101
|
Falkner AL, Wei D, Song A, Watsek LW, Chen I, Chen P, Feng JE, Lin D. Hierarchical Representations of Aggression in a Hypothalamic-Midbrain Circuit. Neuron 2020; 106:637-648.e6. [PMID: 32164875 PMCID: PMC7571490 DOI: 10.1016/j.neuron.2020.02.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 12/20/2019] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Although the ventromedial hypothalamus ventrolateral area (VMHvl) is now well established as a critical locus for the generation of conspecific aggression, its role is complex, with neurons responding during multiple phases of social interactions with both males and females. It has been previously unclear how the brain uses this complex multidimensional signal and coordinates a discrete action: the attack. Here, we find a hypothalamic-midbrain circuit that represents hierarchically organized social signals during aggression. Optogenetic-assisted circuit mapping reveals a preferential projection from VMHvlvGlut2 to lPAGvGlut2 cells, and inactivation of downstream lPAGvGlut2 populations results in aggression-specific deficits. lPAG neurons are selective for attack action and exhibit short-latency, time-locked spiking relative to the activity of jaw muscles during biting. Last, we find that this projection conveys male-biased signals from the VMHvl to downstream lPAGvGlut2 neurons that are sensitive to features of ongoing activity, suggesting that action selectivity is generated by a combination of pre- and postsynaptic mechanisms.
Collapse
Affiliation(s)
- Annegret L Falkner
- Princeton Neuroscience Institute, Princeton, NJ 08540, USA; Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA.
| | - Dongyu Wei
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Anjeli Song
- Boston University School of Medicine, Boston, MA 02118, USA
| | - Li W Watsek
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Irene Chen
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Patricia Chen
- Princeton Neuroscience Institute, Princeton, NJ 08540, USA
| | - James E Feng
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA; Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| |
Collapse
|
102
|
Lewis AS, Picciotto MR. Regulation of aggressive behaviors by nicotinic acetylcholine receptors: Animal models, human genetics, and clinical studies. Neuropharmacology 2020; 167:107929. [PMID: 32058178 PMCID: PMC7080580 DOI: 10.1016/j.neuropharm.2019.107929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/18/2019] [Accepted: 12/25/2019] [Indexed: 12/12/2022]
Abstract
Neuropsychiatric disorders are frequently complicated by aggressive behaviors. For some individuals, existing behavioral and psychopharmacological treatments are ineffective or confer significant side effects, necessitating development of new ways to treat patients with severe aggression. Nicotinic acetylcholine receptors (nAChRs) are a large and diverse family of ligand-gated ion channels expressed throughout the brain that influence behaviors highly relevant for neuropsychiatric disorders, including attention, mood, and impulsivity. Nicotine and other drugs targeting nAChRs can reduce aggression in animal models of offensive, defensive, and predatory aggression, as well as in human laboratory studies. Human genetic studies have suggested a relationship between the CHRNA7 gene encoding the alpha-7 nAChR and aggressive behavior, although these effects are heterogeneous and strongly influenced by genetic background and environment. Here we review animal, human genetic, and clinical studies supporting a consistent role of nicotine and nAChR signaling in modulation of aggressive behaviors. We integrate findings from recent studies of aggression neuroscience, discuss the circuitry that may be involved in these effects of nAChRs, and identify multiple key questions that must be answered prior to safe and effective translation for human patients. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Alan S Lewis
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA; Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| | | |
Collapse
|
103
|
Li L. A Lower-Brainstem Structure Coordinates Acquisition of Negative Experience. Neurosci Bull 2020; 36:955-957. [PMID: 32335840 DOI: 10.1007/s12264-020-00504-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/15/2020] [Indexed: 11/26/2022] Open
Affiliation(s)
- Lei Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
104
|
Karnani MM, Schöne C, Bracey EF, González JA, Viskaitis P, Li HT, Adamantidis A, Burdakov D. Role of spontaneous and sensory orexin network dynamics in rapid locomotion initiation. Prog Neurobiol 2020; 187:101771. [PMID: 32058043 PMCID: PMC7086232 DOI: 10.1016/j.pneurobio.2020.101771] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/04/2022]
Abstract
Appropriate motor control is critical for normal life, and requires hypothalamic hypocretin/orexin neurons (HONs). HONs are slowly regulated by nutrients, but also display rapid (subsecond) activity fluctuations in vivo. The necessity of these activity bursts for sensorimotor control and their roles in specific phases of movement are unknown. Here we show that temporally-restricted optosilencing of spontaneous or sensory-evoked HON bursts disrupts locomotion initiation, but does not affect ongoing locomotion. Conversely, HON optostimulation initiates locomotion with subsecond delays in a frequency-dependent manner. Using 2-photon volumetric imaging of activity of >300 HONs during sensory stimulation and self-initiated locomotion, we identify several locomotion-related HON subtypes, which distinctly predict the probability of imminent locomotion initiation, display distinct sensory responses, and are differentially modulated by food deprivation. By causally linking HON bursts to locomotion initiation, these findings reveal the sensorimotor importance of rapid spontaneous and evoked fluctuations in HON ensemble activity.
Collapse
Affiliation(s)
- Mahesh M Karnani
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland; The Francis Crick Institute, London, UK; Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.
| | - Cornelia Schöne
- The Francis Crick Institute, London, UK; Systems Neuroscience, University of Göttingen, Germany
| | - Edward F Bracey
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland; The Francis Crick Institute, London, UK
| | - J Antonio González
- The Francis Crick Institute, London, UK; The Rowett Institute, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, UK
| | - Paulius Viskaitis
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Han-Tao Li
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Antoine Adamantidis
- Department of Neurology, Inselspital, University of Bern, Switzerland; Department of Biomedical Research, University of Bern, Switzerland
| | - Denis Burdakov
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland; The Francis Crick Institute, London, UK; Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; Neuroscience Center Zürich (ZNZ), ETH Zürich and University of Zürich, Zürich, Switzerland
| |
Collapse
|
105
|
Lin R, Liang J, Wang R, Yan T, Zhou Y, Liu Y, Feng Q, Sun F, Li Y, Li A, Gong H, Luo M. The Raphe Dopamine System Controls the Expression of Incentive Memory. Neuron 2020; 106:498-514.e8. [PMID: 32145184 DOI: 10.1016/j.neuron.2020.02.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
The brain dopamine (DA) system participates in forming and expressing memory. Despite a well-established role of DA neurons in the ventral tegmental area in memory formation, the exact DA circuits that control memory expression remain unclear. Here, we show that DA neurons in the dorsal raphe nucleus (DRN) and their medulla input control the expression of incentive memory. DRN DA neurons are activated by both rewarding and aversive stimuli in a learning-dependent manner and exhibit elevated activity during memory recall. Disrupting their physiological activity or DA synthesis blocks the expression of natural appetitive and aversive memories as well as drug memories associated with opioids. Moreover, a glutamatergic pathway from the lateral parabrachial nucleus to the DRN selectively regulates the expression of reward memories associated with opioids or foods. Our study reveals a specialized DA subsystem important for memory expression and suggests new targets for interventions against opioid addiction.
Collapse
Affiliation(s)
- Rui Lin
- National Institute of Biological Sciences (NIBS), Beijing 102206, China.
| | - Jingwen Liang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ruiyu Wang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Ting Yan
- National Institute of Biological Sciences (NIBS), Beijing 102206, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Youtong Zhou
- National Institute of Biological Sciences (NIBS), Beijing 102206, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Yang Liu
- National Institute of Biological Sciences (NIBS), Beijing 102206, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiru Feng
- National Institute of Biological Sciences (NIBS), Beijing 102206, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fangmiao Sun
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Yulong Li
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China; HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou 215100, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China; HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou 215100, China
| | - Minmin Luo
- National Institute of Biological Sciences (NIBS), Beijing 102206, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
106
|
Mooney R. The neurobiology of innate and learned vocalizations in rodents and songbirds. Curr Opin Neurobiol 2020; 64:24-31. [PMID: 32086177 DOI: 10.1016/j.conb.2020.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/26/2019] [Accepted: 01/08/2020] [Indexed: 12/25/2022]
Abstract
Vocalizations are an important medium for sexual and social signaling in mammals and birds. In most mammals other than humans, vocalizations are specified by innate mechanisms and develop normally in the absence of auditory experience. By contrast, juvenile songbirds memorize and copy the songs of adult tutors, a process with many parallels to human speech learning. Despite the centrality of vocal learning to human speech, vocal production in humans as well as in songbirds exploits ancestral circuitry for innate vocalizations, and effective vocal communication depends on the fluent blending of innate and learned elements. This review covers recent advances in our understanding of central mechanisms for learned and innate vocalizations in birds and mice, including brainstem mechanisms that help to 'gate' vocalizations on or off, cortical involvement in learned and innate vocalizations, and the delineation of circuits that evaluate and reinforce song performance to facilitate vocal learning.
Collapse
Affiliation(s)
- Richard Mooney
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27705, United States.
| |
Collapse
|
107
|
Mukhopadhyay S, Stowers L. Choosing to urinate. Circuits and mechanisms underlying voluntary urination. Curr Opin Neurobiol 2020; 60:129-135. [PMID: 31875530 PMCID: PMC7055485 DOI: 10.1016/j.conb.2019.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 01/23/2023]
Abstract
The decision to urinate is a social behavior that is calculated multiple times a day. Many animals perform urine scent-marking which broadcasts their pheromones to regulate the behavior of others and humans are trained at an early age to urinate only at a socially acceptable time and place. The inability to control when and where to void, that is incontinence, causes extreme social discomfort yet targeted therapeutics are lacking because little is known about the underlying circuits and mechanisms. The use of animal models, neurocircuit analysis, and functional manipulation is beginning to reveal basic logic of the circuit that modulates the decision of when and where to void.
Collapse
Affiliation(s)
- Sourish Mukhopadhyay
- Department of Neuroscience, La Jolla, CA, USA; Biomedical Sciences Graduate Program, Scripps Research, La Jolla, CA, USA
| | | |
Collapse
|
108
|
Abstract
Food intake and energy homeostasis determine survival of the organism and species. Information on total energy levels and metabolic state are sensed in the periphery and transmitted to the brain, where it is integrated and triggers the animal to forage, prey, and consume food. Investigating circuitry and cellular mechanisms coordinating energy balance and feeding behaviors has drawn on many state-of-the-art techniques, including gene manipulation, optogenetics, virus tracing, and single-cell sequencing. These new findings provide novel insights into how the central nervous system regulates food intake, and shed the light on potential therapeutic interventions for eating-related disorders such as obesity and anorexia.
Collapse
|
109
|
Lefler Y, Campagner D, Branco T. The role of the periaqueductal gray in escape behavior. Curr Opin Neurobiol 2019; 60:115-121. [PMID: 31864105 DOI: 10.1016/j.conb.2019.11.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 02/01/2023]
Abstract
Escape behavior is a defensive action deployed by animals in response to imminent threats. In mammalian species, a variety of different brain circuits are known to participate in this crucial survival behavior. One of these circuits is the periaqueductal gray, a midbrain structure that can command a variety of instinctive behaviors. Recent experiments using modern systems neuroscience techniques have begun to elucidate the specific role of the periaqueductal gray in controlling escape. These have shown that periaqueductal gray neurons are crucial units for gating and commanding the initiation of escape, specifically activated in situations of imminent, escapable threat. In addition, it is becoming clear that the periaqueductal gray integrates brain-wide information that can modulate escape initiation to generate flexible defensive behaviors.
Collapse
Affiliation(s)
- Yaara Lefler
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, London W1T 4JG, UK
| | - Dario Campagner
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, London W1T 4JG, UK; UCL Gatsby Computational Neuroscience Unit, London W1T 4JG, UK
| | - Tiago Branco
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, London W1T 4JG, UK.
| |
Collapse
|
110
|
Sources of off-target expression from recombinase-dependent AAV vectors and mitigation with cross-over insensitive ATG-out vectors. Proc Natl Acad Sci U S A 2019; 116:27001-27010. [PMID: 31843925 DOI: 10.1073/pnas.1915974116] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In combination with transgenic mouse lines expressing Cre or Flp recombinases in defined cell types, recombinase-dependent adeno-associated viruses (AAVs) have become the tool of choice for localized cell-type-targeted gene expression. Unfortunately, applications of this technique when expressing highly sensitive transgenes are impeded by off-target, or "leak" expression, from recombinase-dependent AAVs. We investigated this phenomenon and find that leak expression is mediated by both infrequent transcription from the inverted transgene in recombinant-dependent AAV designs and recombination events during bacterial AAV plasmid production. Recombination in bacteria is mediated by homology across the antiparallel recombinase-specific recognition sites present in recombinase-dependent designs. To address both of these issues we designed an AAV vector that uses mutant "cross-over insensitive" recognition sites combined with an "ATG-out" design. We show that these CIAO (cross-over insensitive ATG-out) vectors virtually eliminate leak expression. CIAO vectors provide reliable and targeted transgene expression and are extremely useful for recombinase-dependent expression of highly sensitive transgenes.
Collapse
|
111
|
Stress experience and hormone feedback tune distinct components of hypothalamic CRH neuron activity. Nat Commun 2019; 10:5696. [PMID: 31836701 PMCID: PMC6911111 DOI: 10.1038/s41467-019-13639-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 11/11/2019] [Indexed: 11/09/2022] Open
Abstract
Stress leaves a lasting impression on an organism and reshapes future responses. However, the influence of past experience and stress hormones on the activity of neural stress circuits remains unclear. Hypothalamic corticotropin-releasing hormone (CRH) neurons orchestrate behavioral and endocrine responses to stress and are themselves highly sensitive to corticosteroid (CORT) stress hormones. Here, using in vivo optical recordings, we find that CRH neurons are rapidly activated in response to stress. CRH neuron activity robustly habituates to repeated presentations of the same, but not novel stressors. CORT feedback has little effect on CRH neuron responses to acute stress, or on habituation to repeated stressors. Rather, CORT preferentially inhibits tonic CRH neuron activity in the absence of stress stimuli. These findings reveal how stress experience and stress hormones modulate distinct components of CRH neuronal activity to mediate stress-induced adaptations. Stress activates corticotropin-releasing hormone (CRH) neurons in the hypothalamus, but how their activity is regulated during and after stress is unclear. Here, the authors show that stress habituation and corticosteroid feedback tune different components of CRH neuron activity.
Collapse
|
112
|
Hoy JL, Bishop HI, Niell CM. Defined Cell Types in Superior Colliculus Make Distinct Contributions to Prey Capture Behavior in the Mouse. Curr Biol 2019; 29:4130-4138.e5. [PMID: 31761701 DOI: 10.1016/j.cub.2019.10.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/28/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023]
Abstract
The superior colliculus (SC) plays a highly conserved role in visual processing and mediates visual orienting behaviors across species, including both overt motor orienting [1, 2] and orienting of attention [3, 4]. To determine the specific circuits within the superficial superior colliculus (sSC) that drive orienting and approach behavior toward appetitive stimuli, we explored the role of three genetically defined cell types in mediating prey capture in mice. Chemogenetic inactivation of two classically defined cell types, the wide-field (WF) and narrow-field (NF) vertical neurons, revealed that they are involved in distinct aspects of prey capture. WF neurons were required for rapid prey detection and distant approach initiation, whereas NF neurons were required for accurate orienting during pursuit as well as approach initiation and continuity. In contrast, prey capture did not require parvalbumin-expressing (PV) neurons that have previously been implicated in fear responses. The visual coding and projection targets of WF and NF cells were consistent with their roles in prey detection versus pursuit, respectively. Thus, our studies link specific neural circuit connectivity and function with stimulus detection and orienting behavior, providing insight into visuomotor and attentional mechanisms mediated by superior colliculus.
Collapse
Affiliation(s)
- Jennifer L Hoy
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA.
| | - Hannah I Bishop
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Cristopher M Niell
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
113
|
Antinucci P, Folgueira M, Bianco IH. Pretectal neurons control hunting behaviour. eLife 2019; 8:e48114. [PMID: 31591961 PMCID: PMC6783268 DOI: 10.7554/elife.48114] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/30/2019] [Indexed: 01/25/2023] Open
Abstract
For many species, hunting is an innate behaviour that is crucial for survival, yet the circuits that control predatory action sequences are poorly understood. We used larval zebrafish to identify a population of pretectal neurons that control hunting. By combining calcium imaging with a virtual hunting assay, we identified a discrete pretectal region that is selectively active when animals initiate hunting. Targeted genetic labelling allowed us to examine the function and morphology of individual cells and identify two classes of pretectal neuron that project to ipsilateral optic tectum or the contralateral tegmentum. Optogenetic stimulation of single neurons of either class was able to induce sustained hunting sequences, in the absence of prey. Furthermore, laser ablation of these neurons impaired prey-catching and prevented induction of hunting by optogenetic stimulation of the anterior-ventral tectum. We propose that this specific population of pretectal neurons functions as a command system to induce predatory behaviour.
Collapse
Affiliation(s)
- Paride Antinucci
- Department of Neuroscience, Physiology & PharmacologyUCLLondonUnited Kingdom
| | - Mónica Folgueira
- Department of Biology, Faculty of SciencesUniversity of A CoruñaA CoruñaSpain
- Centro de Investigaciones Científicas Avanzadas (CICA)University of A CoruñaA CoruñaSpain
| | - Isaac H Bianco
- Department of Neuroscience, Physiology & PharmacologyUCLLondonUnited Kingdom
| |
Collapse
|
114
|
Taugher RJ, Dlouhy BJ, Kreple CJ, Ghobbeh A, Conlon MM, Wang Y, Wemmie JA. The amygdala differentially regulates defensive behaviors evoked by CO 2. Behav Brain Res 2019; 377:112236. [PMID: 31536735 DOI: 10.1016/j.bbr.2019.112236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 10/26/2022]
Abstract
CO2 inhalation can provoke panic attacks in humans, and the likelihood is increased in patients with panic disorder. Identifying brain sites involved could provide important mechanistic insight into the illness. In mice, the amygdala has been suggested to promote CO2 responses; however, recent studies in humans with amygdala damage indicate the amygdala is not required for CO2-induced fear and panic and might actually oppose these responses. To clarify the role of the amygdala, we produced lesions in mice paralleling the human lesions, and characterized behavioral responses to CO2. Compared to sham controls, we found that amygdala-lesioned mice froze less to 10% CO2, and unlike shams they also began to jump frenetically. At 20% CO2, controls also exhibited jumping, suggesting it is a normal response to more extreme CO2 concentrations. The effect of amygdala lesions was specific to CO2 as amygdala-lesioned mice did not jump in response to a predator odor or to an auditory conditioned stimulus. In amygdala-lesioned mice, jumping evoked by 10% CO2 was eliminated by co-lesioning the dorsal periaqueductal gray, a structure implicated in panic and escape-related behaviors. Together, these observations suggest a dual role for the amygdala in the CO2 response: promoting CO2-induced freezing, and opposing CO2-induced jumping, which may help explain the exaggerated CO2 responses in humans with amygdala lesions.
Collapse
Affiliation(s)
- R J Taugher
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA; Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - B J Dlouhy
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA; Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - C J Kreple
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA; Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - A Ghobbeh
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA; Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - M M Conlon
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA; Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Y Wang
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - J A Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
115
|
Lee YH, Kim M, Lee M, Shin D, Ha DS, Park JS, Kim YB, Choi HJ. Food Craving, Seeking, and Consumption Behaviors: Conceptual Phases and Assessment Methods Used in Animal and Human Studies. J Obes Metab Syndr 2019; 28:148-157. [PMID: 31583379 PMCID: PMC6774451 DOI: 10.7570/jomes.2019.28.3.148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/11/2019] [Accepted: 08/10/2019] [Indexed: 12/16/2022] Open
Abstract
What drives us to eat? It is one of the most fundamental questions in the obesity research field which have been investigated for centuries. Numerous novel in vivo technologies in the neuroscience field allows us to reevaluate the multiple components and phases of food-related behaviors. Focused on the cognitive, executive, behavioral and temporal aspects, food-related behaviors can be distinguished into appetitive phase (food craving→food seeking) and consummatory phase (food consumption). Food craving phase is an internal state or stage in which the animal has the motivation to eat the food but there is no actual food specific behaviors or actions. Food seeking phase entails repeated behaviors with a food searching purpose until the animal discovers the food (or food-related cue) and the approach behavior stage after the discovery of food. Food consumption phase is the step that the animal grabs, chews and intake the food. This review will specifically focus on characteristics and evaluation methods for each phase of food-related behavior in rodent, non-human primates and human.
Collapse
Affiliation(s)
- Young Hee Lee
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul,
Korea
- BK21Plus Biomedical Science Project Team, Seoul National University College of Medicine, Seoul,
Korea
| | - Meelim Kim
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul,
Korea
- BK21Plus Biomedical Science Project Team, Seoul National University College of Medicine, Seoul,
Korea
| | - Miwoo Lee
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul,
Korea
- BK21Plus Biomedical Science Project Team, Seoul National University College of Medicine, Seoul,
Korea
| | - Dongju Shin
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
| | - Dong-Soo Ha
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
| | - Joon Seok Park
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
| | - You Bin Kim
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul,
Korea
- BK21Plus Biomedical Science Project Team, Seoul National University College of Medicine, Seoul,
Korea
| | - Hyung Jin Choi
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul,
Korea
- BK21Plus Biomedical Science Project Team, Seoul National University College of Medicine, Seoul,
Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon,
Korea
| |
Collapse
|
116
|
Tschida K, Michael V, Takatoh J, Han BX, Zhao S, Sakurai K, Mooney R, Wang F. A Specialized Neural Circuit Gates Social Vocalizations in the Mouse. Neuron 2019; 103:459-472.e4. [PMID: 31204083 PMCID: PMC6687542 DOI: 10.1016/j.neuron.2019.05.025] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 03/25/2019] [Accepted: 05/15/2019] [Indexed: 11/29/2022]
Abstract
Vocalizations are fundamental to mammalian communication, but the underlying neural circuits await detailed characterization. Here, we used an intersectional genetic method to label and manipulate neurons in the midbrain periaqueductal gray (PAG) that are transiently active in male mice when they produce ultrasonic courtship vocalizations (USVs). Genetic silencing of PAG-USV neurons rendered males unable to produce USVs and impaired their ability to attract females. Conversely, activating PAG-USV neurons selectively triggered USV production, even in the absence of any female cues. Optogenetic stimulation combined with axonal tracing indicates that PAG-USV neurons gate downstream vocal-patterning circuits. Indeed, activating PAG neurons that innervate the nucleus retroambiguus, but not those innervating the parabrachial nucleus, elicited USVs in both male and female mice. These experiments establish that a dedicated population of PAG neurons gives rise to a descending circuit necessary and sufficient for USV production while also demonstrating the communicative salience of male USVs. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Katherine Tschida
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Valerie Michael
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jun Takatoh
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Bao-Xia Han
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Shengli Zhao
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Katsuyasu Sakurai
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Richard Mooney
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Fan Wang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
117
|
Wang H, Chen J, Xu X, Sun WJ, Chen X, Zhao F, Luo MH, Liu C, Guo Y, Xie W, Zhong H, Bai T, Tian Y, Mao Y, Ye C, Tao W, Li J, Farzinpour Z, Li J, Zhou JN, Wang K, He J, Chen L, Zhang Z. Direct auditory cortical input to the lateral periaqueductal gray controls sound-driven defensive behavior. PLoS Biol 2019; 17:e3000417. [PMID: 31469831 PMCID: PMC6742420 DOI: 10.1371/journal.pbio.3000417] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/12/2019] [Accepted: 08/14/2019] [Indexed: 01/10/2023] Open
Abstract
Threatening sounds can elicit a series of defensive behavioral reactions in animals for survival, but the underlying neural substrates are not fully understood. Here, we demonstrate a previously unexplored neural pathway in mice that projects directly from the auditory cortex (ACx) to the lateral periaqueductal gray (lPAG) and controls noise-evoked defensive behaviors. Electrophysiological recordings showed that the lPAG could be excited by a loud noise that induced an escape-like behavior. Trans-synaptic viral tracing showed that a great number of glutamatergic neurons, rather than GABAergic neurons, in the lPAG were directly innervated by those in layer V of the ACx. Activation of this pathway by optogenetic manipulations produced a behavior in mice that mimicked the noise-evoked escape, whereas inhibition of the pathway reduced this behavior. Therefore, our newly identified descending pathway is a novel neural substrate for noise-evoked escape and is involved in controlling the threat-related behavior.
Collapse
Affiliation(s)
- Haitao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Jiahui Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Xiaotong Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Wen-Jian Sun
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xi Chen
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Fei Zhao
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Min-Hua Luo
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chunhua Liu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yiping Guo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Wen Xie
- Department of Psychology, Anhui Mental Health Center, Hefei, China
| | - Hui Zhong
- Department of Psychology, Anhui Mental Health Center, Hefei, China
| | - Tongjian Bai
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanghua Tian
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yu Mao
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chonghuan Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Wenjuan Tao
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Jie Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Zahra Farzinpour
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Juan Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Jiang-Ning Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Kai Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jufang He
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lin Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Zhi Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| |
Collapse
|
118
|
A striatal interneuron circuit for continuous target pursuit. Nat Commun 2019; 10:2715. [PMID: 31222009 PMCID: PMC6586681 DOI: 10.1038/s41467-019-10716-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/28/2019] [Indexed: 12/19/2022] Open
Abstract
Most adaptive behaviors require precise tracking of targets in space. In pursuit behavior with a moving target, mice use distance to target to guide their own movement continuously. Here, we show that in the sensorimotor striatum, parvalbumin-positive fast-spiking interneurons (FSIs) can represent the distance between self and target during pursuit behavior, while striatal projection neurons (SPNs), which receive FSI projections, can represent self-velocity. FSIs are shown to regulate velocity-related SPN activity during pursuit, so that movement velocity is continuously modulated by distance to target. Moreover, bidirectional manipulation of FSI activity can selectively disrupt performance by increasing or decreasing the self-target distance. Our results reveal a key role of the FSI-SPN interneuron circuit in pursuit behavior and elucidate how this circuit implements distance to velocity transformation required for the critical underlying computation. Many natural behaviours involve tracking of a target in space. Here, the authors describe a task to assess this behaviour in mice and use in vivo electrophysiology, calcium imaging, optogenetics, and chemogenetics to investigate the role of the striatum in target pursuit.
Collapse
|
119
|
|
120
|
A subcortical excitatory circuit for sensory-triggered predatory hunting in mice. Nat Neurosci 2019; 22:909-920. [DOI: 10.1038/s41593-019-0405-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 03/06/2019] [Indexed: 01/29/2023]
|
121
|
Zona incerta GABAergic neurons integrate prey-related sensory signals and induce an appetitive drive to promote hunting. Nat Neurosci 2019; 22:921-932. [DOI: 10.1038/s41593-019-0404-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/08/2019] [Indexed: 02/05/2023]
|
122
|
Henriques PM, Rahman N, Jackson SE, Bianco IH. Nucleus Isthmi Is Required to Sustain Target Pursuit during Visually Guided Prey-Catching. Curr Biol 2019; 29:1771-1786.e5. [PMID: 31104935 PMCID: PMC6557330 DOI: 10.1016/j.cub.2019.04.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/04/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022]
Abstract
Animals must frequently perform a sequence of behaviors to achieve a specific goal. However, the neural mechanisms that promote the continuation and completion of such action sequences are not well understood. Here, we characterize the anatomy, physiology, and function of the nucleus isthmi (NI), a cholinergic nucleus thought to modulate tectal-dependent, goal-directed behaviors. We find that the larval zebrafish NI establishes reciprocal connectivity with the optic tectum and identify two distinct types of isthmic projection neuron that either connect ipsilaterally to retinorecipient laminae of the tectum and pretectum or bilaterally to both tectal hemispheres. Laser ablation of NI caused highly specific deficits in tectally mediated loom-avoidance and prey-catching behavior. In the context of hunting, NI ablation did not affect prey detection or hunting initiation but resulted in larvae failing to sustain prey-tracking sequences and aborting their hunting routines. Moreover, calcium imaging revealed elevated neural activity in NI following onset of hunting behavior. We propose a model in which NI provides state-dependent feedback facilitation to the optic tectum and pretectum to potentiate neural activity and increase the probability of consecutive prey-tracking maneuvers during hunting sequences. Nucleus isthmi contains two types of neuron with distinct (pre)-tectal connectivity Neural activity in nucleus isthmi is recruited at onset of hunting behavior Nucleus isthmi is required for maintenance, but not initiation, of hunting routines
Collapse
Affiliation(s)
- Pedro M Henriques
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Niloy Rahman
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Samuel E Jackson
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Isaac H Bianco
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
123
|
Franklin TB. Recent Advancements Surrounding the Role of the Periaqueductal Gray in Predators and Prey. Front Behav Neurosci 2019; 13:60. [PMID: 31133827 PMCID: PMC6524621 DOI: 10.3389/fnbeh.2019.00060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/12/2019] [Indexed: 11/18/2022] Open
Abstract
Recent advances in neural circuitry techniques, like optogenetics and chemogenetics, have allowed for a greater understanding of the periaqueductal gray (PAG) and its importance in predator and prey behaviors. These studies in rodents have highlighted the role of the rostrolateral PAG in hunting behaviors, and have demonstrated functional differences across the dorsal-ventral/rostral-caudal axes of the PAG associated with defensive behaviors. Human imaging studies have further demonstrated that the PAG is active during situations involving imminent threat suggesting that the function of the PAG is likely largely conserved across species. This mini-review article highlights some of the recent advancements towards our understanding of the functional neuroanatomy of the PAG and its importance in the predator and prey behaviors that are critical for survival.
Collapse
Affiliation(s)
- Tamara B Franklin
- The Social Lab, Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
124
|
Long-term Fiber Photometry for Neuroscience Studies. Neurosci Bull 2019; 35:425-433. [PMID: 31062336 DOI: 10.1007/s12264-019-00379-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/25/2019] [Indexed: 01/21/2023] Open
Abstract
Fiber photometry is a sensitive and easy way to detect changes in fluorescent signals. The combination of fiber photometry with various fluorescent biomarkers has substantially advanced neuroscience research over the last decade. Despite the wide use of fiber photometry in biomedical fields, the lack of a detailed and comprehensive protocol has limited progress and sometimes complicated the interpretation of data. Here, we describe detailed procedures of fiber photometry for the long-term monitoring of neuronal activity in freely-behaving animals, including surgery, apparatus setup, data collection, and analysis.
Collapse
|
125
|
Klaus A, Alves da Silva J, Costa RM. What, If, and When to Move: Basal Ganglia Circuits and Self-Paced Action Initiation. Annu Rev Neurosci 2019; 42:459-483. [PMID: 31018098 DOI: 10.1146/annurev-neuro-072116-031033] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Deciding what to do and when to move is vital to our survival. Clinical and fundamental studies have identified basal ganglia circuits as critical for this process. The main input nucleus of the basal ganglia, the striatum, receives inputs from frontal, sensory, and motor cortices and interconnected thalamic areas that provide information about potential goals, context, and actions and directly or indirectly modulates basal ganglia outputs. The striatum also receives dopaminergic inputs that can signal reward prediction errors and also behavioral transitions and movement initiation. Here we review studies and models of how direct and indirect pathways can modulate basal ganglia outputs to facilitate movement initiation, and we discuss the role of cortical and dopaminergic inputs to the striatum in determining what to do and if and when to do it. Complex but exciting scenarios emerge that shed new light on how basal ganglia circuits modulate self-paced movement initiation.
Collapse
Affiliation(s)
- Andreas Klaus
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | | | - Rui M Costa
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| |
Collapse
|
126
|
Su XY, Chen M, Yuan Y, Li Y, Guo SS, Luo HQ, Huang C, Sun W, Li Y, Zhu MX, Liu MG, Hu J, Xu TL. Central Processing of Itch in the Midbrain Reward Center. Neuron 2019; 102:858-872.e5. [PMID: 31000426 DOI: 10.1016/j.neuron.2019.03.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/28/2018] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
Abstract
Itch is an aversive sensation that evokes a desire to scratch. Paradoxically, scratching the itch also produces a hedonic experience. The specific brain circuits processing these different aspects of itch, however, remain elusive. Here, we report that GABAergic (GABA) and dopaminergic (DA) neurons in the ventral tegmental area (VTA) are activated with different temporal patterns during acute and chronic itch. DA neuron activation lags behind GABA neurons and is dependent on scratching of the itchy site. Optogenetic manipulations of VTA GABA neurons rapidly modulated scratching behaviors through encoding itch-associated aversion. In contrast, optogenetic manipulations of VTA DA neurons revealed their roles in sustaining recurrent scratching episodes through signaling scratching-induced reward. A similar dichotomy exists for the role of VTA in chronic itch. These findings advance understanding of circuit mechanisms of the unstoppable itch-scratch cycles and shed important insights into chronic itch therapy.
Collapse
Affiliation(s)
- Xin-Yu Su
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ming Chen
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yuan Yuan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ying Li
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Su-Shan Guo
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huo-Qing Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chen Huang
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenzhi Sun
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Yong Li
- Collaborative Innovation Center for Brain Science, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ming-Gang Liu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China.
| | - Tian-Le Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China.
| |
Collapse
|
127
|
Evans DA, Stempel AV, Vale R, Branco T. Cognitive Control of Escape Behaviour. Trends Cogn Sci 2019; 23:334-348. [PMID: 30852123 PMCID: PMC6438863 DOI: 10.1016/j.tics.2019.01.012] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/21/2022]
Abstract
When faced with potential predators, animals instinctively decide whether there is a threat they should escape from, and also when, how, and where to take evasive action. While escape is often viewed in classical ethology as an action that is released upon presentation of specific stimuli, successful and adaptive escape behaviour relies on integrating information from sensory systems, stored knowledge, and internal states. From a neuroscience perspective, escape is an incredibly rich model that provides opportunities for investigating processes such as perceptual and value-based decision-making, or action selection, in an ethological setting. We review recent research from laboratory and field studies that explore, at the behavioural and mechanistic levels, how elements from multiple information streams are integrated to generate flexible escape behaviour.
Collapse
Affiliation(s)
- Dominic A Evans
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, UCL, London, UK; These authors contributed equally to this work
| | - A Vanessa Stempel
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, UCL, London, UK; These authors contributed equally to this work
| | - Ruben Vale
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, UCL, London, UK; These authors contributed equally to this work
| | - Tiago Branco
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, UCL, London, UK.
| |
Collapse
|
128
|
|
129
|
Mickelsen LE, Bolisetty M, Chimileski BR, Fujita A, Beltrami EJ, Costanzo JT, Naparstek JR, Robson P, Jackson AC. Single-cell transcriptomic analysis of the lateral hypothalamic area reveals molecularly distinct populations of inhibitory and excitatory neurons. Nat Neurosci 2019; 22:642-656. [PMID: 30858605 DOI: 10.1038/s41593-019-0349-8] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 01/30/2019] [Indexed: 01/01/2023]
Abstract
The lateral hypothalamic area (LHA) coordinates an array of fundamental behaviors, including sleeping, waking, feeding, stress and motivated behavior. The wide spectrum of functions ascribed to the LHA may be explained by a heterogeneous population of neurons, the full diversity of which is poorly understood. We employed a droplet-based single-cell RNA-sequencing approach to develop a comprehensive census of molecularly distinct cell types in the mouse LHA. Neuronal populations were classified based on fast neurotransmitter phenotype and expression of neuropeptides, transcription factors and synaptic proteins, among other gene categories. We define 15 distinct populations of glutamatergic neurons and 15 of GABAergic neurons, including known and novel cell types. We further characterize a novel population of somatostatin-expressing neurons through anatomical and behavioral approaches, identifying a role for these neurons in specific forms of innate locomotor behavior. This study lays the groundwork for better understanding the circuit-level underpinnings of LHA function.
Collapse
Affiliation(s)
- Laura E Mickelsen
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.,Connecticut Institute for the Brain and Cognitive Sciences, Storrs, CT, USA
| | - Mohan Bolisetty
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.,Bristol-Myers Squibb, Pennington, NJ, USA
| | - Brock R Chimileski
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Akie Fujita
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.,Connecticut Institute for the Brain and Cognitive Sciences, Storrs, CT, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Eric J Beltrami
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - James T Costanzo
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Jacob R Naparstek
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA. .,Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA. .,Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA.
| | - Alexander C Jackson
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA. .,Connecticut Institute for the Brain and Cognitive Sciences, Storrs, CT, USA. .,Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA.
| |
Collapse
|
130
|
Cassidy RM, Lu Y, Jere M, Tian JB, Xu Y, Mangieri LR, Felix-Okoroji B, Selever J, Xu Y, Arenkiel BR, Tong Q. A lateral hypothalamus to basal forebrain neurocircuit promotes feeding by suppressing responses to anxiogenic environmental cues. SCIENCE ADVANCES 2019; 5:eaav1640. [PMID: 30854429 PMCID: PMC6402846 DOI: 10.1126/sciadv.aav1640] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/28/2019] [Indexed: 05/14/2023]
Abstract
Animals must consider competing information before deciding to eat: internal signals indicating the desirability of food and external signals indicating the risk involved in eating within a particular environment. The behaviors driven by the former are manifestations of hunger, and the latter, anxiety. The connection between pathologic anxiety and reduced eating in conditions like typical depression and anorexia is well known. Conversely, anti-anxiety drugs such as benzodiazepines increase appetite. Here, we show that GABAergic neurons in the diagonal band of Broca (DBBGABA) are responsive to indications of risk and receive monosynaptic inhibitory input from lateral hypothalamus GABAergic neurons (LHGABA). Activation of this circuit reduces anxiety and causes indiscriminate feeding. We also found that diazepam rapidly reduces DBBGABA activity while inducing indiscriminate feeding. Our study reveals that the LHGABA→DBBGABA neurocircuit overrides anxiogenic environmental cues to allow feeding and that this pathway may underlie the link between eating and anxiety-related disorders.
Collapse
Affiliation(s)
- Ryan M. Cassidy
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, UTHealth McGovern Medical School, 7000 Fannin St., Houston, TX 77030, USA
- MSTP, The University of Texas McGovern Medical School and MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Avenue S3.8344 Mitchell BSRB, Houston, TX 77030, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Avenue S3.8344 Mitchell BSRB, Houston, TX 77030, USA
| | - Yungang Lu
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, UTHealth McGovern Medical School, 7000 Fannin St., Houston, TX 77030, USA
| | - Madhavi Jere
- Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA
| | - Jin-Bin Tian
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, UTHealth McGovern Medical School, 7000 Fannin St., Houston, TX 77030, USA
- Department of Integrative Biology and Pharmacology, UTHealth McGovern Medical School, 6431 Fannin St., Houston, TX 77030-1892, USA
| | - Yuanzhong Xu
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, UTHealth McGovern Medical School, 7000 Fannin St., Houston, TX 77030, USA
| | - Leandra R. Mangieri
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, UTHealth McGovern Medical School, 7000 Fannin St., Houston, TX 77030, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Avenue S3.8344 Mitchell BSRB, Houston, TX 77030, USA
| | | | - Jennifer Selever
- Intellectual and Developmental Disabilities Research Center, Neuroconnectivity Core, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, S640, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 6621 Fannin St., Houston, TX 77030, USA
| | - Yong Xu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates St., Houston, TX 77030, USA
| | - Benjamin R. Arenkiel
- Intellectual and Developmental Disabilities Research Center, Neuroconnectivity Core, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, S640, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 6621 Fannin St., Houston, TX 77030, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, UTHealth McGovern Medical School, 7000 Fannin St., Houston, TX 77030, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Avenue S3.8344 Mitchell BSRB, Houston, TX 77030, USA
- Department of Neurobiology and Anatomy, UTHealth McGovern Medical School, 6431 Fannin St., Suite MSB 7.046 Houston, TX 77030, USA
- Corresponding author.
| |
Collapse
|
131
|
Gao ZR, Chen WZ, Liu MZ, Chen XJ, Wan L, Zhang XY, Yuan L, Lin JK, Wang M, Zhou L, Xu XH, Sun YG. Tac1-Expressing Neurons in the Periaqueductal Gray Facilitate the Itch-Scratching Cycle via Descending Regulation. Neuron 2019; 101:45-59.e9. [PMID: 30554781 DOI: 10.1016/j.neuron.2018.11.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/07/2018] [Accepted: 11/05/2018] [Indexed: 02/02/2023]
|
132
|
Abstract
Encoding and predicting aversive events are critical functions of circuits that support survival and emotional well-being. Maladaptive circuit changes in emotional valence processing can underlie the pathophysiology of affective disorders. The lateral habenula (LHb) has been linked to aversion and mood regulation through modulation of the dopamine and serotonin systems. We have defined the identity and function of glutamatergic (Vglut2) control of the LHb, comparing the role of inputs originating in the globus pallidus internal segment (GPi), and lateral hypothalamic area (LHA), respectively. We found that LHb-projecting LHA neurons, and not the proposed GABA/glutamate co-releasing GPi neurons, are responsible for encoding negative value. Monosynaptic rabies tracing of the presynaptic organization revealed a predominantly limbic input onto LHA Vglut2 neurons, while sensorimotor inputs were more prominent onto GABA/glutamate co-releasing GPi neurons. We further recorded the activity of LHA Vglut2 neurons, by imaging calcium dynamics in response to appetitive versus aversive events in conditioning paradigms. LHA Vglut2 neurons formed activity clusters representing distinct reward or aversion signals, including a population that responded to mild foot shocks and predicted aversive events. We found that the LHb-projecting LHA Vglut2 neurons encode negative valence and rapidly develop a prediction signal for negative events. These findings establish the glutamatergic LHA-LHb circuit as a critical node in value processing.
Collapse
|
133
|
|
134
|
de Jong JW, Afjei SA, Pollak Dorocic I, Peck JR, Liu C, Kim CK, Tian L, Deisseroth K, Lammel S. A Neural Circuit Mechanism for Encoding Aversive Stimuli in the Mesolimbic Dopamine System. Neuron 2018; 101:133-151.e7. [PMID: 30503173 DOI: 10.1016/j.neuron.2018.11.005] [Citation(s) in RCA: 315] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/04/2018] [Accepted: 11/02/2018] [Indexed: 12/18/2022]
Abstract
Ventral tegmental area (VTA) dopamine (DA) neurons play a central role in mediating motivated behaviors, but the circuitry through which they signal positive and negative motivational stimuli is incompletely understood. Using in vivo fiber photometry, we simultaneously recorded activity in DA terminals in different nucleus accumbens (NAc) subnuclei during an aversive and reward conditioning task. We find that DA terminals in the ventral NAc medial shell (vNAcMed) are excited by unexpected aversive outcomes and to cues that predict them, whereas DA terminals in other NAc subregions are persistently depressed. Excitation to reward-predictive cues dominated in the NAc lateral shell and was largely absent in the vNAcMed. Moreover, we demonstrate that glutamatergic (VGLUT2-expressing) neurons in the lateral hypothalamus represent a key afferent input for providing information about aversive outcomes to vNAcMed-projecting DA neurons. Collectively, we reveal the distinct functional contributions of separate mesolimbic DA subsystems and their afferent pathways underlying motivated behaviors. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Johannes W de Jong
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Seyedeh Atiyeh Afjei
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Iskra Pollak Dorocic
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - James R Peck
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christine Liu
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christina K Kim
- Neuroscience Program, Stanford University, Stanford, CA 94305, USA
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Karl Deisseroth
- Departments of Bioengineering and Psychiatry, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, USA
| | - Stephan Lammel
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
135
|
AGRP Neurons Project to the Medial Preoptic Area and Modulate Maternal Nest-Building. J Neurosci 2018; 39:456-471. [PMID: 30459220 DOI: 10.1523/jneurosci.0958-18.2018] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 11/06/2018] [Accepted: 11/11/2018] [Indexed: 12/28/2022] Open
Abstract
AGRP (agouti-related neuropeptide) expressing inhibitory neurons sense caloric needs of an animal to coordinate homeostatic feeding. Recent evidence suggests that AGRP neurons also suppress competing actions and motivations to mediate adaptive behavioral selection during starvation. Here, in adult mice of both sexes we show that AGRP neurons form inhibitory synapses onto ∼30% neurons in the medial preoptic area (mPOA), a region critical for maternal care. Remarkably, optogenetically stimulating AGRP neurons decreases maternal nest-building while minimally affecting pup retrieval, partly recapitulating suppression of maternal behaviors during food restriction. In parallel, optogenetically stimulating AGRP projections to the mPOA or to the paraventricular nucleus of hypothalamus but not to the LHA (lateral hypothalamus area) similarly decreases maternal nest-building. Chemogenetic inhibition of mPOA neurons that express Vgat (vesicular GABA transporter), the population targeted by AGRP terminals, also decreases maternal nest-building. In comparison, chemogenetic inhibition of neurons in the LHA that express vesicular glutamate transporter 2, another hypothalamic neuronal population critical for feeding and innate drives, is ineffective. Importantly, nest-building during low temperature thermal challenge is not affected by optogenetic stimulation of AGRP→mPOA projections. Finally, via optogenetic activation and inhibition we show that distinctive subsets of mPOA Vgat+ neurons likely underlie pup retrieval and maternal nest-building. Together, these results show that AGRP neurons can modulate maternal nest-building, in part through direct projections to the mPOA. This study corroborates other recent discoveries and underscores the broad functions that AGRP neurons play in antagonizing rivalry motivations to modulate behavioral outputs during hunger.SIGNIFICANCE STATEMENT In order for animals to initiate ethologically appropriate behaviors, they must typically decide between behavioral repertoires driven by multiple and often conflicting internal states. How neural pathways underlying individual behaviors interact to coherently modulate behavioral outputs, in particular to achieve a proper balance between behaviors that serve immediate individual needs versus those that benefit the propagation of the species, remains poorly understood. Here, by investigating projections from a neuronal population known to drive hunger behaviors to a brain region critical for maternal care, we show that activation of AGRP→mPOA projections in females dramatically inhibits maternal nest-building while leaving mostly intact pup retrieval behavior. Our findings shed new light on neural organization of behaviors and neural mechanisms that coordinate behavioral selection.
Collapse
|
136
|
Tye KM. Neural Circuit Motifs in Valence Processing. Neuron 2018; 100:436-452. [PMID: 30359607 PMCID: PMC6590698 DOI: 10.1016/j.neuron.2018.10.001] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 01/07/2023]
Abstract
How do our brains determine whether something is good or bad? How is this computational goal implemented in biological systems? Given the critical importance of valence processing for survival, the brain has evolved multiple strategies to solve this problem at different levels. The psychological concept of "emotional valence" is now beginning to find grounding in neuroscience. This review aims to bridge the gap between psychology and neuroscience on the topic of emotional valence processing. Here, I highlight a subset of studies that exemplify circuit motifs that repeatedly appear as implementational systems in valence processing. The motifs I identify as being important in valence processing include (1) Labeled Lines, (2) Divergent Paths, (3) Opposing Components, and (4) Neuromodulatory Gain. Importantly, the functionality of neural substrates in valence processing is dynamic, context-dependent, and changing across short and long timescales due to synaptic plasticity, competing mechanisms, and homeostatic need.
Collapse
Affiliation(s)
- Kay M Tye
- Picower Institute for Learning and Memory, Dept of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Salk Institute for Biological Sciences, La Jolla, CA 92037, USA.
| |
Collapse
|
137
|
Ferreira-Pinto MJ, Ruder L, Capelli P, Arber S. Connecting Circuits for Supraspinal Control of Locomotion. Neuron 2018; 100:361-374. [DOI: 10.1016/j.neuron.2018.09.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/27/2018] [Accepted: 09/07/2018] [Indexed: 12/21/2022]
|
138
|
Solari N, Hangya B. Cholinergic modulation of spatial learning, memory and navigation. Eur J Neurosci 2018; 48:2199-2230. [PMID: 30055067 PMCID: PMC6174978 DOI: 10.1111/ejn.14089] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/25/2018] [Accepted: 07/23/2018] [Indexed: 01/02/2023]
Abstract
Spatial learning, including encoding and retrieval of spatial memories as well as holding spatial information in working memory generally serving navigation under a broad range of circumstances, relies on a network of structures. While central to this network are medial temporal lobe structures with a widely appreciated crucial function of the hippocampus, neocortical areas such as the posterior parietal cortex and the retrosplenial cortex also play essential roles. Since the hippocampus receives its main subcortical input from the medial septum of the basal forebrain (BF) cholinergic system, it is not surprising that the potential role of the septo-hippocampal pathway in spatial navigation has been investigated in many studies. Much less is known of the involvement in spatial cognition of the parallel projection system linking the posterior BF with neocortical areas. Here we review the current state of the art of the division of labour within this complex 'navigation system', with special focus on how subcortical cholinergic inputs may regulate various aspects of spatial learning, memory and navigation.
Collapse
Affiliation(s)
- Nicola Solari
- Lendület Laboratory of Systems NeuroscienceDepartment of Cellular and Network NeurobiologyInstitute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
| | - Balázs Hangya
- Lendület Laboratory of Systems NeuroscienceDepartment of Cellular and Network NeurobiologyInstitute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
| |
Collapse
|
139
|
Harmon-Jones E. On motivational influences, moving beyond valence, and integrating dimensional and discrete views of emotion. Cogn Emot 2018; 33:101-108. [DOI: 10.1080/02699931.2018.1514293] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Eddie Harmon-Jones
- School of Psychology, The University of New South Wales, Sydney, Australia
| |
Collapse
|
140
|
Affiliation(s)
- Silvia Arber
- Biozentrum, University of Basel, 4056 Basel, Switzerland. .,Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Rui M Costa
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA. .,Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal
| |
Collapse
|
141
|
Dampney R. Emotion and the Cardiovascular System: Postulated Role of Inputs From the Medial Prefrontal Cortex to the Dorsolateral Periaqueductal Gray. Front Neurosci 2018; 12:343. [PMID: 29881334 PMCID: PMC5976784 DOI: 10.3389/fnins.2018.00343] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/02/2018] [Indexed: 12/15/2022] Open
Abstract
The midbrain periaqueductal gray (PAG) plays a major role in generating different types of behavioral responses to emotional stressors. This review focuses on the role of the dorsolateral (dl) portion of the PAG, which on the basis of anatomical and functional studies, appears to have a unique and distinctive role in generating behavioral, cardiovascular and respiratory responses to real and perceived emotional stressors. In particular, the dlPAG, but not other parts of the PAG, receives direct inputs from the primary auditory cortex and from the secondary visual cortex. In addition, there are strong direct inputs to the dlPAG, but not other parts of the PAG, from regions within the medial prefrontal cortex that in primates correspond to cortical areas 10 m, 25 and 32. I first summarise the evidence that the inputs to the dlPAG arising from visual, auditory and olfactory signals trigger defensive behavioral responses supported by appropriate cardiovascular and respiratory effects, when such signals indicate the presence of a real external threat, such as the presence of a predator. I then consider the functional roles of the direct inputs from the medial prefrontal cortex, and propose the hypothesis that these inputs are activated by perceived threats, that are generated as a consequence of complex cognitive processes. I further propose that the inputs from areas 10 m, 25 and 32 are activated under different circumstances. The input from cortical area 10 m is of special interest, because this cortical area exists only in primates and is much larger in the brain of humans than in all other primates.
Collapse
Affiliation(s)
- Roger Dampney
- School of Medical Sciences (Physiology) and Bosch Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
142
|
Govorunova EG, Sineshchekov OA, Hemmati R, Janz R, Morelle O, Melkonian M, Wong GKS, Spudich JL. Extending the Time Domain of Neuronal Silencing with Cryptophyte Anion Channelrhodopsins. eNeuro 2018; 5:ENEURO.0174-18.2018. [PMID: 30027111 PMCID: PMC6051594 DOI: 10.1523/eneuro.0174-18.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/31/2022] Open
Abstract
Optogenetic inhibition of specific neuronal types in the brain enables analysis of neural circuitry and is promising for the treatment of a number of neurological disorders. Anion channelrhodopsins (ACRs) from the cryptophyte alga Guillardia theta generate larger photocurrents than other available inhibitory optogenetic tools, but more rapid channels are needed for temporally precise inhibition, such as single-spike suppression, of high-frequency firing neurons. Faster ACRs have been reported, but their potential advantages for time-resolved inhibitory optogenetics have not so far been verified in neurons. We report RapACR, nicknamed so for "rapid," an ACR from Rhodomonas salina, that exhibits channel half-closing times below 10 ms and achieves equivalent inhibition at 50-fold lower light intensity in lentivirally transduced cultured mouse hippocampal neurons as the second-generation engineered Cl--conducting channelrhodopsin iC++. The upper limit of the time resolution of neuronal silencing with RapACR determined by measuring the dependence of spiking recovery after photoinhibition on the light intensity was calculated to be 100 Hz, whereas that with the faster of the two G. theta ACRs was 13 Hz. Further acceleration of RapACR channel kinetics was achieved by site-directed mutagenesis of a single residue in transmembrane helix 3 (Thr111 to Cys). We also show that mutation of another ACR (Cys to Ala at the same position) with a greatly extended lifetime of the channel open state acts as a bistable photochromic tool in mammalian neurons. These molecules extend the time domain of optogenetic neuronal silencing while retaining the high light sensitivity of Guillardia ACRs.
Collapse
Affiliation(s)
- Elena G. Govorunova
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030
| | - Oleg A. Sineshchekov
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030
| | - Raheleh Hemmati
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030
| | - Roger Janz
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030
| | - Olivier Morelle
- Institute of Botany, Cologne Biocenter, University of Cologne, Cologne D-50674, Germany
| | - Michael Melkonian
- Institute of Botany, Cologne Biocenter, University of Cologne, Cologne D-50674, Germany
| | - Gane K.-S. Wong
- Departments of Biological Sciences and of Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - John L. Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030
| |
Collapse
|
143
|
Bray N. In hunt mode. Nat Rev Neurosci 2018; 19:119. [DOI: 10.1038/nrn.2018.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|