101
|
Salehpour F, Majdi A, Pazhuhi M, Ghasemi F, Khademi M, Pashazadeh F, Hamblin MR, Cassano P. Transcranial Photobiomodulation Improves Cognitive Performance in Young Healthy Adults: A Systematic Review and Meta-Analysis. Photobiomodul Photomed Laser Surg 2019; 37:635-643. [PMID: 31549906 PMCID: PMC6818490 DOI: 10.1089/photob.2019.4673] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023] Open
Abstract
Background: Transcranial photobiomodulation (t-PBM) is a noninvasive modality that may improve cognitive function in both healthy and diseased subjects. Objective: This systematic review and meta-analysis addresses the question of whether t-PBM improves cognitive function in healthy adults. Methods: We searched MEDLINE using PubMed, EMBASE, SCOPUS, Web of Science, and Cochrane Library up to March 2019. We also searched ProQuest and Google Scholar databases for unpublished material. The search was limited to articles on the procognitive effects of t-PBM in healthy adults. The initial search resulted in 871 studies, of which nine publications met our criteria for inclusion and exclusion. Seven studies were performed on young, healthy subjects (17-35 years), and two studies were conducted on older (≥49 years), normal subjects. A meta-analysis was performed on six full-text publications whose subjects were young adults. Results: t-PBM administration improved cognition-related outcomes by an 0.833 standardized mean difference (SMD; 95% confidence interval (CI): 0.458-1.209, 14 comparisons) in young, healthy participants. Funnel plotting revealed asymmetry, which was validated using Egger's (p = 0.030) and Begg's regression (p = 0.006) tests. However after reanalysis, this asymmetry disappeared in the attention subgroup, but not in the memory subgroup. The trim-and-fill analysis indicated two studies were lacking required data. Thus, the effect size was adjusted from an SMD of 0.761 (95% CI: 0.573-0.949) to 0.949 (0.779-1.120). The overall quality score of the studies was modest. Conclusions: We demonstrated a significant, beneficial effect of t-PBM on cognitive performance of young, healthy individuals; however, the heterogeneity of the data was high. This could be due to the modest quality or to the low number of included studies, or to the differences between the various subdomains assessed. These shortcomings should be meticulously addressed before concluding that t-PBM is a cognitive-enhancing intervention in healthy individuals.
Collapse
Affiliation(s)
- Farzad Salehpour
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
- Niraxx Light Therapeutics, Inc., Irvine, California
- ProNeuroLIGHT LLC, Phoenix, Arizona
| | - Alireza Majdi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Faranak Ghasemi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Khademi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Pashazadeh
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Iranian EBM Center: A Joanna Briggs Institute Affiliated Group, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - Paolo Cassano
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
- Department of Psychiatry, Center for Anxiety and Traumatic Stress Disorders, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
102
|
Mannu P, Maiello M, Spera V, Cassano P. Transcranial Photobiomodulation for Down Syndrome. Photobiomodul Photomed Laser Surg 2019; 37:579-580. [DOI: 10.1089/photob.2019.4675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Marco Maiello
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
- Department of Clinical and Experimental Medicine, Psychiatric Unit, University of Pisa, Pisa, Italy
| | - Vincenza Spera
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
- Department of Clinical and Experimental Medicine, Psychiatric Unit, University of Pisa, Pisa, Italy
| | - Paolo Cassano
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
103
|
Fekri A, Jahan A, Moghadam Salimi M, Oskouei AE. Short-term Effects of Transcranial Near-Infrared Photobiomodulation on Motor Performance in Healthy Human Subjects: An Experimental SingleBlind Randomized Clinical Trial. J Lasers Med Sci 2019; 10:317-323. [PMID: 31875125 DOI: 10.15171/jlms.2019.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Transcranial near-infrared photobiomodulation (NIR-PBM) is a new noninvasive procedure which transcranially applies a near-infrared wavelength to the scalp with a laser or a light-emitting diode (LED) source. Improvement in the neurological or psychological symptoms has been reported following light irradiation. However, to our knowledge, there is no study to investigate the effects of transcranial NIR-PBM on motor performance directly. Therefore, the objective of this study was to investigate the short-term effects of transcranial NIR-PBM on motor performance in healthy human subjects. Methods: In this experimental single-blind randomized clinical trial study, 56 right-handed healthy participants, whose ages ranged from 18 to 30, were randomly assigned to (1) Real transcranial NIR-PBMC3 group (n=14), (2) Sham transcranial NIR-PBMC3 group (n=14), (3) Real transcranial NIR-PBMC4 group (n=14), and (4) Sham transcranial NIR-PBMC4 group (n=14). We applied the 808 nm laser with irradiation energy density of 60 J/cm2 and power density of 200 mw/cm2 to the C3 or C4 points of the scalp. The number of finger taps as an indicator of motor performance was assessed by the finger-tapping test (FTT) before and after irradiation of transcranial NIR-PBM on the corresponding points of the scalp for 5 minutes. Results: The results showed that the number of finger taps in both right and left hands following the use of transcranial NIR-PBM in the real transcranial NIR-PBMC3 group significantly increased (P<0.05). Conclusion: We concluded that using transcranial NIR-PBM with a laser source on C3 point of the motor cortex in right-handed healthy people can increase the number of finger taps in both hands as an indicator of motor performance improvement.
Collapse
Affiliation(s)
- Atefeh Fekri
- Department of Physiotherapy, Faculty of Rehabilitation, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Jahan
- Department of Speech Therapy, Faculty of Rehabilitation, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Moghadam Salimi
- Department of Physiotherapy, Faculty of Rehabilitation, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali E Oskouei
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
104
|
Salehpour F, Cassano P, Rouhi N, Hamblin MR, De Taboada L, Farajdokht F, Mahmoudi J. Penetration Profiles of Visible and Near-Infrared Lasers and Light-Emitting Diode Light Through the Head Tissues in Animal and Human Species: A Review of Literature. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:581-595. [PMID: 31553265 DOI: 10.1089/photob.2019.4676] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background and objective: Photobiomodulation (PBM) therapy is a promising and noninvasive approach to stimulate neuronal function and improve brain repair. The optimization of PBM parameters is important to maximize effectiveness and tolerability. Several studies have reported on the penetration of visible-to-near-infrared (NIR) light through various animal and human tissues. Scientific findings on the penetration of PBM light vary, likely due to use of different irradiation parameters and to different characteristics of the subject such as species, age, and gender. Materials and methods: In this article, we review published data on PBM penetration through the tissues of the head in both animal and human species. The patterns of visible-to-NIR light penetration are summarized based on the following study specifications: wavelength, coherence, operation mode, beam type and size, irradiation site, species, age, and gender. Results: The average penetration of transcranial red/NIR (630-810 nm) light ranged 60-70% in C57BL/6 mouse (skull), 1-10% in BALB/c mouse (skull), 10-40% in Sprague-Dawley rats (scalp plus skull), 20% in Oryctolagus cuniculus rabbit (skull), 0.11% in pig (scalp plus skull), and 0.2-10% in humans (scalp plus skull). The observed variation in the reported values is due to the difference in factors (e.g., wavelengths, light coherence, tissue thickness, and anatomic irradiation site) used by researchers. It seems that these data challenge the applicability of the animal model data on transcranial PBM to humans. Nevertheless, two animal models seem particularly promising, as they approximate penetration in humans: (I) Penetration of 808 nm laser through the scalp plus skull was 0.11% in the pig head; (II) Penetration of 810 nm laser through intact skull was 1.75% in BALB/c mouse. Conclusions: In conclusion, it is worthwhile mentioning that since the effectiveness of brain PBM is closely dependent on the amount of light energy reaching the target neurons, further quantitative estimation of light penetration depth should be performed to validate the current findings.
Collapse
Affiliation(s)
- Farzad Salehpour
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.,Niraxx Light Therapeutics, Inc., Irvine, California
| | - Paolo Cassano
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.,Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts.,Center for Anxiety and Traumatic Stress Disorders, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Naser Rouhi
- Faculty of Physics, University of Tabriz, Tabriz, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | | | - Fereshteh Farajdokht
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
105
|
Bhattacharya M, Dutta A. Computational Modeling of the Photon Transport, Tissue Heating, and Cytochrome C Oxidase Absorption during Transcranial Near-Infrared Stimulation. Brain Sci 2019; 9:brainsci9080179. [PMID: 31357574 PMCID: PMC6721367 DOI: 10.3390/brainsci9080179] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/15/2019] [Accepted: 07/23/2019] [Indexed: 12/16/2022] Open
Abstract
Transcranial near-infrared stimulation (tNIRS) has been proposed as a tool to modulate cortical excitability. However, the underlying mechanisms are not clear where the heating effects on the brain tissue needs investigation due to increased near-infrared (NIR) absorption by water and fat. Moreover, the risk of localized heating of tissues (including the skin) during optical stimulation of the brain tissue is a concern. The challenge in estimating localized tissue heating is due to the light interaction with the tissues' constituents, which is dependent on the combination ratio of the scattering and absorption properties of the constituent. Here, apart from tissue heating that can modulate the cortical excitability ("photothermal effects"); the other mechanism reported in the literature is the stimulation of the mitochondria in the cells which are active in the adenosine triphosphate (ATP) synthesis. In the mitochondrial respiratory chain, Complex IV, also known as the cytochrome c oxidase (CCO), is the unit four with three copper atoms. The absorption peaks of CCO are in the visible (420-450 nm and 600-700 nm) and the near-infrared (760-980 nm) spectral regions, which have been shown to be promising for low-level light therapy (LLLT), also known as "photobiomodulation". While much higher CCO absorption peaks in the visible spectrum can be used for the photobiomodulation of the skin, 810 nm has been proposed for the non-invasive brain stimulation (using tNIRS) due to the optical window in the NIR spectral region. In this article, we applied a computational approach to delineate the "photothermal effects" from the "photobiomodulation", i.e., to estimate the amount of light absorbed individually by each chromophore in the brain tissue (with constant scattering) and the related tissue heating. Photon migration simulations were performed for motor cortex tNIRS based on a prior work that used a 500 mW cm - 2 light source placed on the scalp. We simulated photon migration at 630 nm and 700 nm (red spectral region) and 810 nm (near-infrared spectral region). We found a temperature increase in the scalp below 0.25 °C and a minimal temperature increase in the gray matter less than 0.04 °C at 810 nm. Similar heating was found for 630 nm and 700 nm used for LLLT, so photothermal effects are postulated to be unlikely in the brain tissue.
Collapse
Affiliation(s)
- Mahasweta Bhattacharya
- Department of Biomedical Engineering, University at Buffalo SUNY, Buffalo, NY 14260, USA.
| | - Anirban Dutta
- Department of Biomedical Engineering, University at Buffalo SUNY, Buffalo, NY 14260, USA
| |
Collapse
|
106
|
Jahan A, Nazari MA, Mahmoudi J, Salehpour F, Salimi MM. Transcranial near-infrared photobiomodulation could modulate brain electrophysiological features and attentional performance in healthy young adults. Lasers Med Sci 2019; 34:1193-1200. [DOI: 10.1007/s10103-018-02710-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/19/2018] [Indexed: 12/19/2022]
|
107
|
Gaggioli A. Brain Photobiomodulation: A New Strategy to Enhance Cognitive Function? CYBERPSYCHOLOGY, BEHAVIOR AND SOCIAL NETWORKING 2019; 22:293-294. [PMID: 30958037 DOI: 10.1089/cyber.2019.29147.csi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Andrea Gaggioli
- 1 Department of Psychology, Catholic University of Milan, Milan, Italy
- 2 Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
108
|
Wang X, Dmochowski JP, Zeng L, Kallioniemi E, Husain M, Gonzalez-Lima F, Liu H. Transcranial photobiomodulation with 1064-nm laser modulates brain electroencephalogram rhythms. NEUROPHOTONICS 2019; 6:025013. [PMID: 31259198 PMCID: PMC6563945 DOI: 10.1117/1.nph.6.2.025013] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Noninvasive transcranial photobiomodulation (tPBM) with a 1064-nm laser has been reported to improve human performance on cognitive tasks as well as locally upregulate cerebral oxygen metabolism and hemodynamics. However, it is unknown whether 1064-nm tPBM also modulates electrophysiology, and specifically neural oscillations, in the human brain. The hypothesis guiding our study is that applying 1064-nm tPBM of the right prefrontal cortex enhances neurophysiological rhythms at specific frequency bands in the human brain under resting conditions. To test this hypothesis, we recorded the 64-channel scalp electroencephalogram (EEG) before, during, and after the application of 11 min of 4-cm-diameter tPBM (CW 1064-nm laser with 162 mW / cm 2 and 107 J / cm 2 ) to the right forehead of human subjects ( n = 20 ) using a within-subject, sham-controlled design. Time-resolved scalp topographies of EEG power at five frequency bands were computed to examine the tPBM-induced EEG power changes across the scalp. The results show time-dependent, significant increases of EEG spectral powers at the alpha (8 to 13 Hz) and beta (13 to 30 Hz) bands at broad scalp regions, exhibiting a front-to-back pattern. The findings provide the first sham-controlled topographic mapping that tPBM increases the strength of electrophysiological oscillations (alpha and beta bands) while also shedding light on the mechanisms of tPBM in the human brain.
Collapse
Affiliation(s)
- Xinlong Wang
- University of Texas at Arlington, Department of Bioengineering, Arlington, Texas, United States
| | - Jacek P. Dmochowski
- City College of New York, Department of Biomedical Engineering, New York, United States
| | - Li Zeng
- Texas A&M University, Department of Industrial and Systems Engineering, College Station, Texas, United States
| | - Elisa Kallioniemi
- University of Texas Southwestern Medical Center at Dallas, Department of Psychiatry, Dallas, Texas, United States
| | - Mustafa Husain
- University of Texas Southwestern Medical Center at Dallas, Department of Psychiatry, Dallas, Texas, United States
| | - F. Gonzalez-Lima
- University of Texas at Austin, Department of Psychology and Institute for Neuroscience, Austin, Texas, United States
| | - Hanli Liu
- University of Texas at Arlington, Department of Bioengineering, Arlington, Texas, United States
| |
Collapse
|
109
|
Photobiomodulation in Parkinson's disease: A randomized controlled trial. Brain Stimul 2019; 12:810-812. [PMID: 30824206 DOI: 10.1016/j.brs.2019.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 11/22/2022] Open
|
110
|
Chan AS, Lee TL, Yeung MK, Hamblin MR. Photobiomodulation improves the frontal cognitive function of older adults. Int J Geriatr Psychiatry 2019; 34:369-377. [PMID: 30474306 PMCID: PMC6333495 DOI: 10.1002/gps.5039] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/14/2018] [Indexed: 01/20/2023]
Abstract
OBJECTIVES The frontal lobe hypothesis of age-related cognitive decline suggests that the deterioration of the prefrontal cortical regions that occurs with aging leads to executive function deficits. Photobiomodulation (PBM) is a newly developed, noninvasive technique for enhancing brain function, which has shown promising effects on cognitive function in both animals and humans. This randomized, sham-controlled study sought to examine the effects of PBM on the frontal brain function of older adults. METHODS/DESIGNS Thirty older adults without a neuropsychiatric history performed cognitive tests of frontal function (ie, the Eriksen flanker and category fluency tests) before and after a single 7.5-minute session of real or sham PBM. The PBM device consisted of three separate light-emitting diode cluster heads (633 and 870 nm), which were applied to both sides of the forehead and posterior midline, and delivered a total energy of 1349 J. RESULTS Significant group (experimental, control) × time (pre-PBM, post-PBM) interactions were found for the flanker and category fluency test scores. Specifically, only the older adults who received real PBM exhibited significant improvements in their action selection, inhibition ability, and mental flexibility after vs before PBM. CONCLUSIONS Our findings support that PBM may enhance the frontal brain functions of older adults in a safe and cost-effective manner.
Collapse
Affiliation(s)
- Agnes S. Chan
- Department of Psychology, The Chinese University of Hong Kong, New Territories, Hong Kong, China
- Chanwuyi Research Center for Neuropsychological Well-Being, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Tsz Lok Lee
- Department of Psychology, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Michael K. Yeung
- Department of Psychology, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
111
|
Mussttaf RA, Jenkins DFL, Jha AN. Assessing the impact of low level laser therapy (LLLT) on biological systems: a review. Int J Radiat Biol 2019; 95:120-143. [DOI: 10.1080/09553002.2019.1524944] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ruwaidah A. Mussttaf
- School of Computing, Electronics and Mathematics, University of Plymouth, Plymouth, UK
| | - David F. L. Jenkins
- School of Computing, Electronics and Mathematics, University of Plymouth, Plymouth, UK
| | - Awadhesh N. Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
112
|
Kemper KJ. “Let there be light.” Research on phototherapy, light therapy, and photobiomodulation for healing – Alternative therapy becomes mainstream. Complement Ther Med 2018; 41:A1-A6. [DOI: 10.1016/j.ctim.2018.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
113
|
Gibson BC, Sanguinetti JL, Badran BW, Yu AB, Klein EP, Abbott CC, Hansberger JT, Clark VP. Increased Excitability Induced in the Primary Motor Cortex by Transcranial Ultrasound Stimulation. Front Neurol 2018; 9:1007. [PMID: 30546342 PMCID: PMC6280333 DOI: 10.3389/fneur.2018.01007] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/07/2018] [Indexed: 12/29/2022] Open
Abstract
Background: Transcranial Ultrasound Stimulation (tUS) is an emerging technique that uses ultrasonic waves to noninvasively modulate brain activity. As with other forms of non-invasive brain stimulation (NIBS), tUS may be useful for altering cortical excitability and neuroplasticity for a variety of research and clinical applications. The effects of tUS on cortical excitability are still unclear, and further complications arise from the wide parameter space offered by various types of devices, transducer arrangements, and stimulation protocols. Diagnostic ultrasound imaging devices are safe, commonly available systems that may be useful for tUS. However, the feasibility of modifying brain activity with diagnostic tUS is currently unknown. Objective: We aimed to examine the effects of a commercial diagnostic tUS device using an imaging protocol on cortical excitability. We hypothesized that imaging tUS applied to motor cortex could induce changes in cortical excitability as measured using a transcranial magnetic stimulation (TMS) motor evoked potential (MEP) paradigm. Methods: Forty-three subjects were assigned to receive either verum (n = 21) or sham (n = 22) diagnostic tUS in a single-blind design. Baseline motor cortex excitability was measured using MEPs elicited by TMS. Diagnostic tUS was subsequently administered to the same cortical area for 2 min, immediately followed by repeated post-stimulation MEPs recorded up to 16 min post-stimulation. Results: Verum tUS increased excitability in the motor cortex (from baseline) by 33.7% immediately following tUS (p = 0.009), and 32.4% (p = 0.047) 6 min later, with excitability no longer significantly different from baseline by 11 min post-stimulation. By contrast, subjects receiving sham tUS showed no significant changes in MEP amplitude. Conclusion: These findings demonstrate that tUS delivered via a commercially available diagnostic imaging ultrasound system transiently increases excitability in the motor cortex as measured by MEPs. Diagnostic tUS devices are currently used for internal imaging in many health care settings, and the present results suggest that these same devices may also offer a promising tool for noninvasively modulating activity in the central nervous system. Further studies exploring the use of diagnostic imaging devices for neuromodulation are warranted.
Collapse
Affiliation(s)
- Benjamin C. Gibson
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Joseph L. Sanguinetti
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM, United States
- U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, United States
| | - Bashar W. Badran
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM, United States
- U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, United States
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Alfred B. Yu
- U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, United States
| | - Evan P. Klein
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Christopher C. Abbott
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | | | - Vincent P. Clark
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM, United States
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
- The Mind Research Network & LBERI, Albuquerque, NM, United States
| |
Collapse
|
114
|
Yao X, Liu C, Feng D, Yin J, Chen G. Transcranial Near-infrared Laser Therapy in Improving Cognitive Recovery of Function Following Traumatic Brain Injury. Curr Neuropharmacol 2018; 16:1320-1326. [PMID: 29564977 PMCID: PMC6251043 DOI: 10.2174/1570159x16666180321100439] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 07/25/2017] [Accepted: 02/28/2018] [Indexed: 11/23/2022] Open
Abstract
Abstract: Traumatic brain injury (TBI) has turned into a major health and socioeconomic problem affecting young people and military personnel. Numerous TBI patients experienced the sequela of brain injury called cognitive impairment, which re-duced functions in attention, working memory, motivation, and execution. In recent years, transcranial near-infrared laser therapy (tNiRLT) as a possible therapy has been gradually applied in treating cognitive impairment post-TBI. In the present review, the biological mechanisms of transcranial tNiRLT for TBI are synthesized mainly based on the photonic impact of chronic mild TBI. Various exciting molecular events possibly occur during the procedure, such as stimulation of ATP pro-duction, regional cerebral blood flow, acupoint, neurogenesis and synaptogenesis, as well as a reduction in anti-inflammatory effect. Some animal experiments and clinical studies of tNiRLT for TBI are outlined. Several labs have displayed that tNiRLT is effective not only in improving neurological functions but also in increasing memory and learning capacity in ro-dent animals’ model of TBI. In a 2 patients case report and a 11-case series, cognitive functions were ameliorated. Efficacy on cognitive and emotional effects was also observed in a double-blind, controlled clinical study. Several Randomized, paral-lel, double blind, sham-controlled trials are underway, aiming to evaluate the efficacy of tLED on cognitive functions and neuropsychiatric status in participants post-TBI. Therefore, tNiRLT is a promising method applied to cognitive impairment following TBI.
Collapse
Affiliation(s)
- Xiyang Yao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Chenglin Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Dongxia Feng
- Scott & White Clinic-Temple, 2401 S.31st Street, Temple, TX76508, United States
| | - Jun Yin
- Department of Neurosurgery, Taixing Chinese Medicine Hospital, Taixing 225400, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| |
Collapse
|
115
|
Migliario M, Sabbatini M, Mortellaro C, Renò F. Near infrared low-level laser therapy and cell proliferation: The emerging role of redox sensitive signal transduction pathways. JOURNAL OF BIOPHOTONICS 2018; 11:e201800025. [PMID: 29722183 DOI: 10.1002/jbio.201800025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Lasers devices are widely used in various medical fields (eg, surgery, dermatology, dentistry, rehabilitative medicine, etc.) for different applications, ranging from surgical ablation of tissues to biostimulation and pain relief. Laser is an electromagnetic radiation, which effects on biological tissues strongly depends on a number of physical parameters. Laser wavelength, energy output, irradiation time and modality, temperature and tissue penetration properties have to be set up according to the clinical target tissue and the desired effect. A less than optimal operational settings, in fact, could result in a null or even lethal effect. According to the first law of photobiology, light absorption requires the presence of a specific photoacceptor that after excitation could induce the activation of downstream signaling pathways. Low-level lasers operating in the red/near infrared portion of the light spectra are generally used for biostimulation purposes, a particular therapeutic application based on the radiant energy ability to induce nonthermal responses in living cells. Biostimulation process generally promotes cell survival and proliferation. Emerging evidences support a low-level laser stimulation mediated increase in "good" reactive oxygen species, able to activate redox sensitive signal transduction pathways such as Nrf-2, NF-kB, ERK which act as key redox checkpoints.
Collapse
Affiliation(s)
- Mario Migliario
- Dental Clinic - Health Sciences Department, Università del Piemonte Orientale, Novara, Italy
| | - Maurizio Sabbatini
- Science and Technology Innovation Department, Università del Piemonte Orientale, Alessandria, Italy
| | - Carmen Mortellaro
- Dental Clinic - Health Sciences Department, Università del Piemonte Orientale, Novara, Italy
| | - Filippo Renò
- Innovative Research Laboratory for Wound Healing - Health Sciences Department, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
116
|
Cassano P, Petrie SR, Mischoulon D, Cusin C, Katnani H, Yeung A, De Taboada L, Archibald A, Bui E, Baer L, Chang T, Chen J, Pedrelli P, Fisher L, Farabaugh A, Hamblin MR, Alpert JE, Fava M, Iosifescu DV. Transcranial Photobiomodulation for the Treatment of Major Depressive Disorder. The ELATED-2 Pilot Trial. Photomed Laser Surg 2018; 36:634-646. [PMID: 30346890 DOI: 10.1089/pho.2018.4490] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective: Our objective was to test the antidepressant effect of transcranial photobiomodulation (t-PBM) with near-infrared (NIR) light in subjects suffering from major depressive disorder (MDD). Background: t-PBM with NIR light is a new treatment for MDD. NIR light is absorbed by mitochondria; it boosts cerebral metabolism, promotes neuroplasticity, and modulates endogenous opioids, while decreasing inflammation and oxidative stress. Materials and methods: We conducted a double-blind, sham-controlled study on the safety and efficacy [change in Hamilton Depression Rating Scale (HAM-D17) total score at end-point] of adjunct t-PBM NIR [823 nm; continuous wave (CW); 28.7 × 2 cm2; 36.2 mW/cm2; up to 65.2 J/cm2; 20-30 min/session], delivered to dorsolateral prefrontal cortex, bilaterally and simultaneously, twice a week, for 8 weeks, in subjects with MDD. Baseline observation carried forward (BOCF), last observation carried forward (LOCF), and completers analyses were performed. Results: The effect size for the antidepressant effect of t-PBM, based on change in HAM-D17 total score at end-point, was 0.90, 0.75, and 1.5 (Cohen's d), respectively for BOCF (n = 21), LOCF (n = 19), and completers (n = 13). Further, t-PBM was fairly well tolerated, with no serious adverse events. Conclusions: t-PBM with NIR light demonstrated antidepressant properties with a medium to large effect size in patients with MDD. Replication is warranted, especially in consideration of the small sample size.
Collapse
Affiliation(s)
- Paolo Cassano
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts.,Center for Anxiety and Traumatic Stress Disorders, Massachusetts General Hospital, Boston, Massachusetts
| | - Samuel R Petrie
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - David Mischoulon
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Cristina Cusin
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Husam Katnani
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Albert Yeung
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Abigal Archibald
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Eric Bui
- Center for Anxiety and Traumatic Stress Disorders, Massachusetts General Hospital, Boston, Massachusetts
| | - Lee Baer
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Trina Chang
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Justin Chen
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Paola Pedrelli
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Lauren Fisher
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Amy Farabaugh
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - Jonathan E Alpert
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Maurizio Fava
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Dan V Iosifescu
- Adult Psychopharmacology Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
117
|
Cassano P, Dording C, Thomas G, Foster S, Yeung A, Uchida M, Hamblin MR, Bui E, Fava M, Mischoulon D, Iosifescu DV. Effects of transcranial photobiomodulation with near-infrared light on sexual dysfunction. Lasers Surg Med 2018; 51:127-135. [PMID: 30221776 DOI: 10.1002/lsm.23011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Transcranial photobiomodulation (t-PBM) consists of the delivery of near-infrared (NIR) or red light to the scalp designed to penetrate to subjacent cortical areas of the brain. NIR t-PBM has recently emerged as a potential therapy for brain disorders. This study assessed the efficacy of repeated sessions of NIR t-PBM on sexual dysfunction. METHODS We performed a secondary analysis of a double-blind clinical trial on t-PBM for major depressive disorder (MDD). Twenty individuals received NIR t-PBM (n = 9) or sham therapy (n = 11) twice a week for 8 weeks. Sexual desire, arousal, and orgasm were assessed using the Systematic Assessment for Treatment-Emergent Effects-Specific Inquiry (SAFTEE-SI). RESULTS The mean improvement in sexual function (decrease in SAFTEE sex total score) in subjects receiving t-PBM in NIR-mode was significantly greater than in subjects receiving sham-mode in the whole sample (NIR [n = 9] -2.55 ± 1.88 vs. sham [n = 11] -0.45 ± 1.21; z = 2.548, P = 0.011]) and in the completers (NIR [n = 5] -3.4 ± 1.95 vs. sham [n = 7] -0.14 ± 1.21; z = 2.576, P = 0.010]). CONCLUSION This exploratory study with a small sample size indicates that repeated sessions of NIR t-PBM may be associated with therapeutic effects on sexual dysfunction. The latter appeared unrelated to the antidepressant effect of t-PBM in our cohort. Lasers Surg. Med. 51:127-135, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paolo Cassano
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Christina Dording
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Garrett Thomas
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Simmie Foster
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Albert Yeung
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Mai Uchida
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Eric Bui
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Maurizio Fava
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - David Mischoulon
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Dan V Iosifescu
- Department of Psychiatry, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
| |
Collapse
|
118
|
Olsztyńska-Janus S, Kiełbowicz Z, Czarnecki MA. ATR-IR study of skin components: Lipids, proteins and water. Part II: Near infrared radiation effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 202:93-101. [PMID: 29778711 DOI: 10.1016/j.saa.2018.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/06/2018] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
Near infrared (NIR) radiation has been widely used in medicine and biomedical engineering. In spite of numerous studies the molecular mechanism of NIR radiation on biological systems has not been established as yet. The objective of this work was examination of the effect of NIR irradiation on the skin components. Modifications of lipid organization after NIR exposure vs. temperature (from 20 to 90 °C) have been investigated using Attenuated Total Reflectance Infrared (ATR-IR) spectroscopy. This work is a continuation of our previous studies on the temperature effect on skin components [1]. After NIR exposure a temperature shift of the phase transition from the orthorhombic to hexagonal packing (≈40 °C) has been observed. In contrast, the second phase transition temperature (≈70 °C) is almost invariable. The phase transitions in lipids were correlated with modifications of the structure of water and proteins. To our knowledge, for the first time the temperatures of the phase transitions after NIR exposure were investigated.
Collapse
Affiliation(s)
- S Olsztyńska-Janus
- Department of Biomedical Engineering, Wrocław University of Science and Technology, pl. Grunwaldzki 13, 50-370 Wroclaw, Poland.
| | - Z Kiełbowicz
- Department of Surgery the Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 51, 50-366 Wrocław, Poland
| | - M A Czarnecki
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
119
|
Zaizar ED, Gonzalez-Lima F, Telch MJ. Singular and combined effects of transcranial infrared laser stimulation and exposure therapy: A randomized clinical trial. Contemp Clin Trials 2018; 72:95-102. [PMID: 30092284 DOI: 10.1016/j.cct.2018.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/02/2018] [Accepted: 07/23/2018] [Indexed: 11/21/2022]
Abstract
This RCT will test whether transcranial infrared laser stimulation (TILS) administered immediately following standard exposure therapy enhances the retention of fear extinction for naturally acquired pathological fear. A second aim is to investigate the efficacy of TILS as a stand-alone intervention for reducing pathological fear. Participants with elevated fear in any one of the following four domains: (a) fear of enclosed spaces, (b) fear of contamination, (c) fear of public speaking, or (d) fear of anxiety (i.e., anxiety sensitivity) will be recruited from introductory psychology classes and the greater Austin community. Participants displaying marked fear responding will be stratified on baseline fear responding and fear domain and randomized to one of four treatment arms: (1) Exposure + TILS, (2) Exposure + sham TILS, (3) TILS alone, or (4) Sham TILS alone. We anticipate that TILS will enhance exposure therapy outcome relative to sham TILS and that this enhancement effect will be most pronounced for (a) those displaying higher baseline fear responding, and (b) those showing greater fear reduction during exposure. Study rationale as well as additional predictions and clinical implications are discussed.
Collapse
Affiliation(s)
- Eric D Zaizar
- Department of Psychology, Laboratory for the Study of Anxiety Disorders, The University of Texas at Austin, United States
| | - F Gonzalez-Lima
- Department of Psychology, Laboratory for the Study of Anxiety Disorders, The University of Texas at Austin, United States
| | - Michael J Telch
- Department of Psychology, Laboratory for the Study of Anxiety Disorders, The University of Texas at Austin, United States.
| |
Collapse
|
120
|
Tucker D, Lu Y, Zhang Q. From Mitochondrial Function to Neuroprotection-an Emerging Role for Methylene Blue. Mol Neurobiol 2018; 55:5137-5153. [PMID: 28840449 PMCID: PMC5826781 DOI: 10.1007/s12035-017-0712-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/07/2017] [Indexed: 12/23/2022]
Abstract
Methylene blue (MB) is a well-established drug with a long history of use, owing to its diverse range of use and its minimal side effect profile. MB has been used classically for the treatment of malaria, methemoglobinemia, and carbon monoxide poisoning, as well as a histological dye. Its role in the mitochondria, however, has elicited much of its renewed interest in recent years. MB can reroute electrons in the mitochondrial electron transfer chain directly from NADH to cytochrome c, increasing the activity of complex IV and effectively promoting mitochondrial activity while mitigating oxidative stress. In addition to its beneficial effect on mitochondrial protection, MB is also known to have robust effects in mitigating neuroinflammation. Mitochondrial dysfunction has been identified as a seemingly unifying pathological phenomenon across a wide range of neurodegenerative disorders, which thus positions methylene blue as a promising therapeutic. In both in vitro and in vivo studies, MB has shown impressive efficacy in mitigating neurodegeneration and the accompanying behavioral phenotypes in animal models for such conditions as stroke, global cerebral ischemia, Alzheimer's disease, Parkinson's disease, and traumatic brain injury. This review summarizes recent work establishing MB as a promising candidate for neuroprotection, with particular emphasis on the contribution of mitochondrial function to neural health. Furthermore, this review will briefly examine the link between MB, neurogenesis, and improved cognition in respect to age-related cognitive decline.
Collapse
Affiliation(s)
- Donovan Tucker
- Department of Neuroscience and Regenerative Medicine, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yujiao Lu
- Department of Neuroscience and Regenerative Medicine, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
121
|
Esenaliev RO, Petrov IY, Petrov Y, Guptarak J, Boone DR, Mocciaro E, Weisz H, Parsley MA, Sell SL, Hellmich H, Ford JM, Pogue C, DeWitt D, Prough DS, Micci MA. Nano-Pulsed Laser Therapy Is Neuroprotective in a Rat Model of Blast-Induced Neurotrauma. J Neurotrauma 2018; 35:1510-1522. [PMID: 29562823 PMCID: PMC5998828 DOI: 10.1089/neu.2017.5249] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We have developed a novel, non-invasive nano-pulsed laser therapy (NPLT) system that combines the benefits of near-infrared laser light (808 nm) and ultrasound (optoacoustic) waves, which are generated with each short laser pulse within the tissue. We tested NPLT in a rat model of blast-induced neurotrauma (BINT) to determine whether transcranial application of NPLT provides neuroprotective effects. The laser pulses were applied on the intact rat head 1 h after injury using a specially developed fiber-optic system. Vestibulomotor function was assessed on post-injury days (PIDs) 1–3 on the beam balance and beam walking tasks. Cognitive function was assessed on PIDs 6–10 using a working memory Morris water maze (MWM) test. BDNF and caspase-3 messenger RNA (mRNA) expression was measured by quantitative real-time PCR (qRT-PCR) in laser-captured cortical neurons. Microglia activation and neuronal injury were assessed in brain sections by immunofluorescence using specific antibodies against CD68 and active caspase-3, respectively. In the vestibulomotor and cognitive (MWM) tests, NPLT-treated animals performed significantly better than the untreated blast group and similarly to sham animals. NPLT upregulated mRNA encoding BDNF and downregulated the pro-apoptotic protein caspase-3 in cortical neurons. Immunofluorescence demonstrated that NPLT inhibited microglia activation and reduced the number of cortical neurons expressing activated caspase-3. NPLT also increased expression of BDNF in the hippocampus and the number of proliferating progenitor cells in the dentate gyrus. Our data demonstrate a neuroprotective effect of NPLT and prompt further studies aimed to develop NPLT as a therapeutic intervention after traumatic brain injury (TBI).
Collapse
Affiliation(s)
- Rinat O Esenaliev
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas.,2 Department of Neuroscience and Cell Biology, University of Texas Medical Branch , Galveston, Texas.,3 Center for Biomedical Engineering, University of Texas Medical Branch , Galveston, Texas
| | - Irene Y Petrov
- 3 Center for Biomedical Engineering, University of Texas Medical Branch , Galveston, Texas
| | - Yuriy Petrov
- 3 Center for Biomedical Engineering, University of Texas Medical Branch , Galveston, Texas
| | - Jutatip Guptarak
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Debbie R Boone
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Emanuele Mocciaro
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Harris Weisz
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Margaret A Parsley
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Stacy L Sell
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Helen Hellmich
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Jonathan M Ford
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Connor Pogue
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Douglas DeWitt
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Donald S Prough
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Maria-Adelaide Micci
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| |
Collapse
|
122
|
Dos Santos JGRP, Paiva WS, Teixeira MJ. Transcranial light-emitting diode therapy for neuropsychological improvement after traumatic brain injury: a new perspective for diffuse axonal lesion management. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2018; 11:139-146. [PMID: 29731669 PMCID: PMC5927185 DOI: 10.2147/mder.s155356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The cost of traumatic brain injury (TBI) for public health policies is undeniable today. Even patients who suffer from mild TBI may persist with cognitive symptoms weeks after the accident. Most of them show no lesion in computed tomography or conventional magnetic resonance imaging, but microstructural white matter abnormalities (diffuse axonal lesion) can be found in diffusion tensor imaging. Different brain networks work together to form an important part of the cognition process, and they can be affected by TBI. The default mode network (DMN) plays an important central role in normal brain activities, presenting greater relative deactivation during more cognitively demanding tasks. After deactivation, it allows a distinct network to activate. This network (the central executive network) acts mainly during tasks involving executive functions. The salience network is another network necessary for normal executive function, and its activation leads to deactivation of the DMN. The use of red or near-infrared (NIR) light to stimulate or regenerate tissue is known as photobiomodulation. It was discovered that NIR (wavelength 800-900 nm) and red (wavelength 600 nm) light-emitting diodes (LEDs) are able to penetrate through scalp and skull and have the potential to improve the subnormal, cellular activity of compromised brain tissue. Based on this, different experimental and clinical studies were done to test LED therapy for TBI, and promising results were found. It leads us to consider developing different approaches to maximize the positive effects of this therapy and improve the quality of life of TBI patients.
Collapse
Affiliation(s)
| | - Wellingson Silva Paiva
- Department of Neurological Surgery, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Manoel Jacobsen Teixeira
- Department of Neurological Surgery, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
123
|
Sagar V, Nair M. Near-infrared biophotonics-based nanodrug release systems and their potential application for neuro-disorders. Expert Opin Drug Deliv 2018; 15:137-152. [PMID: 28276967 PMCID: PMC5738278 DOI: 10.1080/17425247.2017.1297794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 02/16/2017] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Near-infrared ray (NIR)-responsive 'smart' nanoagents allow spatial and temporal control over the drug delivery process, noninvasively, without affecting healthy tissues and therefore they possess high potential for on-demand, targeted drug/gene delivery. Various NIR-responsive drug/gene delivery techniques are under investigation for peripheral disorders (especially for cancer). Nonetheless, their potential not been extensively examined for brain biomedical application. AREAS COVERED This review focuses on NIR-responsive characteristics of different NIR-nanobiophotonics-based nanoagents and associated drug delivery strategies. Together with their ongoing applications for peripheral drug delivery, we have highlighted the opportunities, challenges and possible solutions of NIR-nanobiophotonics for potential brain drug delivery. EXPERT OPINION NIR-nanobiophotonics can be considered superior among all photo-controlled drug/gene delivery approaches. Future work should focus on coupling NIR with biocompatible nanocarriers to determine the physiological compatibility of this approach. Their applications should be extended beyond the peripheral body region to brain region. Transient or intermittent NIR exposure strategies may be more accommodating for brain physiological ambience in order to minimize or avoid the possible deleterious thermal effect. In addition, while most studies are centered around the first NIR spectral window (700-1000 nm), the potential of second (1100-1350 nm) and third (1600-1870 nm) windows must be explored.
Collapse
Affiliation(s)
- Vidya Sagar
- Center for Personalized Nanomedicine/Institute of Neuroimmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida - 33199
| | - Madhavan Nair
- Center for Personalized Nanomedicine/Institute of Neuroimmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida - 33199
| |
Collapse
|
124
|
de la Torre JC. Cerebral Perfusion Enhancing Interventions: A New Strategy for the Prevention of Alzheimer Dementia. Brain Pathol 2018; 26:618-31. [PMID: 27324946 DOI: 10.1111/bpa.12405] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular and cerebrovascular diseases are major risk factors in the development of cognitive impairment and Alzheimer's disease (AD). These cardio-cerebral disorders promote a variety of vascular risk factors which in the presence of advancing age are prone to markedly reduce cerebral perfusion and create a neuronal energy crisis. Long-term hypoperfusion of the brain evolves mainly from cardiac structural pathology and brain vascular insufficiency. Brain hypoperfusion in the elderly is strongly associated with the development of mild cognitive impairment (MCI) and both conditions are presumed to be precursors of Alzheimer dementia. A therapeutic target to prevent or treat MCI and consequently reduce the incidence of AD aims to elevate cerebral perfusion using novel pharmacological agents. As reviewed here, the experimental pharmaca include the use of Rho kinase inhibitors, neurometabolic energy boosters, sirtuins and vascular growth factors. In addition, a compelling new technique in laser medicine called photobiomodulation is reviewed. Photobiomodulation is based on the use of low level laser therapy to stimulate mitochondrial energy production non-invasively in nerve cells. The use of novel pharmaca and photobiomodulation may become important tools in the treatment or prevention of cognitive decline that can lead to dementia.
Collapse
|
125
|
Brain Photobiomodulation Therapy: a Narrative Review. Mol Neurobiol 2018; 55:6601-6636. [PMID: 29327206 DOI: 10.1007/s12035-017-0852-4] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022]
Abstract
Brain photobiomodulation (PBM) therapy using red to near-infrared (NIR) light is an innovative treatment for a wide range of neurological and psychological conditions. Red/NIR light is able to stimulate complex IV of the mitochondrial respiratory chain (cytochrome c oxidase) and increase ATP synthesis. Moreover, light absorption by ion channels results in release of Ca2+ and leads to activation of transcription factors and gene expression. Brain PBM therapy enhances the metabolic capacity of neurons and stimulates anti-inflammatory, anti-apoptotic, and antioxidant responses, as well as neurogenesis and synaptogenesis. Its therapeutic role in disorders such as dementia and Parkinson's disease, as well as to treat stroke, brain trauma, and depression has gained increasing interest. In the transcranial PBM approach, delivering a sufficient dose to achieve optimal stimulation is challenging due to exponential attenuation of light penetration in tissue. Alternative approaches such as intracranial and intranasal light delivery methods have been suggested to overcome this limitation. This article reviews the state-of-the-art preclinical and clinical evidence regarding the efficacy of brain PBM therapy.
Collapse
|
126
|
Poiani GDCR, Zaninotto AL, Carneiro AMC, Zangaro RA, Salgado ASI, Parreira RB, de Andrade AF, Teixeira MJ, Paiva WS. Photobiomodulation using low-level laser therapy (LLLT) for patients with chronic traumatic brain injury: a randomized controlled trial study protocol. Trials 2018; 19:17. [PMID: 29310710 PMCID: PMC5759360 DOI: 10.1186/s13063-017-2414-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 12/15/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Photobiomodulation using low-level laser therapy (LLLT) has been tested as a new technique to optimize recovery of patients with traumatic brain injury (TBI). The aim of this study is to evaluate inhibitory attentional control after 18 sessions of active LLLT and compare with the placebo group (sham LLLT). Our exploratory analysis will evaluate the efficacy of the active LLLT on verbal and visuospatial episodic memory, executive functions (working memory, verbal and visuospatial fluency, attentional processes), and anxiety and depressive symptoms compared to the sham group. METHODS/DESIGN A randomized double-blinded trial will be made in 36 patients with moderate and severe TBI. The active LLLT will use an optical device composed of LEDs emitting 632 nm of radiation at the site with full potency of 830 mW. The cranial region with an area of 400 cm2 will be irradiated for 30 min, giving a total dose per session of 3.74 J/cm2. The sham LLLT group contains only an LED device with power < 1 mW, only serving to simulate the irradiation. Each patient will be irradiated three times per week for six weeks, totaling 18 sessions. Neuropsychological assessments will be held one week before the beginning of the sessions, after one week, and three months after the end of LLLT sessions. Memory domain, attention, executive functioning, and visual construction will be evaluated, in addition to symptoms of depression, anxiety, and social demographics. DISCUSSION LLLT has been demonstrated as a safe and effective technique in significantly improving the memory, attention, and mood performance in healthy and neurologic patients. We expect that our trial can complement previous finds, as an effective low-cost therapy to improve cognitive sequel after TBI. TRIAL REGISTRATION ClinicalTrials.gov, NCT02393079 . Registered on 20 February 2015.
Collapse
Affiliation(s)
- Guilherme da Cruz Ribeiro Poiani
- Division of Neurosurgery, University of Sao Paulo Medical School, Av. Dr. Arnaldo, 455 - Cerqueira César, 01246-903, Sao Paulo, SP, Brazil.
| | - Ana Luiza Zaninotto
- Division of Psychology at Hospital of Clinics, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Division of Neurosurgery, University of Sao Paulo Medical School, Av. Dr. Arnaldo, 455 - Cerqueira César, 01246-903, Sao Paulo, SP, Brazil
| | - Ana Maria Costa Carneiro
- Institute of Biomedical Engineering, Anhembi Morumbi University, Sao Jose dos Campos, Sao Paulo, Brazil
| | - Renato Amaro Zangaro
- Institute of Biomedical Engineering, Anhembi Morumbi University, Sao Jose dos Campos, Sao Paulo, Brazil.,Center for Innovation, Technology and Education - CTE, Sao Jose dos Campos, Sao Paulo, Brazil
| | | | - Rodolfo Borges Parreira
- Salgado Institute of Integral Health; School of Postural and Manual Therapy, Londrina, Parana, Brazil
| | - Almir Ferreira de Andrade
- Division of Neurosurgery, University of Sao Paulo Medical School, Av. Dr. Arnaldo, 455 - Cerqueira César, 01246-903, Sao Paulo, SP, Brazil
| | - Manoel Jacobsen Teixeira
- Division of Neurosurgery, University of Sao Paulo Medical School, Av. Dr. Arnaldo, 455 - Cerqueira César, 01246-903, Sao Paulo, SP, Brazil
| | - Wellingson Silva Paiva
- Division of Neurosurgery, University of Sao Paulo Medical School, Av. Dr. Arnaldo, 455 - Cerqueira César, 01246-903, Sao Paulo, SP, Brazil
| |
Collapse
|
127
|
Salehpour F, Farajdokht F, Erfani M, Sadigh-Eteghad S, Shotorbani SS, Hamblin MR, Karimi P, Rasta SH, Mahmoudi J. Transcranial near-infrared photobiomodulation attenuates memory impairment and hippocampal oxidative stress in sleep-deprived mice. Brain Res 2018; 1682:36-43. [PMID: 29307593 DOI: 10.1016/j.brainres.2017.12.040] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/23/2017] [Accepted: 12/29/2017] [Indexed: 12/15/2022]
Abstract
Sleep deprivation (SD) causes oxidative stress in the hippocampus and subsequent memory impairment. In this study, the effect of near-infrared (NIR) photobiomodulation (PBM) on learning and memory impairment induced by acute SD was investigated. The mice were subjected to an acute SD protocol for 72 h. Simultaneously, NIR PBM using a laser at 810 nm was delivered (once a day for 3 days) transcranially to the head to affect the entire brain of mice. The Barnes maze and the What-Where-Which task were used to assess spatial and episodic-like memories. The hippocampal levels of antioxidant enzymes and oxidative stress biomarkers were evaluated. The results showed that NIR PBM prevented cognitive impairment induced by SD. Moreover, NIR PBM therapy enhanced the antioxidant status and increased mitochondrial activity in the hippocampus of SD mice. Our findings revealed that hippocampus-related mitochondrial damage and extensive oxidative stress contribute to the occurrence of memory impairment. In contrast, NIR PBM reduced hippocampal oxidative damage, supporting the ability of 810 nm laser light to improve the antioxidant defense system and maintain mitochondrial survival. This confirms that non-invasive transcranial NIR PBM therapy ameliorates hippocampal dysfunction, which is reflected in enhanced memory function.
Collapse
Affiliation(s)
- Farzad Salehpour
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Physics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Erfani
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran; Higher Academic Education Institute of Rab-Rashid, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, United States; Department of Dermatology, Harvard Medical School, Boston, MA 02115, United States; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, United States
| | - Pouran Karimi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hossein Rasta
- Department of Medical Physics, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Bioengineering, Tabriz University of Medical Sciences, Tabriz, Iran; School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
128
|
Wang X, Reddy DD, Nalawade SS, Pal S, Gonzalez-Lima F, Liu H. Impact of heat on metabolic and hemodynamic changes in transcranial infrared laser stimulation measured by broadband near-infrared spectroscopy. NEUROPHOTONICS 2018; 5:011004. [PMID: 28948191 PMCID: PMC5603720 DOI: 10.1117/1.nph.5.1.011004] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 08/10/2017] [Indexed: 06/07/2023]
Abstract
Transcranial infrared laser stimulation (TILS) has shown effectiveness in improving human cognition and was investigated using broadband near-infrared spectroscopy (bb-NIRS) in our previous study, but the effect of laser heating on the actual bb-NIRS measurements was not investigated. To address this potential confounding factor, 11 human participants were studied. First, we measured time-dependent temperature increases on forehead skin using clinical-grade thermometers following the TILS experimental protocol used in our previous study. Second, a subject-averaged, time-dependent temperature alteration curve was obtained, based on which a heat generator was controlled to induce the same temperature increase at the same forehead location that TILS was delivered on each participant. Third, the same bb-NIRS system was employed to monitor hemodynamic and metabolic changes of forehead tissue near the thermal stimulation site before, during, and after the heat stimulation. The results showed that cytochrome-c-oxidase of forehead tissue was not significantly modified by this heat stimulation. Significant differences in oxyhemoglobin, total hemoglobin, and differential hemoglobin concentrations were observed during the heat stimulation period versus the laser stimulation. The study demonstrated a transient hemodynamic effect of heat-based stimulation distinct to that of TILS. We concluded that the observed effects of TILS on cerebral hemodynamics and metabolism are not induced by heating the skin.
Collapse
Affiliation(s)
- Xinlong Wang
- University of Texas at Arlington, Department of Bioengineering, Arlington, Texas, United States
| | - Divya D. Reddy
- University of Texas at Arlington, Department of Bioengineering, Arlington, Texas, United States
| | - Sahil S. Nalawade
- University of Texas at Arlington, Department of Bioengineering, Arlington, Texas, United States
| | - Suvra Pal
- University of Texas at Arlington, Department of Mathematics, Arlington, Texas, United States
| | - F. Gonzalez-Lima
- University of Texas at Austin, Department of Psychology and Institute for Neuroscience, Austin, Texas, United States
| | - Hanli Liu
- University of Texas at Arlington, Department of Bioengineering, Arlington, Texas, United States
| |
Collapse
|
129
|
Wang X, Tian F, Reddy DD, Nalawade SS, Barrett DW, Gonzalez-Lima F, Liu H. Up-regulation of cerebral cytochrome-c-oxidase and hemodynamics by transcranial infrared laser stimulation: A broadband near-infrared spectroscopy study. J Cereb Blood Flow Metab 2017; 37:3789-3802. [PMID: 28178891 PMCID: PMC5718323 DOI: 10.1177/0271678x17691783] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transcranial infrared laser stimulation (TILS) is a noninvasive form of brain photobiomulation. Cytochrome-c-oxidase (CCO), the terminal enzyme in the mitochondrial electron transport chain, is hypothesized to be the primary intracellular photoacceptor. We hypothesized that TILS up-regulates cerebral CCO and causes hemodynamic changes. We delivered 1064-nm laser stimulation to the forehead of healthy participants ( n = 11), while broadband near-infrared spectroscopy was utilized to acquire light reflectance from the TILS-treated cortical region before, during, and after TILS. Placebo experiments were also performed for accurate comparison. Time course of spectroscopic readings were analyzed and fitted to the modified Beer-Lambert law. With respect to the placebo readings, we observed (1) significant increases in cerebral concentrations of oxidized CCO (Δ[CCO]; >0.08 µM; p < 0.01), oxygenated hemoglobin (Δ[HbO]; >0.8 µM; p < 0.01), and total hemoglobin (Δ[HbT]; >0.5 µM; p < 0.01) during and after TILS, and (2) linear interplays between Δ[CCO] versus Δ[HbO] and between Δ[CCO] versus Δ[HbT]. Ratios of Δ[CCO]/Δ[HbO] and Δ[CCO]/Δ[HbT] were introduced as TILS-induced metabolic-hemodynamic coupling indices to quantify the coupling strength between TILS-enhanced cerebral metabolism and blood oxygen supply. This study provides the first demonstration that TILS causes up-regulation of oxidized CCO in the human brain, and contributes important insight into the physiological mechanisms.
Collapse
Affiliation(s)
- Xinlong Wang
- 1 Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA.,2 Joint Graduate Program between University of Texas at Arlington and UT Southwestern Medical Center at Dallas, University of Texas at Arlington, Arlington, TX, USA
| | - Fenghua Tian
- 1 Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA.,2 Joint Graduate Program between University of Texas at Arlington and UT Southwestern Medical Center at Dallas, University of Texas at Arlington, Arlington, TX, USA
| | - Divya D Reddy
- 1 Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA.,2 Joint Graduate Program between University of Texas at Arlington and UT Southwestern Medical Center at Dallas, University of Texas at Arlington, Arlington, TX, USA
| | - Sahil S Nalawade
- 1 Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA.,2 Joint Graduate Program between University of Texas at Arlington and UT Southwestern Medical Center at Dallas, University of Texas at Arlington, Arlington, TX, USA
| | - Douglas W Barrett
- 3 Department of Psychology and Institute for Neuroscience, the University of Texas at Austin, Austin, TX, USA
| | - Francisco Gonzalez-Lima
- 3 Department of Psychology and Institute for Neuroscience, the University of Texas at Austin, Austin, TX, USA
| | - Hanli Liu
- 1 Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA.,2 Joint Graduate Program between University of Texas at Arlington and UT Southwestern Medical Center at Dallas, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
130
|
Jiang L, Li W, Mamtilahun M, Song Y, Ma Y, Qu M, Lu Y, He X, Zheng J, Fu Z, Zhang Z, Yang GY, Wang Y. Optogenetic Inhibition of Striatal GABAergic Neuronal Activity Improves Outcomes After Ischemic Brain Injury. Stroke 2017; 48:3375-3383. [PMID: 29146880 DOI: 10.1161/strokeaha.117.019017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/12/2017] [Accepted: 10/17/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Striatal GABAergic neuron is known as a key regulator in adult neurogenesis. However, the specific role of striatal GABAergic neuronal activity in the promotion of neurological recovery after ischemic stroke remains unknown. Here, we used optogenetic approach to investigate these effects and mechanism. METHODS Laser stimulation was delivered via an implanted optical fiber to inhibit or activate the striatal GABAergic neurons in Gad2-Arch-GFP or Gad2-ChR2-tdTomato mice (n=80) 1 week after 60-minute transient middle cerebral artery occlusion. Neurological severity score, brain atrophy volume, microvessel density, and cell morphological changes were examined using immunohistochemistry. Gene expression and protein levels of related growth factors were further examined using real-time polymerase chain reaction and Western blotting. RESULTS Inhibiting striatal GABAergic neuronal activity improved functional recovery, reduced brain atrophy volume, and prohibited cell death compared with the control (P<0.05). Microvessel density and bFGF (basic fibroblast growth factor) expression in the inhibition group were also increased (P<0.05). In contrast, activation of striatal GABAergic neurons resulted in adverse effects compared with the control (P<0.05). Using cocultures of GABAergic neurons, astrocytes, and endothelial cells, we further demonstrated that the photoinhibition of GABAergic neuronal activity could upregulate bFGF expression in endothelial cells, depending on the presence of astrocytes. The conditioned medium from the aforementioned photoinhibited 3-cell coculture system protected cells from oxygen glucose deprivation injury. CONCLUSIONS After ischemic stroke, optogenetic inhibition of GABAergic neurons upregulated bFGF expression by endothelial cells and promoted neurobehavioral recovery, possibly orchestrated by astrocytes. Optogenetically inhibiting neuronal activity provides a novel approach to promote neurological recovery.
Collapse
Affiliation(s)
- Lu Jiang
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Wanlu Li
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Muyassar Mamtilahun
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Yaying Song
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Yuanyuan Ma
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Meijie Qu
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Yifan Lu
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Xiaosong He
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Jieyu Zheng
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Zongjie Fu
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Zhijun Zhang
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Guo-Yuan Yang
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.).
| | - Yongting Wang
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.).
| |
Collapse
|
131
|
Hamblin MR. Photobiomodulation for traumatic brain injury and stroke. J Neurosci Res 2017; 96:731-743. [PMID: 29131369 DOI: 10.1002/jnr.24190] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Abstract
There is a notable lack of therapeutic alternatives for what is fast becoming a global epidemic of traumatic brain injury (TBI). Photobiomodulation (PBM) employs red or near-infrared (NIR) light (600-1100nm) to stimulate healing, protect tissue from dying, increase mitochondrial function, improve blood flow, and tissue oxygenation. PBM can also act to reduce swelling, increase antioxidants, decrease inflammation, protect against apoptosis, and modulate microglial activation state. All these mechanisms of action strongly suggest that PBM delivered to the head should be beneficial in cases of both acute and chronic TBI. Most reports have used NIR light either from lasers or from light-emitting diodes (LEDs). Many studies in small animal models of acute TBI have found positive effects on neurological function, learning and memory, and reduced inflammation and cell death in the brain. There is evidence that PBM can help the brain repair itself by stimulating neurogenesis, upregulating BDNF synthesis, and encouraging synaptogenesis. In healthy human volunteers (including students and healthy elderly women), PBM has been shown to increase regional cerebral blood flow, tissue oxygenation, and improve memory, mood, and cognitive function. Clinical studies have been conducted in patients suffering from the chronic effects of TBI. There have been reports showing improvement in executive function, working memory, and sleep. Functional magnetic resonance imaging has shown modulation of activation in intrinsic brain networks likely to be damaged in TBI (default mode network and salience network).
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA.,Department of Dermatology, Harvard Medical School, Boston, MA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| |
Collapse
|
132
|
Xu Y, Lin Y, Gao S, Shen J. Study on mechanism of release oxygen by photo-excited hemoglobin in low-level laser therapy. Lasers Med Sci 2017; 33:135-139. [DOI: 10.1007/s10103-017-2363-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 10/15/2017] [Indexed: 12/20/2022]
|
133
|
Moro C, Torres N, Arvanitakis K, Cullen K, Chabrol C, Agay D, Darlot F, Benabid AL, Mitrofanis J. No evidence for toxicity after long-term photobiomodulation in normal non-human primates. Exp Brain Res 2017; 235:3081-3092. [PMID: 28744621 DOI: 10.1007/s00221-017-5048-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/24/2017] [Indexed: 11/28/2022]
Abstract
In this study, we explored the effects of a longer term application, up to 12 weeks, of photobiomodulation in normal, naïve macaque monkeys. Monkeys (n = 5) were implanted intracranially with an optical fibre device delivering photobiomodulation (red light, 670 nm) to a midline midbrain region. Animals were then aldehyde-fixed and their brains were processed for immunohistochemistry. In general, our results showed that longer term intracranial application of photobiomodulation had no adverse effects on the surrounding brain parenchyma or on the nearby dopaminergic cell system. We found no evidence for photobiomodulation generating an inflammatory glial response or neuronal degeneration near the implant site; further, photobiomodulation did not induce an abnormal activation or mitochondrial stress in nearby cells, nor did it cause an abnormal arrangement of the surrounding vasculature (endothelial basement membrane). Finally, because of our interest in Parkinson's disease, we noted that photobiomodulation had no impact on the number of midbrain dopaminergic cells and the density of their terminations in the striatum. In summary, we found no histological basis for any major biosafety concerns associated with photobiomodulation delivered by our intracranial approach and our findings set a key template for progress onto clinical trial on patients with Parkinson's disease.
Collapse
Affiliation(s)
- Cécile Moro
- University of Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000, Grenoble, France
| | - Napoleon Torres
- University of Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000, Grenoble, France
| | | | - Karen Cullen
- Department of Anatomy F13, University of Sydney, Camperdown, 2006, Australia
| | - Claude Chabrol
- University of Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000, Grenoble, France
| | - Diane Agay
- University of Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000, Grenoble, France
| | - Fannie Darlot
- University of Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000, Grenoble, France
| | - Alim-Louis Benabid
- University of Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000, Grenoble, France
| | - John Mitrofanis
- Department of Anatomy F13, University of Sydney, Camperdown, 2006, Australia.
| |
Collapse
|
134
|
Salehpour F, Ahmadian N, Rasta SH, Farhoudi M, Karimi P, Sadigh-Eteghad S. Transcranial low-level laser therapy improves brain mitochondrial function and cognitive impairment in D-galactose-induced aging mice. Neurobiol Aging 2017; 58:140-150. [PMID: 28735143 DOI: 10.1016/j.neurobiolaging.2017.06.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 05/11/2017] [Accepted: 06/29/2017] [Indexed: 12/11/2022]
Abstract
Mitochondrial function plays a key role in the aging-related cognitive impairment, and photoneuromodulation of mitochondria by transcranial low-level laser therapy (LLLT) may contribute to its improvement. This study focused on the transcranial LLLT effects on the D-galactose (DG)-induced mitochondrial dysfunction, apoptosis, and cognitive impairment in mice. For this purpose, red and near-infrared (NIR) laser wavelengths (660 and 810 nm) at 2 different fluencies (4 and 8 J/cm2) at 10-Hz pulsed wave mode were administrated transcranially 3 d/wk in DG-received (500 mg/kg/subcutaneous) mice model of aging for 6 weeks. Spatial and episodic-like memories were assessed by the Barnes maze and What-Where-Which (WWWhich) tasks. Brain tissues were analyzed for mitochondrial function including active mitochondria, adenosine triphosphate, and reactive oxygen species levels, as well as membrane potential and cytochrome c oxidase activity. Apoptosis-related biomarkers, namely, Bax, Bcl-2, and caspase-3 were evaluated by Western blotting method. Laser treatments at wavelengths of 660 and 810 nm at 8 J/cm2 attenuated DG-impaired spatial and episodic-like memories. Also, results showed an obvious improvement in the mitochondrial function aspects and modulatory effects on apoptotic markers in aged mice. However, same wavelengths at the fluency of 4 J/cm2 had poor effect on the behavioral and molecular indexes in aging model. This data indicates that transcranial LLLT at both of red and NIR wavelengths at the fluency of 8 J/cm2 has a potential to ameliorate aging-induced mitochondrial dysfunction, apoptosis, and cognitive impairment.
Collapse
Affiliation(s)
- Farzad Salehpour
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Physics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahid Ahmadian
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hossein Rasta
- Department of Medical Physics, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Bioengineering, Tabriz University of Medical Sciences, Tabriz, Iran; School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
135
|
The potential of transcranial photobiomodulation therapy for treatment of major depressive disorder. Rev Neurosci 2017; 28:441-453. [DOI: 10.1515/revneuro-2016-0087] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 01/10/2017] [Indexed: 11/15/2022]
Abstract
AbstractMajor depressive disorder is a common debilitating mood disorder that affects quality of life. Prefrontal cortex abnormalities, an imbalance in neurotransmitters, neuroinflammation, and mitochondrial dysfunction are the major factors in the etiology of major depressive disorder. Despite the efficacy of pharmacotherapy in the treatment of major depressive disorder, 30%–40% of patients do not respond to antidepressants. Given this, exploring the alternative therapies for treatment or prevention of major depressive disorder has aroused interest among scientists. Transcranial photobiomodulation therapy is the use of low-power lasers and light-emitting diodes in the far-red to near-infrared optical region for stimulation of neuronal activities. This non-invasive modality improves the metabolic capacity of neurons due to more oxygen consumption and ATP production. Beneficial effects of transcranial photobiomodulation therapy in the wide range of neurological and psychological disorders have been already shown. In this review, we focus on some issue relating to the application of photobiomodulation therapy for major depressive disorder. There is some evidence that transcranial photobiomodulation therapy using near-infrared light on 10-Hz pulsed mode appears to be a hopeful technique for treatment of major depressive disorder. However, further studies are necessary to find the safety of this method and to determine its effective treatment protocol.
Collapse
|
136
|
Beneficial neurocognitive effects of transcranial laser in older adults. Lasers Med Sci 2017; 32:1153-1162. [PMID: 28466195 DOI: 10.1007/s10103-017-2221-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
Abstract
Transcranial infrared laser stimulation (TILS) at 1064 nm, 250 mW/cm2 has been proven safe and effective for increasing neurocognitive functions in young adults in controlled studies using photobiomodulation of the right prefrontal cortex. The objective of this pilot study was to determine whether there is any effect from TILS on neurocognitive function in older adults with subjective memory complaint at risk for cognitive decline (e.g., increased carotid artery intima-media thickness or mild traumatic brain injury). We investigated the cognitive effects of TILS in older adults (ages 49-90, n = 12) using prefrontal cortex measures of attention (psychomotor vigilance task (PVT)) and memory (delayed match to sample (DMS)), carotid artery intima-media thickness (measured by ultrasound), and evaluated the potential neural mechanisms mediating the cognitive effects of TILS using exploratory brain studies of electroencephalography (EEG, n = 6) and functional magnetic resonance imaging (fMRI, n = 6). Cognitive performance, age, and carotid artery intima-media thickness were highly correlated, but all participants improved in all cognitive measures after TILS treatments. Baseline vs. chronic (five weekly sessions, 8 min each) comparisons of mean cognitive scores all showed improvements, significant for PVT reaction time (p < 0.001), PVT lapses (p < 0.001), and DMS correct responses (p < 0.05). The neural studies also showed for the first time that TILS increases resting-state EEG alpha, beta, and gamma power and promotes more efficient prefrontal blood-oxygen-level-dependent (BOLD)-fMRI response. Importantly, no adverse effects were found. These preliminary findings support the use of TILS for larger randomized clinical trials with this non-invasive approach to augment neurocognitive function in older people to combat aging-related and vascular disease-related cognitive decline.
Collapse
|
137
|
Transcranial infrared laser stimulation improves rule-based, but not information-integration, category learning in humans. Neurobiol Learn Mem 2017; 139:69-75. [DOI: 10.1016/j.nlm.2016.12.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 12/13/2016] [Accepted: 12/24/2016] [Indexed: 12/13/2022]
|
138
|
Beneficial Effects of Transcranial Light Emitting Diode (LED) Therapy on Attentional Performance: An Experimental Design. IRANIAN RED CRESCENT MEDICAL JOURNAL 2017. [DOI: 10.5812/ircmj.44513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
139
|
de la Torre JC. Treating cognitive impairment with transcranial low level laser therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 168:149-155. [PMID: 28219828 DOI: 10.1016/j.jphotobiol.2017.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 01/10/2017] [Accepted: 02/11/2017] [Indexed: 10/20/2022]
Abstract
This report examines the potential of low level laser therapy (LLLT) to alter brain cell function and neurometabolic pathways using red or near infrared (NIR) wavelengths transcranially for the prevention and treatment of cognitive impairment. Although laser therapy on human tissue has been used for a number of medical conditions since the late 1960s, it is only recently that several clinical studies have shown its value in raising neurometabolic energy levels that can improve cerebral hemodynamics and cognitive abilities in humans. The rationale for this approach, as indicated in this report, is supported by growing evidence that neurodegenerative damage and cognitive impairment during advanced aging is accelerated or triggered by a neuronal energy crisis generated by brain hypoperfusion. We have previously proposed that chronic brain hypoperfusion in the elderly can worsen in the presence of one or more vascular risk factors, including hypertension, cardiac disease, atherosclerosis and diabetes type 2. Although many unanswered questions remain, boosting neurometabolic activity through non-invasive transcranial laser biostimulation of neuronal mitochondria may be a valuable tool in preventing or delaying age-related cognitive decline that can lead to dementia, including its two major subtypes, Alzheimer's and vascular dementia. The technology to achieve significant improvement of cognitive dysfunction using LLLT or variations of this technique is moving fast and may signal a new chapter in the treatment and prevention of neurocognitive disorders.
Collapse
Affiliation(s)
- Jack C de la Torre
- Department of Psychology, University of Texas at Austin, 1 University Station, Austin, TX 78712-0187, United States.
| |
Collapse
|
140
|
Giordano J, Bikson M, Kappenman ES, Clark VP, Coslett HB, Hamblin MR, Hamilton R, Jankord R, Kozumbo WJ, McKinley RA, Nitsche MA, Reilly JP, Richardson J, Wurzman R, Calabrese E. Mechanisms and Effects of Transcranial Direct Current Stimulation. Dose Response 2017; 15:1559325816685467. [PMID: 28210202 PMCID: PMC5302097 DOI: 10.1177/1559325816685467] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The US Air Force Office of Scientific Research convened a meeting of researchers in the fields of neuroscience, psychology, engineering, and medicine to discuss most pressing issues facing ongoing research in the field of transcranial direct current stimulation (tDCS) and related techniques. In this study, we present opinions prepared by participants of the meeting, focusing on the most promising areas of research, immediate and future goals for the field, and the potential for hormesis theory to inform tDCS research. Scientific, medical, and ethical considerations support the ongoing testing of tDCS in healthy and clinical populations, provided best protocols are used to maximize safety. Notwithstanding the need for ongoing research, promising applications include enhancing vigilance/attention in healthy volunteers, which can accelerate training and support learning. Commonly, tDCS is used as an adjunct to training/rehabilitation tasks with the goal of leftward shift in the learning/treatment effect curves. Although trials are encouraging, elucidating the basic mechanisms of tDCS will accelerate validation and adoption. To this end, biomarkers (eg, clinical neuroimaging and findings from animal models) can support hypotheses linking neurobiological mechanisms and behavioral effects. Dosage can be optimized using computational models of current flow and understanding dose–response. Both biomarkers and dosimetry should guide individualized interventions with the goal of reducing variability. Insights from other applied energy domains, including ionizing radiation, transcranial magnetic stimulation, and low-level laser (light) therapy, can be prudently leveraged.
Collapse
Affiliation(s)
- James Giordano
- Department of Neurology and Biochemistry, Neuroethics Studies Program, Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, USA
| | - Marom Bikson
- Biomedical Engineering, City College of New York, CUNY, New York, NY, USA
| | - Emily S Kappenman
- San Diego State University, Department of Psychology, San Diego, CA, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - H Branch Coslett
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital and Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Roy Hamilton
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan Jankord
- United States Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, USA
| | | | - R Andrew McKinley
- United States Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, USA
| | - Michael A Nitsche
- Department Psychology and Neurosciences, Leibniz Research Center for Working Environmental and Human Factors, Dortmund, Germany
| | | | - Jessica Richardson
- Department of Speech and Hearing Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Rachel Wurzman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward Calabrese
- Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
141
|
Mintzopoulos D, Gillis TE, Tedford CE, Kaufman MJ. Effects of Near-Infrared Light on Cerebral Bioenergetics Measured with Phosphorus Magnetic Resonance Spectroscopy. Photomed Laser Surg 2017; 35:395-400. [PMID: 28186868 DOI: 10.1089/pho.2016.4238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Cerebral photobiomodulation (PBM) improves mood and cognition. Cerebral metabolic enhancement is a mechanism proposed to underlie PBM effects. No PBM studies to date have applied phosphorus magnetic resonance spectroscopy (31P MRS), which can be used to assess metabolic intermediates such as phosphocreatine (PCr) and adenosine triphosphate, the latter of which is elevated by PBM. Accordingly, we used 9.4 Tesla 31P MRS to characterize effects of single and repeat cerebral PBM treatments on metabolism. PBM was delivered to healthy adult beagles in the form of transcranial laser treatment (TLT) at a wavelength of 808 nm, which passes safely through the skull and activates cytochrome C oxidase, a mitochondrial respiratory chain enzyme. METHODS Isoflurane-anesthetized subjects (n = 4) underwent a baseline 31P MRS scan followed by TLT applied sequentially for 2 min each to anterior and posterior cranium midline locations, to irradiate the dorsal cortex. Subjects then underwent 31P MRS scans for 2 h to assess acute TLT effects. After 2 weeks of repeat TLT (3 times/week), subjects were scanned again with 31P MRS to characterize effects of repeat TLT. RESULTS TLT did not induce acute 31P MRS changes over the course of 2 h in either scan session. However, after repeat TLT, the baseline PCr/β-nucleoside triphosphate ratio was higher than the scan 1 baseline (p < 0.0001), an effect attributable to increased PCr level (p < 0.0001). CONCLUSIONS Our findings are consistent with reports that bioenergetic effects of PBM can take several hours to evolve. Thus, in vivo 31P MRS may be useful for characterizing bioenergetic effects of PBM in brain and other tissues.
Collapse
Affiliation(s)
| | - Timothy E Gillis
- 1 McLean Imaging Center , McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | | | - Marc J Kaufman
- 1 McLean Imaging Center , McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| |
Collapse
|
142
|
Abstract
Transcranial photobiomodulation (PBM) also known as low level laser therapy (tLLLT) relies on the use of red/NIR light to stimulate, preserve and regenerate cells and tissues. The mechanism of action involves photon absorption in the mitochondria (cytochrome c oxidase), and ion channels in cells leading to activation of signaling pathways, up-regulation of transcription factors, and increased expression of protective genes. We have studied PBM for treating traumatic brain injury (TBI) in mice using a NIR laser spot delivered to the head. Mice had improved memory and learning, increased neuroprogenitor cells in the dentate gyrus and subventricular zone, increased BDNF and more synaptogenesis in the cortex. These highly beneficial effects on the brain suggest that the applications of tLLLT are much broader than at first conceived. Other groups have studied stroke (animal models and clinical trials), Alzheimer's disease, Parkinson's disease, depression, and cognitive enhancement in healthy subjects.
Collapse
Affiliation(s)
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
143
|
Shining light on the head: Photobiomodulation for brain disorders. BBA CLINICAL 2016; 6:113-124. [PMID: 27752476 PMCID: PMC5066074 DOI: 10.1016/j.bbacli.2016.09.002] [Citation(s) in RCA: 324] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/21/2022]
Abstract
Photobiomodulation (PBM) describes the use of red or near-infrared light to stimulate, heal, regenerate, and protect tissue that has either been injured, is degenerating, or else is at risk of dying. One of the organ systems of the human body that is most necessary to life, and whose optimum functioning is most worried about by humankind in general, is the brain. The brain suffers from many different disorders that can be classified into three broad groupings: traumatic events (stroke, traumatic brain injury, and global ischemia), degenerative diseases (dementia, Alzheimer's and Parkinson's), and psychiatric disorders (depression, anxiety, post traumatic stress disorder). There is some evidence that all these seemingly diverse conditions can be beneficially affected by applying light to the head. There is even the possibility that PBM could be used for cognitive enhancement in normal healthy people. In this transcranial PBM (tPBM) application, near-infrared (NIR) light is often applied to the forehead because of the better penetration (no hair, longer wavelength). Some workers have used lasers, but recently the introduction of inexpensive light emitting diode (LED) arrays has allowed the development of light emitting helmets or "brain caps". This review will cover the mechanisms of action of photobiomodulation to the brain, and summarize some of the key pre-clinical studies and clinical trials that have been undertaken for diverse brain disorders.
Collapse
|
144
|
Interplay between up-regulation of cytochrome-c-oxidase and hemoglobin oxygenation induced by near-infrared laser. Sci Rep 2016; 6:30540. [PMID: 27484673 PMCID: PMC4971496 DOI: 10.1038/srep30540] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/06/2016] [Indexed: 01/11/2023] Open
Abstract
Photobiomodulation, also known as low-level laser/light therapy (LLLT), refers to the use of red-to-near-infrared light to stimulate cellular functions for physiological or clinical benefits. The mechanism of LLLT is assumed to rely on photon absorption by cytochrome c oxidase (CCO), the terminal enzyme in the mitochondrial respiratory chain that catalyzes the reduction of oxygen for energy metabolism. In this study, we used broadband near-infrared spectroscopy (NIRS) to measure the LLLT-induced changes in CCO and hemoglobin concentrations in human forearms in vivo. Eleven healthy participants were administered with 1064-nm laser and placebo treatments on their right forearms. The spectroscopic data were analyzed and fitted with wavelength-dependent, modified Beer-Lambert Law. We found that LLLT induced significant increases of CCO concentration (Δ[CCO]) and oxygenated hemoglobin concentration (Δ[HbO]) on the treated site as the laser energy dose accumulated over time. A strong linear interplay between Δ[CCO] and Δ[HbO] was observed for the first time during LLLT, indicating a hemodynamic response of oxygen supply and blood volume closely coupled to the up-regulation of CCO induced by photobiomodulation. These results demonstrate the tremendous potential of broadband NIRS as a non-invasive, in vivo means to study mechanisms of photobiomodulation and perform treatment evaluations of LLLT.
Collapse
|
145
|
Sagar V, Atluri VSR, Tomitaka A, Shah P, Nagasetti A, Pilakka-Kanthikeel S, El-Hage N, McGoron A, Takemura Y, Nair M. Coupling of transient near infrared photonic with magnetic nanoparticle for potential dissipation-free biomedical application in brain. Sci Rep 2016; 6:29792. [PMID: 27465276 PMCID: PMC4964614 DOI: 10.1038/srep29792] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/21/2016] [Indexed: 01/05/2023] Open
Abstract
Combined treatment strategies based on magnetic nanoparticles (MNPs) with near infrared ray (NIR) biophotonic possess tremendous potential for non-invasive therapeutic approach. Nonetheless, investigations in this direction have been limited to peripheral body region and little is known about the potential biomedical application of this approach for brain. Here we report that transient NIR exposure is dissipation-free and has no adverse effect on the viability and plasticity of major brain cells in the presence or absence superparamagnetic nanoparticles. The 808 nm NIR laser module with thermocouple was employed for functional studies upon NIR exposure to brain cells. Magnetic nanoparticles were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic laser scattering (DLS), and vibrating sample magnetometer (VSM). Brain cells viability and plasticity were analyzed using electric cell-substrate impedance sensing system, cytotoxicity evaluation, and confocal microscopy. When efficacious non-invasive photobiomodulation and neuro-therapeutical targeting and monitoring to brain remain a formidable task, the discovery of this dissipation-free, transient NIR photonic approach for brain cells possesses remarkable potential to add new dimension.
Collapse
Affiliation(s)
- Vidya Sagar
- Center for Personalized Nanomedicine/Institute of Neuroimmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA
| | - V. S. R. Atluri
- Center for Personalized Nanomedicine/Institute of Neuroimmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA
| | - A. Tomitaka
- Center for Personalized Nanomedicine/Institute of Neuroimmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA
| | - P. Shah
- Department of Biomedical engineering, College of Engineering and Computing, Florida International University, Miami, 33174 Florida, USA
| | - A. Nagasetti
- Department of Biomedical engineering, College of Engineering and Computing, Florida International University, Miami, 33174 Florida, USA
| | - S. Pilakka-Kanthikeel
- Center for Personalized Nanomedicine/Institute of Neuroimmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA
| | - N. El-Hage
- Center for Personalized Nanomedicine/Institute of Neuroimmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA
| | - A. McGoron
- Department of Biomedical engineering, College of Engineering and Computing, Florida International University, Miami, 33174 Florida, USA
| | - Y. Takemura
- Department of Electrical and Computer Engineering, Yokohama National University, Yokohama 240-8501, Japan
| | - M. Nair
- Center for Personalized Nanomedicine/Institute of Neuroimmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA
| |
Collapse
|
146
|
Lee JH, Chang SY, Moy WJ, Oh C, Kim SH, Rhee CK, Ahn JC, Chung PS, Jung JY, Lee MY. Simultaneous bilateral laser therapy accelerates recovery after noise-induced hearing loss in a rat model. PeerJ 2016; 4:e2252. [PMID: 27547558 PMCID: PMC4963219 DOI: 10.7717/peerj.2252] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/23/2016] [Indexed: 11/22/2022] Open
Abstract
Noise-induced hearing loss is a common type of hearing loss. The effects of laser therapy have been investigated from various perspectives, including in wound healing, inflammation reduction, and nerve regeneration, as well as in hearing research. A promising feature of the laser is its capability to penetrate soft tissue; depending on the wavelength, laser energy can penetrate into the deepest part of the body without damaging non-target soft tissues. Based on this idea, we developed bilateral transtympanic laser therapy, which uses simultaneous laser irradiation in both ears, and evaluated the effects of bilateral laser therapy on cochlear damage caused by noise overexposure. Thus, the purpose of this research was to assess the benefits of simultaneous bilateral laser therapy compared with unilateral laser therapy and a control. Eighteen Sprague-Dawley rats were exposed to narrow-band noise at 115 dB SPL for 6 h. Multiple auditory brainstem responses were measured after each laser irradiation, and cochlear hair cells were counted after the 15th such irradiation. The penetration depth of the 808 nm laser was also measured after sacrifice. Approximately 5% of the laser energy reached the contralateral cochlea. Both bilateral and unilateral laser therapy decreased the hearing threshold after noise overstimulation in the rat model. The bilateral laser therapy group showed faster functional recovery at all tested frequencies compared with the unilateral laser therapy group. However, there was no difference in the endpoint ABR results or final hair cell survival, which was analyzed histologically.
Collapse
Affiliation(s)
- Jae-Hun Lee
- College of Medicine, Dankook University, Beckman Laser Institute Korea , Cheonan , South Korea
| | - So-Young Chang
- College of Medicine, Dankook University, Beckman Laser Institute Korea , Cheonan , South Korea
| | - Wesley J Moy
- Beckman Laser Institute and Medical Clinic, University of California , Irvine , CA , United States
| | - Connie Oh
- Beckman Laser Institute and Medical Clinic, University of California , Irvine , CA , United States
| | - Se-Hyung Kim
- Department of Otolaryngology-Head and Neck Surgery, Jeju National University School of Medicine , Jeju , South Korea
| | - Chung-Ku Rhee
- Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University , Cheonan , South Korea
| | - Jin-Chul Ahn
- Department of Biomedical Science, College of Medicine, Dankook University , Cheonan , South Korea
| | - Phil-Sang Chung
- College of Medicine, Dankook University, Beckman Laser Institute Korea, Cheonan, South Korea; Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan, South Korea
| | - Jae Yun Jung
- College of Medicine, Dankook University, Beckman Laser Institute Korea, Cheonan, South Korea; Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan, South Korea
| | - Min Young Lee
- Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University , Cheonan , South Korea
| |
Collapse
|
147
|
Mohammed HS. Transcranial low-level infrared laser irradiation ameliorates depression induced by reserpine in rats. Lasers Med Sci 2016; 31:1651-1656. [DOI: 10.1007/s10103-016-2033-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 07/13/2016] [Indexed: 11/28/2022]
|
148
|
Salehpour F, Rasta SH, Mohaddes G, Sadigh-Eteghad S, Salarirad S. Therapeutic effects of 10-HzPulsed wave lasers in rat depression model: A comparison between near-infrared and red wavelengths. Lasers Surg Med 2016; 48:695-705. [DOI: 10.1002/lsm.22542] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Farzad Salehpour
- Neurosciences Research Center (NSRC); Tabriz University of Medical Sciences; Tabriz 51666 Iran
- Department of Medical Physics; Tabriz University of Medical Sciences; Tabriz 51666 Iran
| | - Seyed Hossein Rasta
- Neurosciences Research Center (NSRC); Tabriz University of Medical Sciences; Tabriz 51666 Iran
- Department of Medical Bioengineering; Tabriz University of Medical Sciences; Tabriz 51666 Iran
- Department of Medical Physics; Tabriz University of Medical Sciences; Tabriz 51666 Iran
- School of Medical Sciences; University of Aberdeen; Aberdeen AB24 5DT United Kingdom
| | - Gisou Mohaddes
- Neurosciences Research Center (NSRC); Tabriz University of Medical Sciences; Tabriz 51666 Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC); Tabriz University of Medical Sciences; Tabriz 51666 Iran
| | - Sima Salarirad
- School of Medical Sciences; University of Aberdeen; Aberdeen AB24 5DT United Kingdom
- Department of Psychiatry; Tabriz University of Medical Sciences; Tabriz 51666 Iran
| |
Collapse
|
149
|
Cassano P, Petrie SR, Hamblin MR, Henderson TA, Iosifescu DV. Review of transcranial photobiomodulation for major depressive disorder: targeting brain metabolism, inflammation, oxidative stress, and neurogenesis. NEUROPHOTONICS 2016; 3:031404. [PMID: 26989758 PMCID: PMC4777909 DOI: 10.1117/1.nph.3.3.031404] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/02/2016] [Indexed: 05/02/2023]
Abstract
We examined the use of near-infrared and red radiation (photobiomodulation, PBM) for treating major depressive disorder (MDD). While still experimental, preliminary data on the use of PBM for brain disorders are promising. PBM is low-cost with potential for wide dissemination; further research on PBM is sorely needed. We found clinical and preclinical studies via PubMed search (2015), using the following keywords: "near-infrared radiation," "NIR," "low-level light therapy," "low-level laser therapy," or "LLLT" plus "depression." We chose clinically focused studies and excluded studies involving near-infrared spectroscopy. In addition, we used PubMed to find articles that examine the link between PBM and relevant biological processes including metabolism, inflammation, oxidative stress, and neurogenesis. Studies suggest the processes aforementioned are potentially effective targets for PBM to treat depression. There is also clinical preliminary evidence suggesting the efficacy of PBM in treating MDD, and comorbid anxiety disorders, suicidal ideation, and traumatic brain injury. Based on the data collected to date, PBM appears to be a promising treatment for depression that is safe and well-tolerated. However, large randomized controlled trials are still needed to establish the safety and effectiveness of this new treatment for MDD.
Collapse
Affiliation(s)
- Paolo Cassano
- Massachusetts General Hospital, Depression Clinical and Research Program, One Bowdoin Square, 6th Floor, Boston, Massachusetts 02114, United States
- Harvard Medical School, Department of Psychiatry, 401 Park Drive, Boston, Massachusetts 02215, United States
- Address all correspondence to: Paolo Cassano, E-mail:
| | - Samuel R. Petrie
- Massachusetts General Hospital, Depression Clinical and Research Program, One Bowdoin Square, 6th Floor, Boston, Massachusetts 02114, United States
| | - Michael R. Hamblin
- Massachusetts General Hospital, Wellman Center for Photomedicine, 50 Blossom Street, Boston, Massachusetts 02114, United States
- Harvard Medical School, Department of Dermatology, 55 Fruit Street, Boston, Massachusetts 02114, United States
- Harvard-MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Theodore A. Henderson
- Synaptic Space, 3979 East Arapahoe Road, Littleton, Colorado 80122, United States
- Neuro-Laser Foundation, Suite 420, 215 South Wadsworth, Lakewood, Colorado 80226, United States
| | - Dan V. Iosifescu
- Mount Sinai Medical School, Mood and Anxiety Disorders Program, 1428 Madison Avenue, New York, New York 10029, United States
- Mount Sinai Medical School, Department of Psychiatry and Neuroscience, 1 Gustave L. Levy Place, New York, New York 10029, United States
| |
Collapse
|
150
|
Hwang J, Castelli DM, Gonzalez-Lima F. Cognitive enhancement by transcranial laser stimulation and acute aerobic exercise. Lasers Med Sci 2016; 31:1151-60. [DOI: 10.1007/s10103-016-1962-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 05/09/2016] [Indexed: 12/28/2022]
|