101
|
Zhao Y, Chen Y, Jin M, Wang J. The crosstalk between m 6A RNA methylation and other epigenetic regulators: a novel perspective in epigenetic remodeling. Am J Cancer Res 2021; 11:4549-4566. [PMID: 33754077 PMCID: PMC7977459 DOI: 10.7150/thno.54967] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/07/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetic regulation involves a range of sophisticated processes which contribute to heritable alterations in gene expression without altering DNA sequence. Regulatory events predominantly include DNA methylation, chromatin remodeling, histone modifications, non-coding RNAs (ncRNAs), and RNA modification. As the most prevalent RNA modification in eukaryotic cells, N6-methyladenosine (m6A) RNA methylation actively participates in the modulation of RNA metabolism. Notably, accumulating evidence has revealed complicated interrelations occurring between m6A and other well-known epigenetic modifications. Their crosstalk conspicuously triggers epigenetic remodeling, further yielding profound impacts on a variety of physiological and pathological processes, especially tumorigenesis. Herein, we provide an up-to-date review of this emerging hot area of biological research, summarizing the interplay between m6A RNA methylation and other epigenetic regulators, and highlighting their underlying functions in epigenetic reprogramming.
Collapse
|
102
|
Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C, Chen Y. The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther 2021; 6:74. [PMID: 33611339 PMCID: PMC7897327 DOI: 10.1038/s41392-020-00450-x] [Citation(s) in RCA: 1166] [Impact Index Per Article: 291.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/09/2020] [Indexed: 01/31/2023] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent, abundant and conserved internal cotranscriptional modification in eukaryotic RNAs, especially within higher eukaryotic cells. m6A modification is modified by the m6A methyltransferases, or writers, such as METTL3/14/16, RBM15/15B, ZC3H3, VIRMA, CBLL1, WTAP, and KIAA1429, and, removed by the demethylases, or erasers, including FTO and ALKBH5. It is recognized by m6A-binding proteins YTHDF1/2/3, YTHDC1/2 IGF2BP1/2/3 and HNRNPA2B1, also known as "readers". Recent studies have shown that m6A RNA modification plays essential role in both physiological and pathological conditions, especially in the initiation and progression of different types of human cancers. In this review, we discuss how m6A RNA methylation influences both the physiological and pathological progressions of hematopoietic, central nervous and reproductive systems. We will mainly focus on recent progress in identifying the biological functions and the underlying molecular mechanisms of m6A RNA methylation, its regulators and downstream target genes, during cancer progression in above systems. We propose that m6A RNA methylation process offer potential targets for cancer therapy in the future.
Collapse
Affiliation(s)
- Xiulin Jiang
- grid.419010.d0000 0004 1792 7072Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, 650223 Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Baiyang Liu
- grid.419010.d0000 0004 1792 7072Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, 650223 Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Zhi Nie
- grid.419010.d0000 0004 1792 7072Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, 650223 Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, China ,grid.285847.40000 0000 9588 0960Kunming Medical University, 650500 Kunming, China
| | - Lincan Duan
- grid.285847.40000 0000 9588 0960Kunming Medical University, 650500 Kunming, China
| | - Qiuxia Xiong
- grid.285847.40000 0000 9588 0960Kunming Medical University, 650500 Kunming, China
| | - Zhixian Jin
- grid.285847.40000 0000 9588 0960Kunming Medical University, 650500 Kunming, China
| | - Cuiping Yang
- grid.419010.d0000 0004 1792 7072Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, 650223 Kunming, Yunnan China
| | - Yongbin Chen
- grid.419010.d0000 0004 1792 7072Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, 650223 Kunming, Yunnan China ,grid.9227.e0000000119573309Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223 Kunming, Yunnan China
| |
Collapse
|
103
|
Sun Z, Wang H, Wang Y, Yuan G, Yu X, Jiang H, Wu Q, Yang B, Hu Z, Shi F, Cao X, Zhang S, Guo T, Zhao J. MiR-103-3p targets the m 6 A methyltransferase METTL14 to inhibit osteoblastic bone formation. Aging Cell 2021; 20:e13298. [PMID: 33440070 PMCID: PMC7884043 DOI: 10.1111/acel.13298] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/09/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Impaired osteoblast function is involved in osteoporosis, and microRNA (miRNA) dysregulation may cause abnormal osteoblast osteogenic activity. However, the influence of miRNA on osteoblast activity and the underlying mechanisms remain elusive. In this study, miR‐103‐3p was found to be negatively correlated with bone formation in bone specimens from elderly women with fractures and ovariectomized (OVX) mice. Additionally, miR‐103‐3p directly targeted Mettl14 to inhibit osteoblast activity, and METTL14‐dependent N6‐methyladenosine (m6A) methylation inhibited miR‐103‐3p processing by the microprocessor protein DGCR8 and promoted osteoblast activity. Moreover, miR‐103‐3p inhibited bone formation in vivo, and therapeutic inhibition of miR‐103‐3p counteracted the decreased bone formation in OVX mice. Further, METTL14 was negatively correlated with miR‐103‐3p but positively correlated with bone formation in bone specimens from elderly women with fractures and OVX mice. Collectively, our results highlight the critical roles of the miR‐103‐3p/METTL14/m6A signaling axis in osteoblast activity, identifying this axis as a potential target for ameliorating osteoporosis.
Collapse
Affiliation(s)
- Zhongyang Sun
- Department of Orthopedics, Affiliated Jinling Hospital Medical School of Nanjing University Nanjing China
- Department of Orthopedics, Air Force Hospital of Eastern Theater Anhui Medical University Nanjing China
| | - Han Wang
- Department of Orthopedics Air Force Medical Center Beijing China
| | - Yuxiang Wang
- Department of Orthopedics, Affiliated Jinling Hospital Medical School of Nanjing University Nanjing China
| | - Guodong Yuan
- Medical School of Southeast University Nanjing China
| | - Xin Yu
- Department of Orthopedics, Affiliated Jinling Hospital Medical School of Nanjing University Nanjing China
| | - Hui Jiang
- Department of Orthopedics, Affiliated Jinling Hospital Medical School of Nanjing University Nanjing China
| | - Qi Wu
- Department of Orthopedics, Affiliated Jinling Hospital Medical School of Nanjing University Nanjing China
| | - Binkui Yang
- Hangzhou Special Sanatorium Center of the PLA Air Force Nanjing China
| | - Zebing Hu
- The Key Laboratory of Aerospace Medicine, Ministry of Education Air Force Medical University Xi'an China
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education Air Force Medical University Xi'an China
| | - Xinsheng Cao
- The Key Laboratory of Aerospace Medicine, Ministry of Education Air Force Medical University Xi'an China
| | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education Air Force Medical University Xi'an China
| | - Ting Guo
- Department of Orthopedics, Affiliated Jinling Hospital Medical School of Nanjing University Nanjing China
| | - Jianning Zhao
- Department of Orthopedics, Affiliated Jinling Hospital Medical School of Nanjing University Nanjing China
| |
Collapse
|
104
|
Gu J, Zhan Y, Zhuo L, Zhang Q, Li G, Li Q, Qi S, Zhu J, Lv Q, Shen Y, Guo Y, Liu S, Xie T, Sui X. Biological functions of m 6A methyltransferases. Cell Biosci 2021; 11:15. [PMID: 33431045 PMCID: PMC7798219 DOI: 10.1186/s13578-020-00513-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
M6A methyltransferases, acting as a writer in N6-methyladenosine, have attracted wide attention due to their dynamic regulation of life processes. In this review, we first briefly introduce the individual components of m6A methyltransferases and explain their close connections to each other. Then, we concentrate on the extensive biological functions of m6A methyltransferases, which include cell growth, nerve development, osteogenic differentiation, metabolism, cardiovascular system homeostasis, infection and immunity, and tumour progression. We summarize the currently unresolved problems in this research field and propose expectations for m6A methyltransferases as novel targets for preventive and curative strategies for disease treatment in the future.
Collapse
Affiliation(s)
- Jianzhong Gu
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, Zhejiang, China
| | - Yu Zhan
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, Zhejiang, China
| | - Lvjia Zhuo
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qin Zhang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Guohua Li
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qiujie Li
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Shasha Qi
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Jinyu Zhu
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qun Lv
- Department of Respiratory medicine, the Affiliated Hospital of Hangzhou Normal University, School of Medicine, Hangzhou Normal University, Hangzhou, 310015, Zhejiang, China
| | - Yingying Shen
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, Zhejiang, China
| | - Yong Guo
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, Zhejiang, China
| | - Shuiping Liu
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Tian Xie
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Xinbing Sui
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
105
|
Yin L, Zhu X, Novák P, Zhou L, Gao L, Yang M, Zhao G, Yin K. The epitranscriptome of long noncoding RNAs in metabolic diseases. Clin Chim Acta 2021; 515:80-89. [PMID: 33422492 DOI: 10.1016/j.cca.2021.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) have abundant content and extensive functions that regulate the expression of genes at multiple levels. Recently, transcriptome-wide analysis confirmed that RNA can undergo various chemical modifications in response to stimulation by the environment that further determine the action mechanisms of RNAs and expand the diversity of the transcriptome. Modifications that occur in lncRNAs can affect their expression and the regulation of downstream molecules by changing the secondary structure, splicing, degradation or molecular stability of lncRNAs. During the development of metabolic diseases, reversible RNA modifications show a complex transcriptional landscape. Although a wide quantity and variety of lncRNA modifications have been identified, the knowledge regarding their underlying actions in alcohol use disorders (AUDs), osteoporosis, obesity, and cardiovascular disease (CVD) is still in its infancy. Herein, we will focus on the epitranscriptomic modifications that occur on lncRNAs and the crosstalk between them that affect metabolic diseases.
Collapse
Affiliation(s)
- Linjie Yin
- Research Lab for Clinical & Translational Medicine, Medical School, University of South China, Hengyang 421001, China; The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin, Guangxi 541100, China
| | - Xiao Zhu
- The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin, Guangxi 541100, China
| | - Petr Novák
- The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin, Guangxi 541100, China
| | - Le Zhou
- The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin, Guangxi 541100, China
| | - Ling Gao
- Research Lab for Clinical & Translational Medicine, Medical School, University of South China, Hengyang 421001, China
| | - Min Yang
- Research Lab for Clinical & Translational Medicine, Medical School, University of South China, Hengyang 421001, China; The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin, Guangxi 541100, China
| | - GuoJun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan 511518, China.
| | - Kai Yin
- The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin, Guangxi 541100, China.
| |
Collapse
|
106
|
Yu H, Zhao K, Zeng H, Li Z, Chen K, Zhang Z, Li E, Wu Z. N 6-methyladenosine (m 6A) methyltransferase WTAP accelerates the Warburg effect of gastric cancer through regulating HK2 stability. Biomed Pharmacother 2021; 133:111075. [PMID: 33378974 DOI: 10.1016/j.biopha.2020.111075] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/15/2022] Open
Abstract
N6-methyladenosine (m6A) is one of the most abundant messenger RNAs modification. Increasing evidence illustrates its critical role on gastric cancer. Here, present research focuses on the potential function of m6A methyltransferase Wilms' tumour 1-associated protein (WTAP) in gastric cancer tumorigenesis. Firstly, m6A immunoprecipitation sequencing analysis (MeRIP-Seq) analysis demonstrated the m6A profile in gastric cancer cells. Both WTAP and the m6A expression were up-regulated in gastric cancer tissue and cells. The high-expression of WTAP was closely correlated with poor prognosis of gastric cancer patients. Functional experiments illustrated that WTAP promoted the proliferation and glycolytic capacity (glucose uptake, lactate production and extracellular acidification rate) in vitro, and the knockdown of WTAP suppressed the tumor growth in vivo. Mechanistically, HK2 was identified to be the target of WTAP using MeRIP-Seq and MeRIP-qPCR. WTAP enhanced the stability of HK2 mRNA through binding with the 3'-UTR m6A site. In conclusion, our results demonstrate the oncogenic role of WTAP and its m6A-mediated regulation on gastric cancer Warburg effect, providing a novel approach and therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Han Yu
- Department of Gastrointestinal Surgery, Meizhou People's Hospital, Meizhou, Guangdong, 514089, China
| | - Kun Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Haijing Zeng
- Department of Gastrointestinal Surgery, Meizhou People's Hospital, Meizhou, Guangdong, 514089, China
| | - Zhiwang Li
- Department of Gastrointestinal Surgery, Meizhou People's Hospital, Meizhou, Guangdong, 514089, China
| | - Kai Chen
- Department of Gastrointestinal Surgery, Meizhou People's Hospital, Meizhou, Guangdong, 514089, China
| | - Zhuoxin Zhang
- Department of Gastrointestinal Surgery, Meizhou People's Hospital, Meizhou, Guangdong, 514089, China
| | - En Li
- Department of Gastrointestinal Surgery, Meizhou People's Hospital, Meizhou, Guangdong, 514089, China.
| | - Zuguang Wu
- Department of Gastrointestinal Surgery, Meizhou People's Hospital, Meizhou, Guangdong, 514089, China.
| |
Collapse
|
107
|
Chen J, Tian Y, Zhang Q, Ren D, Zhang Q, Yan X, Wang L, He Z, Zhang W, Zhang T, Yuan X. Novel Insights Into the Role of N6-Methyladenosine RNA Modification in Bone Pathophysiology. Stem Cells Dev 2020; 30:17-28. [PMID: 33231507 DOI: 10.1089/scd.2020.0157] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Thus far, there are more than known 150 modifications to RNA, in which common internal modifications of mRNA include N6-methyladenosine (m6A), N1-methyladenosine, and 5-methylcytosine. Among them, m6A RNA modification is one of the highest abundance modifications in eukaryotes, regulating mechanisms controlling gene expression at the post-transcription level. As an invertible and dynamic epigenetic marker, m6A base modification influences almost all vital biological processes, cellular components, and molecular functions. Once the m6A modification process is abnormal, a series of diseases-including cancer, neurological diseases, and growth disorders-will be caused. Besides, several base modification activities also have been created by noncoding RNAs (ncRNAs), for instance, microRNAs, and circular RNAs, long ncRNAs, which were dynamically regulated during bone and cartilage pathophysiology processes. Therefore, it has now been clear that dynamic modification on coding RNAs and ncRNAs represents a completely new way to modulate genetic information. In this review, we highlight up-to-date progress and applications of m6A RNA modification in bone and cartilage pathophysiology, and we discuss the pathological roles and underlying molecular mechanism of m6A modifications in osteoarthritis and osteoporosis and osteosarcoma pathogenesis.
Collapse
Affiliation(s)
- Junbo Chen
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Yihong Tian
- School of Stomatology, Qingdao University, Qingdao, China
| | - Qi Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Dapeng Ren
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiang Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao Yan
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lingzhi Wang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Zijing He
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Wei Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Tianzhen Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Xiao Yuan
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
108
|
Yao W, Zhang H, Fakhar-E-Alam Kulyar M, Ding Y, Waqas M, Mehmood K, Iqbal M, Du H, Jiang X, Li J. Effect of total flavonoids of Rhizoma Drynariae in thiram induced cytotoxicity of chondrocyte via BMP-2/Runx2 and IHH/PTHrP expressions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111194. [PMID: 32866894 DOI: 10.1016/j.ecoenv.2020.111194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Tibial Dyschondroplasia (TD) is a prevailing skeletal disorder that mainly affects rapidly growing avian species. It results in reduced bone strength, lameness and an increase risk of fragility fractures. Total flavonoids of Rhizoma drynariae (TFRD) have been used as an effective treatment of different bone diseases in humans. The current in vitro study was conducted to explore the therapeutic effect of TFRD on thiram-induced cytotoxicity in avian growth plate cells via bone morphogenetic protein-2/runt related transcription factor-2 (BMP-2/Runx2) and Indian hedgehog/Parathyroid hormone-related peptide (IHH/PTHrP) expressions. Chondrocytes were isolated, cultured and refined from chicken's tibial growth plates in a special medium. Then chondrocytes were treated with sublethal thiram having less concentration (2.5 μg/mL) to induce cytotoxicity of chondrocyte, and then treated with providential doses (100 μg/mL) of TFRD. Thiram caused distorted morphology of chondrocytes, nuclei appeared disintegration or lysed along with decreased expressions of BMP-2/Runx2 and IHH/PTHrP. TFRD administration not only enhanced the viability of chondrocytes by itself, but also well restored the damage caused by thiram on growth plate chondrocytes by significantly up-regulating the expressions of BMP-2/Runx2 and IHH/PTHrP. Therefore, this study provides a novel insight into the further treatment of TD and other skeletal ailments and lays the foundation for prevention and treatment.
Collapse
Affiliation(s)
- Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Hui Zhang
- South China Agricultural University College of Veterinary Medicine Guangzhou, 510000, PR China
| | | | - Yanmei Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Muhammad Waqas
- Faculty of Veterinary & Animal Sciences, University of the Poonch, Rawalakot, District Poonch, 12350, Azad Jammu & Kashmir, Pakistan
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Mujahid Iqbal
- Department of Pathology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Haitao Du
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xiong Jiang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, PR China.
| |
Collapse
|
109
|
Hu J, Lin Y. Fusarium infection alters the m 6A-modified transcript landscape in the cornea. Exp Eye Res 2020; 200:108216. [PMID: 32890482 DOI: 10.1016/j.exer.2020.108216] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/28/2022]
Abstract
N6-methyladenosine (m6A) is the most common post-transcriptional modification of RNA in eukaryotes that regulates the post-transcriptional expression level of genes without changing the base sequence. The role of m6A in fungal keratitis has not yet been elucidated. Here, we aimed to identify m6A modification changes and their potential roles in fungal keratitis. The murine model of fungal keratitis was established by inoculating mice with Fusarium solani (F. solani). The overall m6A level was detected via an m6A RNA methylation assay kit. The expression levels of key m6A modification-related genes were estimated by quantitative real-time polymerase chain reaction (PCR). The expression and localization of METTL (methyltransferase like)3, the key component of the m6A methyltransferase complex, was determined by immunostaining and Western blotting (WB). Immunoprecipitation methylation microarray was used to describe the changes in m6A modification in F. solani-infected corneal tissue. The overall m6A level in corneal tissue on the 5th day in the F. solani-treated group was upregulated compared with that in the control group. The demethylase levels were unaltered, but the level of the methylase METTL3 was increased significantly after fungal infection. Additionally, differences were found in m6A modifications in 1137 mRNAs, of which 780 were hypermethylated and 357 were hypomethylated. To the best of our knowledge, the present work is the first investigation on the m6A modification profiles in experimental fungal keratitis, and it may provide a potential therapeutic target.
Collapse
Affiliation(s)
- Jianzhang Hu
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China.
| | - Yi Lin
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| |
Collapse
|
110
|
Zhang W, He L, Liu Z, Ren X, Qi L, Wan L, Wang W, Tu C, Li Z. Multifaceted Functions and Novel Insight Into the Regulatory Role of RNA N 6-Methyladenosine Modification in Musculoskeletal Disorders. Front Cell Dev Biol 2020; 8:870. [PMID: 32984346 PMCID: PMC7493464 DOI: 10.3389/fcell.2020.00870] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
RNA modifications have emerged as key regulators of transcript expression in diverse physiological and pathological processes. As one of the most prevalent types of RNA modifications, N6-methyladenosine (m6A) has become the highlight in modulation of various diseases through interfering RNA splicing, translation, nuclear export, and decay. In many cases, the detailed functions of m6A in cellular processes and diseases remain unclear. Notably, recent studies have determined the relationship between m6A modification and musculoskeletal disorders containing osteosarcoma, osteoarthritis, rheumatoid arthritis, osteoporosis, etc. Herein, this review comprehensively summarizes the recent advances of m6A modification in pathogenesis and progression of musculoskeletal diseases. Specifically, the underlying molecular mechanisms, detection technologies, regulatory functions, clinical implications, and future perspectives of m6A in musculoskeletal disorders are discussed, with the aim to provide a novel insight into their association.
Collapse
Affiliation(s)
- Wenchao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lile He
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhongyue Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolei Ren
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lu Wan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
111
|
Karthiya R, Khandelia P. m6A RNA Methylation: Ramifications for Gene Expression and Human Health. Mol Biotechnol 2020; 62:467-484. [PMID: 32840728 DOI: 10.1007/s12033-020-00269-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Cellular transcriptomes are frequently adorned by a variety of chemical modification marks, which in turn have a profound influence on its functioning. Of these modifications, the one which has invited a lot of attention in the recent years is m6A RNA methylation, leading to the development of RNA epigenetics or epitranscriptomics as a frontier research area. m6A RNA methylation is one of the most abundant reversible internal modification seen in cellular RNAs. Studies in the last few years have not only shed light on the molecular machinery involved in m6A RNA methylation but also on the impact of this modification in regulating gene expression and hence biological processes. In this review, we will emphasize the biological impact of this modification in normal organismal development and diseases.
Collapse
Affiliation(s)
- R Karthiya
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana, 500078, India
| | - Piyush Khandelia
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
112
|
Wang X, Chen N, Du Z, Ling Z, Zhang P, Yang J, Khaleel M, Khoury AN, Li J, Li S, Huang H, Zhou X, Han Y, Wei F. Bioinformatics analysis integrating metabolomics of m 6A RNA microarray in intervertebral disc degeneration. Epigenomics 2020; 12:1419-1441. [PMID: 32627576 DOI: 10.2217/epi-2020-0101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: To explore the potential functions and mechanism of N6.methyladenosine (m6A) abnormality of RNAs in nucleus pulposus from the intervertebral disc degeneration (IDD). Materials & methods: We performed rat model, m6A epitranscriptomic microarray, bioinformatics analysis and metabolomics. Results: In IDD, most of the differentially methylated RNAs showed a significant demethylation situation. The competing endogenous RNA network LOC102555094/miR-431/GSK-3β combining downstream Wnt pathway were identified in bioinformatics analysis. For metabolomics, activation of Wnt pathway led to reprogramming of glucose metabolism and enzyme activation of PKM2. Finally, quantitative real-time PCR and methylated RNA immunoprecipitation coupled with quantitative real-time PCR revealed the positive correlation between demethylation of LOC102555094 and expression of both FTO and ZFP217. Conclusion: LOC102555094 might be demethylated by ZFP217, activating FTO and LOC102555094/miR-431/GSK-3β/Wnt played a crucial role in IDD.
Collapse
Affiliation(s)
- Xiaoshuai Wang
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Zhenyuan Rd, Shenzhen, 518107, China
| | - Ningning Chen
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Zhenyuan Rd, Shenzhen, 518107, China
| | - Zefeng Du
- Department of Clinical Medicine, Zhongshan Medical College of Sun Yat-sen University, No. 74, Zhongshan Er Rd, Guangzhou, 510030, China
| | - Zemin Ling
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510030, China
| | - Penghui Zhang
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Zhenyuan Rd, Shenzhen, 518107, China
| | - Jiaming Yang
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Zhenyuan Rd, Shenzhen, 518107, China
| | - Mohammed Khaleel
- Department of Orthopaedic Surgery, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Anthony N Khoury
- Hip Preservation Center, Baylor University Medical Center at Dallas, TX 75390, USA
| | - Jianwen Li
- Affiliated Dongguan People's Hospital of Southern Medical University, Dongguan, 523000, China
| | - Songbo Li
- Affiliated Dongguan People's Hospital of Southern Medical University, Dongguan, 523000, China
| | - Haoyang Huang
- Department of Clinical Medicine, Zhongshan Medical College of Sun Yat-sen University, No. 74, Zhongshan Er Rd, Guangzhou, 510030, China
| | - Xinwei Zhou
- Department of Clinical Medicine, Zhongshan Medical College of Sun Yat-sen University, No. 74, Zhongshan Er Rd, Guangzhou, 510030, China
| | - Yueyin Han
- Department of Clinical Medicine, Zhongshan Medical College of Sun Yat-sen University, No. 74, Zhongshan Er Rd, Guangzhou, 510030, China
| | - Fuxin Wei
- Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Zhenyuan Rd, Shenzhen, 518107, China
| |
Collapse
|
113
|
Mi B, Xiong Y, Yan C, Chen L, Xue H, Panayi AC, Hu L, Hu Y, Zhou W, Cao F, Liu G. Methyltransferase-like 3-mediated N6-methyladenosine modification of miR-7212-5p drives osteoblast differentiation and fracture healing. J Cell Mol Med 2020; 24:6385-6396. [PMID: 32307908 PMCID: PMC7294157 DOI: 10.1111/jcmm.15284] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022] Open
Abstract
N6-methyladenosine (m6A) modification has been reported in various diseases and implicated in increasing numbers of biological processes. However, previous studies have not focused on the role of m6A modification in fracture healing. Here, we demonstrated that m6A modifications are decreased during fracture healing and that methyltransferase-like 3 (METTL3) is the main factor involved in the abnormal changes in m6A modifications. Down-regulation of METTL3 promotes osteogenic processes both in vitro and in vivo, and this effect is recapitulated by the suppression of miR-7212-5p maturation. Further studies have shown that miR-7212-5p inhibits osteoblast differentiation in MC3T3-E1 cells by targeting FGFR3. The present study demonstrated an important role of the METTL3/miR-7212-5p/FGFR3 axis and provided new insights on m6A modification in fracture healing.
Collapse
Affiliation(s)
- Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Lang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Xue
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Liangcong Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqiang Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Faqi Cao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|