependent elevation of hippocampal D1 and D2 receptor labelling in R6/1 hippocampal subfields. Yet, pharmacological inhibition or activation of D1- or D2-like receptors did not modify the aberrant synaptic plasticity observed in R6/1 mice. These findings demonstrate that global perturbations to dopamine receptor expression do occur in HD transgenic mice, similarly in HD gene carriers and patients. However, the direction of change and the lack of effect of dopaminergic pharmacological agents on synaptic function demonstrate that the perturbations are heterogeneous and region-specific, a finding that may explain the mixed results of dopamine therapy in HD.
Collapse
Affiliation(s)
- Glenn M Dallérac
- Huntington's Disease Research Forum, Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK76AA, UK.
- CIRB, CNRS UMR 7241, INSERM U1050, Collège de France, 75005, Paris, France.
| | - Damian M Cummings
- Huntington's Disease Research Forum, Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK76AA, UK
- University College London, Neuroscience, Physiology and Pharmacology, Gower Street, London, WC1E 6BT, UK
| | - Mark C Hirst
- Huntington's Disease Research Forum, Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK76AA, UK
| | - Austen J Milnerwood
- Huntington's Disease Research Forum, Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK76AA, UK
- Department of Neurology & Centre for Applied Neurogenetics, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2255, Wesbrook Mall, Vancouver, V6T 1Z3, Canada
| | - Kerry P S J Murphy
- Huntington's Disease Research Forum, Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK76AA, UK.
| |
Collapse
|
140
|
Brito V, Ginés S. p75NTR in Huntington's disease: beyond the basal ganglia. Oncotarget 2016; 7:1-2. [PMID: 26700963 PMCID: PMC4807976 DOI: 10.18632/oncotarget.6646] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/15/2015] [Indexed: 12/02/2022] Open
Affiliation(s)
- Verónica Brito
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Institut d´Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERNED, Madrid, Spain
| | - Silvia Ginés
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Institut d´Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERNED, Madrid, Spain
| |
Collapse
|
141
|
Connor B, Sun Y, von Hieber D, Tang SK, Jones KS, Maucksch C. AAV1/2-mediated BDNF gene therapy in a transgenic rat model of Huntington's disease. Gene Ther 2015; 23:283-95. [PMID: 26704721 DOI: 10.1038/gt.2015.113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 12/10/2015] [Accepted: 12/15/2015] [Indexed: 12/19/2022]
Abstract
Reduced expression and disrupted corticostriatal transportation of brain-derived neurotrophic factor (BDNF) is proposed to contribute to the selective vulnerability of medium spiny striatal projection neurons (MSNs) in Huntington's disease (HD). We have previously demonstrated that BDNF overexpression in the quinolinic acid lesioned rat striatum attenuates motor impairment and reduces the extent of MSN cell loss. To further investigate the potential therapeutic properties of BDNF for HD, the current study examines the effect of bilateral AAV1/2-mediated BDNF expression in the striatum of a transgenic rat model of HD. Transfer of the BDNF gene to striatal neurons using an AAV1/2 serotype vector enhanced BDNF protein levels in the striatum. Bilateral BDNF expression attenuated the impairment of both motor and cognitive function when compared with AAV1/2-vehicle- or YFP-treated transgenic HD rats. Interestingly, a gender effect was apparent with female transgenic HD rats exhibiting less functional impairment than males. Quantification of NeuN and DARRP32 immunoreactivity and striatal volume revealed limited disease phenotype between wild type and transgenic HD animals. However, AAV1/2-BDNF-treated transgenic HD rats showed evidence of greater striatal volume and increased NeuN+ cell numbers compared with wild-type vehicle- and AAV1/2-vehicle- or YFP-treated transgenic HD rats. We propose BDNF holds considerable therapeutic potential for alleviating behavioral dysfunction and neuronal degeneration in HD, with further work required to examine the role of BDNF-TrkB signaling and the preservation of axonal and synaptic function.
Collapse
Affiliation(s)
- B Connor
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Y Sun
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - D von Hieber
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - S K Tang
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - K S Jones
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - C Maucksch
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
142
|
Differential changes in thalamic and cortical excitatory synapses onto striatal spiny projection neurons in a Huntington disease mouse model. Neurobiol Dis 2015; 86:62-74. [PMID: 26621114 DOI: 10.1016/j.nbd.2015.11.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/09/2015] [Accepted: 11/23/2015] [Indexed: 01/18/2023] Open
Abstract
Huntington disease (HD), a neurodegenerative disorder caused by CAG repeat expansion in the gene encoding huntingtin, predominantly affects the striatum, especially the spiny projection neurons (SPN). The striatum receives excitatory input from cortex and thalamus, and the role of the former has been well-studied in HD. Here, we report that mutated huntingtin alters function of thalamostriatal connections. We used a novel thalamostriatal (T-S) coculture and an established corticostriatal (C-S) coculture, generated from YAC128 HD and WT (FVB/NJ background strain) mice, to investigate excitatory neurotransmission onto striatal SPN. SPN in T-S coculture from WT mice showed similar mini-excitatory postsynaptic current (mEPSC) frequency and amplitude as in C-S coculture; however, both the frequency and amplitude were significantly reduced in YAC128 T-S coculture. Further investigation in T-S coculture showed similar excitatory synapse density in WT and YAC128 SPN dendrites by immunostaining, suggesting changes in total dendritic length or probability of release as possible explanations for mEPSC frequency changes. Synaptic N-methyl-D-aspartate receptor (NMDAR) current was similar, but extrasynaptic current, associated with cell death signaling, was enhanced in YAC128 SPN in T-S coculture. Employing optical stimulation of cortical versus thalamic afferents and recording from striatal SPN in brain slice, we found increased glutamate release probability and reduced AMPAR/NMDAR current ratios in thalamostriatal synapses, most prominently in YAC128. Enhanced extrasynaptic NMDAR current in YAC128 SPN was apparent with both cortical and thalamic stimulation. We conclude that thalamic afferents to the striatum are affected early, prior to an overt HD phenotype; however, changes in NMDAR localization in SPN are independent of the source of glutamatergic input.
Collapse
|
143
|
Rothe T, Deliano M, Wójtowicz AM, Dvorzhak A, Harnack D, Paul S, Vagner T, Melnick I, Stark H, Grantyn R. Pathological gamma oscillations, impaired dopamine release, synapse loss and reduced dynamic range of unitary glutamatergic synaptic transmission in the striatum of hypokinetic Q175 Huntington mice. Neuroscience 2015; 311:519-38. [PMID: 26546830 DOI: 10.1016/j.neuroscience.2015.10.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 11/28/2022]
Abstract
Huntington's disease (HD) is a severe genetically inherited neurodegenerative disorder. Patients present with three principal phenotypes of motor symptoms: choreatic, hypokinetic-rigid and mixed. The Q175 mouse model of disease offers an opportunity to investigate the cellular basis of the hypokinetic-rigid form of HD. At the age of 1 year homozygote Q175 mice exhibited the following signs of hypokinesia: Reduced frequency of spontaneous movements on a precision balance at daytime (-55%), increased total time spent without movement in an open field (+42%), failures in the execution of unconditioned avoidance reactions (+32%), reduced ability for conditioned avoidance (-96%) and increased reaction times (+65%) in a shuttle box. Local field potential recordings revealed low-frequency gamma oscillations in the striatum as a characteristic feature of HD mice at rest. There was no significant loss of DARPP-32 immunolabeled striatal projection neurons (SPNs) although the level of DARPP-32 immunoreactivity was lower in HD. As a potential cause of hypokinesia, HD mice revealed a strong reduction in striatal KCl-induced dopamine release, accompanied by a decrease in the number of tyrosine hydroxylase-(TH)- and VMAT2-positive synaptic varicosities. The presynaptic TH fluorescence level was also reduced. Patch-clamp experiments were performed in slices from 1-year-old mice to record unitary EPSCs (uEPSCs) of presumed cortical origin in the absence of G-protein-mediated modulation. In HD mice, the maximal amplitudes of uEPSCs amounted to 69% of the WT level which matches the loss of VGluT1+/SYP+ synaptic terminals in immunostained sections. These results identify impairment of cortico-striatal synaptic transmission and dopamine release as a potential basis of hypokinesia in HD.
Collapse
Affiliation(s)
- T Rothe
- Leibniz Institute for Neurobiology Magdeburg, Germany
| | - M Deliano
- Leibniz Institute for Neurobiology Magdeburg, Germany
| | | | - A Dvorzhak
- Cluster of Excellence NeuroCure, Berlin, Germany
| | - D Harnack
- Department of Experimental Neurology, University Medicine Charité, Berlin, Germany
| | - S Paul
- Cluster of Excellence NeuroCure, Berlin, Germany
| | - T Vagner
- Cluster of Excellence NeuroCure, Berlin, Germany
| | - I Melnick
- Cluster of Excellence NeuroCure, Berlin, Germany; Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - H Stark
- Leibniz Institute for Neurobiology Magdeburg, Germany
| | - R Grantyn
- Cluster of Excellence NeuroCure, Berlin, Germany; Department of Experimental Neurology, University Medicine Charité, Berlin, Germany.
| |
Collapse
|
144
|
Ma Q, Yang J, Li T, Milner TA, Hempstead BL. Selective reduction of striatal mature BDNF without induction of proBDNF in the zQ175 mouse model of Huntington's disease. Neurobiol Dis 2015; 82:466-477. [PMID: 26282324 PMCID: PMC4819334 DOI: 10.1016/j.nbd.2015.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 08/02/2015] [Accepted: 08/12/2015] [Indexed: 02/02/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder characterized by massive loss of medium spiny neurons in the striatum. However, the mechanisms by which mutant huntingtin leads to this selective neuronal death remain incompletely understood. Brain-derived neurotrophic factor (BDNF) has been shown to be neuroprotective on HD striatal neurons both in vitro and in vivo. ProBDNF, the precursor of mature BDNF (mBDNF), also can be secreted but promotes apoptosis of neurons expressing p75(NTR) and sortilin receptors. Although a reduction of total striatal BDNF protein has been reported in HD patients and mouse models, it remains unclear whether conversion of proBDNF to mBDNF is altered in HD, and whether the proBDNF receptors, p75(NTR) and sortilin are dysregulated, leading to impaired striatal neuron survival. To test these hypotheses, we generated bdnf-HA knock-in (KI) mice on the zQ175 HD background to accurately quantitate the levels of both proBDNF and mBDNF in the HD striatum. In aged zQ175 HD mice, we observed a significant loss of mBDNF and decreased TrkB activation, but no increase of proBDNF or p75(NTR) levels either in the sensorimotor cortex or the striatum. However, immunoreactivities of p75(NTR) and sortilin receptor are both increased in immature striatal oligodendrocytes, which associate with significant myelin defects in the HD striatum. Taken together, the present study indicates that diminished mature BDNF trophic signaling through the TrkB receptor, rather than an induction in proBDNF, is a main contributing factor to the vulnerability of striatal neurons in the zQ175 HD mouse model.
Collapse
Affiliation(s)
- Qian Ma
- Graduate Program of Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Jianmin Yang
- Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Thomas Li
- Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Barbara L Hempstead
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
145
|
Guedes-Dias P, Pinho BR, Soares TR, de Proença J, Duchen MR, Oliveira JMA. Mitochondrial dynamics and quality control in Huntington's disease. Neurobiol Dis 2015; 90:51-7. [PMID: 26388396 DOI: 10.1016/j.nbd.2015.09.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/11/2015] [Accepted: 09/16/2015] [Indexed: 12/21/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by polyglutamine expansion mutations in the huntingtin protein. Despite its ubiquitous distribution, expression of mutant huntingtin (mHtt) is particularly detrimental to medium spiny neurons within the striatum. Mitochondrial dysfunction has been associated with HD pathogenesis. Here we review the current evidence for mHtt-induced abnormalities in mitochondrial dynamics and quality control, with a particular focus on brain and neuronal data pertaining to striatal vulnerability. We address mHtt effects on mitochondrial biogenesis, protein import, complex assembly, fission and fusion, mitochondrial transport, and on the degradation of damaged mitochondria via autophagy (mitophagy). For an integrated perspective on potentially converging pathogenic mechanisms, we also address impaired autophagosomal transport and abnormal mHtt proteostasis in HD.
Collapse
Affiliation(s)
- Pedro Guedes-Dias
- REQUIMTE/LAQV, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Brígida R Pinho
- REQUIMTE/LAQV, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Tânia R Soares
- REQUIMTE/LAQV, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - João de Proença
- REQUIMTE/LAQV, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Jorge M A Oliveira
- REQUIMTE/LAQV, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| |
Collapse
|
146
|
Miguez A, García-Díaz Barriga G, Brito V, Straccia M, Giralt A, Ginés S, Canals JM, Alberch J. Fingolimod (FTY720) enhances hippocampal synaptic plasticity and memory in Huntington's disease by preventing p75NTR up-regulation and astrocyte-mediated inflammation. Hum Mol Genet 2015; 24:4958-70. [PMID: 26063761 DOI: 10.1093/hmg/ddv218] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/07/2015] [Indexed: 12/20/2022] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by motor and cognitive impairments, involving striatum, cortex and hippocampus. Synaptic and memory dysfunction in HD mouse models have been related to low levels of brain-derived neurotrophic factor (BDNF) and imbalance between TrkB and p75(NTR) receptors. In addition, astrocyte over-activation has also been suggested to contribute to HD cognitive deficits. Fingolimod (FTY720), a modulator of sphingosine-1 phosphate (S1P) receptors, has been shown to increase BDNF levels and to reduce astrogliosis, proving its potential to regulate trophic support and inflammatory response. In this view, we have investigated whether FTY720 improves synaptic plasticity and memory in the R6/1 mouse model of HD, through regulation of BDNF signaling and astroglial reactivity. Chronic administration of FTY720 from pre-symptomatic stages ameliorated long-term memory deficits and dendritic spine loss in CA1 hippocampal neurons from R6/1 mice. Furthermore, FTY720 delivery prevented astrogliosis and over-activation of nuclear factor kappa beta (NF-κB) signaling in the R6/1 hippocampus, reducing tumor necrosis factor alpha (TNFα) and induced nitric oxide synthase (iNOS) levels. TNFα decrease correlated with the normalization of p75(NTR) expression in the hippocampus of FTY720-treated R6/1 mice, thus preventing p75(NTR)/TrkB imbalance. In addition, FTY720 increased cAMP levels and promoted phosphorylation of CREB and RhoA in the hippocampus of R6/1 mice, further supporting its role in the enhancement of synaptic plasticity. Our findings provide new insights into the mechanism of action of FTY720 and reveal a novel therapeutic strategy to treat memory deficits in HD.
Collapse
Affiliation(s)
- Andrés Miguez
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Gerardo García-Díaz Barriga
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Verónica Brito
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marco Straccia
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Albert Giralt
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Silvia Ginés
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Josep M Canals
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jordi Alberch
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
147
|
Huntington's disease: Neural dysfunction linked to inositol polyphosphate multikinase. Proc Natl Acad Sci U S A 2015. [PMID: 26195796 DOI: 10.1073/pnas.1511810112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disease caused by a glutamine repeat expansion in mutant huntingtin (mHtt). Despite the known genetic cause of HD, the pathophysiology of this disease remains to be elucidated. Inositol polyphosphate multikinase (IPMK) is an enzyme that displays soluble inositol phosphate kinase activity, lipid kinase activity, and various noncatalytic interactions. We report a severe loss of IPMK in the striatum of HD patients and in several cellular and animal models of the disease. This depletion reflects mHtt-induced impairment of COUP-TF-interacting protein 2 (Ctip2), a striatal-enriched transcription factor for IPMK, as well as alterations in IPMK protein stability. IPMK overexpression reverses the metabolic activity deficit in a cell model of HD. IPMK depletion appears to mediate neural dysfunction, because intrastriatal delivery of IPMK abates the progression of motor abnormalities and rescues striatal pathology in transgenic murine models of HD.
Collapse
|
148
|
Primary cilia and autophagic dysfunction in Huntington's disease. Cell Death Differ 2015; 22:1413-24. [PMID: 26160070 DOI: 10.1038/cdd.2015.80] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/04/2015] [Accepted: 05/13/2015] [Indexed: 02/07/2023] Open
Abstract
Huntington's disease (HD) is an inherited, neurodegenerative disorder caused by a single-gene mutation: a CAG expansion in the huntingtin (HTT) gene that results in production of a mutated protein, mutant HTT, with a polyglutamine tail (polyQ-HTT). Although the molecular pathways of polyQ-HTT toxicity are not fully understood, because protein misfolding and aggregation are central features of HD, it has long been suspected that cellular housekeeping processes such as autophagy might be important to disease pathology. Indeed, multiple lines of research have identified abnormal autophagy in HD, characterized generally by increased autophagic induction and inefficient clearance of substrates. To date, the origin of autophagic dysfunction in HD remains unclear and the search for actors involved continues. To that end, recent studies have suggested a bidirectional relationship between autophagy and primary cilia, signaling organelles of most mammalian cells. Interestingly, primary cilia structure is defective in HD, suggesting a potential link between autophagic dysfunction, primary cilia and HD pathogenesis. In addition, because polyQ-HTT also accumulates in primary cilia, the possibility exists that primary cilia might play additional roles in HD: perhaps by disrupting signaling pathways or acting as a reservoir for secretion and propagation of toxic, misfolded polyQ-HTT fragments. Here, we review recent research suggesting potential links between autophagy, primary cilia and HD and speculate on possible pathogenic mechanisms and future directions for the field.
Collapse
|
149
|
Fieblinger T, Cenci MA. Zooming in on the small: the plasticity of striatal dendritic spines in L-DOPA-induced dyskinesia. Mov Disord 2015; 30:484-93. [PMID: 25759263 DOI: 10.1002/mds.26139] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/07/2014] [Accepted: 12/08/2014] [Indexed: 12/21/2022] Open
Abstract
The spiny dendrites of striatal projection neurons integrate synaptic inputs of different origins to regulate movement. It has long been known that these dendrites lose spines and display atrophic features in Parkinson's disease (PD), but the significance of these morphological changes has remained unknown. Some recent studies reveal a remarkable structural plasticity of striatal spines in parkinsonian rodents treated with L-3,4-dihydroxyphenylalanine (L-DOPA), and they demonstrate an association between this plasticity and the development of dyskinesia. These studies used different approaches and animal models, which possibly explains why they emphasize different plastic changes as being most closely linked to dyskinesia (such as a growth of new spines in neurons of the indirect pathway, or a loss of spines in neurons of the direct pathway, or the appearance of spines with aberrant synaptic features). Clearly, further investigations are required to reconcile these intriguing findings and integrate them in a coherent pathophysiological model. Nevertheless, these studies may mark the beginning of a new era for dyskinesia research. In addition to addressing neurochemical and molecular events that trigger involuntary movements, there is a need to better understand the long-lasting structural reorganization of cells and circuits that maintain the brain in a "dyskinesia-prone" state. This may lead to the identification of new efficacious approaches to prevent the complications of dopaminergic therapies in PD.
Collapse
Affiliation(s)
- Tim Fieblinger
- Basal Ganglia Pathophysiology Unit, Dept. Exp. Medical Science, Lund University, BMC F11, 221 84 Lund, Sweden
| | | |
Collapse
|
150
|
Blázquez C, Chiarlone A, Bellocchio L, Resel E, Pruunsild P, García-Rincón D, Sendtner M, Timmusk T, Lutz B, Galve-Roperh I, Guzmán M. The CB₁ cannabinoid receptor signals striatal neuroprotection via a PI3K/Akt/mTORC1/BDNF pathway. Cell Death Differ 2015; 22:1618-29. [PMID: 25698444 PMCID: PMC4563779 DOI: 10.1038/cdd.2015.11] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 11/21/2022] Open
Abstract
The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. In particular, the CB1 receptor is highly expressed in the basal ganglia, mostly on terminals of medium-sized spiny neurons, where it plays a key neuromodulatory function. The CB1 receptor also confers neuroprotection in various experimental models of striatal damage. However, the assessment of the physiological relevance and therapeutic potential of the CB1 receptor in basal ganglia-related diseases is hampered, at least in part, by the lack of knowledge of the precise mechanism of CB1 receptor neuroprotective activity. Here, by using an array of pharmacological, genetic and pharmacogenetic (designer receptor exclusively activated by designer drug) approaches, we show that (1) CB1 receptor engagement protects striatal cells from excitotoxic death via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin complex 1 pathway, which, in turn, (2) induces brain-derived neurotrophic factor (BDNF) expression through the selective activation of BDNF gene promoter IV, an effect that is mediated by multiple transcription factors. To assess the possible functional impact of the CB1/BDNF axis in a neurodegenerative-disease context in vivo, we conducted experiments in the R6/2 mouse, a well-established model of Huntington's disease, in which the CB1 receptor and BDNF are known to be severely downregulated in the dorsolateral striatum. Adeno-associated viral vector-enforced re-expression of the CB1 receptor in the dorsolateral striatum of R6/2 mice allowed the re-expression of BDNF and the concerted rescue of the neuropathological deficits in these animals. Collectively, these findings unravel a molecular link between CB1 receptor activation and BDNF expression, and support the relevance of the CB1/BDNF axis in promoting striatal neuron survival.
Collapse
Affiliation(s)
- C Blázquez
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, and the Instituto Universitario de Investigación Neuroquímica (IUIN), Madrid, Spain
| | - A Chiarlone
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, and the Instituto Universitario de Investigación Neuroquímica (IUIN), Madrid, Spain
| | - L Bellocchio
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, and the Instituto Universitario de Investigación Neuroquímica (IUIN), Madrid, Spain
| | - E Resel
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, and the Instituto Universitario de Investigación Neuroquímica (IUIN), Madrid, Spain
| | - P Pruunsild
- Institute of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - D García-Rincón
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, and the Instituto Universitario de Investigación Neuroquímica (IUIN), Madrid, Spain
| | - M Sendtner
- Institute of Clinical Neurobiology, University of Würzburg, Würzburg, Germany
| | - T Timmusk
- Institute of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - B Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - I Galve-Roperh
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, and the Instituto Universitario de Investigación Neuroquímica (IUIN), Madrid, Spain
| | - M Guzmán
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, and the Instituto Universitario de Investigación Neuroquímica (IUIN), Madrid, Spain
| |
Collapse
|