101
|
Giacoppo S, Iori R, Bramanti P, Mazzon E. Topical moringin-cream relieves neuropathic pain by suppression of inflammatory pathway and voltage-gated ion channels in murine model of multiple sclerosis. Mol Pain 2018; 13:1744806917724318. [PMID: 28741431 PMCID: PMC5555508 DOI: 10.1177/1744806917724318] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Neuropathic pain represents the major public health burden with a strong impact on quality life in multiple sclerosis patients. Although some advances have been obtained in the last years, the conventional therapies remain poorly effective. Thus, the discovery of innovative approaches to improve the outcomes for multiple sclerosis patients is a goal of primary importance. With this aim, we investigated the efficacy of the 4-(α−L-rhamnopyranosyloxy)benzyl isothiocyanate (moringin), purified from Moringa oleifera seeds and ready-to-use as topical treatment in experimental autoimmune encephalomyelitis, murine model of multiple sclerosis. Female C57BL/6 mice immunized with myelin oligodendrocyte glycoprotein (MOG35–55) were topically treated with 2% moringin cream twice daily from the onset of the symptoms until the sacrifice occurred about 21 days after experimental autoimmune encephalomyelitis induction. Results Our observations showed the efficacy of 2% moringin cream treatment in reducing clinical and histological disease score, as well as in alleviating neuropathic pain with consequent recovering of the hind limbs and response to mechanical stimuli. In particular, Western blot analysis and immunohistochemical evaluations revealed that 2% moringin cream was able to counteract the inflammatory cascade by reducing the production of pro-inflammatory cytokines (interleukin-17 and interferon-γ) and in parallel by increasing the expression of anti-inflammatory cytokine (interleukin-10). Interestingly, 2% moringin cream treatment was found to modulate the expression of voltage-gated ion channels (results focused on P2X7, Nav 1.7, Nav 1.8 KV4.2, and α2δ-1) as well as metabotropic glutamate receptors (mGluR5 and xCT) involved in neuropathic pain initiation and maintenance. Conclusions Finally, our evidences suggest 2% moringin cream as a new pharmacological trend in the management of multiple sclerosis-induced neuropathic pain.
Collapse
Affiliation(s)
- Sabrina Giacoppo
- RCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, Messina, Italy
| | - Renato Iori
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca Agricoltura e Ambiente (CREA-AA), Bologna, Italy
| | - Placido Bramanti
- RCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, Messina, Italy
| | | |
Collapse
|
102
|
Jeong JS, Kim HY, Shin BS, Lee AR, Yoon JH, Hahm TS, Lee JE. Increased expression of the Cbl family of E3 ubiquitin ligases decreases Interleukin-2 production in a rat model of peripheral neuropathy. BMC Anesthesiol 2018; 18:87. [PMID: 30021515 PMCID: PMC6052554 DOI: 10.1186/s12871-018-0555-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/27/2018] [Indexed: 11/25/2022] Open
Abstract
Background Interleukin 2 (IL-2) influences the development and severity of pain due to its antinociceptive and immunomodulatory effects. Its production is influenced by the increased expression of c-Cbl (Casitas B-lineage lymphoma proto-oncogene) and Cbl-b E3 ubiquitin ligases. We evaluated the effects on IL-2-mediated changes in c-Cbl and Cbl-b expression in a rat model of chronic neuropathic pain. Methods Peripheral neuropathy was induced in adult male Sprague-Dawley rats weighing 250–300 g by chronic spinal nerve ligation. Half of the spinal cord ipsilateral to the nerve injury was harvested at 1, 3, and 6 weeks, and the expression levels of IL-2, c-Cbl, Cbl-b, phospholipase C-γ1 (PLC-γ1), ZAP70, and protein kinase Cθ (PKCθ), as well as ubiquitin conjugation, were evaluated. Results Total IL-2 mRNA levels were significantly decreased at 3 and 6 weeks after nerve injury compared to those in sham-operated rats. The mRNA levels of c-Cbl and Cbl-b, as well as the level of ubiquitin conjugation, were significantly increased at 3 and 6 weeks. In contrast, the levels of phosphorylated ZAP70 and PLC-γ1 were decreased at 3 and 6 weeks after spinal nerve ligation. Ubiquitination of PLC-γ1 and PKCθ was increased at 3 and 6 weeks. Conclusions Our results suggest that ubiquitin and the E3 ubiquitin ligases c-Cbl and Cbl-b function as neuroimmune modulators in the subacute phase of neuropathic pain after nerve injury.
Collapse
Affiliation(s)
- Ji Seon Jeong
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Ha Yeon Kim
- Department of Anesthesiology and Pain Medicine, Ajou University Medical Center, Ajou University, School of Medicine, Seoul, South Korea
| | - Byung Seop Shin
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
| | - Ae Ryoung Lee
- Department of Anesthesiology and Pain Medicine, Cheju National University Hospital, Jeju National University, School of Medicine, Jeju, South Korea
| | - Ji Hyun Yoon
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, South Korea
| | - Tae Soo Hahm
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Ja Eun Lee
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| |
Collapse
|
103
|
Abstract
Supplemental Digital Content is Available in the Text. Inhibitors of leukocyte elastase inhibit spontaneous and evoked pain behaviors in mouse models of chronic pain of neuropathic, cancer, and diabetic origins. Neuropathic pain is an integral component of several chronic pain conditions and poses a major health problem worldwide. Despite emerging understanding of mechanisms behind neuropathic pain, the available treatment options are still limited in efficacy or associated with side effects, therefore making it necessary to find viable alternatives. In a genetic screen, we recently identified SerpinA3N, a serine protease inhibitor secreted in response to nerve damage by the dorsal root ganglion neurons and we showed that SerpinA3N acts against induction of neuropathic pain by inhibiting the T-cell- and neutrophil-derived protease, leucocyte elastase (LE). In the current study, via detailed in vivo pharmacology combined with analyses of evoked- and spontaneous pain-related behaviors in mice, we report that on systemic delivery, a single dose of 3 independent LE inhibitors can block established nociceptive hypersensitivity in early and late phases in the spared nerve injury model of traumatic neuropathic pain in mice. We further report the strong efficacy of systemic LE inhibitors in reversing ongoing pain in 2 other clinically relevant mouse models—painful diabetic neuropathy and cancer pain. Detailed immunohistochemical analyses on the peripheral tissue samples revealed that both T-Lymphocytes and neutrophils are the sources of LE on peripheral nerve injury, whereas neutrophils are the primary source of LE in diabetic neuropathic conditions. In summary, our results provide compelling evidence for a strong therapeutic potential of generic LE inhibitors for the treatment of neuropathic pain and other chronic pain conditions harboring a neuropathic pain component.
Collapse
|
104
|
Raoof R, Willemen HLDM, Eijkelkamp N. Divergent roles of immune cells and their mediators in pain. Rheumatology (Oxford) 2018; 57:429-440. [PMID: 28968842 PMCID: PMC5850827 DOI: 10.1093/rheumatology/kex308] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Indexed: 12/20/2022] Open
Abstract
Chronic pain is a major debilitating condition that is difficult to treat. Although chronic pain may appear to be a disorder of the nervous system, crucial roles for immune cells and their mediators have been identified as important contributors in various types of pain. This review focuses on how the immune system regulates pain and discusses the emerging roles of immune cells in the initiation or maintenance of chronic pain. We highlight which immune cells infiltrate damaged nerves, the dorsal root ganglia, spinal cord and tissues around free nerve endings and discuss through which mechanisms they control pain. Finally we discuss emerging roles of the immune system in resolving pain and how the immune system contributes to the transition from acute to chronic pain. We propose that targeting some of these immune processes may provide novel therapeutic opportunities for the treatment of chronic pain.
Collapse
Affiliation(s)
- Ramin Raoof
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hanneke L D M Willemen
- Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Niels Eijkelkamp
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
105
|
Shen S, Ding W, Ahmed S, Hu R, Opalacz A, Roth S, You Z, Wotjkiewicz GR, Lim G, Chen L, Mao J, Chen JW, Zhang Y. Ultrasmall Superparamagnetic Iron Oxide Imaging Identifies Tissue and Nerve Inflammation in Pain Conditions. PAIN MEDICINE (MALDEN, MASS.) 2018; 19:686-692. [PMID: 29177411 PMCID: PMC6659016 DOI: 10.1093/pm/pnx267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Objective Correlation between radiologic structural abnormalities and clinical symptoms in low back pain patients is poor. There is an unmet clinical need to image inflammation in pain conditions to aid diagnosis and guide treatment. Ferumoxytol, an ultrasmall superparamagnetic iron oxide (USPIO) nanoparticle, is clinically used to treat iron deficiency anemia and showed promise in imaging tissue inflammation in human. We explored whether ferumoxytol can be used to identify tissue and nerve inflammation in pain conditions in animals and humans. Methods Complete Freud's adjuvant (CFA) or saline was injected into mice hind paws to establish an inflammatory pain model. Ferumoxytol (20 mg/kg) was injected intravenously. Magnetic resonance imaging (MRI) was performed prior to injection and 72 hours postinjection. The changes in the transverse relaxation time (T2) before and after ferumoxytol injection were compared between mice that received CFA vs saline injection. In the human study, we administered ferumoxytol (4 mg/kg) to a human subject with clinical symptoms of lumbar radiculopathy and compared the patient with a healthy subject. Results Mice that received CFA exhibited tissue inflammation and pain behaviors. The changes in T2 before and after ferumoxytol injection were significantly higher in mice that received CFA vs saline (20.8 ± 3.6 vs 2.2 ± 2.5, P = 0.005). In the human study, ferumoxytol-enhanced MRI identified the nerve root corresponding to the patient's symptoms, but the nerve root was not impinged by structural abnormalities, suggesting the potential superiority of this approach over conventional structural imaging techniques. Conclusions Ferumoxytol-enhanced MRI can identify tissue and nerve inflammation and may provide a promising diagnostic tool in assessing pain conditions in humans.
Collapse
Affiliation(s)
- Shiqian Shen
- Department of Anesthesia, Critical Care and Pain Medicine, MGH Center for Translational Pain Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Weihua Ding
- Department of Anesthesia and Pain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Shihab Ahmed
- Department of Anesthesia, Critical Care and Pain Medicine, MGH Center for Translational Pain Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ranliang Hu
- Department of Radiology and Imaging Sciences, Emory University Hospital, Atlanta, Georgia
| | - Arissa Opalacz
- Department of Anesthesia, Critical Care and Pain Medicine, MGH Center for Translational Pain Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Roth
- Department of Anesthesia, Critical Care and Pain Medicine, MGH Center for Translational Pain Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zerong You
- Department of Anesthesia, Critical Care and Pain Medicine, MGH Center for Translational Pain Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gregory R Wotjkiewicz
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Grewo Lim
- Department of Anesthesia, Critical Care and Pain Medicine, MGH Center for Translational Pain Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lucy Chen
- Department of Anesthesia, Critical Care and Pain Medicine, MGH Center for Translational Pain Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jianren Mao
- Department of Anesthesia, Critical Care and Pain Medicine, MGH Center for Translational Pain Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John W Chen
- Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yi Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, MGH Center for Translational Pain Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
106
|
CD4+ αβ T cell infiltration into the leptomeninges of lumbar dorsal roots contributes to the transition from acute to chronic mechanical allodynia after adult rat tibial nerve injuries. J Neuroinflammation 2018; 15:81. [PMID: 29544518 PMCID: PMC5855984 DOI: 10.1186/s12974-018-1115-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/05/2018] [Indexed: 02/06/2023] Open
Abstract
Background Antigen-specific and MHCII-restricted CD4+ αβ T cells have been shown or suggested to play an important role in the transition from acute to chronic mechanical allodynia after peripheral nerve injuries. However, it is still largely unknown where these T cells infiltrate along the somatosensory pathways transmitting mechanical allodynia to initiate the development of chronic mechanical allodynia after nerve injuries. Therefore, the purpose of this study was to ascertain the definite neuroimmune interface for these T cells to initiate the development of chronic mechanical allodynia after peripheral nerve injuries. Methods First, we utilized both chromogenic and fluorescent immunohistochemistry (IHC) to map αβ T cells along the somatosensory pathways for the transmission of mechanical allodynia after modified spared nerve injuries (mSNIs), i.e., tibial nerve injuries, in adult male Sprague-Dawley rats. We further characterized the molecular identity of these αβ T cells selectively infiltrating into the leptomeninges of L4 dorsal roots (DRs). Second, we identified the specific origins in lumbar lymph nodes (LLNs) for CD4+ αβ T cells selectively present in the leptomeninges of L4 DRs by two experiments: (1) chromogenic IHC in these lymph nodes for CD4+ αβ T cell responses after mSNIs and (2) fluorescent IHC for temporal dynamics of CD4+ αβ T cell infiltration into the L4 DR leptomeninges after mSNIs in prior lymphadenectomized or sham-operated animals to LLNs. Finally, following mSNIs, we evaluated the effects of region-specific targeting of these T cells through prior lymphadenectomy to LLNs and chronic intrathecal application of the suppressive anti-αβTCR antibodies on the development of mechanical allodynia by von Frey hair test and spinal glial or neuronal activation by fluorescent IHC. Results Our results showed that during the sub-acute phase after mSNIs, αβ T cells selectively infiltrate into the leptomeninges of the lumbar DRs along the somatosensory pathways responsible for transmitting mechanical allodynia. Almost all these αβ T cells are CD4 positive. Moreover, the temporal dynamics of CD4+ αβ T cell infiltration into the lumbar DR leptomeninges are specifically determined by LLNs after mSNIs. Prior lymphadenectomy to LLNs specifically reduces the development of mSNI-induced chronic mechanical allodynia. More importantly, intrathecal application of the suppressive anti-αβTCR antibodies reduces the development of mSNI-induced chronic mechanical allodynia. In addition, prior lymphadenectomy to LLNs attenuates mSNI-induced spinal activation of glial cells and PKCγ+ excitatory interneurons. Conclusions The noteworthy results here provide the first evidence that CD4+ αβ T cells selectively infiltrate into the DR leptomeninges of the somatosensory pathways transmitting mechanical allodynia and contribute to the transition from acute to chronic mechanical allodynia after peripheral nerve injuries. Electronic supplementary material The online version of this article (10.1186/s12974-018-1115-7) contains supplementary material, which is available to authorized users.
Collapse
|
107
|
Li H, Kong W, Chambers CR, Yu D, Ganea D, Tuma RF, Ward SJ. The non-psychoactive phytocannabinoid cannabidiol (CBD) attenuates pro-inflammatory mediators, T cell infiltration, and thermal sensitivity following spinal cord injury in mice. Cell Immunol 2018; 329:1-9. [PMID: 29784129 DOI: 10.1016/j.cellimm.2018.02.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 01/27/2023]
Abstract
We evaluated the effects of the non-psychoactive cannabinoid cannabidiol (CBD) on the inflammatory response and recovery of function following spinal cord injury (SCI). Female C57Bl/6 mice were exposed to spinal cord contusion injury (T9-10) and received vehicle or CBD (1.5 mg/kg IP) injections for 10 weeks following injury. The effect of SCI and CBD treatment on inflammation was assessed via microarray, qRT-PCR and flow cytometry. Locomotor and bladder function and changes in thermal and mechanical hind paw sensitivity were also evaluated. There was a significant decrease in pro-inflammatory cytokines and chemokines associated with T-cell differentiation and invasion in the SCI-CBD group as well as a decrease in T cell invasion into the injured cord. A higher percentage of SCI mice in the vehicle-treated group (SCI-VEH) went on to develop moderate to severe (0-65.9% baseline thermal threshold) thermal sensitivity as compared with CBD-treated (SCI-CBD) mice. CBD did not affect recovery of locomotor or bladder function following SCI. Taken together, CBD treatment attenuated the development of thermal sensitivity following spinal cord injury and this effect may be related to protection against pathological T-cell invasion.
Collapse
Affiliation(s)
- Hongbo Li
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, United States.
| | - Weimin Kong
- Microbiology and Immunology Department, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, United States.
| | - Christina R Chambers
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, United States
| | - Daohai Yu
- Department of Clinical Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, United States.
| | - Doina Ganea
- Microbiology and Immunology Department, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, United States.
| | - Ronald F Tuma
- Center for Substance Abuse Research, Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia PA 19140, United States.
| | - Sara Jane Ward
- Center for Substance Abuse Research, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, United States.
| |
Collapse
|
108
|
Korczeniewska OA, Husain S, Khan J, Eliav E, Soteropoulos P, Benoliel R. Differential gene expression in trigeminal ganglia of male and female rats following chronic constriction of the infraorbital nerve. Eur J Pain 2018; 22:875-888. [PMID: 29350446 DOI: 10.1002/ejp.1174] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND The mechanisms underlying sex-based differences in pain and analgesia are poorly understood. In this study, we investigated gene expression changes in trigeminal ganglia (TG) of male and female rats exposed to infraorbital nerve chronic constriction injury (IoN-CCI). METHODS Somatosensory assessments were performed prior to IoN-CCI and at selected time points postsurgery. Selected gene expression changes were examined with real-time quantitative polymerase chain reaction (RT-PCR) in ipsilateral TG at 21 days postsurgery. RESULTS Rats exposed to IoN-CCI developed significant mechanical allodynia and hyperalgesia on days 19 and 21 postsurgery. During this period, females developed significantly more allodynia but not hyperalgesia compared to males. At 21 days postsurgery, expression levels of 44 of the 84 investigated pain-related genes in ipsilateral TG were significantly regulated relative to naïve rats in either sex. Csf1 and Cx3cr1 were up-regulated in both sexes, but the magnitude of regulation was significantly higher in females (p = 0.02 and p = 0.001, respectively). Htr1a and Scn9a were down-regulated in both sexes, but the down-regulation was significantly more pronounced in males (p = 0.04 and p = 0.02, respectively). Additionally, Cck, Il1a, Pla2g1b and Tnf genes were significantly regulated in females but not in males, and Chrna4 gene was significantly down-regulated in males but not in females. CONCLUSIONS Our findings suggest sex-dependent gene regulation in response to nerve injury, which may contribute to sex dimorphism of trigeminal neuropathic pain. Further studies are needed to establish gene expression changes over time and correlate these with hormonal and other physiological parameters in male and female. SIGNIFICANCE We present novel sex-specific transcriptional regulation in trigeminal ganglia that may contribute to male-/female-based differences in trigeminal neuropathic pain. These findings are expected to open new research horizons, particularly in male versus female targeted therapeutic regimens.
Collapse
Affiliation(s)
- O A Korczeniewska
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - S Husain
- The Genomics Center, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - J Khan
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - E Eliav
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - P Soteropoulos
- The Genomics Center, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - R Benoliel
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
109
|
Bidirectional modulation between infiltrating CD3 + T-lymphocytes and astrocytes in the spinal cord drives the development of allodynia in monoarthritic rats. Sci Rep 2018; 8:51. [PMID: 29311654 PMCID: PMC5758647 DOI: 10.1038/s41598-017-18357-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 12/11/2017] [Indexed: 12/30/2022] Open
Abstract
Increasing evidence suggests that T cells and glia participate in the process of neuropathic pain. However, little is known about the involvement of T cells or the interaction between glia and T cells at the molecular level. Here we investigated the phenotype of T cell infiltration into the spinal cord in inflammatory pain and explored potential crosstalk between glia and T cells. The establishment of monoarthritis produced T cell infiltration and astrocyte activation, exhibiting similar kinetics in the spinal cord. T-cell-deficient (Rag1−/−) mice significantly attenuated MA-induced mechanical allodynia and GFAP upregulation. Double immunofluorescence staining showed that CD3 mainly colocalized with interferon-gamma (IFN-γ). Western blot and flow cytometry showed that multiple intrathecal administrations of astrocytic inhibitor fluorocitrate decreased IFN-γ-production without decreasing T cell number in the spinal cord. Spinal IFN-γ blockade reduced MA-induced mechanical allodynia and astroglial activation. In contrast, treatment with rIFN-γ directly elicited persistent mechanical allodynia and upregulation of GFAP and pJNK1/2 in naïve rats. Furthermore, rIFN-γ upregulated the phosphorylation of NF-κB p65 in cultured astrocytes vitro and spinal dorsal horn vivo. The results suggest that Th1 cells and astrocytes maintain inflammatory pain and imply that there may be a positive feedback loop between these cells via IFN-γ.
Collapse
|
110
|
Malafoglia V, Celi M, Muscoli C, Ilari S, Lauro F, Giancotti LA, Morabito C, Feola M, Tarantino U, Raffaeli W. Lymphocyte opioid receptors as innovative biomarkers of osteoarthritic pain, for the assessment and risk management of opioid tailored therapy, before hip surgery, to prevent chronic pain and opioid tolerance/addiction development: OpMarkArt (Opioids-Markers-Arthroprosthesis) study protocol for a randomized controlled trial. Trials 2017; 18:605. [PMID: 29258584 PMCID: PMC5738165 DOI: 10.1186/s13063-017-2363-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/30/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The incidence of post-surgical chronic pain ranges between 20% and 40% in Europe. Osteoarthritis pain after prosthesis implantation is one of the most severe secondary syndromes, depending not only on surgery but also on organic changes before and after joints replacement. No data are available about risk factors. An excessive inflammatory response plays a central role but a best therapy is not defined yet. It is not clear whether opioid administration could influence post-surgical pain and lead to tolerance or addiction. Interestingly, the immune system, together with the nervous and peptidergic ones, is involved in hypersensibility. The connection across the three biological systems lies in the presence of opioid receptors on immune cells surface. Here, we show a method to analyze whether opioids could modulate lymphocytes, by proposing opioid receptors as biological markers to prevent chronic pain and opioid tolerance or addiction after hip surgery. METHODS/DESIGN After institutional independent ethics committee approval, 60 patients, in pain and undergoing hip surgery, will be enrolled in a single-blind, randomized, phase IV, pilot study. Pain treatment will be selected inside a class of non-steroidal anti-inflammatory drugs (NAISDs) or paracetamol or a class of opioids, into three medication arms: 25 mg tapentadol twice daily; 75 mg tapentadol twice daily; NSAIDs or paracetamol in accordance with surgeon's custom. For each group, we will collect blood samples before, during and after surgery, to apply molecular analysis. We will perform lymphocyte opioid receptors genes and proteins expression and functional analysis. Data will be statistically analyzed. DISCUSSION This project has the potential to obtain a personalized diagnostic kit, by considering lymphocyte opioid receptors as biological markers. Starting from a simple blood sample, it will be possible to decide the best therapy for a single patient. Using a noninvasive approach, we expect to fix a daily standard dose and timing, before and after surgery, to bypass hip chronic pain and the insurgence of tolerance or addiction. The analysis of opioid receptors sensitivity will help to identify the best drug administration in each specific case (tailored therapy). TRIAL REGISTRATION ISRCTN, ISRCTN12559751 . Retrospectively registered on 23 May 2017.
Collapse
Affiliation(s)
| | - Monica Celi
- Policlinico Foundation Tor Vergata, University of Tor Vergata, Rome, Italy
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health (IRC_FSH), Department of Health Sciences, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | - Sara Ilari
- San Raffaele Roma S.r.l., Roccelletta di Borgia, Catanzaro, Italy
| | - Filomena Lauro
- San Raffaele Roma S.r.l., Roccelletta di Borgia, Catanzaro, Italy
| | | | - Chiara Morabito
- Department of Experimental Medicine, 'Sapienza' University of Rome, Rome, Italy
| | - Maurizio Feola
- Policlinico Foundation Tor Vergata, University of Tor Vergata, Rome, Italy
| | - Umberto Tarantino
- Policlinico Foundation Tor Vergata, University of Tor Vergata, Rome, Italy
| | - William Raffaeli
- Institute for Research on Pain, ISAL Foundation, Torre Pedrera, RN, Italy
| |
Collapse
|
111
|
Zimering JH, Stone JJ, Paulzak A, Markman JD, Johnson MD, Vates GE. Ectopic brain tissue in the trigeminal nerve presenting as rapid-onset trigeminal neuralgia: case report. J Neurosurg 2017; 129:1063-1066. [PMID: 29192861 DOI: 10.3171/2017.6.jns17811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The authors report the case of a 52-year-old man who presented with rapid-onset lancinating facial pain consistent with trigeminal neuralgia. Magnetic resonance imaging revealed a nonenhancing small lesion on the right trigeminal nerve concerning for an atypical schwannoma or neuroma. The patient underwent resection of the mass via a right retrosigmoid approach. His facial pain completely resolved immediately postoperatively and had not recurred at 6 months after surgery. The mass was consistent with normal brain tissue (neurons and glial cells) without evidence of mitoses. A final histopathological diagnosis of ectopic brain tissue with neural tissue demonstrating focal, chronic T-cell inflammation was made. The partial rhizotomy during resection was curative for the facial pain. To the authors' knowledge, this is the first report of neuroglial ectopia causing trigeminal neuralgia.
Collapse
Affiliation(s)
| | | | | | | | - Mahlon D Johnson
- 4Department of Pathology, Division of Neuropathology, University of Rochester Medical Center, Rochester, New York
| | | |
Collapse
|
112
|
Preclinical Efficacy Failure of Human CNS-Derived Stem Cells for Use in the Pathway Study of Cervical Spinal Cord Injury. Stem Cell Reports 2017; 8:249-263. [PMID: 28199829 PMCID: PMC5312249 DOI: 10.1016/j.stemcr.2016.12.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 01/26/2023] Open
Abstract
We previously showed the efficacy of multiple research cell lines (RCLs) of human CNS neural stem cells (HuCNS-SCs) in mouse and rat models of thoracic spinal cord injury (SCI), supporting a thoracic SCI clinical trial. Experts recommend in vivo preclinical testing of the intended clinical cell lot/line (CCL) in models with validity for the planned clinical target. We therefore tested the efficacy of two HuCNS-SC lines in cervical SCI: one RCL, and one CCL intended for use in the Pathway Study of cervical SCI in man. We assessed locomotor recovery and sensory function, as well as engraftment, migration, and fate. No evidence of efficacy of the CCL was observed; some data suggested a negative impact of the CCL on outcomes. These data raise questions about the development and validation of potency/comparability assays for clinical testing of cell products, and lack of US Food and Drug Administration requirements for in vivo testing of intended clinical cell lines. Human CNS stem cells (HuCNS-SCs) have been used in multiple clinical trials Research cell lines of HuCNS-SCs are efficacious in spinal cord injury (SCI) models The clinical cell line (CCL) of HuCNS-SC was not efficacious in a cervical SCI model Despite lack of in vivo efficacy, the CCL was used in the Pathways clinical study
Collapse
|
113
|
Rosen S, Ham B, Mogil JS. Sex differences in neuroimmunity and pain. J Neurosci Res 2017; 95:500-508. [PMID: 27870397 DOI: 10.1002/jnr.23831] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 12/12/2022]
Abstract
Differences in the prevalence of chronic pain in women vs. men are well known, and decades of laboratory experimentation have demonstrated that women are more sensitive to pain than are men. Attention has thus shifted to investigating mechanisms underlying such differences. Recent evidence suggests that neuroimmune modulation of pain may represent an important cause of sex differences. The current Review examines the evidence for gonadal hormone modulation of the immune system, immune system modulation of pain, and interactions that might help to explain sex differences in pain. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sarah Rosen
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - Boram Ham
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - Jeffrey S Mogil
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
114
|
Kiguchi N, Kobayashi D, Saika F, Matsuzaki S, Kishioka S. Pharmacological Regulation of Neuropathic Pain Driven by Inflammatory Macrophages. Int J Mol Sci 2017; 18:ijms18112296. [PMID: 29104252 PMCID: PMC5713266 DOI: 10.3390/ijms18112296] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain can have a major effect on quality of life but current therapies are often inadequate. Growing evidence suggests that neuropathic pain induced by nerve damage is caused by chronic inflammation. Upon nerve injury, damaged cells secrete pro-inflammatory molecules that activate cells in the surrounding tissue and recruit circulating leukocytes to the site of injury. Among these, the most abundant cell type is macrophages, which produce several key molecules involved in pain enhancement, including cytokines and chemokines. Given their central role in the regulation of peripheral sensitization, macrophage-derived cytokines and chemokines could be useful targets for the development of novel therapeutics. Inhibition of key pro-inflammatory cytokines and chemokines prevents neuroinflammation and neuropathic pain; moreover, recent studies have demonstrated the effectiveness of pharmacological inhibition of inflammatory (M1) macrophages. Nicotinic acetylcholine receptor ligands and T helper type 2 cytokines that reduce M1 macrophages are able to relieve neuropathic pain. Future translational studies in non-human primates will be crucial for determining the regulatory mechanisms underlying neuroinflammation-associated neuropathic pain. In turn, this knowledge will assist in the development of novel pharmacotherapies targeting macrophage-driven neuroinflammation for the treatment of intractable neuropathic pain.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama 641-0012, Japan.
| | - Daichi Kobayashi
- Department of Pharmacology, Wakayama Medical University, Wakayama 641-0012, Japan.
| | - Fumihiro Saika
- Department of Pharmacology, Wakayama Medical University, Wakayama 641-0012, Japan.
| | - Shinsuke Matsuzaki
- Department of Pharmacology, Wakayama Medical University, Wakayama 641-0012, Japan.
| | - Shiroh Kishioka
- Department of Pharmacology, Wakayama Medical University, Wakayama 641-0012, Japan.
| |
Collapse
|
115
|
T-Cell Mediation of Pregnancy Analgesia Affecting Chronic Pain in Mice. J Neurosci 2017; 37:9819-9827. [PMID: 28877966 DOI: 10.1523/jneurosci.2053-17.2017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 01/02/2023] Open
Abstract
It has been reported consistently that many female chronic pain sufferers have an attenuation of symptoms during pregnancy. Rats display increased pain tolerance during pregnancy due to an increase in opioid receptors in the spinal cord. Past studies did not consider the role of non-neuronal cells, which are now known to play an important role in chronic pain processing. Using an inflammatory (complete Freund's adjuvant) or neuropathic (spared nerve injury) model of persistent pain, we observed that young adult female mice in early pregnancy switch from a microglia-independent to a microglia-dependent pain hypersensitivity mechanism. During late pregnancy, female mice show no evidence of chronic pain whatsoever. This pregnancy-related analgesia is reversible by intrathecal administration of naloxone, suggesting an opioid-mediated mechanism; pharmacological and genetic data suggest the importance of δ-opioid receptors. We also observe that T-cell-deficient (nude and Rag1-null mutant) pregnant mice do not exhibit pregnancy analgesia, which can be rescued with the adoptive transfer of CD4+ or CD8+ T cells from late-pregnant wild-type mice. These results suggest that T cells are a mediator of the opioid analgesia exhibited during pregnancy.SIGNIFICANCE STATEMENT Chronic pain symptoms often subside during pregnancy. This pregnancy-related analgesia has been demonstrated for acute pain in rats. Here, we show that pregnancy analgesia can produce a complete cessation of chronic pain behaviors in mice. We show that the phenomenon is dependent on pregnancy hormones (estrogen and progesterone), δ-opioid receptors, and T cells of the adaptive immune system. These findings add to the recent but growing evidence of sex-specific T-cell involvement in chronic pain processing.
Collapse
|
116
|
Tseng TJ, Yang ML, Hsieh YL, Ko MH, Hsieh ST. Nerve Decompression Improves Spinal Synaptic Plasticity of Opioid Receptors for Pain Relief. Neurotox Res 2017; 33:362-376. [PMID: 28836121 DOI: 10.1007/s12640-017-9799-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/24/2017] [Accepted: 08/10/2017] [Indexed: 01/05/2023]
Abstract
Nerve decompression is an essential therapeutic strategy for pain relief clinically; however, its potential mechanism remains poorly understood. Opioid analgesics acting on opioid receptors (OR) within the various regions of the nervous system have been used widely for pain management. We therefore hypothesized that nerve decompression in a neuropathic pain model of chronic constriction injury (CCI) improves the synaptic OR plasticity in the dorsal horn, which is in response to alleviate pain hypersensitivity. After CCI, the Sprague-Dawley rats were assigned into Decompression group, in which the ligatures around the sciatic nerve were removed at post-operative week 4 (POW 4), and a CCI group, in which the ligatures remained. Pain hypersensitivity, including thermal hyperalgesia and mechanical allodynia, was entirely normalized in Decompression group within the following 4 weeks. Substantial reversal of mu- and delta-OR immunoreactive (IR) expressions in Decompression group was detected in primary afferent terminals in the dorsal horn. In Decompression group, mu-OR antagonist (CTOP, D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 [Disulfide Bridge: 2-7]) and delta-OR antagonist (NTI, 17-(cyclopropylmethyl)-6,7-dehydro-4,5α-epoxy-3,14-dihydroxy-6,7-2',3'-indolomorphinan hydrochloride) re-induced pain hypersensitivity by intrathecal administration in a dose-responsive manner. Additionally, mu-OR agonist (DAMGO, [D-Ala2, NMe-Phe4, Gly-ol5]-enkephalin) and delta-OR agonist (SNC80, ((+)-4-[(αR)-α-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethyl-benzamide) were administrated intrathecally to attenuating CCI-induced chronic and acute pain hypersensitivity dose-dependently. Our current results strongly suggested that nerve decompression provides the opportunity for improving the synaptic OR plasticity in the dorsal horn and pharmacological blockade presents a novel insight into the therapeutic strategy for pain hypersensitivity.
Collapse
Affiliation(s)
- To-Jung Tseng
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan.,Department of Medical Education, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan
| | - Ming-Ling Yang
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan.,Department of Medical Education, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Miau-Hwa Ko
- Department of Anatomy, China Medical University, Taichung, 40402, Taiwan
| | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1 Jen-Ai Road, Sec 1, Taipei, 10051, Taiwan. .,Department of Neurology, National Taiwan University Hospital, Taipei, 10002, Taiwan.
| |
Collapse
|
117
|
Immune dysregulation in patients with carpal tunnel syndrome. Sci Rep 2017; 7:8218. [PMID: 28811623 PMCID: PMC5557984 DOI: 10.1038/s41598-017-08123-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/04/2017] [Indexed: 11/25/2022] Open
Abstract
Peripheral immunity plays a key role in maintaining homeostasis and conferring crucial neuroprotective effects on the injured nervous system, while at the same time may contribute to increased vulnerability to neuropathic pain. Little is known about the reciprocal relationship between entrapment neuropathy and peripheral immunity. This study investigated immune profile in patients with carpal tunnel syndrome (CTS), the most prevalent entrapment neuropathy. All patients exhibited neurophysiological abnormalities in the median nerve, with the majority reporting neuropathic pain symptoms. We found a significant increase in serum CCL5, CXCL8, CXCL10 and VEGF, and in CD4+ central and effector memory T cells in CTS patients, as compared to healthy controls. CCL5 and VEGF were identified as having the highest power to discriminate between patients and controls. Interestingly, and contrary to the prevailing view of CCL5 as a pro-nociceptive factor, the level of circulating CCL5 was inversely correlated with neuropathic pain intensity and median nerve motor latency. In contrast, the level of central memory T cells was positively associated with abnormal neurophysiological findings. These results suggest that entrapment neuropathy is associated with adaptive changes in the homeostasis of memory T cells and an increase in systemic inflammatory modulating cytokines/chemokines, which potentially regulate neuropathic symptoms.
Collapse
|
118
|
Hone AJ, Servent D, McIntosh JM. α9-containing nicotinic acetylcholine receptors and the modulation of pain. Br J Pharmacol 2017; 175:1915-1927. [PMID: 28662295 DOI: 10.1111/bph.13931] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/09/2017] [Accepted: 06/13/2017] [Indexed: 01/01/2023] Open
Abstract
Neuropathic pain is a complex and debilitating syndrome for which there are few effective pharmacological treatments. Opioid-based medications are initially effective for acute pain, but tolerance to their analgesic effects quickly develops, and long-term use often leads to physical dependence and addiction. Furthermore, neuropathic pain is generally resistant to non-steroidal anti-inflammatory drugs. Other classes of medications including antidepressants, antiepileptics and voltage-gated calcium channel inhibitors are only partially effective in most patients, may be associated with significant side effects and have few disease-modifying effects on the underlying pathology. Medications that act through new mechanisms of action, and particularly ones that have disease-modifying properties, would be highly desirable. In the last decade, a potential new target for the treatment of neuropathic pain has emerged: the α9-containing nicotinic acetylcholine receptor (nAChR). Recent studies indicate that antagonists of α9-containing nAChRs are analgesic in animal models of neuropathic pain. These nerve injury models include chronic constriction injury, partial sciatic nerve ligation, streptozotocin-induced diabetic neuropathy and chemotherapeutic-induced neuropathy. This review details the history and state of the field regarding the role that α9-containing nAChRs may play in neuropathic pain. An alternative hypothesis that α-conotoxins exert their therapeutic effect through blocking N-type calcium channels via activation of GABAB receptors is also reviewed. Understanding how antagonists of α9-containing nAChRs exert their therapeutic effects may ultimately result in the development of medications that not only treat but also prevent the development of neuropathic pain states. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
Collapse
Affiliation(s)
- Arik J Hone
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Denis Servent
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - J Michael McIntosh
- Department of Biology, University of Utah, Salt Lake City, UT, USA.,George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, USA.,Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
119
|
Localized Sympathectomy Reduces Mechanical Hypersensitivity by Restoring Normal Immune Homeostasis in Rat Models of Inflammatory Pain. J Neurosci 2017; 36:8712-25. [PMID: 27535916 DOI: 10.1523/jneurosci.4118-15.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 07/09/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Some forms of chronic pain are maintained or enhanced by activity in the sympathetic nervous system (SNS), but attempts to model this have yielded conflicting findings. The SNS has both pro- and anti-inflammatory effects on immunity, confounding the interpretation of experiments using global sympathectomy methods. We performed a "microsympathectomy" by cutting the ipsilateral gray rami where they entered the spinal nerves near the L4 and L5 DRG. This led to profound sustained reductions in pain behaviors induced by local DRG inflammation (a rat model of low back pain) and by a peripheral paw inflammation model. Effects of microsympathectomy were evident within one day, making it unlikely that blocking sympathetic sprouting in the local DRGs or hindpaw was the sole mechanism. Prior microsympathectomy greatly reduced hyperexcitability of sensory neurons induced by local DRG inflammation observed 4 d later. Microsympathectomy reduced local inflammation and macrophage density in the affected tissues (as indicated by paw swelling and histochemical staining). Cytokine profiling in locally inflamed DRG showed increases in pro-inflammatory Type 1 cytokines and decreases in the Type 2 cytokines present at baseline, changes that were mitigated by microsympathectomy. Microsympathectomy was also effective in reducing established pain behaviors in the local DRG inflammation model. We conclude that the effect of sympathetic fibers in the L4/L5 gray rami in these models is pro-inflammatory. This raises the possibility that therapeutic interventions targeting gray rami might be useful in some chronic inflammatory pain conditions. SIGNIFICANCE STATEMENT Sympathetic blockade is used for many pain conditions, but preclinical studies show both pro- and anti-nociceptive effects. The sympathetic nervous system also has both pro- and anti-inflammatory effects on immune tissues and cells. We examined effects of a very localized sympathectomy. By cutting the gray rami to the spinal nerves near the lumbar sensory ganglia, we avoided widespread sympathetic denervation. This procedure profoundly reduced mechanical pain behaviors induced by a back pain model and a model of peripheral inflammatory pain. One possible mechanism was reduction of inflammation in the sympathetically denervated regions. This raises the possibility that therapeutic interventions targeting gray rami might be useful in some inflammatory conditions.
Collapse
|
120
|
"Curcumin-loaded Poly (d, l-lactide-co-glycolide) nanovesicles induce antinociceptive effects and reduce pronociceptive cytokine and BDNF release in spinal cord after acute administration in mice". Colloids Surf B Biointerfaces 2017; 158:379-386. [PMID: 28719859 DOI: 10.1016/j.colsurfb.2017.07.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/07/2017] [Accepted: 07/08/2017] [Indexed: 11/21/2022]
Abstract
Given the poor bioavailability of curcumin, its antinociceptive effects are produced after chronic intravenous administration of high doses, while poly (d,l-lactide-co-glycolide)-loaded vesicles (PLGA) can improve drug delivery. This paper investigates the antinociceptive effects of curcumin-loaded PLGA nanovesicles (PLGA-CUR) administered via intravenous (i.v.) or intrathecal (i.t.) routes at low and high doses. The following models of pain were used: formalin test, zymosan-induced hyperalgesia and sciatic nerve ligation inducing neuropathic allodynia and hyperalgesia. PLGA-CUR administered intravenously was able to reduce the response to nociceptive stimuli in the formalin test and hyperalgesia induced by zymosan. Curcumin, instead, was inactive. Low-dose i.t. administration of PLGA-CUR significantly reduced allodynia produced by sciatic nerve ligation, whereas low doses of curcumin did not change the response to nociceptive stimuli. Long-lasting antinociceptive effects were observed when high doses of PLGA-CUR were administered intrathecally. At high doses, i.t. administration of curcumin only exerted rapid and transient antinociceptive effects. Measurement of cytokine and BDNF in the spinal cord of neuropathic mice demonstrate that the antinociceptive effects of PLGA-CUR depend on the reduction in cytokine release and BDNF in the spinal cord. The results demonstrate the effectiveness of PLGA-CUR and suggest that PLGA-CUR nanoformulation might be a new potential drug in the treatment of pain.
Collapse
|
121
|
Lopes DM, Denk F, Chisholm KI, Suddason T, Durrieux C, Thakur M, Gentry C, McMahon SB. Peripheral inflammatory pain sensitisation is independent of mast cell activation in male mice. Pain 2017; 158:1314-1322. [PMID: 28394852 PMCID: PMC5472008 DOI: 10.1097/j.pain.0000000000000917] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 01/06/2023]
Abstract
The immune and sensory systems are known for their close proximity and interaction. Indeed, in a variety of pain states, a myriad of different immune cells are activated and recruited, playing a key role in neuronal sensitisation. During inflammatory pain it is thought that mast cells (MC) are one of the immune cell types involved in this process, but so far the evidence outlining their direct effect on neuronal cells remains unclear. To clarify whether MC are involved in inflammatory pain states, we used a transgenic mouse line (Mctp5Cre-iDTR) in which MC could be depleted in an inducible manner by administration of diphtheria toxin. Our results show that ablation of MC in male mice did not result in any change in mechanical and thermal hypersensitivity in the CFA model of inflammatory pain. Similarly, edema and temperature triggered by CFA inflammation at the injection site remained identical in MC depleted mice compared with their littermate controls. In addition, we show that Mctp5Cre-iDTR mice display normal levels of mechanical hypersensitivity after local injection of nerve growth factor (NGF), a factor well characterised to produce peripheral sensitisation and for being upregulated upon injury and inflammation. We also demonstrate that NGF treatment in vitro does not lead to an increased level of tumor necrosis factor-α in bone marrow-derived MC. Furthermore, our qRT-PCR data reveal that MC express negligible levels of NGF receptors, thereby explaining the lack of response to NGF. Together, our data suggest that MC do not play a direct role in peripheral sensitisation during inflammatory conditions.
Collapse
Affiliation(s)
- Douglas M. Lopes
- Wolfson Centre for Age-Related Diseases, King's College London, United Kingdom
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, King's College London, United Kingdom
| | - Kim I. Chisholm
- Wolfson Centre for Age-Related Diseases, King's College London, United Kingdom
| | - Tesha Suddason
- Wolfson Centre for Age-Related Diseases, King's College London, United Kingdom
| | - Camille Durrieux
- Wolfson Centre for Age-Related Diseases, King's College London, United Kingdom
| | - Matthew Thakur
- Wolfson Centre for Age-Related Diseases, King's College London, United Kingdom
| | - Clive Gentry
- Wolfson Centre for Age-Related Diseases, King's College London, United Kingdom
| | - Stephen B. McMahon
- Wolfson Centre for Age-Related Diseases, King's College London, United Kingdom
| |
Collapse
|
122
|
Lim TKY, Anderson KM, Hari P, Di Falco M, Reihsen TE, Wilcox GL, Belani KG, LaBoissiere S, Pinto MR, Beebe DS, Kehl LJ, Stone LS. Evidence for a Role of Nerve Injury in Painful Intervertebral Disc Degeneration: A Cross-Sectional Proteomic Analysis of Human Cerebrospinal Fluid. THE JOURNAL OF PAIN 2017; 18:1253-1269. [PMID: 28652204 DOI: 10.1016/j.jpain.2017.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 12/18/2022]
Abstract
Intervertebral disc degeneration (DD) is a cause of low back pain (LBP) in some individuals. However, although >30% of adults have DD, LBP only develops in a subset of individuals. To gain insight into the mechanisms underlying nonpainful versus painful DD, human cerebrospinal fluid (CSF) was examined using differential expression shotgun proteomic techniques comparing healthy control participants, subjects with nonpainful DD, and patients with painful DD scheduled for spinal fusion surgery. Eighty-eight proteins were detected, 27 of which were differentially expressed. Proteins associated with DD tended to be related to inflammation (eg, cystatin C) regardless of pain status. In contrast, most differentially expressed proteins in DD-associated chronic LBP patients were linked to nerve injury (eg, hemopexin). Cystatin C and hemopexin were selected for further examination using enzyme-linked immunosorbent assay in a larger cohort. While cystatin C correlated with DD severity but not pain or disability, hemopexin correlated with pain intensity, physical disability, and DD severity. This study shows that CSF can be used to study mechanisms underlying painful DD in humans, and suggests that while painful DD is associated with nerve injury, inflammation itself is not sufficient to develop LBP. PERSPECTIVE CSF was examined for differential protein expression in healthy control participants, pain-free adults with asymptomatic intervertebral DD, and LBP patients with painful intervertebral DD. While DD was related to inflammation regardless of pain status, painful degeneration was associated with markers linked to nerve injury.
Collapse
Affiliation(s)
- Tony K Y Lim
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, Montreal, McGill University, Quebec, Canada
| | - Kathleen M Anderson
- Program in Physical Therapy, Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, Minnesota
| | - Pawan Hari
- Department of Epidemiology, University of Minnesota, Minneapolis, Minnesota
| | - Marcos Di Falco
- Genome Quebec, McGill University Innovation Centre, Montreal, Quebec, Canada
| | - Troy E Reihsen
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota
| | - George L Wilcox
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota; Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Kumar G Belani
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota
| | - Sylvie LaBoissiere
- Genome Quebec, McGill University Innovation Centre, Montreal, Quebec, Canada
| | | | - David S Beebe
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota
| | - Lois J Kehl
- Department of Anesthesiology, University of Minnesota, Minneapolis, Minnesota; Minnesota Head & Neck Pain Clinic, St. Paul, Minnesota
| | - Laura S Stone
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada; Faculty of Dentistry, McGill University, Montreal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
123
|
Zhao H, Alam A, Chen Q, Eusman M, Pal A, Eguchi S, Wu L, Ma D. The role of microglia in the pathobiology of neuropathic pain development: what do we know? Br J Anaesth 2017; 118:504-516. [DOI: 10.1093/bja/aex006] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
124
|
Hong S, Remacle AG, Shiryaev SA, Choi W, Hullugundi SK, Dolkas J, Angert M, Nishihara T, Yaksh TL, Strongin AY, Shubayev VI. Reciprocal relationship between membrane type 1 matrix metalloproteinase and the algesic peptides of myelin basic protein contributes to chronic neuropathic pain. Brain Behav Immun 2017; 60:282-292. [PMID: 27833045 PMCID: PMC5214638 DOI: 10.1016/j.bbi.2016.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/21/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022] Open
Abstract
Myelin basic protein (MBP) is an auto-antigen able to induce intractable pain from innocuous mechanical stimulation (mechanical allodynia). The mechanisms provoking this algesic MBP activity remain obscure. Our present study demonstrates that membrane type 1 matrix metalloproteinase (MT1-MMP/MMP-14) releases the algesic MBP peptides from the damaged myelin, which then reciprocally enhance the expression of MT1-MMP in nerve to sustain a state of allodynia. Specifically, MT1-MMP expression and activity in rat sciatic nerve gradually increased starting at day 3 after chronic constriction injury (CCI). Inhibition of the MT1-MMP activity by intraneural injection of the function-blocking human DX2400 monoclonal antibody at day 3 post-CCI reduced mechanical allodynia and neuropathological signs of Wallerian degeneration, including axon demyelination, degeneration, edema and formation of myelin ovoids. Consistent with its role in allodynia, the MT1-MMP proteolysis of MBP generated the MBP69-86-containing epitope sequences in vitro. In agreement, the DX2400 therapy reduced the release of the MBP69-86 epitope in CCI nerve. Finally, intraneural injection of the algesic MBP69-86 and control MBP2-18 peptides differentially induced MT1-MMP and MMP-2 expression in the nerve. With these data we offer a novel, self-sustaining mechanism of persistent allodynia via the positive feedback loop between MT1-MMP and the algesic MBP peptides. Accordingly, short-term inhibition of MT1-MMP activity presents a feasible pharmacological approach to intervene in this molecular circuit and the development of neuropathic pain.
Collapse
Affiliation(s)
- Sanghyun Hong
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA; Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, Catholic University of Korea, Seoul, South Korea
| | - Albert G Remacle
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sergei A Shiryaev
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Wonjun Choi
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA; Department of Anesthesiology and Pain Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, Seoul, South Korea
| | - Swathi K Hullugundi
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA
| | - Jennifer Dolkas
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA
| | - Mila Angert
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA
| | - Tasuku Nishihara
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA
| | - Tony L Yaksh
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Alex Y Strongin
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Veronica I Shubayev
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA.
| |
Collapse
|
125
|
Makker PGS, Duffy SS, Lees JG, Perera CJ, Tonkin RS, Butovsky O, Park SB, Goldstein D, Moalem-Taylor G. Characterisation of Immune and Neuroinflammatory Changes Associated with Chemotherapy-Induced Peripheral Neuropathy. PLoS One 2017; 12:e0170814. [PMID: 28125674 PMCID: PMC5268425 DOI: 10.1371/journal.pone.0170814] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/11/2017] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) and associated neuropathic pain is a debilitating adverse effect of cancer treatment. Current understanding of the mechanisms underpinning CIPN is limited and there are no effective treatment strategies. In this study, we treated male C57BL/6J mice with 4 cycles of either Paclitaxel (PTX) or Oxaliplatin (OXA) over a week and tested pain hypersensitivity and changes in peripheral immune responses and neuroinflammation on days 7 and 13 post 1st injection. We found that both PTX and OXA caused significant mechanical allodynia. In the periphery, PTX and OXA significantly increased circulating CD4+ and CD8+ T-cell populations. OXA caused a significant increase in the percentage of interleukin-4+ lymphocytes in the spleen and significant down-regulation of regulatory T (T-reg) cells in the inguinal lymph nodes. However, conditional depletion of T-reg cells in OXA-treated transgenic DEREG mice had no additional effect on pain sensitivity. Furthermore, there was no leukocyte infiltration into the nervous system of OXA- or PTX-treated mice. In the peripheral nervous system, PTX induced expression of the neuronal injury marker activating transcription factor-3 in IB4+ and NF200+ sensory neurons as well as an increase in the chemokines CCL2 and CCL3 in the lumbar dorsal root ganglion. In the central nervous system, PTX induced significant astrocyte activation in the spinal cord dorsal horn, and both PTX and OXA caused reduction of P2ry12+ homeostatic microglia, with no measurable changes in IBA-1+ microglia/macrophages in the dorsal and ventral horns. We also found that PTX induced up-regulation of several inflammatory cytokines and chemokines (TNF-α, IFN-γ, CCL11, CCL4, CCL3, IL-12p70 and GM-CSF) in the spinal cord. Overall, these findings suggest that PTX and OXA cause distinct pathological changes in the periphery and nervous system, which may contribute to chemotherapy-induced neuropathic pain.
Collapse
Affiliation(s)
- Preet G S Makker
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Samuel S Duffy
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Justin G Lees
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Chamini J Perera
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ryan S Tonkin
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Susanna B Park
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, New South Wales, Sydney, Australia
| | - David Goldstein
- Department of Medical Oncology, Prince of Wales Hospital, New South Wales, Randwick, Australia
| | - Gila Moalem-Taylor
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
126
|
Lees JG, Makker PGS, Tonkin RS, Abdulla M, Park SB, Goldstein D, Moalem-Taylor G. Immune-mediated processes implicated in chemotherapy-induced peripheral neuropathy. Eur J Cancer 2017; 73:22-29. [PMID: 28104535 DOI: 10.1016/j.ejca.2016.12.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/13/2016] [Indexed: 12/29/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) and associated neuropathic pain are challenging complications of cancer treatment. Many of the major classes of chemotherapeutics can cause neurotoxicity and significantly modulate the immune system. There is ongoing investigation regarding whether reciprocal crosstalk between the nervous and immune systems occurs and, indeed, contributes to neuropathic pain during treatment with chemotherapeutics. An emerging concept is that neuroinflammation is one of the major mechanisms underlying CIPN. Here, we discuss recent findings, which provide insight into this complex process of neuroimmune interactions. Findings show limited infiltration of leukocytes into the nervous system of CIPN animals and varying degrees of peripheral and central glial activation depending on the chemotherapeutic drug, dose, schedule, and timing. Most evidence suggests an increase in pro-inflammatory cytokine expression and changes in immune signalling pathways. There is, however, limited evidence available from human studies and it remains unclear whether neuroinflammatory responses are the cause of neuropathy or a bystander effect of the chemotherapy treatment.
Collapse
Affiliation(s)
- Justin G Lees
- School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Preet G S Makker
- School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ryan S Tonkin
- School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Munawwar Abdulla
- School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Susanna B Park
- Brain and Mind Centre, University of Sydney, NSW, 2050, Australia; Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - David Goldstein
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia; Department of Medical Oncology, Prince of Wales Hospital, Sydney, 2031, Australia
| | - Gila Moalem-Taylor
- School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
127
|
Barr GA, Wang S, Weisshaar CL, Winkelstein BA. Developmental Changes in Pain and Spinal Immune Gene Expression after Radicular Trauma in the Rat. Front Neurol 2016; 7:223. [PMID: 28018284 PMCID: PMC5156703 DOI: 10.3389/fneur.2016.00223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/23/2016] [Indexed: 01/08/2023] Open
Abstract
Neuropathic pain is chronic pain that develops after nerve injury and is less frequent in infants and children than in adults. Likewise, in animal models of neuropathic pain, allodynia and hyperalgesia are non-existent or attenuated in the infant, with a “switch” during development by which acute nerve injury transitions to chronic pain. Concomitant with the delay in neuropathic pain, there is a parallel delay in the ability of nerve injury to activate the immune system. Models of neuropathic pain in the infant have used various ligation methods and find that neuropathic pain does not occur under after postnatal days 21–28 (PN21–PN28), linked to activation of immune processes and developmental regulation of anti-inflammatory cytokines. We applied a model of neuropathic pain in the adult using a transient compression of the cervical nerve or nerve root in infant rats (injured at 10, 14, 21, or 28 days of age) to define transition periods during which injury results in no change in thermal and mechanical pain sensitivity or in short-term changes in pain. There was little to no hyperalgesia when the injury was imposed at PN10, but significant thermal hyperalgesia and mechanical allodynia 1 day after compression injury when performed at PN14, 21, or 28. Thermal withdrawal latencies returned to near baseline by 7 days postsurgery when the injuries were at PN14, and lasted up to 14 days when the injury was imposed at PN28. There was mechanical allodynia following injury at 1 day postinjury and at 14 days after injury at PN14. Measurements of mRNA from spinal cord at 1, 7, and 14 days postinjury at PN14, 21, and 28 showed that both the magnitude and duration of elevated immune markers and chemokines/cytokines were greater in the older animals, corresponding to the development of hyperalgesia. Thus, we confirm the late onset of neuropathic pain but found no evidence of emergent hyperalgesia if the injury was before PN21. This may be due to the use of a transient, and not sustained, compression ligation model.
Collapse
Affiliation(s)
- Gordon A Barr
- Division of Basic Science Research, Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania , Philadelphia, PA , USA
| | - Shaoning Wang
- Division of Basic Science Research, Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania , Philadelphia, PA , USA
| | - Christine L Weisshaar
- Spine Pain Research Laboratory, Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania , Philadelphia, PA , USA
| | - Beth A Winkelstein
- Spine Pain Research Laboratory, Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania , Philadelphia, PA , USA
| |
Collapse
|
128
|
Food-Derived Natural Compounds for Pain Relief in Neuropathic Pain. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7917528. [PMID: 27891521 PMCID: PMC5116524 DOI: 10.1155/2016/7917528] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/29/2016] [Accepted: 10/16/2016] [Indexed: 12/17/2022]
Abstract
Neuropathic pain, defined as pain caused by a lesion or disease of the somatosensory nervous system, is characterized by dysesthesia, hyperalgesia, and allodynia. The number of patients with this type of pain has increased rapidly in recent years. Yet, available neuropathic pain medicines have undesired side effects, such as tolerance and physical dependence, and do not fully alleviate the pain. The mechanisms of neuropathic pain are still not fully understood. Injury causes inflammation and immune responses and changed expression and activity of receptors and ion channels in peripheral nerve terminals. Additionally, neuroinflammation is a known factor in the development and maintenance of neuropathic pain. During neuropathic pain development, the C-C motif chemokine receptor 2 (CCR2) acts as an important signaling mediator. Traditional plant treatments have been used throughout the world for treating diseases. We and others have identified food-derived compounds that alleviate neuropathic pain. Here, we review the natural compounds for neuropathic pain relief, their mechanisms of action, and the potential benefits of natural compounds with antagonistic effects on GPCRs, especially those containing CCR2, for neuropathic pain treatment.
Collapse
|
129
|
Heyn J, Luchting B, Hinske LC, Hübner M, Azad SC, Kreth S. miR-124a and miR-155 enhance differentiation of regulatory T cells in patients with neuropathic pain. J Neuroinflammation 2016; 13:248. [PMID: 27646435 PMCID: PMC5029065 DOI: 10.1186/s12974-016-0712-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/07/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Accumulating evidence indicates that neuropathic pain is a neuro-immune disorder with enhanced activation of the immune system. Recent data provided proof that neuropathic pain patients exhibit increased numbers of immunosuppressive regulatory T cells (Tregs), which may represent an endogenous attempt to limit inflammation and to reduce pain levels. We here investigate the molecular mechanisms underlying these alterations. METHODS Our experimental approach includes functional analyses of primary human T cells, 3'-UTR reporter assays, and expression analyses of neuropathic pain patients' samples. RESULTS We demonstrate that microRNAs (miRNAs) are involved in the differentiation of Tregs in neuropathic pain. We identify miR-124a and miR-155 as direct repressors of the histone deacetylase sirtuin1 (SIRT1) in primary human CD4(+) cells. Targeting of SIRT1 by either specific siRNA or by these two miRNAs results in an increase of Foxp3 expression and, consecutively, of anti-inflammatory Tregs (siRNA: 1.7 ± 0.4; miR-124a: 1.5 ± 0.4; miR-155: 1.6 ± 0.4; p < 0.01). As compared to healthy volunteers, neuropathic pain patients exhibited an increased expression of miR-124a (2.5 ± 0.7, p < 0.05) and miR-155 (1.3 ± 0.3; p < 0.05) as well as a reduced expression of SIRT1 (0.5 ± 0.2; p < 0.01). Moreover, the expression of these two miRNAs was inversely correlated with SIRT1 transcript levels. CONCLUSIONS Our findings suggest that in neuropathic pain, enhanced targeting of SIRT1 by miR-124a and miR-155 induces a bias of CD4(+) T cell differentiation towards Tregs, thereby limiting pain-evoking inflammation. Deciphering miRNA-target interactions that influence inflammatory pathways in neuropathic pain may contribute to the discovery of new roads towards pain amelioration. TRIAL REGISTRATION German Clinical Trial Register DRKS00005954.
Collapse
Affiliation(s)
- Jens Heyn
- Department of Anesthesiology, Ludwig-Maximilians University Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Benjamin Luchting
- Department of Anesthesiology, Ludwig-Maximilians University Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Ludwig C Hinske
- Department of Anesthesiology, Ludwig-Maximilians University Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Max Hübner
- Department of Anesthesiology, Ludwig-Maximilians University Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Shahnaz C Azad
- Department of Anesthesiology, Ludwig-Maximilians University Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Simone Kreth
- Department of Anesthesiology, Ludwig-Maximilians University Munich, Marchioninistr. 15, 81377, Munich, Germany.
| |
Collapse
|
130
|
Shubayev VI, Strongin AY, Yaksh TL. Role of myelin auto-antigens in pain: a female connection. Neural Regen Res 2016; 11:890-1. [PMID: 27482203 PMCID: PMC4962572 DOI: 10.4103/1673-5374.184452] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Veronica I Shubayev
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA
| | - Alex Y Strongin
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Tony L Yaksh
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
131
|
Ko JS, Eddinger KA, Angert M, Chernov AV, Dolkas J, Strongin AY, Yaksh TL, Shubayev VI. Spinal activity of interleukin 6 mediates myelin basic protein-induced allodynia. Brain Behav Immun 2016; 56:378-89. [PMID: 26970355 PMCID: PMC4917441 DOI: 10.1016/j.bbi.2016.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 12/19/2022] Open
Abstract
Mechanosensory fibers are enveloped by myelin, a unique multilamellar membrane permitting saltatory neuronal conduction. Damage to myelin is thought to contribute to severe pain evoked by innocuous tactile stimulation (i.e., mechanical allodynia). Our earlier (Liu et al., 2012) and present data demonstrate that a single injection of a myelin basic protein-derived peptide (MBP84-104) into an intact sciatic nerve produces a robust and long-lasting (>30days) mechanical allodynia in female rats. The MBP84-104 peptide represents the immunodominant epitope and requires T cells to maintain allodynia. Surprisingly, only systemic gabapentin (a ligand of voltage-gated calcium channel α2δ1), but not ketorolac (COX inhibitor), lidocaine (sodium channel blocker) or MK801 (NMDA antagonist) reverse allodynia induced by the intrasciatic MBP84-104. The genome-wide transcriptional profiling of the sciatic nerve followed by the bioinformatics analyses of the expression changes identified interleukin (IL)-6 as the major cytokine induced by MBP84-104 in both the control and athymic T cell-deficient nude rats. The intrasciatic MBP84-104 injection resulted in both unilateral allodynia and unilateral IL-6 increase the segmental spinal cord (neurons and astrocytes). An intrathecal delivery of a function-blocking IL-6 antibody reduced the allodynia in part by the transcriptional effects in large-diameter primary afferents in DRG. Our data suggest that MBP regulates IL-6 expression in the nervous system and that the spinal IL-6 activity mediates nociceptive processing stimulated by the MBP epitopes released after damage or disease of the somatosensory nervous system.
Collapse
Affiliation(s)
- Justin S. Ko
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA,Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea
| | - Kelly A. Eddinger
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
| | - Mila Angert
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA,VA San Diego Healthcare System, La Jolla, California, USA
| | - Andrei V. Chernov
- Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jennifer Dolkas
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA,VA San Diego Healthcare System, La Jolla, California, USA
| | - Alex Y. Strongin
- Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
| | - Veronica I. Shubayev
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA,VA San Diego Healthcare System, La Jolla, California, USA,Corresponding Author: Veronica I. Shubayev, Department of Anesthesiology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0629. Phone: (858) 534-5278; Fax: (858) 534-1445;
| |
Collapse
|
132
|
Mifflin KA, Kerr BJ. Pain in autoimmune disorders. J Neurosci Res 2016; 95:1282-1294. [PMID: 27448322 DOI: 10.1002/jnr.23844] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 01/07/2023]
Abstract
Most autoimmune diseases are associated with pathological pain development. Autoimmune diseases with pathological pain include complex regional pain syndrome, rheumatoid arthritis, and Guillian-Barré syndrome to name a few. The present Review explores research linking the immune system to the development of pathological pain in autoimmune diseases. Pathological pain has been linked to T-cell activation and the release of cytokines from activated microglia in the dorsal horn of the spinal cord. New research on the role of autoantibodies in autoimmunity has generated insights into potential mechanisms of pain associated with autoimmune disease. Autoantibodies may act through various mechanisms in autoimmune disorders. These include the alteration of neuronal excitability via specific antigens such as the voltage-gated potassium channel complexes or by mediating bone destruction in rheumatoid arthritis. Although more research must be done to understand better the role of autoantibodies in autoimmune disease related pain, this may be a promising area of research for new analgesic therapeutic targets. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Katherine A Mifflin
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada.,Department of Psychiatry (NRU), University of Alberta, Edmonton, Alberta, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
133
|
Zouikr I, Bartholomeusz MD, Hodgson DM. Early life programming of pain: focus on neuroimmune to endocrine communication. J Transl Med 2016; 14:123. [PMID: 27154463 PMCID: PMC4859995 DOI: 10.1186/s12967-016-0879-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/27/2016] [Indexed: 01/21/2023] Open
Abstract
Chronic pain constitutes a challenge for the scientific community and a significant economic and social cost for modern societies. Given the failure of current drugs to effectively treat chronic pain, which are based on suppressing aberrant neuronal excitability, we propose in this review an integrated approach that views pain not solely originating from neuronal activation but also the result of a complex interaction between the nervous, immune, and endocrine systems. Pain assessment must also extend beyond measures of behavioural responses to noxious stimuli to a more developmentally informed assessment given the significant plasticity of the nociceptive system during the neonatal period. Finally integrating the concept of perinatal programming into the pain management field is a necessary step to develop and target interventions to reduce the suffering associated with chronic pain. We present clinical and animal findings from our laboratory (and others) demonstrating the importance of the microbial and relational environment in programming pain responsiveness later in life via action on hypothalamo-pituitary adrenal (HPA) axis activity, peripheral and central immune system, spinal and supraspinal mechanisms, and the autonomic nervous system.
Collapse
Affiliation(s)
- I Zouikr
- Laboratory of Neuroimmunology, School of Psychology, The University of Newcastle, Newcastle, NSW, Australia. .,Laboratory for Molecular Mechanisms of Thalamus Development, RIKEN BSI East Building 4F 409, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - M D Bartholomeusz
- Laboratory of Neuroimmunology, School of Psychology, The University of Newcastle, Newcastle, NSW, Australia
| | - D M Hodgson
- Laboratory of Neuroimmunology, School of Psychology, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
134
|
Klein-Wieringa IR, de Lange-Brokaar BJE, Yusuf E, Andersen SN, Kwekkeboom JC, Kroon HM, van Osch GJVM, Zuurmond AM, Stojanovic-Susulic V, Nelissen RGHH, Toes REM, Kloppenburg M, Ioan-Facsinay A. Inflammatory Cells in Patients with Endstage Knee Osteoarthritis: A Comparison between the Synovium and the Infrapatellar Fat Pad. J Rheumatol 2016; 43:771-8. [PMID: 26980579 DOI: 10.3899/jrheum.151068] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To get a better understanding of inflammatory pathways active in the osteoarthritic (OA) joint, we characterized and compared inflammatory cells in the synovium and the infrapatellar fat pad (IFP) of patients with knee OA. METHODS Infiltrating immune cells were characterized by flow cytometry in 76 patients with knee OA (mean age 63.3, 52% women, median body mass index 28.9) from whom synovial tissue (n = 40) and IFP (n = 68) samples were obtained. Pain was assessed by the visual analog scale (VAS; 0-100 mm). Spearman rank correlations and linear regression analyses adjusted for sex and age were performed. RESULTS Macrophages and T cells, followed by mast cells, were the most predominant immune cells in the synovium and IFP, and were equally abundant in these tissues. Macrophages and T cells secreted mostly proinflammatory cytokines even without additional stimulation, indicating their activated state. Accordingly, most CD4+ T cells had a memory phenotype and contained a significant population of cells expressing activation markers (CD25+, CD69+). Interestingly, the percent of CD69+ T cells was higher in synovial than IFP CD4+ T cells. Preliminary analyses indicated that the number of synovial CD4+ T cells were associated with VAS pain (β 0.51, 95% CI 0.09-1.02, p = 0.02). CONCLUSION Our data suggest that the immune cell composition of the synovium and the IFP is similar, and includes activated cells that could contribute to inflammation through secretion of proinflammatory cytokines. Moreover, preliminary analyses indicate that synovial CD4+ T cells might associate with pain in patients with endstage OA of the knee.
Collapse
Affiliation(s)
- Inge R Klein-Wieringa
- From the Department of Rheumatology, Leiden University Medical Centre; Department of Radiology, Department of Orthopedics, and Department of Clinical Epidemiology, Leiden University Medical Center; TNO, Leiden; Department of Orthopedics and Otorhinolaryngology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA.I.R. Klein-Wieringa*, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; B.J. de Lange-Brokaar*, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; E. Yusuf, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; S.N. Andersen, Ing, Department of Rheumatology, Leiden University Medical Centre; J.C. Kwekkeboom, Ing, Department of Rheumatology, Leiden University Medical Centre; H.M. Kroon, PhD, Department of Radiology, Leiden University Medical Center; G.J. van Osch, PhD, Professor, Department of Orthopedics and Otorhinolaryngology, Erasmus MC, University Medical Center; A.M. Zuurmond, PhD, TNO; V. Stojanovic-Susulic, PhD, Janssen Pharmaceutical Companies of Johnson & Johnson; R.G. Nelissen, MD, PhD, Professor, Department of Orthopedics, Leiden University Medical Center; R.E. Toes, PhD, Professor, Department of Rheumatology, Leiden University Medical Centre; M. Kloppenburg, MD, PhD, Professor, Department of Rheumatology, and Department of Clinical Epidemiology, Leiden University Medical Centre; A. Ioan-Facsinay, PhD, Assistant Professor, Department of Rheumatology, Leiden University Medical Centre
| | - Badelog J E de Lange-Brokaar
- From the Department of Rheumatology, Leiden University Medical Centre; Department of Radiology, Department of Orthopedics, and Department of Clinical Epidemiology, Leiden University Medical Center; TNO, Leiden; Department of Orthopedics and Otorhinolaryngology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA.I.R. Klein-Wieringa*, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; B.J. de Lange-Brokaar*, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; E. Yusuf, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; S.N. Andersen, Ing, Department of Rheumatology, Leiden University Medical Centre; J.C. Kwekkeboom, Ing, Department of Rheumatology, Leiden University Medical Centre; H.M. Kroon, PhD, Department of Radiology, Leiden University Medical Center; G.J. van Osch, PhD, Professor, Department of Orthopedics and Otorhinolaryngology, Erasmus MC, University Medical Center; A.M. Zuurmond, PhD, TNO; V. Stojanovic-Susulic, PhD, Janssen Pharmaceutical Companies of Johnson & Johnson; R.G. Nelissen, MD, PhD, Professor, Department of Orthopedics, Leiden University Medical Center; R.E. Toes, PhD, Professor, Department of Rheumatology, Leiden University Medical Centre; M. Kloppenburg, MD, PhD, Professor, Department of Rheumatology, and Department of Clinical Epidemiology, Leiden University Medical Centre; A. Ioan-Facsinay, PhD, Assistant Professor, Department of Rheumatology, Leiden University Medical Centre
| | - Erlangga Yusuf
- From the Department of Rheumatology, Leiden University Medical Centre; Department of Radiology, Department of Orthopedics, and Department of Clinical Epidemiology, Leiden University Medical Center; TNO, Leiden; Department of Orthopedics and Otorhinolaryngology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA.I.R. Klein-Wieringa*, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; B.J. de Lange-Brokaar*, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; E. Yusuf, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; S.N. Andersen, Ing, Department of Rheumatology, Leiden University Medical Centre; J.C. Kwekkeboom, Ing, Department of Rheumatology, Leiden University Medical Centre; H.M. Kroon, PhD, Department of Radiology, Leiden University Medical Center; G.J. van Osch, PhD, Professor, Department of Orthopedics and Otorhinolaryngology, Erasmus MC, University Medical Center; A.M. Zuurmond, PhD, TNO; V. Stojanovic-Susulic, PhD, Janssen Pharmaceutical Companies of Johnson & Johnson; R.G. Nelissen, MD, PhD, Professor, Department of Orthopedics, Leiden University Medical Center; R.E. Toes, PhD, Professor, Department of Rheumatology, Leiden University Medical Centre; M. Kloppenburg, MD, PhD, Professor, Department of Rheumatology, and Department of Clinical Epidemiology, Leiden University Medical Centre; A. Ioan-Facsinay, PhD, Assistant Professor, Department of Rheumatology, Leiden University Medical Centre
| | - Stefan N Andersen
- From the Department of Rheumatology, Leiden University Medical Centre; Department of Radiology, Department of Orthopedics, and Department of Clinical Epidemiology, Leiden University Medical Center; TNO, Leiden; Department of Orthopedics and Otorhinolaryngology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA.I.R. Klein-Wieringa*, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; B.J. de Lange-Brokaar*, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; E. Yusuf, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; S.N. Andersen, Ing, Department of Rheumatology, Leiden University Medical Centre; J.C. Kwekkeboom, Ing, Department of Rheumatology, Leiden University Medical Centre; H.M. Kroon, PhD, Department of Radiology, Leiden University Medical Center; G.J. van Osch, PhD, Professor, Department of Orthopedics and Otorhinolaryngology, Erasmus MC, University Medical Center; A.M. Zuurmond, PhD, TNO; V. Stojanovic-Susulic, PhD, Janssen Pharmaceutical Companies of Johnson & Johnson; R.G. Nelissen, MD, PhD, Professor, Department of Orthopedics, Leiden University Medical Center; R.E. Toes, PhD, Professor, Department of Rheumatology, Leiden University Medical Centre; M. Kloppenburg, MD, PhD, Professor, Department of Rheumatology, and Department of Clinical Epidemiology, Leiden University Medical Centre; A. Ioan-Facsinay, PhD, Assistant Professor, Department of Rheumatology, Leiden University Medical Centre
| | - Joanneke C Kwekkeboom
- From the Department of Rheumatology, Leiden University Medical Centre; Department of Radiology, Department of Orthopedics, and Department of Clinical Epidemiology, Leiden University Medical Center; TNO, Leiden; Department of Orthopedics and Otorhinolaryngology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA.I.R. Klein-Wieringa*, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; B.J. de Lange-Brokaar*, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; E. Yusuf, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; S.N. Andersen, Ing, Department of Rheumatology, Leiden University Medical Centre; J.C. Kwekkeboom, Ing, Department of Rheumatology, Leiden University Medical Centre; H.M. Kroon, PhD, Department of Radiology, Leiden University Medical Center; G.J. van Osch, PhD, Professor, Department of Orthopedics and Otorhinolaryngology, Erasmus MC, University Medical Center; A.M. Zuurmond, PhD, TNO; V. Stojanovic-Susulic, PhD, Janssen Pharmaceutical Companies of Johnson & Johnson; R.G. Nelissen, MD, PhD, Professor, Department of Orthopedics, Leiden University Medical Center; R.E. Toes, PhD, Professor, Department of Rheumatology, Leiden University Medical Centre; M. Kloppenburg, MD, PhD, Professor, Department of Rheumatology, and Department of Clinical Epidemiology, Leiden University Medical Centre; A. Ioan-Facsinay, PhD, Assistant Professor, Department of Rheumatology, Leiden University Medical Centre
| | - Herman M Kroon
- From the Department of Rheumatology, Leiden University Medical Centre; Department of Radiology, Department of Orthopedics, and Department of Clinical Epidemiology, Leiden University Medical Center; TNO, Leiden; Department of Orthopedics and Otorhinolaryngology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA.I.R. Klein-Wieringa*, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; B.J. de Lange-Brokaar*, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; E. Yusuf, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; S.N. Andersen, Ing, Department of Rheumatology, Leiden University Medical Centre; J.C. Kwekkeboom, Ing, Department of Rheumatology, Leiden University Medical Centre; H.M. Kroon, PhD, Department of Radiology, Leiden University Medical Center; G.J. van Osch, PhD, Professor, Department of Orthopedics and Otorhinolaryngology, Erasmus MC, University Medical Center; A.M. Zuurmond, PhD, TNO; V. Stojanovic-Susulic, PhD, Janssen Pharmaceutical Companies of Johnson & Johnson; R.G. Nelissen, MD, PhD, Professor, Department of Orthopedics, Leiden University Medical Center; R.E. Toes, PhD, Professor, Department of Rheumatology, Leiden University Medical Centre; M. Kloppenburg, MD, PhD, Professor, Department of Rheumatology, and Department of Clinical Epidemiology, Leiden University Medical Centre; A. Ioan-Facsinay, PhD, Assistant Professor, Department of Rheumatology, Leiden University Medical Centre
| | - Gerjo J V M van Osch
- From the Department of Rheumatology, Leiden University Medical Centre; Department of Radiology, Department of Orthopedics, and Department of Clinical Epidemiology, Leiden University Medical Center; TNO, Leiden; Department of Orthopedics and Otorhinolaryngology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA.I.R. Klein-Wieringa*, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; B.J. de Lange-Brokaar*, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; E. Yusuf, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; S.N. Andersen, Ing, Department of Rheumatology, Leiden University Medical Centre; J.C. Kwekkeboom, Ing, Department of Rheumatology, Leiden University Medical Centre; H.M. Kroon, PhD, Department of Radiology, Leiden University Medical Center; G.J. van Osch, PhD, Professor, Department of Orthopedics and Otorhinolaryngology, Erasmus MC, University Medical Center; A.M. Zuurmond, PhD, TNO; V. Stojanovic-Susulic, PhD, Janssen Pharmaceutical Companies of Johnson & Johnson; R.G. Nelissen, MD, PhD, Professor, Department of Orthopedics, Leiden University Medical Center; R.E. Toes, PhD, Professor, Department of Rheumatology, Leiden University Medical Centre; M. Kloppenburg, MD, PhD, Professor, Department of Rheumatology, and Department of Clinical Epidemiology, Leiden University Medical Centre; A. Ioan-Facsinay, PhD, Assistant Professor, Department of Rheumatology, Leiden University Medical Centre
| | - Anne-Marie Zuurmond
- From the Department of Rheumatology, Leiden University Medical Centre; Department of Radiology, Department of Orthopedics, and Department of Clinical Epidemiology, Leiden University Medical Center; TNO, Leiden; Department of Orthopedics and Otorhinolaryngology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA.I.R. Klein-Wieringa*, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; B.J. de Lange-Brokaar*, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; E. Yusuf, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; S.N. Andersen, Ing, Department of Rheumatology, Leiden University Medical Centre; J.C. Kwekkeboom, Ing, Department of Rheumatology, Leiden University Medical Centre; H.M. Kroon, PhD, Department of Radiology, Leiden University Medical Center; G.J. van Osch, PhD, Professor, Department of Orthopedics and Otorhinolaryngology, Erasmus MC, University Medical Center; A.M. Zuurmond, PhD, TNO; V. Stojanovic-Susulic, PhD, Janssen Pharmaceutical Companies of Johnson & Johnson; R.G. Nelissen, MD, PhD, Professor, Department of Orthopedics, Leiden University Medical Center; R.E. Toes, PhD, Professor, Department of Rheumatology, Leiden University Medical Centre; M. Kloppenburg, MD, PhD, Professor, Department of Rheumatology, and Department of Clinical Epidemiology, Leiden University Medical Centre; A. Ioan-Facsinay, PhD, Assistant Professor, Department of Rheumatology, Leiden University Medical Centre
| | - Vedrana Stojanovic-Susulic
- From the Department of Rheumatology, Leiden University Medical Centre; Department of Radiology, Department of Orthopedics, and Department of Clinical Epidemiology, Leiden University Medical Center; TNO, Leiden; Department of Orthopedics and Otorhinolaryngology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA.I.R. Klein-Wieringa*, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; B.J. de Lange-Brokaar*, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; E. Yusuf, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; S.N. Andersen, Ing, Department of Rheumatology, Leiden University Medical Centre; J.C. Kwekkeboom, Ing, Department of Rheumatology, Leiden University Medical Centre; H.M. Kroon, PhD, Department of Radiology, Leiden University Medical Center; G.J. van Osch, PhD, Professor, Department of Orthopedics and Otorhinolaryngology, Erasmus MC, University Medical Center; A.M. Zuurmond, PhD, TNO; V. Stojanovic-Susulic, PhD, Janssen Pharmaceutical Companies of Johnson & Johnson; R.G. Nelissen, MD, PhD, Professor, Department of Orthopedics, Leiden University Medical Center; R.E. Toes, PhD, Professor, Department of Rheumatology, Leiden University Medical Centre; M. Kloppenburg, MD, PhD, Professor, Department of Rheumatology, and Department of Clinical Epidemiology, Leiden University Medical Centre; A. Ioan-Facsinay, PhD, Assistant Professor, Department of Rheumatology, Leiden University Medical Centre
| | - Rob G H H Nelissen
- From the Department of Rheumatology, Leiden University Medical Centre; Department of Radiology, Department of Orthopedics, and Department of Clinical Epidemiology, Leiden University Medical Center; TNO, Leiden; Department of Orthopedics and Otorhinolaryngology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA.I.R. Klein-Wieringa*, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; B.J. de Lange-Brokaar*, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; E. Yusuf, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; S.N. Andersen, Ing, Department of Rheumatology, Leiden University Medical Centre; J.C. Kwekkeboom, Ing, Department of Rheumatology, Leiden University Medical Centre; H.M. Kroon, PhD, Department of Radiology, Leiden University Medical Center; G.J. van Osch, PhD, Professor, Department of Orthopedics and Otorhinolaryngology, Erasmus MC, University Medical Center; A.M. Zuurmond, PhD, TNO; V. Stojanovic-Susulic, PhD, Janssen Pharmaceutical Companies of Johnson & Johnson; R.G. Nelissen, MD, PhD, Professor, Department of Orthopedics, Leiden University Medical Center; R.E. Toes, PhD, Professor, Department of Rheumatology, Leiden University Medical Centre; M. Kloppenburg, MD, PhD, Professor, Department of Rheumatology, and Department of Clinical Epidemiology, Leiden University Medical Centre; A. Ioan-Facsinay, PhD, Assistant Professor, Department of Rheumatology, Leiden University Medical Centre
| | - René E M Toes
- From the Department of Rheumatology, Leiden University Medical Centre; Department of Radiology, Department of Orthopedics, and Department of Clinical Epidemiology, Leiden University Medical Center; TNO, Leiden; Department of Orthopedics and Otorhinolaryngology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA.I.R. Klein-Wieringa*, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; B.J. de Lange-Brokaar*, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; E. Yusuf, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; S.N. Andersen, Ing, Department of Rheumatology, Leiden University Medical Centre; J.C. Kwekkeboom, Ing, Department of Rheumatology, Leiden University Medical Centre; H.M. Kroon, PhD, Department of Radiology, Leiden University Medical Center; G.J. van Osch, PhD, Professor, Department of Orthopedics and Otorhinolaryngology, Erasmus MC, University Medical Center; A.M. Zuurmond, PhD, TNO; V. Stojanovic-Susulic, PhD, Janssen Pharmaceutical Companies of Johnson & Johnson; R.G. Nelissen, MD, PhD, Professor, Department of Orthopedics, Leiden University Medical Center; R.E. Toes, PhD, Professor, Department of Rheumatology, Leiden University Medical Centre; M. Kloppenburg, MD, PhD, Professor, Department of Rheumatology, and Department of Clinical Epidemiology, Leiden University Medical Centre; A. Ioan-Facsinay, PhD, Assistant Professor, Department of Rheumatology, Leiden University Medical Centre
| | - Margreet Kloppenburg
- From the Department of Rheumatology, Leiden University Medical Centre; Department of Radiology, Department of Orthopedics, and Department of Clinical Epidemiology, Leiden University Medical Center; TNO, Leiden; Department of Orthopedics and Otorhinolaryngology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA.I.R. Klein-Wieringa*, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; B.J. de Lange-Brokaar*, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; E. Yusuf, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; S.N. Andersen, Ing, Department of Rheumatology, Leiden University Medical Centre; J.C. Kwekkeboom, Ing, Department of Rheumatology, Leiden University Medical Centre; H.M. Kroon, PhD, Department of Radiology, Leiden University Medical Center; G.J. van Osch, PhD, Professor, Department of Orthopedics and Otorhinolaryngology, Erasmus MC, University Medical Center; A.M. Zuurmond, PhD, TNO; V. Stojanovic-Susulic, PhD, Janssen Pharmaceutical Companies of Johnson & Johnson; R.G. Nelissen, MD, PhD, Professor, Department of Orthopedics, Leiden University Medical Center; R.E. Toes, PhD, Professor, Department of Rheumatology, Leiden University Medical Centre; M. Kloppenburg, MD, PhD, Professor, Department of Rheumatology, and Department of Clinical Epidemiology, Leiden University Medical Centre; A. Ioan-Facsinay, PhD, Assistant Professor, Department of Rheumatology, Leiden University Medical Centre
| | - Andreea Ioan-Facsinay
- From the Department of Rheumatology, Leiden University Medical Centre; Department of Radiology, Department of Orthopedics, and Department of Clinical Epidemiology, Leiden University Medical Center; TNO, Leiden; Department of Orthopedics and Otorhinolaryngology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA.I.R. Klein-Wieringa*, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; B.J. de Lange-Brokaar*, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; E. Yusuf, MD, PhD, Department of Rheumatology, Leiden University Medical Centre; S.N. Andersen, Ing, Department of Rheumatology, Leiden University Medical Centre; J.C. Kwekkeboom, Ing, Department of Rheumatology, Leiden University Medical Centre; H.M. Kroon, PhD, Department of Radiology, Leiden University Medical Center; G.J. van Osch, PhD, Professor, Department of Orthopedics and Otorhinolaryngology, Erasmus MC, University Medical Center; A.M. Zuurmond, PhD, TNO; V. Stojanovic-Susulic, PhD, Janssen Pharmaceutical Companies of Johnson & Johnson; R.G. Nelissen, MD, PhD, Professor, Department of Orthopedics, Leiden University Medical Center; R.E. Toes, PhD, Professor, Department of Rheumatology, Leiden University Medical Centre; M. Kloppenburg, MD, PhD, Professor, Department of Rheumatology, and Department of Clinical Epidemiology, Leiden University Medical Centre; A. Ioan-Facsinay, PhD, Assistant Professor, Department of Rheumatology, Leiden University Medical Centre.
| |
Collapse
|
135
|
Yalvac ME, Arnold WD, Braganza C, Chen L, Mendell JR, Sahenk Z. AAV1.NT-3 gene therapy attenuates spontaneous autoimmune peripheral polyneuropathy. Gene Ther 2016; 23:95-102. [PMID: 26125608 PMCID: PMC4696906 DOI: 10.1038/gt.2015.67] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/20/2015] [Accepted: 06/04/2015] [Indexed: 02/06/2023]
Abstract
The spontaneous autoimmune peripheral polyneuropathy (SAPP) model in B7-2 knockout non-obese diabetic mice shares clinical and histological features with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Secondary axonal loss is prominent in the progressive phase of this neuropathy. Neurotrophin 3 (NT-3) is an important autocrine factor supporting Schwann cell survival and differentiation and stimulates neurite outgrowth and myelination. The anti-inflammatory and immunomodulatory effects of NT-3 raised considerations of potential efficacy in the SAPP model that could be applicable to CIDP. For this study, scAAV1.tMCK.NT-3 was delivered to the gastrocnemius muscle of 25-week-old SAPP mice. Measurable NT-3 levels were found in the serum at 7-week postgene delivery. The outcome measures included functional, electrophysiological and histological assessments. At week 32, NT-3-treated mice showed increased hind limb grip strength that correlated with improved compound muscle action potential amplitude. Myelinated fiber density was 1.9 times higher in the NT-3-treated group compared with controls and the number of demyelinated axons was significantly lower. The remyelinated nerve fiber population was significantly increased. These improved histopathological parameters from scAAV1.tMCK.NT-3 treatment occurred in the setting of reduced sciatic nerve inflammation. Collectively, these findings suggest a translational application to CIDP.
Collapse
Affiliation(s)
- M E Yalvac
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - W D Arnold
- Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, OH, USA
- Department of Neurology, The Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - C Braganza
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - L Chen
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - J R Mendell
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| | - Z Sahenk
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
136
|
Block L. Glial dysfunction and persistent neuropathic postsurgical pain. Scand J Pain 2016; 10:74-81. [PMID: 28361776 DOI: 10.1016/j.sjpain.2015.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/10/2015] [Accepted: 10/13/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Acute pain in response to injury is an important mechanism that serves to protect living beings from harm. However, persistent pain remaining long after the injury has healed serves no useful purpose and is a disabling condition. Persistent postsurgical pain, which is pain that lasts more than 3 months after surgery, affects 10-50% of patients undergoing elective surgery. Many of these patients are affected by neuropathic pain which is characterised as a pain caused by lesion or disease in the somatosensory nervous system. When established, this type of pain is difficult to treat and new approaches for prevention and treatment are needed. A possible contributing mechanism for the transition from acute physiological pain to persistent pain involves low-grade inflammation in the central nervous system (CNS), glial dysfunction and subsequently an imbalance in the neuron-glial interaction that causes enhanced and prolonged pain transmission. AIM This topical review aims to highlight the contribution that inflammatory activated glial cell dysfunction may have for the development of persistent pain. METHOD Relevant literature was searched for in PubMed. RESULTS Immediately after an injury to a nerve ending in the periphery such as in surgery, the inflammatory cascade is activated and immunocompetent cells migrate to the site of injury. Macrophages infiltrate the injured nerve and cause an inflammatory reaction in the nerve cell. This reaction leads to microglia activation in the central nervous system and the release of pro-inflammatory cytokines that activate and alter astrocyte function. Once the astrocytes and microglia have become activated, they participate in the development, spread, and potentiation of low-grade neuroinflammation. The inflammatory activated glial cells exhibit cellular changes, and their communication to each other and to neurons is altered. This renders neurons more excitable and pain transmission is enhanced and prolonged. Astrocyte dysfunction can be experimentally restored using the combined actions of a μ-opioid receptor agonist, a μ-opioid receptor antagonist, and an anti-epileptic agent. To find these agents we searched the literature for substances with possible anti-inflammatory properties that are usually used for other purposes in medicine. Inflammatory induced glial cell dysfunction is restorable in vitro by a combination of endomorphine-1, ultralow doses of naloxone and levetiracetam. Restoring inflammatory-activated glial cells, thereby restoring astrocyte-neuron interaction has the potential to affect pain transmission in neurons. CONCLUSION Surgery causes inflammation at the site of injury. Peripheral nerve injury can cause low-grade inflammation in the CNS known as neuroinflammation. Low-grade neuroinflammation can cause an imbalance in the glial-neuron interaction and communication. This renders neurons more excitable and pain transmission is enhanced and prolonged. Astrocytic dysfunction can be restored in vitro by a combination of endomorphin-1, ultralow doses of naloxone and levetiracetam. This restoration is essential for the interaction between astrocytes and neurons and hence also for modulation of synaptic pain transmission. IMPLICATIONS Larger studies in clinical settings are needed before these findings can be applied in a clinical context. Potentially, by targeting inflammatory activated glial cells and not only neurons, a new arena for development of pharmacological agents for persistent pain is opened.
Collapse
Affiliation(s)
- Linda Block
- Institute of Clinical Sciences at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Anesthesiology and Intensive Care, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
137
|
Liu H, Dolkas J, Hoang K, Angert M, Chernov AV, Remacle AG, Shiryaev SA, Strongin AY, Nishihara T, Shubayev VI. The alternatively spliced fibronectin CS1 isoform regulates IL-17A levels and mechanical allodynia after peripheral nerve injury. J Neuroinflammation 2015; 12:158. [PMID: 26337825 PMCID: PMC4559385 DOI: 10.1186/s12974-015-0377-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/16/2015] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Mechanical pain hypersensitivity associated with physical trauma to peripheral nerve depends on T-helper (Th) cells expressing the algesic cytokine, interleukin (IL)-17A. Fibronectin (FN) isoform alternatively spliced within the IIICS region encoding the 25-residue-long connecting segment 1 (CS1) regulates T cell recruitment to the sites of inflammation. Herein, we analyzed the role of CS1-containing FN (FN-CS1) in IL-17A expression and pain after peripheral nerve damage. METHODS Mass spectrometry, immunoblotting, and FN-CS1-specific immunofluorescence analyses were employed to examine FN expression after chronic constriction injury (CCI) in rat sciatic nerves. The acute intra-sciatic nerve injection of the synthetic CS1 peptide (a competitive inhibitor of the FN-CS1/α4 integrin binding) was used to elucidate the functional significance of FN-CS1 in mechanical and thermal pain hypersensitivity and IL-17A expression (by quantitative Taqman RT-PCR) after CCI. The CS1 peptide effects were analyzed in cultured primary Schwann cells, the major source of FN-CS1 in CCI nerves. RESULTS Following CCI, FN expression in sciatic nerve increased with the dominant FN-CS1 deposition in endothelial cells, Schwann cells, and macrophages. Acute CS1 therapy attenuated mechanical allodynia (pain from innocuous stimulation) but not thermal hyperalgesia and reduced the levels of IL-17A expression in the injured nerve. CS1 peptide inhibited the LPS- or starvation-stimulated activation of the stress ERK/MAPK pathway in cultured Schwann cells. CONCLUSIONS After physical trauma to the peripheral nerve, FN-CS1 contributes to mechanical pain hypersensitivity by increasing the number of IL-17A-expressing (presumably, Th17) cells. CS1 peptide therapy can be developed for pharmacological control of neuropathic pain.
Collapse
Affiliation(s)
- Huaqing Liu
- Department of Anesthesiology, University of California, 9500 Gilman Dr., Mail Code 0629, La Jolla, San Diego, CA, 92093-0629, USA.
- VA San Diego Healthcare System, La Jolla, CA, USA.
| | - Jennifer Dolkas
- Department of Anesthesiology, University of California, 9500 Gilman Dr., Mail Code 0629, La Jolla, San Diego, CA, 92093-0629, USA.
- VA San Diego Healthcare System, La Jolla, CA, USA.
| | - Khan Hoang
- Department of Anesthesiology, University of California, 9500 Gilman Dr., Mail Code 0629, La Jolla, San Diego, CA, 92093-0629, USA.
- VA San Diego Healthcare System, La Jolla, CA, USA.
| | - Mila Angert
- Department of Anesthesiology, University of California, 9500 Gilman Dr., Mail Code 0629, La Jolla, San Diego, CA, 92093-0629, USA.
- VA San Diego Healthcare System, La Jolla, CA, USA.
| | | | | | | | - Alex Y Strongin
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA.
| | - Tasuku Nishihara
- Department of Anesthesiology, University of California, 9500 Gilman Dr., Mail Code 0629, La Jolla, San Diego, CA, 92093-0629, USA.
- VA San Diego Healthcare System, La Jolla, CA, USA.
| | - Veronica I Shubayev
- Department of Anesthesiology, University of California, 9500 Gilman Dr., Mail Code 0629, La Jolla, San Diego, CA, 92093-0629, USA.
- VA San Diego Healthcare System, La Jolla, CA, USA.
| |
Collapse
|
138
|
Luo J, Feng J, Liu S, Walters ET, Hu H. Molecular and cellular mechanisms that initiate pain and itch. Cell Mol Life Sci 2015; 72:3201-23. [PMID: 25894692 PMCID: PMC4534341 DOI: 10.1007/s00018-015-1904-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/20/2015] [Accepted: 04/07/2015] [Indexed: 12/17/2022]
Abstract
Somatosensory neurons mediate our sense of touch. They are critically involved in transducing pain and itch sensations under physiological and pathological conditions, along with other skin-resident cells. Tissue damage and inflammation can produce a localized or systemic sensitization of our senses of pain and itch, which can facilitate our detection of threats in the environment. Although acute pain and itch protect us from further damage, persistent pain and itch are debilitating. Recent exciting discoveries have significantly advanced our knowledge of the roles of membrane-bound G protein-coupled receptors and ion channels in the encoding of information leading to pain and itch sensations. This review focuses on molecular and cellular events that are important in early stages of the biological processing that culminates in our senses of pain and itch.
Collapse
Affiliation(s)
- Jialie Luo
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | | | | | | | | |
Collapse
|
139
|
Dyson S, Rasotto R. Idiopathic hopping-like forelimb lameness syndrome in ridden horses: 46 horses (2002-2014). EQUINE VET EDUC 2015. [DOI: 10.1111/eve.12411] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- S. Dyson
- Centre for Equine Studies; Animal Health Trust; Newmarket Suffolk UK
| | - R. Rasotto
- Centre for Preventative Medicine; Animal Health Trust; Newmarket Suffolk UK
| |
Collapse
|
140
|
Effects of active immunisation with myelin basic protein and myelin-derived altered peptide ligand on pain hypersensitivity and neuroinflammation. J Neuroimmunol 2015; 286:59-70. [PMID: 26298325 DOI: 10.1016/j.jneuroim.2015.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/23/2015] [Accepted: 07/09/2015] [Indexed: 12/21/2022]
Abstract
Neuropathic pain is a debilitating condition in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Specific myelin basic protein (MBP) peptides are encephalitogenic, and myelin-derived altered peptide ligands (APLs) are capable of preventing and ameliorating EAE. We investigated the effects of active immunisation with a weakly encephalitogenic epitope of MBP (MBP87-99) and its mutant APL (Cyclo-87-99[A(91),A(96)]MBP87-99) on pain hypersensitivity and neuroinflammation in Lewis rats. MBP-treated rats exhibited significant mechanical and thermal pain hypersensitivity associated with infiltration of T cells, MHC class II expression and microglia activation in the spinal cord, without developing clinical signs of paralysis. Co-immunisation with APL significantly decreased pain hypersensitivity and neuroinflammation emphasising the important role of neuroimmune crosstalk in neuropathic pain.
Collapse
|
141
|
Evidence for a distinct neuro-immune signature in rats that develop behavioural disability after nerve injury. J Neuroinflammation 2015; 12:96. [PMID: 25986444 PMCID: PMC4506439 DOI: 10.1186/s12974-015-0318-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/05/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Chronic neuropathic pain is a neuro-immune disorder, characterised by allodynia, hyperalgesia and spontaneous pain, as well as debilitating affective-motivational disturbances (e.g., reduced social interactions, sleep-wake cycle disruption, anhedonia, and depression). The role of the immune system in altered sensation following nerve injury is well documented. However, its role in the development of affective-motivational disturbances remains largely unknown. Here, we aimed to characterise changes in the immune response at peripheral and spinal sites in a rat model of neuropathic pain and disability. METHODS Sixty-two rats underwent sciatic nerve chronic constriction injury (CCI) and were characterised as either Pain and disability, Pain and transient disability or Pain alone on the basis of sensory threshold testing and changes in post-CCI dominance behaviour in resident-intruder interactions. Nerve ultrastructure was assessed and the number of T lymphocytes and macrophages were quantified at the site of injury on day six post-CCI. ATF3 expression was quantified in the dorsal root ganglia (DRG). Using a multiplex assay, eight cytokines were quantified in the sciatic nerve, DRG and spinal cord. RESULTS All CCI rats displayed equal levels of mechanical allodynia, structural nerve damage, and reorganisation. All CCI rats had significant infiltration of macrophages and T lymphocytes to both the injury site and the DRG. Pain and disability rats had significantly greater numbers of T lymphocytes. CCI increased IL-6 and MCP-1 in the sciatic nerve. Examination of disability subgroups revealed increases in IL-6 and MCP-1 were restricted to Pain and disability rats. Conversely, CCI led to a decrease in IL-17, which was restricted to Pain and transient disability and Pain alone rats. CCI significantly increased IL-6 and MCP-1 in the DRG, with IL-6 restricted to Pain and disability rats. CCI rats had increased IL-1β, IL-6 and MCP-1 in the spinal cord. Amongst subgroups, only Pain and disability rats had increased IL-1β. CONCLUSIONS This study has defined individual differences in the immune response at peripheral and spinal sites following CCI in rats. These changes correlated with the degree of disability. Our data suggest that individual immune signatures play a significant role in the different behavioural trajectories following nerve injury, and in some cases may lead to persistent affective-motivational disturbances.
Collapse
|
142
|
In vivo and systems biology studies implicate IL-18 as a central mediator in chronic pain. J Neuroimmunol 2015; 283:43-9. [PMID: 26004155 DOI: 10.1016/j.jneuroim.2015.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 04/14/2015] [Accepted: 04/23/2015] [Indexed: 12/18/2022]
Abstract
Inflammation is associated with peripheral neuropathy, however the interplay among cytokines, chemokines, and neurons is still unclear. We hypothesized that this neuroinflammatory interaction can be defined by computational modeling based on the dynamics of protein expression in the sciatic nerve of rats subjected to chronic constriction injury. Using Dynamic Bayesian Network inference, we identified interleukin (IL)-18 as a central node associated with neuropathic pain in this animal model. Immunofluorescence supported a role for inflammasome activation and induction of IL-18 at the site of injury. Combined in vivo and in silico approaches may thus highlight novel targets in peripheral neuropathy.
Collapse
|
143
|
Perera CJ, Duffy SS, Lees JG, Kim CF, Cameron B, Apostolopoulos V, Moalem-Taylor G. Active immunization with myelin-derived altered peptide ligand reduces mechanical pain hypersensitivity following peripheral nerve injury. J Neuroinflammation 2015; 12:28. [PMID: 25885812 PMCID: PMC4340611 DOI: 10.1186/s12974-015-0253-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/22/2015] [Indexed: 11/10/2022] Open
Abstract
Background T cells have been implicated in neuropathic pain that is caused by peripheral nerve injury. Immunogenic myelin basic protein (MBP) peptides have been shown to initiate mechanical allodynia in a T cell-dependent manner. Antagonistic altered peptide ligands (APLs) are peptides with substitutions in amino acid residues at T cell receptor contact sites and can inhibit T cell function and modulate inflammatory responses. In the present study, we studied the effects of immunization with MBP-derived APL on pain behavior and neuroinflammation in an animal model of peripheral nerve injury. Methods Lewis rats were immunized subcutaneously at the base of the tail with either a weakly encephalitogenic peptide of MBP (cyclo-MBP87-99) or APL (cyclo-(87-99)[A91,A96]MBP87-99) in complete Freund’s adjuvant (CFA) or CFA only (control), following chronic constriction injury (CCI) of the left sciatic nerve. Pain hypersensitivity was tested by measurements of paw withdrawal threshold to mechanical stimuli, regulatory T cells in spleen and lymph nodes were analyzed by flow cytometry, and immune cell infiltration into the nervous system was assessed by immunohistochemistry (days 10 and 30 post-CCI). Cytokines were measured in serum and nervous tissue of nerve-injured rats (day 10 post-CCI). Results Rats immunized with the APL cyclo-(87-99)[A91,A96]MBP87-99 had significantly reduced mechanical pain hypersensitivity in the ipsilateral hindpaw compared to cyclo-MBP87-99-treated and control rats. This was associated with significantly decreased infiltration of T cells and ED1+ macrophages in the injured nerve of APL-treated animals. The percentage of anti-inflammatory (M2) macrophages was significantly upregulated in the APL-treated rats on day 30 post-CCI. Compared to the control rats, microglial activation in the ipsilateral lumbar spinal cord was significantly increased in the MBP-treated rats, but was not altered in the rats immunized with the MBP-derived APL. In addition, immunization with the APL significantly increased splenic regulatory T cells. Several cytokines were significantly altered after CCI, but no significant difference was observed between the APL-treated and control rats. Conclusions These results suggest that immune deviation by active immunization with a non-encephalitogenic MBP-derived APL mediates an analgesic effect in animals with peripheral nerve injury. Thus, T cell immunomodulation warrants further investigation as a possible therapeutic strategy for the treatment of peripheral neuropathic pain.
Collapse
Affiliation(s)
- Chamini J Perera
- School of Medical Sciences, University of New South Wales, UNSW Medicine, Sydney, NSW, 2052, Australia.
| | - Samuel S Duffy
- School of Medical Sciences, University of New South Wales, UNSW Medicine, Sydney, NSW, 2052, Australia.
| | - Justin G Lees
- School of Medical Sciences, University of New South Wales, UNSW Medicine, Sydney, NSW, 2052, Australia.
| | - Cristina F Kim
- School of Medical Sciences, University of New South Wales, UNSW Medicine, Sydney, NSW, 2052, Australia.
| | - Barbara Cameron
- Centre for Infection and Inflammation Research, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Vasso Apostolopoulos
- College of Health and Biomedicine, Centre for Chronic Disease Prevention and Management, Victoria University, Melbourne, VIC, Australia.
| | - Gila Moalem-Taylor
- School of Medical Sciences, University of New South Wales, UNSW Medicine, Sydney, NSW, 2052, Australia.
| |
Collapse
|
144
|
Janes K, Wahlman C, Little JW, Doyle T, Tosh DK, Jacobson KA, Salvemini D. Spinal neuroimmune activation is independent of T-cell infiltration and attenuated by A3 adenosine receptor agonists in a model of oxaliplatin-induced peripheral neuropathy. Brain Behav Immun 2015; 44:91-9. [PMID: 25220279 PMCID: PMC4275321 DOI: 10.1016/j.bbi.2014.08.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 12/12/2022] Open
Abstract
Many commonly used chemotherapeutics including oxaliplatin are associated with the development of a painful chemotherapy-induced peripheral neuropathy (CIPN). This dose-limiting complication can appear long after the completion of therapy causing a significant reduction in quality-of-life and impeding cancer treatment. We recently reported that activation of the Gi/Gq-coupled A3 adenosine receptor (A3AR) with selective A3AR agonists (i.e., IB-MECA) blocked the development of chemotherapy induced-neuropathic pain in models evoked by distinct agents including oxaliplatin without interfering with their anticancer activities. The mechanism(s) of action underlying these beneficial effects has yet to be explored. Our results herein demonstrate that the development of oxaliplatin-induced mechano-hypersensitivity (allodynia and hyperalgesia) in rats is associated with the hyperactivation of astrocytes, but not microglial cells, increased production of pro-inflammatory and neuroexcitatory cytokines (TNF, IL-1β), and reductions in the levels of anti-inflammatory/neuroprotective cytokines (IL-10, IL-4) in the dorsal horn of the spinal cord. These events did not require lymphocytic mobilization since oxaliplatin did not induce CD45(+)/CD3(+) T-cell infiltration into the spinal cord. A3AR agonists blocked the development of neuropathic pain with beneficial effects strongly associated with the modulation of spinal neuroinflammatory processes: attenuation of astrocytic hyperactivation, inhibition of TNF and IL-1β production, and an increase in IL-10 and IL-4. These results suggest that inhibition of an astrocyte-associated neuroinflammatory response contributes to the protective actions of A3AR signaling and continues to support the pharmacological basis for selective A3AR agonists as adjuncts to chemotherapeutic agents for the management of chronic pain.
Collapse
Affiliation(s)
- Kali Janes
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | - Carrie Wahlman
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | - Joshua W. Little
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | - Timothy Doyle
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | - Dillip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Daniela Salvemini
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA.
| |
Collapse
|
145
|
Saika F, Kiguchi N, Kobayashi Y, Kishioka S. Peripheral alpha4beta2 nicotinic acetylcholine receptor signalling attenuates tactile allodynia and thermal hyperalgesia after nerve injury in mice. Acta Physiol (Oxf) 2015; 213:462-71. [PMID: 25491757 DOI: 10.1111/apha.12437] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/22/2014] [Accepted: 12/02/2014] [Indexed: 01/03/2023]
Abstract
AIM Neuropathic pain is often refractory to conventional analgesics including opioids and non-steroidal anti-inflammatory drugs. Evidence suggests nicotinic acetylcholine receptor ligands regulate pain transmission. Effects of α4β2 nicotinic acetylcholine receptor activation on pain behaviours after nerve injury were studied. METHODS Mice were subjected to partial sciatic nerve ligation (PSL). Nicotinic acetylcholine receptor α4 and β2 subunits localization in injured nerves were evaluated by immunohistochemistry. Neuropathic pain, assessed by tactile allodynia and thermal hyperalgesia, was examined by von Frey test and Hargreaves test respectively. RESULTS Nicotinic acetylcholine receptor α4 and β2 subunits were up-regulated in injured nerves and were expressed on F4/80-positive macrophages. When nicotine was perineurally administered daily for 4 days (day 7-10; maintenance phase) after nerve injury, pain behaviours were significantly alleviated. The inhibitory effects of nicotine were reversed by co-administration of mecamylamine (non-selective nicotinic acetylcholine receptor antagonist) and dihydro-β-erythroidine (selective α4β2 nicotinic acetylcholine receptor antagonist). Likewise, when α4β2 nicotinic acetylcholine receptor agonists (TC2559 or ABT418) were administered daily for 4 days (day 7-10) after nerve injury, pain behaviours were significantly attenuated. On the other hand, nicotine administered daily for 4 days (day 0-3; initiation phase) after nerve injury alleviated pain behaviours, which were antagonized by co-administration of dihydro-β-erythroidine. TC2559 administered daily for 4 days (day 0-3) also attenuated nerve injury-induced pain behaviours. CONCLUSION The activation of α4β2 nicotinic acetylcholine receptor expressed on infiltrating macrophages in injured nerves may participate in the relief of PSL-induced neuropathic pain during maintenance and initiation phases.
Collapse
Affiliation(s)
- F. Saika
- Department of Pharmacology; Wakayama Medical University; Wakayama Japan
| | - N. Kiguchi
- Department of Pharmacology; Wakayama Medical University; Wakayama Japan
| | - Y. Kobayashi
- Department of Pharmacology; Wakayama Medical University; Wakayama Japan
| | - S. Kishioka
- Department of Pharmacology; Wakayama Medical University; Wakayama Japan
| |
Collapse
|
146
|
Lees JG, Duffy SS, Perera CJ, Moalem-Taylor G. Depletion of Foxp3+ regulatory T cells increases severity of mechanical allodynia and significantly alters systemic cytokine levels following peripheral nerve injury. Cytokine 2015; 71:207-14. [DOI: 10.1016/j.cyto.2014.10.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/24/2014] [Accepted: 10/28/2014] [Indexed: 11/26/2022]
|
147
|
Chen XM, Xu J, Song JG, Zheng BJ, Wang XR. Electroacupuncture inhibits excessive interferon-γ evoked up-regulation of P2X4 receptor in spinal microglia in a CCI rat model for neuropathic pain. Br J Anaesth 2015; 114:150-7. [DOI: 10.1093/bja/aeu199] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
148
|
Neuropathic pain: role of inflammation, immune response, and ion channel activity in central injury mechanisms. Ann Neurosci 2014; 19:125-32. [PMID: 25205985 PMCID: PMC4117080 DOI: 10.5214/ans.0972.7531.190309] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 06/30/2012] [Accepted: 07/27/2012] [Indexed: 01/11/2023] Open
Abstract
Neuropathic pain (NP) is a significant and disabling clinical problem with very few therapeutic treatment options available. A major priority is to identify the molecular mechanisms responsible for NP. Although many seemingly relevant pathways have been identified, more research is needed before effective clinical interventions can be produced. Initial insults to the nervous system, such as spinal cord injury (SCI), are often compounded by secondary mechanisms such as inflammation, the immune response, and the changing expression of receptors and ion channels. The consequences of these secondary effects myriad and compound those elicited by the primary injury. Chronic NP syndromes following SCI can greatly complicate the clinical treatment of the primary injury and result in high comorbidity. In this review, we will describe physiological outcomes associated with SCI along with some of the mechanisms known to contribute to chronic NP development.
Collapse
|
149
|
Novel targets for Spinal Cord Injury related neuropathic pain. Ann Neurosci 2014; 18:162-7. [PMID: 25205949 PMCID: PMC4116958 DOI: 10.5214/ans.0972.7531.1118413] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 08/26/2011] [Accepted: 09/05/2011] [Indexed: 12/16/2022] Open
Abstract
Millions of people suffer from spinal cord injury (SCI) with little known effective clinical therapy. Neuropathic pain (NP) is often accompanied with SCI, making clinical treatment challenging. Even though the key mediators in the development of NP have been discovered, the pathogenesis is still unclear. Some of the key mediators in the sustenance of NP include the inflammatory processes, cannabinoid receptors, matrix metalloproteases, and their tissue inhibitors. Animal models have shown promising results with modulation of these mediators, yet the clinical models have been unsuccessful. One such study with matrix metalloproteases (MMPs) has yielded encouraging results. The relationship between MMPs and their tissue inhibitors (TIMPs) plays a significant role in the pathogenesis and recovery of SCI and the CNS. Key factors that lead to the functional consequences of MMP activity are cellular localization, tissue distribution, and temporal pattern of MMP expression. Studies concluding that MMPs can be seen as contributors of tissue damage and as contributors in the repair mechanisms have provided a need to reexamine their roles after acute and chronic neuropathic pain
Collapse
|
150
|
Dominguez CA, Carlström KE, Zhang XM, Al Nimer F, Lindblom RPF, Ortlieb Guerreiro-Cacais A, Piehl F. Variability in C-type lectin receptors regulates neuropathic pain-like behavior after peripheral nerve injury. Mol Pain 2014; 10:78. [PMID: 25492810 PMCID: PMC4271486 DOI: 10.1186/1744-8069-10-78] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/19/2014] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Neuropathic pain is believed to be influenced in part by inflammatory processes. In this study we examined the effect of variability in the C-type lectin gene cluster (Aplec) on the development of neuropathic pain-like behavior after ligation of the L5 spinal nerve in the inbred DA and the congenic Aplec strains, which carries seven C-type lectin genes originating from the PVG strain. RESULTS While both strains displayed neuropathic pain behavior early after injury, the Aplec strain remained sensitive throughout the whole study period. Analyses of several mRNA transcripts revealed that the expression of Interleukin-1β, Substance P and Cathepsin S were more up-regulated in the dorsal part of the spinal cord of Aplec rats compared to DA, indicating a stronger inflammatory response. This notion was supported by flow cytometric analysis revealing increased infiltration of activated macrophages into the spinal cord. In addition, macrophages from the Aplec strain stimulated in vitro displayed higher expression of inflammatory cytokines compared to DA cells. Finally, we bred a recombinant congenic strain (R11R6) comprising only four of the seven Aplec genes, which displayed similar clinical and immune phenotypes as the Aplec strain. CONCLUSION We here for the first time demonstrate that C-type lectins, a family of innate immune receptors with largely unknown functions in the nervous system, are involved in regulation of inflammation and development of neuropathic pain behavior after nerve injury. Further experimental and clinical studies are needed to dissect the underlying mechanisms more in detail as well as any possible relevance for human conditions.
Collapse
Affiliation(s)
- Cecilia A Dominguez
- Department of Clinical Neuroscience, Neuroimmunology Unit, CMM L8:05, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|