101
|
Pitcher JL, Alexander N, Miranda PJ, Johns TG. ErbB4 in the brain: Focus on high grade glioma. Front Oncol 2022; 12:983514. [PMID: 36119496 PMCID: PMC9471956 DOI: 10.3389/fonc.2022.983514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases (RTKs) consists of EGFR, ErbB2, ErbB3, and ErbB4. These receptors play key roles in cell proliferation, angiogenesis, cell migration, and in some cases, tumor promotion. ErbB4 is a unique member of the EGFR family, implicated not only in pro-tumorigenic mechanisms, such as cell proliferation and migration, but also in anti-tumorigenic activities, including cell differentiation and apoptosis. ErbB4 is differentially expressed in a wide variety of tissues, and interestingly, as different isoforms that result in vastly different signalling outcomes. Most studies have either ignored the presence of these isoforms or used overexpression models that may mask the true function of ErbB4. ErbB4 is widely expressed throughout the body with significant expression in skeletal tissue, mammary glands, heart, and brain. Knockout models have demonstrated embryonic lethality due to disrupted heart and brain development. Despite high expression in the brain and a critical role in brain development, remarkably little is known about the potential signalling activity of ErbB4 in brain cancer.This review focuses on the unique biology of ErbB4 in the brain, and in particular, highlights brain cancer research findings. We end the review with a focus on high grade gliomas, primarily glioblastoma, a disease that has been shown to involve EGFR and its mutant forms. The role of the different ErbB4 isotypes in high grade gliomas is still unclear and future research will hopefully shed some light on this question.
Collapse
Affiliation(s)
- Jamie-Lee Pitcher
- Oncogenic Signalling Laboratory, Telethon Kids Institute, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
- *Correspondence: Jamie-Lee Pitcher,
| | - Naomi Alexander
- Oncogenic Signalling Laboratory, Telethon Kids Institute, Nedlands, WA, Australia
| | - Panimaya Jeffreena Miranda
- Oncogenic Signalling Laboratory, Telethon Kids Institute, Nedlands, WA, Australia
- Division of Paediatrics/Centre for Child Health Research, University of Western Australia, Crawley, WA, Australia
| | - Terrance G. Johns
- Oncogenic Signalling Laboratory, Telethon Kids Institute, Nedlands, WA, Australia
- Division of Paediatrics/Centre for Child Health Research, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
102
|
Wang Y, Wei J, Zhang P, Zhang X, Wang Y, Chen W, Zhao Y, Cui X. Neuregulin-1, a potential therapeutic target for cardiac repair. Front Pharmacol 2022; 13:945206. [PMID: 36120374 PMCID: PMC9471952 DOI: 10.3389/fphar.2022.945206] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
NRG1 (Neuregulin-1) is an effective cardiomyocyte proliferator, secreted and released by endothelial vascular cells, and affects the cardiovascular system. It plays a major role in heart growth, proliferation, differentiation, apoptosis, and other cardiovascular processes. Numerous experiments have shown that NRG1 can repair the heart in the pathophysiology of atherosclerosis, myocardial infarction, ischemia reperfusion, heart failure, cardiomyopathy and other cardiovascular diseases. NRG1 can connect related signaling pathways through the NRG1/ErbB pathway, which form signal cascades to improve the myocardial microenvironment, such as regulating cardiac inflammation, oxidative stress, necrotic apoptosis. Here, we summarize recent research advances on the molecular mechanisms of NRG1, elucidate the contribution of NRG1 to cardiovascular disease, discuss therapeutic approaches targeting NRG1 associated with cardiovascular disease, and highlight areas for future research.
Collapse
Affiliation(s)
- Yan Wang
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jianliang Wei
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Peng Zhang
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xin Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yifei Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenjing Chen
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yanan Zhao
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- *Correspondence: Yanan Zhao, ; Xiangning Cui,
| | - Xiangning Cui
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanan Zhao, ; Xiangning Cui,
| |
Collapse
|
103
|
Tan Z, Liu Z, Liu Y, Liu F, Robinson H, Lin TW, Xiong WC, Mei L. An ErbB4-Positive Neuronal Network in the Olfactory Bulb for Olfaction. J Neurosci 2022; 42:6518-6535. [PMID: 35853717 PMCID: PMC9410760 DOI: 10.1523/jneurosci.0131-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
Olfactory information is relayed and processed in the olfactory bulb (OB). Mitral cells, the principal output excitatory neurons of the OB, are controlled by multiple types of interneurons. However, mechanisms that regulate the activity of OB interneurons are not well understood. We provide evidence that the transmembrane tyrosine kinase ErbB4 is selectively expressed in subsets of OB inhibitory neurons in both male and female mice. ErbB4-positive (ErbB4+) neurons are mainly located in the glomerular layer (GL) and granule cell layer (GCL) and do not express previously defined markers. Optogenetic activation of GL-ErbB4+ neurons promotes theta oscillation, whereas activation of those in the GCL generates γ oscillations. Stimulation of OB slices with NRG1, a ligand that activates ErbB4, increases GABA transmission onto mitral cells, suggesting a role of OB NRG1-ErbB4 signaling in olfaction. In accord, ErbB4 mutant mice or acute inhibition of ErbB4 by a chemical genetic approach diminishes GABA transmission, reduces bulbar local field potential power, increases the threshold of olfactory sensitivity, and impairs odor discrimination. Together, these results identified a bulbar inhibitory network of ErbB4+ neurons for olfaction. Considering that both Nrg1 and Erbb4 are susceptibility genes for neuropsychiatric disorders, our study provides insight into pathologic mechanisms of olfactory malfunctions in these disorders.SIGNIFICANCE STATEMENT This study demonstrates that ErbB4+ neurons are a new subset of olfactory bulb inhibitory neurons in the glomerular layer and granule cell layer that innervate mitral cells and ErbB4- cells. They regulate olfaction by controlling local synchrony and distinct oscillations. ErbB4 inhibition diminishes GABA transmission, reduces bulbar local field potential power, increases the threshold of olfactory sensitivity, and impairs odor discrimination. Our results provide insight into pathophysiological mechanism of olfaction deficits in brain disorders associated with Nrg1 or Erbb4 mutations.
Collapse
Affiliation(s)
- Zhibing Tan
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
| | - Zhipeng Liu
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
| | - Yu Liu
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
| | - Fang Liu
- Department of Neuroscience and Regeneration Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Heath Robinson
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
| | - Thiri W Lin
- Department of Neuroscience and Regeneration Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Wen-Cheng Xiong
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
- Louis Strokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44016
| | - Lin Mei
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
- Louis Strokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44016
| |
Collapse
|
104
|
Raskó T, Pande A, Radscheit K, Zink A, Singh M, Sommer C, Wachtl G, Kolacsek O, Inak G, Szvetnik A, Petrakis S, Bunse M, Bansal V, Selbach M, Orbán TI, Prigione A, Hurst LD, Izsvák Z. A Novel Gene Controls a New Structure: PiggyBac Transposable Element-Derived 1, Unique to Mammals, Controls Mammal-Specific Neuronal Paraspeckles. Mol Biol Evol 2022; 39:6661922. [PMID: 36205081 PMCID: PMC9538788 DOI: 10.1093/molbev/msac175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although new genes can arrive from modes other than duplication, few examples are well characterized. Given high expression in some human brain subregions and a putative link to psychological disorders [e.g., schizophrenia (SCZ)], suggestive of brain functionality, here we characterize piggyBac transposable element-derived 1 (PGBD1). PGBD1 is nonmonotreme mammal-specific and under purifying selection, consistent with functionality. The gene body of human PGBD1 retains much of the original DNA transposon but has additionally captured SCAN and KRAB domains. Despite gene body retention, PGBD1 has lost transposition abilities, thus transposase functionality is absent. PGBD1 no longer recognizes piggyBac transposon-like inverted repeats, nonetheless PGBD1 has DNA binding activity. Genome scale analysis identifies enrichment of binding sites in and around genes involved in neuronal development, with association with both histone activating and repressing marks. We focus on one of the repressed genes, the long noncoding RNA NEAT1, also dysregulated in SCZ, the core structural RNA of paraspeckles. DNA binding assays confirm specific binding of PGBD1 both in the NEAT1 promoter and in the gene body. Depletion of PGBD1 in neuronal progenitor cells (NPCs) results in increased NEAT1/paraspeckles and differentiation. We conclude that PGBD1 has evolved core regulatory functionality for the maintenance of NPCs. As paraspeckles are a mammal-specific structure, the results presented here show a rare example of the evolution of a novel gene coupled to the evolution of a contemporaneous new structure.
Collapse
Affiliation(s)
- Tamás Raskó
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | | | | | - Annika Zink
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Manvendra Singh
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | - Christian Sommer
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | - Gerda Wachtl
- Institute of Enzymology, Research Centre for Natural Sciences, ELKH, Budapest, Hungary,Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Orsolya Kolacsek
- Institute of Enzymology, Research Centre for Natural Sciences, ELKH, Budapest, Hungary
| | - Gizem Inak
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Attila Szvetnik
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | - Spyros Petrakis
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece
| | - Mario Bunse
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | - Vikas Bansal
- Biomedical Data Science and Machine Learning Group, German Center for Neurodegenerative Diseases, Tübingen 72076, Germany
| | - Matthias Selbach
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | - Tamás I Orbán
- Institute of Enzymology, Research Centre for Natural Sciences, ELKH, Budapest, Hungary
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | | | | |
Collapse
|
105
|
Erben L, Welday JP, Murphy R, Buonanno A. Toxic and Phenotypic Effects of AAV_Cre Used to Transduce Mesencephalic Dopaminergic Neurons. Int J Mol Sci 2022; 23:9462. [PMID: 36012727 PMCID: PMC9408874 DOI: 10.3390/ijms23169462] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
A popular approach to spatiotemporally target genes using the loxP/Cre recombination system is stereotaxic microinjection of adeno-associated virus (AAV) expressing Cre recombinase (AAV_Cre) in specific neuronal structures. Here, we report that AAV_Cre microinjection in the ventral tegmental area (VTA) of ErbB4 Cyt-1-floxed (ErbB4 Cyt-1fl/fl) mice at titers commonly used in the literature (~1012-1013 GC/mL) can have neurotoxic effects on dopaminergic neurons and elicit behavioral abnormalities. However, these effects of AAV_Cre microinjection are independent of ErbB4 Cyt-1 recombination because they are also observed in microinjected wild-type (WT) controls. Mice microinjected with AAV_Cre (1012-1013 GC/mL) exhibit reductions of tyrosine hydroxylase (TH) and dopamine transporter (DAT) expression, loss of dopaminergic neurons, and they behaviorally become hyperactive, fail to habituate in the open field and exhibit sensorimotor gating deficits compared to controls microinjected with AAV_GFP. Importantly, these AAV_Cre non-specific effects are: (1) independent of serotype, (2) occur with vectors expressing either Cre or Cre-GFP fusion protein and (3) preventable by reducing viral titers by 1000-fold (1010 GC/mL), which retains sufficient recombination activity to target floxed genes. Our studies emphasize the importance of including AAV_Cre-injected WT controls in experiments because recombination-independent effects on gene expression, neurotoxicity and behaviors could be erroneously attributed to consequences of gene ablation.
Collapse
Affiliation(s)
| | | | | | - Andres Buonanno
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
106
|
Shiosaka S. Kallikrein 8: A key sheddase to strengthen and stabilize neural plasticity. Neurosci Biobehav Rev 2022; 140:104774. [PMID: 35820483 DOI: 10.1016/j.neubiorev.2022.104774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022]
Abstract
Neural networks are modified and reorganized throughout life, even in the matured brain. Synapses in the networks form, change, or disappear dynamically in the plasticity state. The pre- and postsynaptic signaling, transmission, and structural dynamics have been studied considerably well. However, not many studies have shed light on the events in the synaptic cleft and intercellular space. Neural activity-dependent protein shedding is a phenomenon in which (1) presynaptic excitation evokes secretion or activation of sheddases, (2) sheddases are involved not only in cleavage of membrane- or matrix-bound proteins but also in mechanical modulation of cell-to-cell connectivity, and (3) freed activity domains of protein factors play a role in receptor-mediated or non-mediated biological actions. Kallikrein 8/neuropsin (KLK8) is a kallikrein family serine protease rich in the mammalian limbic brain. Accumulated evidence has suggested that KLK8 is an important modulator of neural plasticity and consequently, cognition. Insufficiency, as well as excess of KLK8 may have detrimental effects on limbic functions.
Collapse
Affiliation(s)
- Sadao Shiosaka
- Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka Prefectural Hospital Organization, Miyanosaka 3-16-21, Hirakata-shi, Osaka 573-0022, Japan.
| |
Collapse
|
107
|
Xu S, Yao X, Li B, Cui R, Zhu C, Wang Y, Yang W. Uncovering the Underlying Mechanisms of Ketamine as a Novel Antidepressant. Front Pharmacol 2022; 12:740996. [PMID: 35872836 PMCID: PMC9301111 DOI: 10.3389/fphar.2021.740996] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
Major depressive disorder (MDD) is a devastating psychiatric disorder which exacts enormous personal and social-economic burdens. Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, has been discovered to exert rapid and sustained antidepressant-like actions on MDD patients and animal models. However, the dissociation and psychotomimetic propensities of ketamine have limited its use for psychiatric indications. Here, we review recently proposed mechanistic hypotheses regarding how ketamine exerts antidepressant-like actions. Ketamine may potentiate α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR)-mediated transmission in pyramidal neurons by disinhibition and/or blockade of spontaneous NMDAR-mediated neurotransmission. Ketamine may also activate neuroplasticity- and synaptogenesis-relevant signaling pathways, which may converge on key components like brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) and mechanistic target of rapamycin (mTOR). These processes may subsequently rebalance the excitatory/inhibitory transmission and restore neural network integrity that is compromised in depression. Understanding the mechanisms underpinning ketamine’s antidepressant-like actions at cellular and neural circuit level will drive the development of safe and effective pharmacological interventions for the treatment of MDD.
Collapse
Affiliation(s)
- Songbai Xu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Xiaoxiao Yao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Cuilin Zhu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Cuilin Zhu, ; Yao Wang, ; Wei Yang,
| | - Yao Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Cuilin Zhu, ; Yao Wang, ; Wei Yang,
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Cuilin Zhu, ; Yao Wang, ; Wei Yang,
| |
Collapse
|
108
|
Wilding B, Scharn D, Böse D, Baum A, Santoro V, Chetta P, Schnitzer R, Botesteanu DA, Reiser C, Kornigg S, Knesl P, Hörmann A, Köferle A, Corcokovic M, Lieb S, Scholz G, Bruchhaus J, Spina M, Balla J, Peric-Simov B, Zimmer J, Mitzner S, Fett TN, Beran A, Lamarre L, Gerstberger T, Gerlach D, Bauer M, Bergner A, Schlattl A, Bader G, Treu M, Engelhardt H, Zahn S, Fuchs JE, Zuber J, Ettmayer P, Pearson M, Petronczki M, Kraut N, McConnell DB, Solca F, Neumüller RA. Discovery of potent and selective HER2 inhibitors with efficacy against HER2 exon 20 insertion-driven tumors, which preserve wild-type EGFR signaling. NATURE CANCER 2022; 3:821-836. [PMID: 35883003 DOI: 10.1038/s43018-022-00412-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Oncogenic alterations in human epidermal growth factor receptor 2 (HER2) occur in approximately 2% of patients with non-small cell lung cancer and predominantly affect the tyrosine kinase domain and cluster in exon 20 of the ERBB2 gene. Most clinical-grade tyrosine kinase inhibitors are limited by either insufficient selectivity against wild-type (WT) epidermal growth factor receptor (EGFR), which is a major cause of dose-limiting toxicity or by potency against HER2 exon 20 mutant variants. Here we report the discovery of covalent tyrosine kinase inhibitors that potently inhibit HER2 exon 20 mutants while sparing WT EGFR, which reduce tumor cell survival and proliferation in vitro and result in regressions in preclinical xenograft models of HER2 exon 20 mutant non-small cell lung cancer, concomitant with inhibition of downstream HER2 signaling. Our results suggest that HER2 exon 20 insertion-driven tumors can be effectively treated by a potent and highly selective HER2 inhibitor while sparing WT EGFR, paving the way for clinical translation.
Collapse
Affiliation(s)
| | | | | | - Anke Baum
- Boehringer Ingelheim RCV, Vienna, Austria
| | | | | | | | | | | | | | - Petr Knesl
- Boehringer Ingelheim RCV, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Gerd Bader
- Boehringer Ingelheim RCV, Vienna, Austria
| | | | | | | | | | - Johannes Zuber
- Institute of Molecular Pathology (IMP), Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Xu Y, Wang ML, Tao H, Geng C, Guo F, Hu B, Wang R, Hou XY. ErbB4 in parvalbumin-positive interneurons mediates proactive interference in olfactory associative reversal learning. Neuropsychopharmacology 2022; 47:1292-1303. [PMID: 34707248 PMCID: PMC9117204 DOI: 10.1038/s41386-021-01205-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/04/2021] [Accepted: 10/02/2021] [Indexed: 11/09/2022]
Abstract
Consolidated memories influence later learning and cognitive processes when new information is overlapped with previous events. To reveal which cellular and molecular factors are associated with this proactive interference, we challenged mice with odor-reward associative learning followed by a reversal-learning task. The results showed that genetical ablation of ErbB4 in parvalbumin (PV)-positive interneurons improved performance in reversal-learning phase, with no alteration in learning phase, supporting that PV interneuron ErbB4 is required for proactive interference. Mechanistically, olfactory learning promoted PV interneuron excitatory synaptic plasticity and direct binding of ErbB4 with presynaptic Neurexin1β (NRXN1β) and postsynaptic scaffold PSD-95 in the prefrontal cortex. Interrupting ErbB4-NRXN1β interaction impaired network activity-driven excitatory inputs and excitatory synaptic transmission onto PV interneurons. Neuronal activity-induced ErbB4-PSD-95 association facilitated transsynaptic binding of ErbB4-NRXN1β and excitatory synapse formation in ErbB4-positive interneurons. Furthermore, ErbB4-NRXN1β binding was responsible for the activity-regulated activation of ErbB4 and extracellular signal-regulated kinase (ERK) 1/2 in PV interneurons, as well as synaptic plasticity-related expression of brain-derived neurotrophic factor (BDNF). Correlatedly, blocking ErbB4-NRXN1β coupling in the medial prefrontal cortex of adult mice facilitated reversal learning of an olfactory associative task. These findings provide novel insight into the physiological role of PV interneuron ErbB4 signaling in cognitive processes and reveal an associative learning-related transsynaptic NRXN1β-ErbB4-PSD-95 complex that affects the ERK1/2-BDNF pathway and underlies local inhibitory circuit plasticity and proactive interference.
Collapse
Affiliation(s)
- Yan Xu
- grid.417303.20000 0000 9927 0537Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004 China
| | - Meng-Lin Wang
- grid.417303.20000 0000 9927 0537Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004 China
| | - Hui Tao
- grid.417303.20000 0000 9927 0537Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004 China ,grid.254147.10000 0000 9776 7793State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198 China
| | - Chi Geng
- grid.417303.20000 0000 9927 0537Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004 China
| | - Feng Guo
- grid.417303.20000 0000 9927 0537Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004 China
| | - Bin Hu
- grid.417303.20000 0000 9927 0537Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004 China
| | - Ran Wang
- grid.417303.20000 0000 9927 0537Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004 China
| | - Xiao-Yu Hou
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China. .,State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
110
|
Vrillon A, Mouton-Liger F, Martinet M, Cognat E, Hourregue C, Dumurgier J, Bouaziz-Amar E, Brinkmalm A, Blennow K, Zetterberg H, Hugon J, Paquet C. Plasma neuregulin 1 as a synaptic biomarker in Alzheimer's disease: a discovery cohort study. Alzheimers Res Ther 2022; 14:71. [PMID: 35606871 PMCID: PMC9125890 DOI: 10.1186/s13195-022-01014-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Synaptic dysfunction is an early core feature of Alzheimer's disease (AD), closely associated with cognitive symptoms. Neuregulin 1 (NRG1) is a growth and differentiation factor with a key role in the development and maintenance of synaptic transmission. Previous reports have shown that changes in cerebrospinal fluid (CSF) NRG1 concentration are associated with cognitive status and biomarker evidence of AD pathology. Plasma biomarkers reflecting synaptic impairment would be of great clinical interest. OBJECTIVE To measure plasma NRG1 concentration in AD patients in comparison with other neurodegenerative disorders and neurological controls (NC) and to study its association with cerebrospinal fluid (CSF) core AD and synaptic biomarkers. METHODS This retrospective study enrolled 127 participants including patients with AD at mild cognitive impairment stage (AD-MCI, n = 27) and at dementia stage (n = 35), non-AD dementia (n = 26, Aβ-negative), non-AD MCI (n = 19), and neurological controls (n=20). Plasma and CSF NRG1, as well as CSF core AD biomarkers (Aβ 42/Aβ 40 ratio, phospho-tau, and total tau), were measured using ELISA. CSF synaptic markers were measured using ELISA for GAP-43 and neurogranin and through immunoprecipitation mass spectrometry for SNAP-25. RESULTS Plasma NRG1 concentration was higher in AD-MCI and AD dementia patients compared with neurological controls (respectively P = 0.005 and P < 0.001). Plasma NRG1 differentiated AD MCI patients from neurological controls with an area under the curve of 88.3%, and AD dementia patients from NC with an area under the curve of 87.3%. Plasma NRG1 correlated with CSF NRG1 (β = 0.372, P = 0.0056, adjusted on age and sex). Plasma NRG1 was associated with AD CSF core biomarkers in the whole cohort and in Aβ-positive patients (β = -0.197-0.423). Plasma NRG1 correlated with CSF GAP-43, neurogranin, and SNAP-25 (β = 0.278-0.355). Plasma NRG1 concentration correlated inversely with MMSE in the whole cohort and in Aβ-positive patients (all, β = -0.188, P = 0.038; Aβ+: β = -0.255, P = 0.038). CONCLUSION Plasma NRG1 concentration is increased in AD patients and correlates with CSF core AD and synaptic biomarkers and cognitive status. Thus, plasma NRG1 is a promising non-invasive biomarker to monitor synaptic impairment in AD.
Collapse
Affiliation(s)
- Agathe Vrillon
- Université Paris Cité, Inserm U1144, Paris, France.
- Université Paris Cité, Center of Cognitive Neurology, Lariboisière Fernand-Widal Hospital, APHP, 200 rue du Faubourg Saint-Denis, 75010, Paris, France.
| | | | - Matthieu Martinet
- Université Paris Cité, Inserm U1144, Paris, France
- Université Paris Cité, Center of Cognitive Neurology, Lariboisière Fernand-Widal Hospital, APHP, 200 rue du Faubourg Saint-Denis, 75010, Paris, France
| | - Emmanuel Cognat
- Université Paris Cité, Inserm U1144, Paris, France
- Université Paris Cité, Center of Cognitive Neurology, Lariboisière Fernand-Widal Hospital, APHP, 200 rue du Faubourg Saint-Denis, 75010, Paris, France
| | - Claire Hourregue
- Université Paris Cité, Center of Cognitive Neurology, Lariboisière Fernand-Widal Hospital, APHP, 200 rue du Faubourg Saint-Denis, 75010, Paris, France
| | - Julien Dumurgier
- Université Paris Cité, Center of Cognitive Neurology, Lariboisière Fernand-Widal Hospital, APHP, 200 rue du Faubourg Saint-Denis, 75010, Paris, France
| | - Elodie Bouaziz-Amar
- Université Paris Cité, Inserm U1144, Paris, France
- Université Paris Cité, Department of Biochemistry, APHP GHU Nord Lariboisière-Fernand Widal, Paris, France
| | - Ann Brinkmalm
- Institute of Neuroscience and Physiology, The Salhgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, The Salhgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, The Salhgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Jacques Hugon
- Université Paris Cité, Inserm U1144, Paris, France
- Université Paris Cité, Center of Cognitive Neurology, Lariboisière Fernand-Widal Hospital, APHP, 200 rue du Faubourg Saint-Denis, 75010, Paris, France
| | - Claire Paquet
- Université Paris Cité, Inserm U1144, Paris, France
- Université Paris Cité, Center of Cognitive Neurology, Lariboisière Fernand-Widal Hospital, APHP, 200 rue du Faubourg Saint-Denis, 75010, Paris, France
| |
Collapse
|
111
|
Chimusa ER, Defo J. Dissecting Meta-Analysis in GWAS Era: Bayesian Framework for Gene/Subnetwork-Specific Meta-Analysis. Front Genet 2022; 13:838518. [PMID: 35664319 PMCID: PMC9159898 DOI: 10.3389/fgene.2022.838518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past decades, advanced high-throughput technologies have continuously contributed to genome-wide association studies (GWASs). GWAS meta-analysis has been increasingly adopted, has cross-ancestry replicability, and has power to illuminate the genetic architecture of complex traits, informing about the reliability of estimation effects and their variability across human ancestries. However, detecting genetic variants that have low disease risk still poses a challenge. Designing a meta-analysis approach that combines the effect of various SNPs within genes or genes within pathways from multiple independent population GWASs may be helpful in identifying associations with small effect sizes and increasing the association power. Here, we proposed ancMETA, a Bayesian graph-based framework, to perform the gene/pathway-specific meta-analysis by combining the effect size of multiple SNPs within genes, and genes within subnetwork/pathways across multiple independent population GWASs to deconvolute the interactions between genes underlying the pathogenesis of complex diseases across human populations. We assessed the proposed framework on simulated datasets, and the results show that the proposed model holds promise for increasing statistical power for meta-analysis of genetic variants underlying the pathogenesis of complex diseases. To illustrate the proposed meta-analysis framework, we leverage seven different European bipolar disorder (BD) cohorts, and we identify variants in the angiotensinogen (AGT) gene to be significantly associated with BD across all 7 studies. We detect a commonly significant BD-specific subnetwork with the ESR1 gene as the main hub of a subnetwork, associated with neurotrophin signaling (p = 4e−14) and myometrial relaxation and contraction (p = 3e−08) pathways. ancMETA provides a new contribution to post-GWAS methodologies and holds promise for comprehensively examining interactions between genes underlying the pathogenesis of genetic diseases and also underlying ethnic differences.
Collapse
|
112
|
Ahmad T, Vullhorst D, Chaudhuri R, Guardia CM, Chaudhary N, Karavanova I, Bonifacino JS, Buonanno A. Transcytosis and trans-synaptic retention by postsynaptic ErbB4 underlie axonal accumulation of NRG3. J Cell Biol 2022; 221:213222. [PMID: 35579602 PMCID: PMC9118086 DOI: 10.1083/jcb.202110167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 01/07/2023] Open
Abstract
Neuregulins (NRGs) are EGF-like ligands associated with cognitive disorders. Unprocessed proNRG3 is cleaved by BACE1 to generate the mature membrane-bound NRG3 ligand, but the subcellular site of proNRG3 cleavage, mechanisms underlying its transport into axons, and presynaptic accumulation remain unknown. Using an optogenetic proNRG3 cleavage reporter (LA143-NRG3), we investigate the spatial-temporal dynamics of NRG3 processing and sorting in neurons. In dark conditions, unprocessed LA143-NRG3 is retained in the trans-Golgi network but, upon photoactivation, is cleaved by BACE1 and released from the TGN. Mature NRG3 then emerges on the somatodendritic plasma membrane from where it is re-endocytosed and anterogradely transported on Rab4+ vesicles into axons via transcytosis. By contrast, the BACE1 substrate APP is sorted into axons on Rab11+ vesicles. Lastly, by a mechanism we denote "trans-synaptic retention," NRG3 accumulates at presynaptic terminals by stable interaction with its receptor ErbB4 on postsynaptic GABAergic interneurons. We propose that trans-synaptic retention may account for polarized expression of other neuronal transmembrane ligands and receptors.
Collapse
Affiliation(s)
- Tanveer Ahmad
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD,Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Detlef Vullhorst
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Rituparna Chaudhuri
- Molecular and Cellular Neuroscience, Neurovirology Section, National Brain Research Centre, Haryana, India
| | - Carlos M. Guardia
- Section on Intracellular Protein Trafficking, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Nisha Chaudhary
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Irina Karavanova
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Juan S. Bonifacino
- Section on Intracellular Protein Trafficking, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Andres Buonanno
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD,Correspondence to Andres Buonanno:
| |
Collapse
|
113
|
Wang S, Wang Y, Zou S. A Glance at the Molecules That Regulate Oligodendrocyte Myelination. Curr Issues Mol Biol 2022; 44:2194-2216. [PMID: 35678678 PMCID: PMC9164040 DOI: 10.3390/cimb44050149] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Oligodendrocyte (OL) myelination is a critical process for the neuronal axon function in the central nervous system. After demyelination occurs because of pathophysiology, remyelination makes repairs similar to myelination. Proliferation and differentiation are the two main stages in OL myelination, and most factors commonly play converse roles in these two stages, except for a few factors and signaling pathways, such as OLIG2 (Oligodendrocyte transcription factor 2). Moreover, some OL maturation gene mutations induce hypomyelination or hypermyelination without an obvious function in proliferation and differentiation. Herein, three types of factors regulating myelination are reviewed in sequence.
Collapse
Affiliation(s)
- Shunqi Wang
- Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang 330031, China; (S.W.); (Y.W.)
- School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| | - Yingxing Wang
- Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang 330031, China; (S.W.); (Y.W.)
| | - Suqi Zou
- Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang 330031, China; (S.W.); (Y.W.)
- School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
- Correspondence:
| |
Collapse
|
114
|
Khaje NA, Eletsky A, Biehn SE, Mobley CK, Rogals MJ, Kim Y, Mishra SK, Doerksen RJ, Lindert S, Prestegard JH, Sharp JS. Validated determination of NRG1 Ig-like domain structure by mass spectrometry coupled with computational modeling. Commun Biol 2022; 5:452. [PMID: 35551273 PMCID: PMC9098640 DOI: 10.1038/s42003-022-03411-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/25/2022] [Indexed: 01/03/2023] Open
Abstract
High resolution hydroxyl radical protein footprinting (HR-HRPF) is a mass spectrometry-based method that measures the solvent exposure of multiple amino acids in a single experiment, offering constraints for experimentally informed computational modeling. HR-HRPF-based modeling has previously been used to accurately model the structure of proteins of known structure, but the technique has never been used to determine the structure of a protein of unknown structure. Here, we present the use of HR-HRPF-based modeling to determine the structure of the Ig-like domain of NRG1, a protein with no close homolog of known structure. Independent determination of the protein structure by both HR-HRPF-based modeling and heteronuclear NMR was carried out, with results compared only after both processes were complete. The HR-HRPF-based model was highly similar to the lowest energy NMR model, with a backbone RMSD of 1.6 Å. To our knowledge, this is the first use of HR-HRPF-based modeling to determine a previously uncharacterized protein structure. A mass spectrometry-based method guides computational modeling for de novo protein structure prediction.
Collapse
Affiliation(s)
- Niloofar Abolhasani Khaje
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA.,Analytical Operations Department, Gilead Sciences, Foster City, CA, USA
| | - Alexander Eletsky
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Sarah E Biehn
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, USA
| | - Charles K Mobley
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA.,Protein Discovery Department, Impossible Foods, Redwood City, CA, USA
| | - Monique J Rogals
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Yoonkyoo Kim
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Sushil K Mishra
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA.,Glycoscience Center of Research Excellence, University of Mississippi, University, MS, USA
| | - Robert J Doerksen
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA.,Glycoscience Center of Research Excellence, University of Mississippi, University, MS, USA
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, USA
| | - James H Prestegard
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Joshua S Sharp
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA. .,Glycoscience Center of Research Excellence, University of Mississippi, University, MS, USA. .,Department of Chemistry and Biochemistry, University of Mississippi, University, MS, USA.
| |
Collapse
|
115
|
Wang H, Chen W, Dong Z, Xing G, Cui W, Yao L, Zou WJ, Robinson HL, Bian Y, Liu Z, Zhao K, Luo B, Gao N, Zhang H, Ren X, Yu Z, Meixiong J, Xiong WC, Mei L. A novel spinal neuron connection for heat sensation. Neuron 2022; 110:2315-2333.e6. [PMID: 35561677 DOI: 10.1016/j.neuron.2022.04.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 03/14/2022] [Accepted: 04/19/2022] [Indexed: 12/30/2022]
Abstract
Heat perception enables acute avoidance responses to prevent tissue damage and maintain body thermal homeostasis. Unlike other modalities, how heat signals are processed in the spinal cord remains unclear. By single-cell gene profiling, we identified ErbB4, a transmembrane tyrosine kinase, as a novel marker of heat-sensitive spinal neurons in mice. Ablating spinal ErbB4+ neurons attenuates heat sensation. These neurons receive monosynaptic inputs from TRPV1+ nociceptors and form excitatory synapses onto target neurons. Activation of ErbB4+ neurons enhances the heat response, while inhibition reduces the heat response. We showed that heat sensation is regulated by NRG1, an activator of ErbB4, and it involves dynamic activity of the tyrosine kinase that promotes glutamatergic transmission. Evidence indicates that the NRG1-ErbB4 signaling is also engaged in hypersensitivity of pathological pain. Together, these results identify a spinal neuron connection consisting of ErbB4+ neurons for heat sensation and reveal a regulatory mechanism by the NRG1-ErbB4 signaling.
Collapse
Affiliation(s)
- Hongsheng Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wenbing Chen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Zhaoqi Dong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Guanglin Xing
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wanpeng Cui
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Lingling Yao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wen-Jun Zou
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Heath L Robinson
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Yaoyao Bian
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Zhipeng Liu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Kai Zhao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Bin Luo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Nannan Gao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Hongsheng Zhang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Xiao Ren
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Zheng Yu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - James Meixiong
- Solomon H. Snyder Department of Neuroscience and Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA.
| |
Collapse
|
116
|
Erben L, Welday JP, Cronin ME, Murphy R, Skirzewski M, Vullhorst D, Carroll SL, Buonanno A. Developmental, neurochemical, and behavioral analyses of ErbB4 Cyt-1 knockout mice. J Neurochem 2022; 161:435-452. [PMID: 35523590 PMCID: PMC9149141 DOI: 10.1111/jnc.15612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 01/26/2023]
Abstract
Neuregulins (NRGs) and their cognate neuronal receptor ERBB4, which is expressed in GABAergic and dopaminergic neurons, regulate numerous behaviors in rodents and have been identified as schizophrenia at-risk genes. ErbB4 transcripts are alternatively spliced to generate isoforms that either include (Cyt-1) or exclude (Cyt-2) exon 26, which encodes a cytoplasmic domain that imparts ErbB4 receptors the ability to signal via the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway. Although ErbB4 Cyt-1/2 isoforms have been studied in transfected cultured cells, their functions in vivo remain unknown. Here, we generated ErbB4-floxed (ErbB4-Cyt1fl/fl ) mice to investigate the effects of germline (constitutive) and conditional (acute) deletions of the Cyt-1 exon. Overall receptor mRNA levels remain unchanged in germline ErbB4 Cyt-1 knockouts (Cyt-1 KOs), with all transcripts encoding Cyt-2 variants. In contrast to mice lacking all ErbB4 receptor function, GABAergic interneuron migration and number are unaltered in Cyt-1 KOs. However, basal extracellular dopamine (DA) levels in the medial prefrontal cortex are increased in Cyt-1 heterozygotes. Despite these neurochemical changes, Cyt-1 heterozygous and homozygous mice do not manifest behavioral abnormalities previously reported to be altered in ErbB4 null mice. To address the possibility that Cyt-2 variants compensate for the lack of Cyt-1 during development, we microinjected an adeno-associated virus expressing Cre-recombinase (AAV-Cre) into the DA-rich ventral tegmental area of adult ErbB4-Cyt1fl/fl mice to acutely target exon 26. These conditional Cyt-1 KOs were found to exhibit behavioral abnormalities in the elevated plus maze and startle response, consistent with the idea that late exon 26 ablations may circumvent compensation by Cyt-2 variants. Taken together, our observations indicate that ErbB4 Cyt-1 function in vivo is important for DA balance and behaviors in adults.
Collapse
Affiliation(s)
- Larissa Erben
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, Maryland, USA
| | - Jacqueline P Welday
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, Maryland, USA
| | - Marie E Cronin
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, Maryland, USA
| | - Ricardo Murphy
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, Maryland, USA
| | - Miguel Skirzewski
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, Maryland, USA
| | - Detlef Vullhorst
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, Maryland, USA
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Andres Buonanno
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, Maryland, USA
| |
Collapse
|
117
|
Kung PL, Chou TW, Lindman M, Chang NP, Estevez I, Buckley BD, Atkins C, Daniels BP. Zika virus-induced TNF-α signaling dysregulates expression of neurologic genes associated with psychiatric disorders. J Neuroinflammation 2022; 19:100. [PMID: 35462541 PMCID: PMC9036774 DOI: 10.1186/s12974-022-02460-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/07/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV) is an emerging flavivirus of global concern. ZIKV infection of the central nervous system has been linked to a variety of clinical syndromes, including microcephaly in fetuses and rare but serious neurologic disease in adults. However, the potential for ZIKV to influence brain physiology and host behavior following apparently mild or subclinical infection is less well understood. Furthermore, though deficits in cognitive function are well-documented after recovery from neuroinvasive viral infection, the potential impact of ZIKV on other host behavioral domains has not been thoroughly explored. METHODS We used transcriptomic profiling, including unbiased gene ontology enrichment analysis, to assess the impact of ZIKV infection on gene expression in primary cortical neuron cultures. These studies were extended with molecular biological analysis of gene expression and inflammatory cytokine signaling. In vitro observations were further confirmed using established in vivo models of ZIKV infection in immunocompetent hosts. RESULTS Transcriptomic profiling of primary neuron cultures following ZIKV infection revealed altered expression of key genes associated with major psychiatric disorders, such as bipolar disorder and schizophrenia. Gene ontology enrichment analysis also revealed significant changes in gene expression associated with fundamental neurobiological processes, including neuronal development, neurotransmission, and others. These alterations to neurologic gene expression were also observed in the brain in vivo using several immunocompetent mouse models of ZIKV infection. Mechanistic studies identified TNF-α signaling via TNFR1 as a major regulatory mechanism controlling ZIKV-induced changes to neurologic gene expression. CONCLUSIONS Our studies reveal that cell-intrinsic innate immune responses to ZIKV infection profoundly shape neuronal transcriptional profiles, highlighting the need to further explore associations between ZIKV infection and disordered host behavioral states.
Collapse
Affiliation(s)
- Po-Lun Kung
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Tsui-Wen Chou
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Marissa Lindman
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Nydia P. Chang
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Irving Estevez
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Benjamin D. Buckley
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Colm Atkins
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| | - Brian P. Daniels
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Room B314, Piscataway, NJ 08854 USA
| |
Collapse
|
118
|
Wang F, Liu X, He J, Zhang N, Chen L, Tang L, Fan D. Analysis of ERBB4 Variants in Amyotrophic Lateral Sclerosis Within a Chinese Cohort. Front Neurol 2022; 13:865264. [PMID: 35481267 PMCID: PMC9035935 DOI: 10.3389/fneur.2022.865264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
ERBB4 is related to amyotrophic lateral sclerosis (ALS) in patients with a family history and is thought to cause ALS-19. We screened 448 ALS patients, including 364 sporadic ALS (sALS) and 84 familial ALS (fALS) patients with ERBB4 variants, in a Chinese cohort. In total, 12 missense variants were identified in this study. Of these, 3 (p.Arg106His, p.Gln164Pro, and p.Val212Leu) were absent from the in-house healthy control cohort and population databases and predicted to be likely pathogenic. Genetic burden analysis did not reveal an increase in damaging variants of the ERBB4 gene. We considered that most of the missense variants in ERBB4 were not pathogenic, but certain variants, such as p.Arg106His, p.Gln164Pro, and p.Val212Leu, were likely pathogenic. The phenotype of these three patients carrying ERBB4 variants revealed the typical clinical manifestations of ALS without cognitive dysfunction. We concluded that ERBB4 likely pathogenic variants account for ~0.67% of ALS patients in China. It is necessary to interpret the relationship between the disease and variants carefully for ALS patients with ERBB4 gene variants.
Collapse
Affiliation(s)
- Fan Wang
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Xiangyi Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Ji He
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Nan Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Lu Chen
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Lu Tang
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- *Correspondence: Dongsheng Fan
| |
Collapse
|
119
|
Hu F, Ma Y, Xu Z, Zhang S, Li J, Sun X, Wu J. Single-Cell RNA-Seq Reveals the Cellular Diversity and Developmental Characteristics of the Retinas of an Infant and a Young Child. Front Cell Dev Biol 2022; 10:803466. [PMID: 35386199 PMCID: PMC8979067 DOI: 10.3389/fcell.2022.803466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
The human retina, located in the innermost layer of the eye, plays a decisive role in visual perception. Dissecting the heterogeneity of retinal cells is essential for understanding the mechanism of visual development. Here, we performed single-cell RNA-seq to analyze 194,967 cells from the donors of infants and young children, resulting in 17 distinct clusters representing major cell types in the retina: rod photoreceptors (PRs), cone PRs, bipolar cells (BCs), horizontal cells (HCs), amacrine cells (ACs), retinal ganglion cells (RGCs), Müller glial cells (MGs), microglia, and astrocytes (ASTs). Through reclustering, we identified known subtypes of cone PRs as well as additional unreported subpopulations and corresponding markers in BCs. Additionally, we linked inherited retinal diseases (IRDs) to certain cell subtypes or subpopulations through enrichment analysis. We next constructed extensive intercellular communication networks and identified ligand-receptor interactions that play crucial roles in regulating neural cell development and immune homeostasis in the retina. Intriguingly, we found that the status and functions of PRs changed drastically between the young children and adult retina. Overall, our study offers the first retinal cell atlas in infants and young children dissecting the heterogeneity of the retina and identifying the key molecules in the developmental process, which provides an important resource that will pave the way for research on retinal development mechanisms and advancements in regenerative medicine concerning retinal biology.
Collapse
Affiliation(s)
- Fangyuan Hu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yuting Ma
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zaoxu Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shenghai Zhang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | | | - Xinghuai Sun
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jihong Wu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
120
|
Saoud H, Aflouk Y, Ben Afia A, Gaha L, Bel Hadj Jrad B. Association of VEGF-A and KDR polymorphisms with the development of schizophrenia. Hum Immunol 2022; 83:528-537. [DOI: 10.1016/j.humimm.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/04/2022]
|
121
|
Hu L, Zhang L. Adult neural stem cells and schizophrenia. World J Stem Cells 2022; 14:219-230. [PMID: 35432739 PMCID: PMC8968214 DOI: 10.4252/wjsc.v14.i3.219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/18/2021] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia (SCZ) is a devastating and complicated mental disorder accompanied by variable positive and negative symptoms and cognitive deficits. Although many genetic risk factors have been identified, SCZ is also considered as a neurodevelopmental disorder. Elucidation of the pathogenesis and the development of treatment is challenging because complex interactions occur between these genetic risk factors and environment in essential neurodevelopmental processes. Adult neural stem cells share a lot of similarities with embryonic neural stem cells and provide a promising model for studying neuronal development in adulthood. These adult neural stem cells also play an important role in cognitive functions including temporal and spatial memory encoding and context discrimination, which have been shown to be closely linked with many psychiatric disorders, such as SCZ. Here in this review, we focus on the SCZ risk genes and the key components in related signaling pathways in adult hippocampal neural stem cells and summarize their roles in adult neurogenesis and animal behaviors. We hope that this would be helpful for the understanding of the contribution of dysregulated adult neural stem cells in the pathogenesis of SCZ and for the identification of potential therapeutic targets, which could facilitate the development of novel medication and treatment.
Collapse
Affiliation(s)
- Ling Hu
- Department of Laboratory Animal Science and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center) and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
122
|
Talarico F, Costa GO, Ota VK, Santoro ML, Noto C, Gadelha A, Bressan R, Azevedo H, Belangero SI. Systems-Level Analysis of Genetic Variants Reveals Functional and Spatiotemporal Context in Treatment-resistant Schizophrenia. Mol Neurobiol 2022; 59:3170-3182. [DOI: 10.1007/s12035-022-02794-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/06/2022] [Indexed: 10/18/2022]
|
123
|
Prats C, Fatjó-Vilas M, Penzol MJ, Kebir O, Pina-Camacho L, Demontis D, Crespo-Facorro B, Peralta V, González-Pinto A, Pomarol-Clotet E, Papiol S, Parellada M, Krebs MO, Fañanás L. Association and epistatic analysis of white matter related genes across the continuum schizophrenia and autism spectrum disorders: The joint effect of NRG1-ErbB genes. World J Biol Psychiatry 2022; 23:208-218. [PMID: 34338147 DOI: 10.1080/15622975.2021.1939155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Schizophrenia-spectrum disorders (SSD) and Autism spectrum disorders (ASD) are neurodevelopmental disorders that share clinical, cognitive, and genetic characteristics, as well as particular white matter (WM) abnormalities. In this study, we aimed to investigate the role of a set of oligodendrocyte/myelin-related (OMR) genes and their epistatic effect on the risk for SSD and ASD. METHODS We examined 108 SNPs in a set of 22 OMR genes in 1749 subjects divided into three independent samples (187 SSD trios, 915 SSD cases/control, and 91 ASD trios). Genetic association and gene-gene interaction analyses were conducted with PLINK and MB-MDR, and permutation procedures were implemented in both. RESULTS Some OMR genes showed an association trend with SSD, while after correction, the ones that remained significantly associated were MBP, ERBB3, and AKT1. Significant gene-gene interactions were found between (i) NRG1*MBP (perm p-value = 0.002) in the SSD trios sample, (ii) ERBB3*AKT1 (perm p-value = 0.001) in the SSD case-control sample, and (iii) ERBB3*QKI (perm p-value = 0.0006) in the ASD trios sample. DISCUSSION Our results suggest the implication of OMR genes in the risk for both SSD and ASD and highlight the role of NRG1 and ERBB genes. These findings are in line with the previous evidence and may suggest pathophysiological mechanisms related to NRG1/ERBBs signalling in these disorders.
Collapse
Affiliation(s)
- C Prats
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Institut d'Investigació Biomèdica de Bellvitge, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
| | - M Fatjó-Vilas
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - M J Penzol
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | - O Kebir
- INSERM, U1266, Laboratory "Pathophysiology of psychiatric disorders", Institute of psychiatry and neurosciences of Paris, Paris, France.,GHU Psychiatrie et Neurosciences de Paris, Paris, France
| | - L Pina-Camacho
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | - D Demontis
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research iPSYCH, Aarhus, Denmark
| | - B Crespo-Facorro
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,University Hospital Virgen del Rocio, IbiS Department of Psychiatry, School of Medicine, University of Sevilla, Sevilla, Spain
| | - V Peralta
- Gerencia de Salud Mental, Servicio Navarro de Salud-Osasunbidea, Pamplona, Navarra, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNa), Pamplona, Navarra, Spain
| | - A González-Pinto
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Psychiatry Service, University Hospital of Alava-Santiago, EMBREC, EHU/UPV University of the Basque Country, Kronikgune, Vitoria, Spain
| | - E Pomarol-Clotet
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - S Papiol
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany.,Department of Psychiatry, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - M Parellada
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | - M O Krebs
- INSERM, U1266, Laboratory "Pathophysiology of psychiatric disorders", Institute of psychiatry and neurosciences of Paris, Paris, France.,University Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, Service Hospitalo-Universitaire, Centre Hospitalier Sainte-Anne, Paris, France
| | - L Fañanás
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| |
Collapse
|
124
|
Dermawan JK, Zou Y, Antonescu CR. Neuregulin 1 (NRG1) fusion-positive high-grade spindle cell sarcoma: A distinct group of soft tissue tumors with metastatic potential. Genes Chromosomes Cancer 2022; 61:123-130. [PMID: 34747541 PMCID: PMC8804874 DOI: 10.1002/gcc.23008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 11/06/2022] Open
Abstract
Neuregulin 1 (NRG1) is an epidermal growth factor (EGF)-like ligand that activates receptor tyrosine kinases of the ErbB family of receptors. NRG1 gene fusions, which are rare (<1%) but recurrent events in solid tumors, are an emerging oncogenic driver that is potentially actionable using ErbB-targeted tyrosine kinase inhibitors. Largely characterized only in carcinomas, we describe three cases of NRG1-rearranged sarcomas. The patients were all female, aged 32-47 years old. Two cases were deep-seated tumors in the lower extremities (right thigh and calf); one case presented as a uterine mass. The tumors measured 9-11.5 cm in the greatest dimensions. Histologically, all three tumors were high-grade spindle cell sarcomas composed of monomorphic spindle cells arranged in interlacing fascicles. The tumor cells were set in the loose collagenous stroma with branching, curvilinear thin-walled vasculature in the background. Cytologically, the neoplastic cells displayed ovoid to fusiform nuclei with finely stippled chromatin, inconspicuous nucleoli, scant to moderate clear to eosinophilic cytoplasm, occasional cytoplasmic vacuoles, and elongated cytoplasmic processes. Mitotic activity was elevated (> 20/10 high power fields) and tumor necrosis was present. None of the tumors expressed lineage-specific immunophenotypical markers. Targeted RNA-sequencing uncovered gene fusions involving NRG1 and the 5' untranslated regions of PPHLN1, HMBOX1, or MTUS1. In all cases, the C-terminal EGF-like domain of NRG1 was preserved in the predicted chimeric protein product. All three patients developed metastatic disease within 2 years from initial presentation and were alive with disease at last follow-up (mean follow-up period = 19 months). In conclusion, we present the first case series of NRG1-rearranged sarcomas characterized by high-grade fascicular spindle cell morphology, non-specific immunoprofile, and aggressive clinical behavior. Further studies are needed to determine whether this distinct subgroup of spindle cell sarcomas are amenable to targeted therapies.
Collapse
Affiliation(s)
| | - Youran Zou
- Department of Pathology, Kaiser Permanente Oakland Medical Center, Oakland, California
| | | |
Collapse
|
125
|
Vega-Torres JD, Ontiveros-Angel P, Terrones E, Stuffle EC, Solak S, Tyner E, Oropeza M, dela Peña I, Obenaus A, Ford BD, Figueroa JD. Short-term exposure to an obesogenic diet during adolescence elicits anxiety-related behavior and neuroinflammation: modulatory effects of exogenous neuregulin-1. Transl Psychiatry 2022; 12:83. [PMID: 35220393 PMCID: PMC8882169 DOI: 10.1038/s41398-022-01788-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 11/21/2022] Open
Abstract
Childhood obesity leads to hippocampal atrophy and altered cognition. However, the molecular mechanisms underlying these impairments are poorly understood. The neurotrophic factor neuregulin-1 (NRG1) and its cognate ErbB4 receptor play critical roles in hippocampal maturation and function. This study aimed to determine whether exogenous NRG1 administration reduces hippocampal abnormalities and neuroinflammation in rats exposed to an obesogenic Western-like diet (WD). Lewis rats were randomly divided into four groups (12 rats/group): (1) control diet+vehicle (CDV); (2) CD + NRG1 (CDN) (daily intraperitoneal injections: 5 μg/kg/day; between postnatal day, PND 21-PND 41); (3) WD + VEH (WDV); (4) WD + NRG1 (WDN). Neurobehavioral assessments were performed at PND 43-49. Brains were harvested for MRI and molecular analyses at PND 49. We found that NRG1 administration reduced hippocampal volume (7%) and attenuated hippocampal-dependent cued fear conditioning in CD rats (56%). NRG1 administration reduced PSD-95 protein expression (30%) and selectively reduced hippocampal cytokine levels (IL-33, GM-CSF, CCL-2, IFN-γ) while significantly impacting microglia morphology (increased span ratio and reduced circularity). WD rats exhibited reduced right hippocampal volume (7%), altered microglia morphology (reduced density and increased lacunarity), and increased levels of cytokines implicated in neuroinflammation (IL-1α, TNF-α, IL-6). Notably, NRG1 synergized with the WD to increase hippocampal ErbB4 phosphorylation and the tumor necrosis alpha converting enzyme (TACE/ADAM17) protein levels. Although the results did not provide sufficient evidence to conclude that exogenous NRG1 administration is beneficial to alleviate obesity-related outcomes in adolescent rats, we identified a potential novel interaction between obesogenic diet exposure and TACE/ADAM17-NRG1-ErbB4 signaling during hippocampal maturation. Our results indicate that supraoptimal ErbB4 activities may contribute to the abnormal hippocampal structure and cognitive vulnerabilities observed in obese individuals.
Collapse
Affiliation(s)
- Julio David Vega-Torres
- grid.43582.380000 0000 9852 649XCenter for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA USA
| | - Perla Ontiveros-Angel
- grid.43582.380000 0000 9852 649XCenter for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA USA
| | - Esmeralda Terrones
- grid.43582.380000 0000 9852 649XCenter for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA USA
| | - Erwin C. Stuffle
- grid.43582.380000 0000 9852 649XCenter for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA USA
| | - Sara Solak
- grid.43582.380000 0000 9852 649XDepartment of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA USA
| | - Emma Tyner
- grid.43582.380000 0000 9852 649XDepartment of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA USA
| | - Marie Oropeza
- grid.43582.380000 0000 9852 649XDepartment of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA USA
| | - Ike dela Peña
- grid.43582.380000 0000 9852 649XDepartment of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA USA
| | - Andre Obenaus
- grid.266093.80000 0001 0668 7243Department of Pediatrics, University of California-Irvine, Irvine, CA USA
| | - Byron D. Ford
- grid.266097.c0000 0001 2222 1582Division of Biomedical Sciences, University of California-Riverside School of Medicine, Riverside, CA USA
| | - Johnny D. Figueroa
- grid.43582.380000 0000 9852 649XCenter for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA USA
| |
Collapse
|
126
|
Nakamura JP, Schroeder A, Gibbons A, Sundram S, Hill RA. Timing of maternal immune activation and sex influence schizophrenia-relevant cognitive constructs and neuregulin and GABAergic pathways. Brain Behav Immun 2022; 100:70-82. [PMID: 34808289 DOI: 10.1016/j.bbi.2021.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/17/2021] [Accepted: 11/13/2021] [Indexed: 12/24/2022] Open
Abstract
Maternal immune activation (MIA) during pregnancy is an established environmental risk factor for schizophrenia. Timing of immune activation exposure as well as sex of the exposed offspring are critical factors in defining the effects of MIA. However, the specificity of MIA on the component structure of schizophrenia, especially cognition, has been difficult to assess due to a lack of translational validity of maze-like testing paradigms. We aimed to assess cognitive domains relevant to schizophrenia using highly translational touchscreen-based tasks in male and female mice exposed to the viral mimetic, poly(I:C) (5 mg/k, i.p.), during early (gestational day (GD) 9-11) and late (GD13-15) gestational time points. Gene expression of schizophrenia candidate pathways were assessed in fetal brain immediately following poly(I:C) exposure and in adulthood to identify its influence on neurodevelopmental processes. Sex and window specific alterations in cognitive performance were found with the early window of MIA exposure causing female-specific disruptions to working memory and reduced perseverative behaviour, while late MIA exposure caused male-specific changes to working memory and deficits in reversal learning. GABAergic specification marker, Nkx2.1 gene expression was reduced in fetal brains and reelin expression was reduced in adult hippocampus of both early and late poly(I:C) exposed mice. Neuregulin and EGF signalling were initially upregulated in the fetal brain, but were reduced in the adult hippocampus, with male mice exposed in the late window showing reduced Nrg3 expression. Serine racemase was reduced in both fetal and adult brain, but again, adult reductions were specific to male mice exposed at the late time point. Overall, we show that cognitive constructs relevant to schizophrenia are altered by in utero exposure to maternal immune activation, but are highly dependent on the timing of infection and the sex of the offspring. Glutamatergic and epidermal growth factor pathways were similarly altered by MIA in a timing and sex dependent manner, while MIA-induced GABAergic deficits were independent of timing or sex.
Collapse
Affiliation(s)
- J P Nakamura
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - A Schroeder
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - A Gibbons
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - S Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia; Mental Health Program, Monash Health, Clayton, VIC 3168, Australia
| | - R A Hill
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|
127
|
Rey CC, Robert V, Bouisset G, Loisy M, Lopez S, Cattaud V, Lejards C, Piskorowski RA, Rampon C, Chevaleyre V, Verret L. Altered inhibitory function in hippocampal CA2 contributes in social memory deficits in Alzheimer’s mouse model. iScience 2022; 25:103895. [PMID: 35243253 PMCID: PMC8873612 DOI: 10.1016/j.isci.2022.103895] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/07/2021] [Accepted: 02/07/2022] [Indexed: 11/10/2022] Open
Abstract
Parvalbumin (PV)-expressing interneurons which are often associated with the specific extracellular matrix perineuronal net (PNN) play a critical role in the alteration of brain activity and memory performance in Alzheimer’s disease (AD). The integrity of these neurons is crucial for normal functioning of the hippocampal subfield CA2, and hence, social memory formation. Here, we find that social memory deficits of mouse models of AD are associated with decreased presence of PNN around PV cells and long-term synaptic plasticity in area CA2. Furthermore, single local injection of the growth factor neuregulin-1 (NRG1) is sufficient to restore both PV/PNN levels and social memory performance of these mice. Thus, the PV/PNN disruption in area CA2 could play a causal role in social memory deficits of AD mice, and activating PV cell pro-maturation pathways may be sufficient to restore social memory. Tg2576 mouse model of AD have normal sociability, but cannot form social memory Tg2576 mice have less detectable PV interneurons and PNN in hippocampal area CA2 PV-dependent long-term plasticity is altered in CA2 of Tg2576 mice NRG1 in CA2 increases PV/PNN and restores social memory of these AD mice
Collapse
|
128
|
Li L, Shang L, Kang W, Lingqian D, Ge S. Neuregulin‐1 promotes the proliferation, migration and angiogenesis of human periodontal ligament stem cells
in vitro. Cell Biol Int 2022; 46:792-805. [PMID: 35077607 DOI: 10.1002/cbin.11770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Ling Li
- Department of PeriodontologySchool and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration
- Department of StomatologyLinyi People's HospitalLinyiShandong ProvinceChina
| | - Lingling Shang
- Department of PeriodontologySchool and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration
| | - Wenyan Kang
- Department of PeriodontologySchool and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration
| | - Du Lingqian
- Department of StomatologyThe Second Hospital, Cheeloo College of Medicine, Shandong UniversityJinanShandong ProvinceChina
| | - Shaohua Ge
- Department of PeriodontologySchool and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration
| |
Collapse
|
129
|
NRG1 and NRG2 fusion positive solid tumor malignancies: a paradigm of ligand-fusion oncogenesis. Trends Cancer 2022; 8:242-258. [PMID: 34996744 DOI: 10.1016/j.trecan.2021.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/21/2021] [Accepted: 11/05/2021] [Indexed: 02/06/2023]
Abstract
Neuregulins (NRGs) are a family of six related physiological ligands all containing a receptor-binding epidermal growth factor (EGF)-like domain that mediate their binding to cellular receptors. Neuregulin-1 (NRG1) is the main physiological ligand to HER3. NRG1 fusion (NRG1+) was first reported in a breast cancer cell line and NRG2 fusions have recently been identified in solid tumors. It is postulated that NRG1 fusions, through mostly transmembrane fusion partners, result in NRG1 being concentrated in proximity to HER3, leading to its constitutive activation and oncogenesis. Recently, a monoclonal antibody that disrupts the binding of NRG1 to HER3 and HER3/HER2 heterodimerization has resulted in NRG1+ tumor shrinkage, suggesting that 'ligand-fusion' may be a novel mechanism of oncogenesis.
Collapse
|
130
|
Zhang CY, Xiao X, Zhang Z, Hu Z, Li M. An alternative splicing hypothesis for neuropathology of schizophrenia: evidence from studies on historical candidate genes and multi-omics data. Mol Psychiatry 2022; 27:95-112. [PMID: 33686213 DOI: 10.1038/s41380-021-01037-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/08/2021] [Accepted: 01/22/2021] [Indexed: 01/31/2023]
Abstract
Alternative splicing of schizophrenia risk genes, such as DRD2, GRM3, and DISC1, has been extensively described. Nevertheless, the alternative splicing characteristics of the growing number of schizophrenia risk genes identified through genetic analyses remain relatively opaque. Recently, transcriptomic analyses in human brains based on short-read RNA-sequencing have discovered many "local splicing" events (e.g., exon skipping junctions) associated with genetic risk of schizophrenia, and further molecular characterizations have identified novel spliced isoforms, such as AS3MTd2d3 and ZNF804AE3E4. In addition, long-read sequencing analyses of schizophrenia risk genes (e.g., CACNA1C and NRXN1) have revealed multiple previously unannotated brain-abundant isoforms with therapeutic potentials, and functional analyses of KCNH2-3.1 and Ube3a1 have provided examples for investigating such spliced isoforms in vitro and in vivo. These findings suggest that alternative splicing may be an essential molecular mechanism underlying genetic risk of schizophrenia, however, the incomplete annotations of human brain transcriptomes might have limited our understanding of schizophrenia pathogenesis, and further efforts to elucidate these transcriptional characteristics are urgently needed to gain insights into the illness-correlated brain physiology and pathology as well as to translate genetic discoveries into novel therapeutic targets.
Collapse
Affiliation(s)
- Chu-Yi Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhuohua Zhang
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhonghua Hu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Eye Center of Xiangya Hospital and Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, Hunan, China. .,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
131
|
Molecular Findings Guiding the Modulation of the Endocannabinoid System as a Potential Target to Treat Schizophrenia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1400:89-103. [DOI: 10.1007/978-3-030-97182-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
132
|
Barettino C, Ballesteros-Gonzalez Á, Aylón A, Soler-Sanchis X, Ortí L, Díaz S, Reillo I, García-García F, Iborra FJ, Lai C, Dehorter N, Leinekugel X, Flames N, Del Pino I. Developmental Disruption of Erbb4 in Pet1+ Neurons Impairs Serotonergic Sub-System Connectivity and Memory Formation. Front Cell Dev Biol 2021; 9:770458. [PMID: 34957103 PMCID: PMC8703035 DOI: 10.3389/fcell.2021.770458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/19/2021] [Indexed: 11/30/2022] Open
Abstract
The serotonergic system of mammals innervates virtually all the central nervous system and regulates a broad spectrum of behavioral and physiological functions. In mammals, serotonergic neurons located in the rostral raphe nuclei encompass diverse sub-systems characterized by specific circuitry and functional features. Substantial evidence suggest that functional diversity of serotonergic circuits has a molecular and connectivity basis. However, the landscape of intrinsic developmental mechanisms guiding the formation of serotonergic sub-systems is unclear. Here, we employed developmental disruption of gene expression specific to serotonergic subsets to probe the contribution of the tyrosine kinase receptor ErbB4 to serotonergic circuit formation and function. Through an in vivo loss-of-function approach, we found that ErbB4 expression occurring in a subset of serotonergic neurons, is necessary for axonal arborization of defined long-range projections to the forebrain but is dispensable for the innervation of other targets of the serotonergic system. We also found that Erbb4-deletion does not change the global excitability or the number of neurons with serotonin content in the dorsal raphe nuclei. In addition, ErbB4-deficiency in serotonergic neurons leads to specific behavioral deficits in memory processing that involve aversive or social components. Altogether, our work unveils a developmental mechanism intrinsically acting through ErbB4 in subsets of serotonergic neurons to orchestrate a precise long-range circuit and ultimately involved in the formation of emotional and social memories.
Collapse
Affiliation(s)
- Candela Barettino
- Neural Plasticity Laboratory, Príncipe Felipe Research Center, Valencia, Spain
| | | | - Andrés Aylón
- Neural Plasticity Laboratory, Príncipe Felipe Research Center, Valencia, Spain
| | | | - Leticia Ortí
- Neural Plasticity Laboratory, Príncipe Felipe Research Center, Valencia, Spain
| | - Selene Díaz
- Neural Plasticity Laboratory, Príncipe Felipe Research Center, Valencia, Spain
| | - Isabel Reillo
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, Spain
| | - Francisco García-García
- Bioinformatics and Biostatistics Unit, Príncipe Felipe Research Center (CIPF), Valencia, Spain
| | | | - Cary Lai
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | | | - Xavier Leinekugel
- Institut de Neurobiology de la Méditerranée (INMED, UMR1249), INSERM, Marseille, France
| | - Nuria Flames
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, Spain
| | - Isabel Del Pino
- Neural Plasticity Laboratory, Príncipe Felipe Research Center, Valencia, Spain
| |
Collapse
|
133
|
Lichtensteiger W, Bassetti-Gaille C, Rehrauer H, Georgijevic JK, Tresguerres JAF, Schlumpf M. Converging Effects of Three Different Endocrine Disrupters on Sox and Pou Gene Expression in Developing Rat Hippocampus: Possible Role of microRNA in Sex Differences. Front Genet 2021; 12:718796. [PMID: 34858468 PMCID: PMC8632217 DOI: 10.3389/fgene.2021.718796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
Endocrine disrupting chemicals (EDCs) can impair hippocampus-dependent behaviors in rat offspring and in children. In search for key processes underlying this effect, we compared the transcriptomes of rat hippocampus on postnatal day 6 after gestational and lactational exposure to three different EDCs at doses known to impair development of learning and memory. Aroclor 1254, a commercial PCB mixture (5 mg/kg or 0.5 mg/kg), or bisphenol A (5 mg/kg or 0.5 mg/kg) were administered in chow, chlorpyrifos (3 mg/kg or 1 mg/kg) was injected subcutaneously. Male hippocampus exhibited a common effect of all three chemicals on genes involved in cell-autonomous processes, Sox6, Sox11, Pou2f2/Oct2, and Pou3f2/Brn2, all upregulated at the high dose. Additional genes of the Sox and Pou families were affected by only one or two of the chemicals. Real time RT PCR showed a comparable expression change for bisphenol A also at the lower dose. Female hippocampus exhibited much fewer genes with expression changes (almost none with false discovery rate <0.05), and none of the genes of the Sox and Pou families was affected. Since gene network analyses in male hippocampus suggested a link between Sox6 and miR-24, known to be repressed by activation of ER-alpha and to repress Sox6 in other tissues, this microRNA was measured. miR-24 was downregulated by all chemicals at the high dose in males. Values of Sox6 mRNA and miR-24 were inversely correlated in individual male hippocampus samples, supporting the hypothesis that the change in Sox6 expression resulted from an action of miR-24. In contrast, miR-24 levels remained unchanged in hippocampus of females. A sexually dimorphic response of miR-24 may thus be at the basis of the sex difference in Sox6 expression changes following exposure to the three chemicals. ER-alpha expression was also sex-dependent, but the expression changes did not parallel those of potential downstream genes such as Sox6. Sox6 is known to suppress differentiation of Parvalbumin (Pvalb)-expressing interneurons. Individual Sox6 levels (FPKM) were inversely correlated with levels of Pvalb, but not with markers of Sox6-independent interneuron subpopulations, Nos1 and 5HT3aR. Effects on interneuron development are further suggested, in males, by expression changes of Nrg1 and its receptor Erbb4, controlling interneuron migration. Our study disclosed new types of EDC-responsive morphogenetic genes, and illustrated the potential relevance of microRNAs in sexually dimorphic EDC actions.
Collapse
Affiliation(s)
- Walter Lichtensteiger
- GREEN Tox and Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Catherine Bassetti-Gaille
- GREEN Tox and Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
| | - Jelena Kühn Georgijevic
- Functional Genomics Center, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
| | | | - Margret Schlumpf
- GREEN Tox and Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
134
|
Sustained ErbB Activation Causes Demyelination and Hypomyelination by Driving Necroptosis of Mature Oligodendrocytes and Apoptosis of Oligodendrocyte Precursor Cells. J Neurosci 2021; 41:9872-9890. [PMID: 34725188 PMCID: PMC8638686 DOI: 10.1523/jneurosci.2922-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 09/27/2021] [Accepted: 10/24/2021] [Indexed: 11/26/2022] Open
Abstract
Oligodendrocytes are vulnerable to genetic and environmental insults and its injury leads to demyelinating diseases. The roles of ErbB receptors in maintaining the CNS myelin integrity are largely unknown. Here, we overactivate ErbB receptors that mediate signaling of either neuregulin (NRG) or epidermal growth factor (EGF) family growth factors and found their synergistic activation caused deleterious outcomes in white matter. Sustained ErbB activation induced by the tetracycline-dependent mouse tool Plp-tTA resulted in demyelination, axonal degeneration, oligodendrocyte precursor cell (OPC) proliferation, astrogliosis, and microgliosis in white matter. Moreover, there was hypermyelination before these inflammatory pathologic events. In contrast, sustained ErbB activation induced by another tetracycline-dependent mouse tool Sox10+/rtTA caused hypomyelination in the corpus callosum and optic nerve, which appeared to be a developmental deficit and did not associate with OPC regeneration, astrogliosis, or microgliosis. By tracing the differentiation states of cells expressing tetracycline-controlled transcriptional activator (tTA)/reverse tTA (rtTA)-dependent transgene or pulse-labeled reporter proteins in vitro and in vivo, we found that Plp-tTA targeted mainly mature oligodendrocytes (MOs), whereas Sox10+/rtTA targeted OPCs and newly-formed oligodendrocytes (NFOs). The distinct phenotypes of mice with ErbB overactivation induced by Plp-tTA and Sox10+/rtTA consolidated their nonoverlapping targeting preferences in the oligodendrocyte lineage, and enabled us to demonstrate that ErbB overactivation in MOs induced necroptosis that caused inflammatory demyelination, whereas in OPCs induced apoptosis that caused noninflammatory hypomyelination. Early interference with aberrant ErbB activation ceased oligodendrocyte deaths and restored myelin development in both mice. This study suggests that aberrant ErbB activation is an upstream pathogenetic mechanism of demyelinating diseases, providing a potential therapeutic target. SIGNIFICANCE STATEMENT Primary oligodendropathy is one of the etiologic mechanisms for multiple sclerosis, and oligodendrocyte necroptosis is a pathologic hallmark in the disease. Moreover, the demyelinating disease is now a broad concept that embraces schizophrenia, in which white matter lesions are an emerging feature. ErbB overactivation has been implicated in schizophrenia by genetic analysis and postmortem studies. This study suggests the etiologic implications of ErbB overactivation in myelin pathogenesis and elucidates the pathogenetic mechanisms.
Collapse
|
135
|
Zhang Y, Yao L, Li X, Meng M, Shang Z, Wang Q, Xiao J, Gu X, Xu Z, Zhang X. Schizophrenia risk-gene Crmp2 deficiency causes precocious critical period plasticity and deteriorated binocular vision. Sci Bull (Beijing) 2021; 66:2225-2237. [PMID: 36654114 DOI: 10.1016/j.scib.2021.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/15/2020] [Accepted: 01/29/2021] [Indexed: 02/03/2023]
Abstract
Brain-specific loss of a microtubule-binding protein collapsin response mediator protein-2 (CRMP2) in the mouse recapitulates many schizophrenia-like behaviors of human patients, possibly resulting from associated developmental deficits in neuronal differentiation, path-finding, and synapse formation. However, it is still unclear how the Crmp2 loss affects neuronal circuit function and plasticity. By conducting in vivo and ex vivo electrophysiological recording in the mouse primary visual cortex (V1), we reveal that CRMP2 exerts a key regulation on the timing of postnatal critical period (CP) for experience-dependent circuit plasticity of sensory cortex. In the developing V1, the Crmp2 deficiency induces not only a delayed maturation of visual tuning functions but also a precocious CP for visual input-induced ocular dominance plasticity and its induction activity - coincident binocular inputs right after eye-opening. Mechanistically, the Crmp2 deficiency accelerates the maturation process of cortical inhibitory transmission and subsequently promotes an early emergence of balanced excitatory-inhibitory cortical circuits during the postnatal development. Moreover, the precocious CP plasticity results in deteriorated binocular depth perception in adulthood. Thus, these findings suggest that the Crmp2 deficiency dysregulates the timing of CP for experience-dependent refinement of circuit connections and further leads to impaired sensory perception in later life.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Li Yao
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xiang Li
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Meizhen Meng
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Ziwei Shang
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qin Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiaying Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiang Gu
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience & Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
136
|
Verhoef E, Grove J, Shapland CY, Demontis D, Burgess S, Rai D, Børglum AD, St Pourcain B. Discordant associations of educational attainment with ASD and ADHD implicate a polygenic form of pleiotropy. Nat Commun 2021; 12:6534. [PMID: 34764245 PMCID: PMC8586371 DOI: 10.1038/s41467-021-26755-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/08/2021] [Indexed: 11/18/2022] Open
Abstract
Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) are complex co-occurring neurodevelopmental conditions. Their genetic architectures reveal striking similarities but also differences, including strong, discordant polygenic associations with educational attainment (EA). To study genetic mechanisms that present as ASD-related positive and ADHD-related negative genetic correlations with EA, we carry out multivariable regression analyses using genome-wide summary statistics (N = 10,610-766,345). Our results show that EA-related genetic variation is shared across ASD and ADHD architectures, involving identical marker alleles. However, the polygenic association profile with EA, across shared marker alleles, is discordant for ASD versus ADHD risk, indicating independent effects. At the single-variant level, our results suggest either biological pleiotropy or co-localisation of different risk variants, implicating MIR19A/19B microRNA mechanisms. At the polygenic level, they point to a polygenic form of pleiotropy that contributes to the detectable genome-wide correlation between ASD and ADHD and is consistent with effect cancellation across EA-related regions.
Collapse
Affiliation(s)
- Ellen Verhoef
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- International Max Planck Research School for Language Sciences, Nijmegen, The Netherlands
| | - Jakob Grove
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Department of Biomedicine (Human Genetics) and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Chin Yang Shapland
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Ditte Demontis
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Department of Biomedicine (Human Genetics) and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Dheeraj Rai
- Centre for Academic Mental Health, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Biomedical Research Centre, University of Bristol, Bristol, UK
- Avon and Wiltshire Partnership NHS Mental Health Trust, Bristol, UK
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Department of Biomedicine (Human Genetics) and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Beate St Pourcain
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Centre for Academic Mental Health, Bristol Medical School, University of Bristol, Bristol, UK.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
137
|
Peterson AR, Garcia TA, Ford BD, Binder DK. Regulation of NRG-1-ErbB4 signaling and neuroprotection by exogenous neuregulin-1 in a mouse model of epilepsy. Neurobiol Dis 2021; 161:105545. [PMID: 34742879 DOI: 10.1016/j.nbd.2021.105545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/27/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy. Dysregulation of glutamate transporters has been a common finding across animal models of epilepsy and in patients with TLE. In this study, we investigate NRG-1/ErbB4 signaling in epileptogenesis and the neuroprotective effects of NRG-1 treatment in a mouse model of temporal lobe epilepsy. Using immunohistochemistry, we report the first evidence for NRG-1/ErbB4-dependent selective upregulation of glutamate transporter EAAC1 and bihemispheric neuroprotection by exogeneous NRG-1 in the intrahippocampal kainic acid (IHKA) model of TLE. Our findings provide evidence that dysregulation of glutamate transporter EAAC1 contributes to the development of epilepsy and can be therapeutically targeted to reduce neuronal death following IHKA-induced status epilepticus (SE).
Collapse
Affiliation(s)
- Allison R Peterson
- Division of Biomedical Sciences, School of Medicine, Center for Glial-Neuronal Interactions, University of California, Riverside, CA, USA
| | - Terese A Garcia
- Division of Biomedical Sciences, School of Medicine, Center for Glial-Neuronal Interactions, University of California, Riverside, CA, USA
| | - Byron D Ford
- Division of Biomedical Sciences, School of Medicine, Center for Glial-Neuronal Interactions, University of California, Riverside, CA, USA
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, Center for Glial-Neuronal Interactions, University of California, Riverside, CA, USA.
| |
Collapse
|
138
|
Dowsett GKC, Lam BYH, Tadross JA, Cimino I, Rimmington D, Coll AP, Polex-Wolf J, Knudsen LB, Pyke C, Yeo GSH. A survey of the mouse hindbrain in the fed and fasted states using single-nucleus RNA sequencing. Mol Metab 2021; 53:101240. [PMID: 33962048 PMCID: PMC8170503 DOI: 10.1016/j.molmet.2021.101240] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/17/2021] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE The area postrema (AP) and nucleus tractus solitarius (NTS) located in the hindbrain are key nuclei that sense and integrate peripheral nutritional signals and consequently regulate feeding behaviour. While single-cell transcriptomics have been used in mice to reveal the gene expression profile and heterogeneity of key hypothalamic populations, similar in-depth studies have not yet been performed in the hindbrain. METHODS Using single-nucleus RNA sequencing, we provide a detailed survey of 16,034 cells within the AP and NTS of mice in the fed and fasted states. RESULTS Of these, 8,910 were neurons that group into 30 clusters, with 4,289 from mice fed ad libitum and 4,621 from overnight fasted mice. A total of 7,124 nuclei were from non-neuronal cells, including oligodendrocytes, astrocytes, and microglia. Interestingly, we identified that the oligodendrocyte population was particularly transcriptionally sensitive to an overnight fast. The receptors GLP1R, GIPR, GFRAL, and CALCR, which bind GLP1, GIP, GDF15, and amylin, respectively, are all expressed in the hindbrain and are major targets for anti-obesity therapeutics. We characterise the transcriptomes of these four populations and show that their gene expression profiles are not dramatically altered by an overnight fast. Notably, we find that roughly half of cells that express GIPR are oligodendrocytes. Additionally, we profile POMC-expressing neurons within the hindbrain and demonstrate that 84% of POMC neurons express either PCSK1, PSCK2, or both, implying that melanocortin peptides are likely produced by these neurons. CONCLUSION We provide a detailed single-cell level characterisation of AP and NTS cells expressing receptors for key anti-obesity drugs that are either already approved for human use or in clinical trials. This resource will help delineate the mechanisms underlying the effectiveness of these compounds and also prove useful in the continued search for other novel therapeutic targets.
Collapse
Affiliation(s)
- Georgina K C Dowsett
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| | - Brian Y H Lam
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| | - John A Tadross
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK; Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK.
| | - Irene Cimino
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| | - Debra Rimmington
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| | - Anthony P Coll
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| | | | | | - Charles Pyke
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark.
| | - Giles S H Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
139
|
Das B, Singh N, Yao AY, Zhou J, He W, Hu X, Yan R. BACE1 controls synaptic function through modulating release of synaptic vesicles. Mol Psychiatry 2021; 26:6394-6410. [PMID: 34158621 PMCID: PMC8760050 DOI: 10.1038/s41380-021-01166-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 01/20/2023]
Abstract
BACE1 initiates production of β-amyloid peptides (Aβ), which is associated with cognitive dysfunction in Alzheimer's disease (AD) due to abnormal oligomerization and aggregation. While BACE1 inhibitors show strong reduction in Aβ deposition, they fail to improve cognitive function in patients, largely due to its role in synaptic function. We show that BACE1 is required for optimal release of synaptic vesicles. BACE1 deficiency or inhibition decreases synaptic vesicle docking in the synaptic active zones. Consistently, BACE1-null mice or mice treated with clinically tested BACE1 inhibitors Verubecestat and Lanabecestat exhibit severe reduction in hippocampal LTP and learning behaviors. To counterbalance this synaptic deficit, we discovered that BACE1-null mice treated with positive allosteric modulators (PAMs) of metabotropic glutamate receptor 1 (mGluR1), whose levels were reduced in BACE1-null mice and significantly improved long-term potentiation and cognitive behaviors. Similarly, mice treated with mGluR1 PAM showed significantly mitigated synaptic deficits caused by BACE1 inhibitors. Together, our data suggest that a therapy combining BACE1 inhibitors for reducing amyloid deposition and an mGluR1 PAM for counteracting BACE1-mediated synaptic deficits appears to be an effective approach for treating AD patients.
Collapse
Affiliation(s)
- Brati Das
- Department of Neuroscience, UConn Health, Farmington, CT, USA
| | - Neeraj Singh
- Department of Neuroscience, UConn Health, Farmington, CT, USA
| | - Annie Y Yao
- Department of Neuroscience, UConn Health, Farmington, CT, USA
| | - John Zhou
- Department of Neuroscience, UConn Health, Farmington, CT, USA
| | - Wanxia He
- Department of Neuroscience, UConn Health, Farmington, CT, USA
| | - Xiangyou Hu
- Department of Neuroscience, UConn Health, Farmington, CT, USA
| | - Riqiang Yan
- Department of Neuroscience, UConn Health, Farmington, CT, USA.
| |
Collapse
|
140
|
The role of microRNAs in diseases and related signaling pathways. Mol Biol Rep 2021; 49:6789-6801. [PMID: 34718938 DOI: 10.1007/s11033-021-06725-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/27/2021] [Indexed: 10/19/2022]
Abstract
MicroRNAs (miRNAs) are epigenetic regulators of the gene expression and act through posttranslational modification. They bind to 3'-UTR of target mRNAs to inhibit translation or increase the degradation mRNA in many tissues. Any alteration in the level of miRNA expression in many human diseases indicates their involvement in the pathogenesis of many diseases. On the other hand, the regulation of the signaling pathways is necessary for the maintenance of natural and physiological characteristics of any cell. It is worth mentioning that dysfunction of the signaling pathways manifests itself as a disorder or disease. The significant evidence report that miRNAs regulate the several signaling pathways in many diseases. Base on previous studies, miRNAs can be used for therapeutic or diagnostic purposes. According to the important role of miRNAs on the cell signaling pathways, this article reviews miRNAs involvement in incidence of diseases by changing signaling pathways.
Collapse
|
141
|
Okubo Y, Ohtake F, Igarashi K, Yasuhiko Y, Hirabayashi Y, Saga Y, Kanno J. Cleaved Delta like 1 intracellular domain regulates neural development via Notch signal-dependent and -independent pathways. Development 2021; 148:272156. [PMID: 34519339 PMCID: PMC8513606 DOI: 10.1242/dev.193664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/06/2021] [Indexed: 11/20/2022]
Abstract
Notch-Delta signaling regulates many developmental processes, including tissue homeostasis and maintenance of stem cells. Upon interaction of juxtaposed cells via Notch and Delta proteins, intracellular domains of both transmembrane proteins are cleaved and translocate to the nucleus. Notch intracellular domain activates target gene expression; however, the role of the Delta intracellular domain remains elusive. Here, we show the biological function of Delta like 1 intracellular domain (D1ICD) by modulating its production. We find that the sustained production of D1ICD abrogates cell proliferation but enhances neurogenesis in the developing dorsal root ganglia (DRG), whereas inhibition of D1ICD production promotes cell proliferation and gliogenesis. D1ICD acts as an integral component of lateral inhibition mechanism by inhibiting Notch activity. In addition, D1ICD promotes neurogenesis in a Notch signaling-independent manner. We show that D1ICD binds to Erk1/2 in neural crest stem cells and inhibits the phosphorylation of Erk1/2. In summary, our results indicate that D1ICD regulates DRG development by modulating not only Notch signaling but also the MAP kinase pathway.
Collapse
Affiliation(s)
- Yusuke Okubo
- Division of Cellular and Molecular Toxicology, Center for Biological Safety & Research, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Fumiaki Ohtake
- Division of Cellular and Molecular Toxicology, Center for Biological Safety & Research, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.,Institute for Advanced Life Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Katsuhide Igarashi
- Division of Cellular and Molecular Toxicology, Center for Biological Safety & Research, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.,Life Science Tokyo Advanced Research center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Science, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yukuto Yasuhiko
- Division of Cellular and Molecular Toxicology, Center for Biological Safety & Research, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Yoko Hirabayashi
- Division of Cellular and Molecular Toxicology, Center for Biological Safety & Research, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Yumiko Saga
- Division of Mammalian Development, National Institute of Genetics, Yata 1111, Mishima 411-8540, Japan.,Department of Biological Science, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Jun Kanno
- Division of Cellular and Molecular Toxicology, Center for Biological Safety & Research, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| |
Collapse
|
142
|
Extracellular Vesicle-Encapsulated miR-183-5p from Rhynchophylline-Treated H9c2 Cells Protect against Methamphetamine-Induced Dependence in Mouse Brain by Targeting NRG1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2136076. [PMID: 34484386 PMCID: PMC8416368 DOI: 10.1155/2021/2136076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/27/2021] [Accepted: 08/17/2021] [Indexed: 12/31/2022]
Abstract
Methamphetamine (Meth) is a highly addictive substance and the largest drug threat across the globe. There is evidence to indicate that Meth use has serious damage on central nervous system (CNS) and heart in several animal and human studies. However, the connection in the process of Meth addiction between these two systems has not been determined. Emerging data suggest that extracellular vesicles (EVs) carrying behavior-altering microRNA (miRNAs) play a crucial role in cell communication between CNS and peripheral system. Rhynchophylline (Rhy), an antiaddictive alkaloid, was used to protect the brain and heart from Meth-induced damage, which has caught our attention. Here, we used Meth-dependent conditioned place preference (CPP) animal model and cell model to verify the protective effect of Rhy-treated EVs. Further, small RNA sequencing analysis, qPCR, dual-luciferase reporter assay, and transfection test were used to identify the key EVs-encapsulated miRNAs, isolated from cultured H9c2 cells with different treatments, involved in the therapeutic effect and the underlying mechanisms of Rhy. The results demonstrate that Rhy-treated EVs exert protective effects against Meth dependence through the pathway of miR-183-5p-neuregulin-1 (NRG1). Our collective findings provide novel insights into the roles of EVs miRNAs in Meth addiction and support their potential application in the development of novel therapeutic approaches.
Collapse
|
143
|
Cao Q, Wei Y, Deng J, Li J, Huang Y, Li Y, Zhang JC, Zhang Z, Lin S. NRG1 accelerates the forgetting of fear memories and facilitates the induction of long-term depression in adult mice. Psychopharmacology (Berl) 2021; 238:2535-2542. [PMID: 34189597 DOI: 10.1007/s00213-021-05877-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/17/2021] [Indexed: 11/26/2022]
Abstract
RATIONALE Forgetting of fear memory is a current medical therapy for posttraumatic stress disorder (PTSD), and hippocampal long-term depression (LTD) may be the underlying mechanism. Neuregulin 1 (NRG1), a trophic factor, reportedly modulates memory consolidation and synaptic plasticity. METHODS Fear memory was assessed using contextual fear conditioning. Electrophysiology was used to measure LTD and GABAergic transmission in the hippocampus. OBJECTIVES To determine the contribution of hippocampal NRG1 to fear memory forgetting and low-frequency stimulation (LFS)-induced LTD. RESULTS Administration of NRG1 in the hippocampus accelerated forgetting of contextual fear memories. Furthermore, NRG1 had no effect on low-frequency stimulation-induced LTD in young mice but significantly facilitated the induction of LTD and GABAergic transmission in adult animals. More importantly, NRG1-facilitated LTD induction in adult mice could be blocked by inhibition of GABAA receptors and NMDAR activation. CONCLUSION These findings suggest a role for NRG1 in fear memory forgetting and hippocampal LTD, providing a potential target for the development of drug-assisted PTSD therapy.
Collapse
Affiliation(s)
- Qianqian Cao
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yuan Wei
- Center for Scientific Research and Institute of Exercise and Health, Guangzhou Sports University, Guangzhou, 510500, China
| | - Jialin Deng
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Junfeng Li
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yanhua Huang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yuke Li
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Ji-Chun Zhang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zili Zhang
- Department of Reproductive Medicine Center, The First People's Hospital of Foshan (Affiliated FoShan Hospital of Sun Yat-Sen University), Foshan, China.
| | - Song Lin
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
144
|
Mitroshina EV, Savyuk MO, Ponimaskin E, Vedunova MV. Hypoxia-Inducible Factor (HIF) in Ischemic Stroke and Neurodegenerative Disease. Front Cell Dev Biol 2021; 9:703084. [PMID: 34395432 PMCID: PMC8355741 DOI: 10.3389/fcell.2021.703084] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/05/2021] [Indexed: 01/09/2023] Open
Abstract
Hypoxia is one of the most common pathological conditions, which can be induced by multiple events, including ischemic injury, trauma, inflammation, tumors, etc. The body's adaptation to hypoxia is a highly important phenomenon in both health and disease. Most cellular responses to hypoxia are associated with a family of transcription factors called hypoxia-inducible factors (HIFs), which induce the expression of a wide range of genes that help cells adapt to a hypoxic environment. Basic mechanisms of adaptation to hypoxia, and particularly HIF functions, have being extensively studied over recent decades, leading to the 2019 Nobel Prize in Physiology or Medicine. Based on their pivotal physiological importance, HIFs are attracting increasing attention as a new potential target for treating a large number of hypoxia-associated diseases. Most of the experimental work related to HIFs has focused on roles in the liver and kidney. However, increasing evidence clearly demonstrates that HIF-based responses represent an universal adaptation mechanism in all tissue types, including the central nervous system (CNS). In the CNS, HIFs are critically involved in the regulation of neurogenesis, nerve cell differentiation, and neuronal apoptosis. In this mini-review, we provide an overview of the complex role of HIF-1 in the adaptation of neurons and glia cells to hypoxia, with a focus on its potential involvement into various neuronal pathologies and on its possible role as a novel therapeutic target.
Collapse
Affiliation(s)
- Elena V. Mitroshina
- Department of Neurotechnologe, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | - Maria O. Savyuk
- Department of Neurotechnologe, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | - Evgeni Ponimaskin
- Department of Neurotechnologe, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
- Department of Cellular Neurophysiology, Hannover Medical School, Hanover, Germany
| | - Maria V. Vedunova
- Department of Neurotechnologe, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
145
|
Asede D, Okoh J, Ali S, Doddapaneni D, Bolton MM. Deletion of ErbB4 Disrupts Synaptic Transmission and Long-Term Potentiation of Thalamic Input to Amygdalar Medial Paracapsular Intercalated Cells. Front Synaptic Neurosci 2021; 13:697110. [PMID: 34393751 PMCID: PMC8355744 DOI: 10.3389/fnsyn.2021.697110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/08/2021] [Indexed: 11/20/2022] Open
Abstract
Identification of candidate risk genes and alteration in the expression of proteins involved in regulating inhibitory neuron function in various psychiatric disorders, support the notion that GABAergic neuron dysfunction plays an important role in disease etiology. Genetic variations in neuregulin and its receptor kinase ErbB4, expressed exclusively by GABAergic neurons in the CNS, have been linked with schizophrenia. In the amygdala, ErbB4 is highly expressed in GABAergic intercalated cell clusters (ITCs), which play a critical role in amygdala-dependent behaviors. It is however unknown whether ErbB4 deletion from ITCs affects their synaptic properties and function in amygdala circuitry. Here, we examined the impact of ErbB4 deletion on inhibitory and excitatory circuits recruiting medial paracapsular ITCs (mpITCs) using electrophysiological techniques. Ablation of ErbB4 in mpITCs suppressed NMDA receptor-mediated synaptic transmission at thalamo-mpITC synapses and enhanced thalamic driven GABAergic transmission onto mpITCs. Furthermore, long-term potentiation (LTP) at thalamo-mpITC synapses was compromised in ErbB4 mutant mice, indicating that ErbB4 activity is critical for LTP at these synapses. Together, our findings suggest that ErbB4 deletion from mpITCs disrupts excitation-inhibition balance and learning mechanisms in amygdala circuits.
Collapse
Affiliation(s)
- Douglas Asede
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, FL, United States
| | - James Okoh
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, FL, United States
| | - Sabah Ali
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, FL, United States
| | - Divyesh Doddapaneni
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, FL, United States
| | - M McLean Bolton
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, FL, United States
| |
Collapse
|
146
|
Kara HG, Erdal ME, Yılmaz SG, Şengül C, Şengül CB, Karakülah K. Association of NRG3 and ERBB4 gene polymorphism with nicotine dependence in Turkish population. Mol Biol Rep 2021; 48:5319-5326. [PMID: 34247340 DOI: 10.1007/s11033-021-06548-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/06/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Nicotine dependence (ND) is characterized by regular smoking, anxiety, irritation, difficulty concentrating, impatience, restlessness, tremor, dizziness, hunger, nicotine demand, and the individual's reluctance to quit despite knowing the health risks of smoking. Recently, it has been reported that the Neuregulin 3 (NRG3)/Erb-B2 receptor tyrosine kinase 4 (ERBB4) signaling pathway plays a role in ND. NRG3, which is activated after nicotine intake, binds to ERBB4 and causes GABA release. GABA reduces anxiety and tension, which are one of the nicotine withdrawal symptoms. Therefore we aimed to investigate the relationship between NRG3 and ERBB4 gene polymorphisms and ND. MATERIALS AND METHODS The study population was comprised of patients with ND (n = 200) and healthy non-smoker control subjects (n = 200) who were matched for age, sex, and compared for comorbidity factors such as alcohol, smoking, duration, and education (age range 18-60). Genotypes were detected by Real-Time PCR using TaqMan technology. The Fagerström Nicotine Dependence Test (FTND) score was 5 and above for the patient group and 0 for the control group. DNA was obtained from whole peripheral blood and six polymorphisms of Neuregulin 3 (NRG3) (rs1836724, rs7562566, and rs10048757) and Erb-B2 Receptor Tyrosine Kinase 4 (ERBB4) (rs1764072, rs6584400, and rs10883934) genes were analyzed by real-time PCR method. RESULTS Our findings show that the six selected SNPs are not significantly associated with ND in the Turkish population and no correlation with dependence levels (p > 0.05). CONCLUSION Although our findings do not show a relationship between ND and these polymorphisms, it is the first study to investigate these single nucleotide polymorphisms (SNPs) for the first time in ND and to find some genotypes in the Turkish population when compared to other populations. Also, our findings are important in terms of their contribution to the literature and forensic genetics.
Collapse
Affiliation(s)
- Hale Güler Kara
- Department of Medical Biology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey.
- Unye State Hospital, Ordu, Turkey.
| | - Mehmet Emin Erdal
- Department of Medical Biology, Faculty of Medicine, Mersin University, 33343, Mersin, Turkey
- Unye State Hospital, Ordu, Turkey
| | - Senay Görücü Yılmaz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gaziantep University, Gaziantep, Turkey
- Unye State Hospital, Ordu, Turkey
| | - Cem Şengül
- Psychiatry Clinic, Denizli, Turkey
- Unye State Hospital, Ordu, Turkey
| | | | | |
Collapse
|
147
|
Zhang H, Zhang L, Zhou D, Li H, Xu Y. ErbB4 mediates amyloid β-induced neurotoxicity through JNK/tau pathway activation: Implications for Alzheimer's disease. J Comp Neurol 2021; 529:3497-3512. [PMID: 34212389 DOI: 10.1002/cne.25207] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/13/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022]
Abstract
Accumulation of amyloid β (Aβ) in the brain is a hallmark of Alzheimer's disease (AD). We previously showed that ErbB4 in parvalbumin (PV)-positive interneurons was associated with Aβ-induced cognitive deficits; however, the underlying mechanism remains undetermined. Here we found that specific deletion of ErbB4 in PV neurons significantly attenuated oligomeric Aβ-induced neuronal toxicity and inhibited Aβ-induced decreases of PSD95 and synaptophysin. Moreover, specific ablation of ErbB4 in PV neurons altered activity-related protein c-Fos and decreased hippocampal PV neurons, especially in the dentate gyrus (DG) of hAPP-J20 mice. Furthermore, c-Jun N-terminal kinase (JNK), a protein downstream of ErbB4, was activated by Aβ but not ErbB4's ligand neuregulin 1 (NRG1) β1, suggesting different downstream pathways for Aβ and NRG1β1. JNK phosphorylation was inhibited by the ErbB4 inhibitor AG1478 and by pretreatment with NRG1β1. More importantly, siRNA knockdown of ErbB4 decreased JNK phosphorylation and expression, tau phosphorylation at Ser396 and Thr 205, and Bax expression. Therefore, ErbB4 might mediate Aβ-induced neuropathology through the JNK/tau pathway and represent a potential therapeutic target in patients with AD.
Collapse
Affiliation(s)
- Heng Zhang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China.,Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of MOH, Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Zhang
- Department of Neurobiology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of MOH, Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongming Zhou
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongfei Li
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Yang Xu
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| |
Collapse
|
148
|
Kohrman D, Borges BC, Cassinotti L, Ji L, Corfas G. Axon-glia interactions in the ascending auditory system. Dev Neurobiol 2021; 81:546-567. [PMID: 33561889 PMCID: PMC9004231 DOI: 10.1002/dneu.22813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/25/2020] [Accepted: 02/05/2021] [Indexed: 11/09/2022]
Abstract
The auditory system detects and encodes sound information with high precision to provide a high-fidelity representation of the environment and communication. In mammals, detection occurs in the peripheral sensory organ (the cochlea) containing specialized mechanosensory cells (hair cells) that initiate the conversion of sound-generated vibrations into action potentials in the auditory nerve. Neural activity in the auditory nerve encodes information regarding the intensity and frequency of sound stimuli, which is transmitted to the auditory cortex through the ascending neural pathways. Glial cells are critical for precise control of neural conduction and synaptic transmission throughout the pathway, allowing for the precise detection of the timing, frequency, and intensity of sound signals, including the sub-millisecond temporal fidelity is necessary for tasks such as sound localization, and in humans, for processing complex sounds including speech and music. In this review, we focus on glia and glia-like cells that interact with hair cells and neurons in the ascending auditory pathway and contribute to the development, maintenance, and modulation of neural circuits and transmission in the auditory system. We also discuss the molecular mechanisms of these interactions, their impact on hearing and on auditory dysfunction associated with pathologies of each cell type.
Collapse
Affiliation(s)
- David Kohrman
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Beatriz C. Borges
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Luis Cassinotti
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Lingchao Ji
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Gabriel Corfas
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| |
Collapse
|
149
|
Chambliss C, Richardson T, Onyekaba J, Cespedes J, Nti A, Harp KO, Buchanan-Perry I, Stiles JK, Gee BE. Elevated neuregulin-1 β levels correlate with plasma biomarkers of cerebral injury and high stroke risk in children with sickle cell anemia. ENDOCRINE AND METABOLIC SCIENCE 2021; 3:100088. [PMID: 35935682 PMCID: PMC9351492 DOI: 10.1016/j.endmts.2021.100088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Stroke, or cerebral infarction, is one of the most serious complications of sickle cell anemia (SCA) in childhood, potentially leading to impaired development and life-long physical and cognitive disabilities. About one in ten children with SCA are at risk for developing overt stroke and an additional 25% may develop silent cerebral infarcts. This is largely due to underlying cerebral injury caused by chronic cerebral ischemia and vascular insult associated with SCA. We previously identified two elevated markers of cerebral injury, plasma brain-derived neurotropic factor (BDNF) and platelet-derived growth factor (PDGF)-AA, in children with SCA and high stroke risk. The objective of this study was to investigate whether neuregulin-1β (NRG-1), an endogenous neuroprotective polypeptide may also be elevated in children with SCA. Neuregulin-1β is involved in the preservation of blood brain barrier integrity and brain microvascular cell viability and is cytoprotective in conditions of heme-induced injury and ischemia. Since elevated plasma heme and ischemia are signature characteristics of SCA, we hypothesized that NRG-1 would be elevated in children with SCA, and that NRG-1 levels would also correlate with our biomarkers of cerebral injury. Plasma NRG-1, BDNF and PDGF-AA levels were measured in children with SCA and healthy Controls. Plasma NRG-1 was found to be nearly five-fold higher in those children with SCA compared to Controls. Neuregulin-1β was also positively correlated with both BDNF and PDGF-AA concentrations, but was not associated with degree of anemia, suggesting that NRG-1 production may be an endogenous response to subclinical cerebral ischemia in SCA warranting further exploration.
Collapse
Affiliation(s)
- Christopher Chambliss
- Cardiovascular Research Institute, Morehouse School of Medicine; 720 Westview Drive SW, Atlanta, GA 30310, USA
| | | | - John Onyekaba
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine; 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Juan Cespedes
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine; 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Annette Nti
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine; 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Keri Oxendine Harp
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine; 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Iris Buchanan-Perry
- Department of Pediatrics, Morehouse School of Medicine; 720 Westview Drive SW, Atlanta, GA 30310, USA
- Children’s Healthcare of Atlanta; 35 Jesse Hill Jr Drive SE, Atlanta, GA, 30303, USA
| | - Jonathan K. Stiles
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine; 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Beatrice E. Gee
- Department of Pediatrics, Morehouse School of Medicine; 720 Westview Drive SW, Atlanta, GA 30310, USA
- Children’s Healthcare of Atlanta; 35 Jesse Hill Jr Drive SE, Atlanta, GA, 30303, USA
- Aflac Cancer and Blood Disorders Center; 2015 Uppergate Drive, Atlanta, GA 30322, USA
- Pediatrics Institute, Emory University School of Medicine; 2015 Uppergate Drive, Atlanta, GA, 30322, USA
| |
Collapse
|
150
|
Luo B, Liu Z, Lin D, Chen W, Ren D, Yu Z, Xiong M, Zhao C, Fei E, Li B. ErbB4 promotes inhibitory synapse formation by cell adhesion, independent of its kinase activity. Transl Psychiatry 2021; 11:361. [PMID: 34226493 PMCID: PMC8257755 DOI: 10.1038/s41398-021-01485-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
The precise control of the nervous system function under the vitality of synapses is extremely critical. Efforts have been taken to explore the underlying cellular and molecular mechanisms for synapse formation. Cell adhesion molecules have been found important for synapse assembly in the brain. Many trans-adhesion complexes have been identified to modulate excitatory synapse formation. However, little is known about the synaptogenic mechanisms for inhibitory synapses. ErbB4 is a receptor tyrosine kinase enriched in interneurons. Here, we showed that overexpressing ErbB4 in HEK293T cells induced gephyrin or GABAAR α1 puncta in co-cultured primary hippocampal neurons. This induction of ErbB4 was independent of its kinase activity. K751M, a kinase-dead mutant of ErbB4, can also induce gephyrin or GABAAR α1 puncta in the co-culture system. We further constructed K751M knock-in mice and found that the homozygous were viable at birth and fertile without changes in gross brain structure. The number of interneurons and inhibitory synapses onto pyramidal neurons (PyNs) were comparable between K751M and wild-type mice but decreased in ErbB4-Null mice. Moreover, ErbB4 can interact in trans with Slitrk3, a transmembrane postsynaptic protein at inhibitory synapses, through the extracellular RLD domain of ErbB4. The deletion of RLD diminished the induction of gephyrin or GABAAR α1 puncta by ErbB4. Finally, disruption of ErbB4-Slitrk3 interaction through neutralization of Slitrk3 by secretable RLD decreased inhibitory synapses onto PyNs and impaired GABAergic transmission. These results identify that ErbB4, as a cell adhesion molecule, promotes inhibitory synapse formation onto PyNs by interacting with Slitrk3 and in a kinase-independent manner, providing an unexpected mechanism of ErbB4 in inhibitory synapse formation.
Collapse
Affiliation(s)
- Bin Luo
- grid.260463.50000 0001 2182 8825School of Life Sciences, Nanchang University, Nanchang, China ,grid.260463.50000 0001 2182 8825Institute of Life Science, Nanchang University, Nanchang, China
| | - Ziyang Liu
- grid.260463.50000 0001 2182 8825School of Life Sciences, Nanchang University, Nanchang, China ,grid.260463.50000 0001 2182 8825Institute of Life Science, Nanchang University, Nanchang, China
| | - Dong Lin
- grid.260463.50000 0001 2182 8825School of Life Sciences, Nanchang University, Nanchang, China ,grid.260463.50000 0001 2182 8825Institute of Life Science, Nanchang University, Nanchang, China
| | - Wenbing Chen
- grid.260463.50000 0001 2182 8825School of Life Sciences, Nanchang University, Nanchang, China ,grid.260463.50000 0001 2182 8825Institute of Life Science, Nanchang University, Nanchang, China
| | - Dongyan Ren
- grid.260463.50000 0001 2182 8825School of Life Sciences, Nanchang University, Nanchang, China ,grid.260463.50000 0001 2182 8825Institute of Life Science, Nanchang University, Nanchang, China
| | - Zheng Yu
- grid.260463.50000 0001 2182 8825Institute of Life Science, Nanchang University, Nanchang, China
| | - Mingtao Xiong
- grid.260463.50000 0001 2182 8825School of Life Sciences, Nanchang University, Nanchang, China ,grid.260463.50000 0001 2182 8825Institute of Life Science, Nanchang University, Nanchang, China
| | - Changqin Zhao
- grid.260463.50000 0001 2182 8825School of Life Sciences, Nanchang University, Nanchang, China ,grid.260463.50000 0001 2182 8825Institute of Life Science, Nanchang University, Nanchang, China
| | - Erkang Fei
- School of Life Sciences, Nanchang University, Nanchang, China. .,Institute of Life Science, Nanchang University, Nanchang, China.
| | - Baoming Li
- School of Life Sciences, Nanchang University, Nanchang, China. .,Institute of Life Science, Nanchang University, Nanchang, China. .,Department of Psychology and Institute of Brain Science, School of Education, Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|