101
|
Kant MR, Jonckheere W, Knegt B, Lemos F, Liu J, Schimmel BCJ, Villarroel CA, Ataide LMS, Dermauw W, Glas JJ, Egas M, Janssen A, Van Leeuwen T, Schuurink RC, Sabelis MW, Alba JM. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. ANNALS OF BOTANY 2015; 115:1015-51. [PMID: 26019168 PMCID: PMC4648464 DOI: 10.1093/aob/mcv054] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/12/2015] [Accepted: 04/24/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND Plants are hotbeds for parasites such as arthropod herbivores, which acquire nutrients and energy from their hosts in order to grow and reproduce. Hence plants are selected to evolve resistance, which in turn selects for herbivores that can cope with this resistance. To preserve their fitness when attacked by herbivores, plants can employ complex strategies that include reallocation of resources and the production of defensive metabolites and structures. Plant defences can be either prefabricated or be produced only upon attack. Those that are ready-made are referred to as constitutive defences. Some constitutive defences are operational at any time while others require activation. Defences produced only when herbivores are present are referred to as induced defences. These can be established via de novo biosynthesis of defensive substances or via modifications of prefabricated substances and consequently these are active only when needed. Inducibility of defence may serve to save energy and to prevent self-intoxication but also implies that there is a delay in these defences becoming operational. Induced defences can be characterized by alterations in plant morphology and molecular chemistry and are associated with a decrease in herbivore performance. These alterations are set in motion by signals generated by herbivores. Finally, a subset of induced metabolites are released into the air as volatiles and function as a beacon for foraging natural enemies searching for prey, and this is referred to as induced indirect defence. SCOPE The objective of this review is to evaluate (1) which strategies plants have evolved to cope with herbivores and (2) which traits herbivores have evolved that enable them to counter these defences. The primary focus is on the induction and suppression of plant defences and the review outlines how the palette of traits that determine induction/suppression of, and resistance/susceptibility of herbivores to, plant defences can give rise to exploitative competition and facilitation within ecological communities "inhabiting" a plant. CONCLUSIONS Herbivores have evolved diverse strategies, which are not mutually exclusive, to decrease the negative effects of plant defences in order to maximize the conversion of plant material into offspring. Numerous adaptations have been found in herbivores, enabling them to dismantle or bypass defensive barriers, to avoid tissues with relatively high levels of defensive chemicals or to metabolize these chemicals once ingested. In addition, some herbivores interfere with the onset or completion of induced plant defences, resulting in the plant's resistance being partly or fully suppressed. The ability to suppress induced plant defences appears to occur across plant parasites from different kingdoms, including herbivorous arthropods, and there is remarkable diversity in suppression mechanisms. Suppression may strongly affect the structure of the food web, because the ability to suppress the activation of defences of a communal host may facilitate competitors, whereas the ability of a herbivore to cope with activated plant defences will not. Further characterization of the mechanisms and traits that give rise to suppression of plant defences will enable us to determine their role in shaping direct and indirect interactions in food webs and the extent to which these determine the coexistence and persistence of species.
Collapse
Affiliation(s)
- M R Kant
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - W Jonckheere
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - B Knegt
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - F Lemos
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - J Liu
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - B C J Schimmel
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - C A Villarroel
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - L M S Ataide
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - W Dermauw
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - J J Glas
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - M Egas
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - A Janssen
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - T Van Leeuwen
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - R C Schuurink
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - M W Sabelis
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - J M Alba
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| |
Collapse
|
102
|
Guo P, Yoshimura A, Ishikawa N, Yamaguchi T, Guo Y, Tsukaya H. Comparative analysis of the RTFL peptide family on the control of plant organogenesis. JOURNAL OF PLANT RESEARCH 2015; 128:497-510. [PMID: 25701405 PMCID: PMC4408365 DOI: 10.1007/s10265-015-0703-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/25/2014] [Indexed: 05/22/2023]
Abstract
Plant peptides play important roles in various aspects of plant growth and development. The RTFL/DVL family includes small peptides that are widely conserved among land plants. Overexpression of six RTFL genes in Arabidopsis was suggestive of their functions as negative regulators of cell proliferation and as positional cues along the longitudinal axis of the plant body . At this time, few reports are available on RTFL paralogs in other species and the evolutionary relationship of RTFL members among land plants remains unclear. In this study, we compared and analyzed whole amino acid sequences of 188 RTFL members from 22 species among land plants and identified 73 motifs. All RTFL members could be grouped into four clades, and each clade exhibited specific motif patterns, indicative of unique evolutionary traits in the RTFL family. In agreement with this hypothesis, we analyzed two RTFL members from Oryza sativa and Arabidopsis by overexpressing them in Arabidopsis, revealing similar phenotypes suggestive of a conserved function of the RTFL family between eudicots and monocots, as well as different phenotypes and unique functions.
Collapse
Affiliation(s)
- Pin Guo
- College of Life Science, Wuhan University, Wuhan, 430072 Hubei China
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo, 113-0033 Japan
| | - Asami Yoshimura
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo, 113-0033 Japan
| | - Naoko Ishikawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo, 113-0033 Japan
- Present Address: Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Tokyo, 153-8902 Japan
| | - Takahiro Yamaguchi
- Acel, Inc. SIC1 1201, 5-4-21 Nishihashimoto, Midori-ku, Sagamihara, Kanagawa Japan
| | - Youhao Guo
- College of Life Science, Wuhan University, Wuhan, 430072 Hubei China
| | - Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo, 113-0033 Japan
| |
Collapse
|
103
|
Bigeard J, Colcombet J, Hirt H. Signaling mechanisms in pattern-triggered immunity (PTI). MOLECULAR PLANT 2015; 8:521-39. [PMID: 25744358 DOI: 10.1016/j.molp.2014.12.022] [Citation(s) in RCA: 574] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/17/2014] [Accepted: 12/30/2014] [Indexed: 05/20/2023]
Abstract
In nature, plants constantly have to face pathogen attacks. However, plant disease rarely occurs due to efficient immune systems possessed by the host plants. Pathogens are perceived by two different recognition systems that initiate the so-called pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), both of which are accompanied by a set of induced defenses that usually repel pathogen attacks. Here we discuss the complex network of signaling pathways occurring during PTI, focusing on the involvement of mitogen-activated protein kinases.
Collapse
Affiliation(s)
- Jean Bigeard
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA/CNRS/Université d'Evry Val d'Essonne/Saclay Plant Sciences, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Jean Colcombet
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA/CNRS/Université d'Evry Val d'Essonne/Saclay Plant Sciences, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Heribert Hirt
- Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
104
|
Fesenko IA, Arapidi GP, Skripnikov AY, Alexeev DG, Kostryukova ES, Manolov AI, Altukhov IA, Khazigaleeva RA, Seredina AV, Kovalchuk SI, Ziganshin RH, Zgoda VG, Novikova SE, Semashko TA, Slizhikova DK, Ptushenko VV, Gorbachev AY, Govorun VM, Ivanov VT. Specific pools of endogenous peptides are present in gametophore, protonema, and protoplast cells of the moss Physcomitrella patens. BMC PLANT BIOLOGY 2015; 15:87. [PMID: 25848929 PMCID: PMC4365561 DOI: 10.1186/s12870-015-0468-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/26/2015] [Indexed: 05/27/2023]
Abstract
BACKGROUND Protein degradation is a basic cell process that operates in general protein turnover or to produce bioactive peptides. However, very little is known about the qualitative and quantitative composition of a plant cell peptidome, the actual result of this degradation. In this study we comprehensively analyzed a plant cell peptidome and systematically analyzed the peptide generation process. RESULTS We thoroughly analyzed native peptide pools of Physcomitrella patens moss in two developmental stages as well as in protoplasts. Peptidomic analysis was supplemented by transcriptional profiling and quantitative analysis of precursor proteins. In total, over 20,000 unique endogenous peptides, ranging in size from 5 to 78 amino acid residues, were identified. We showed that in both the protonema and protoplast states, plastid proteins served as the main source of peptides and that their major fraction formed outside of chloroplasts. However, in general, the composition of peptide pools was very different between these cell types. In gametophores, stress-related proteins, e.g., late embryogenesis abundant proteins, were among the most productive precursors. The Driselase-mediated protonema conversion to protoplasts led to a peptide generation "burst", with a several-fold increase in the number of components in the latter. Degradation of plastid proteins in protoplasts was accompanied by suppression of photosynthetic activity. CONCLUSION We suggest that peptide pools in plant cells are not merely a product of waste protein degradation, but may serve as important functional components for plant metabolism. We assume that the peptide "burst" is a form of biotic stress response that might produce peptides with antimicrobial activity from originally functional proteins. Potential functions of peptides in different developmental stages are discussed.
Collapse
Affiliation(s)
- Igor A Fesenko
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
| | - Georgij P Arapidi
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
- />Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700 Russian Federation
| | - Alexander Yu Skripnikov
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
- />Biology Department, Lomonosov Moscow State University, Moscow, 199234 Russian Federation
| | - Dmitry G Alexeev
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
- />Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700 Russian Federation
| | - Elena S Kostryukova
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
| | - Alexander I Manolov
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
- />Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700 Russian Federation
| | - Ilya A Altukhov
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
- />Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700 Russian Federation
| | - Regina A Khazigaleeva
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
| | - Anna V Seredina
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
| | - Sergey I Kovalchuk
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
| | - Rustam H Ziganshin
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
| | - Viktor G Zgoda
- />Institute of Biomedical Chemistry RAMS im. V.N. Orehovicha, 10, Pogodinskaya Street, Moscow, 119121 Russian Federation
| | - Svetlana E Novikova
- />Institute of Biomedical Chemistry RAMS im. V.N. Orehovicha, 10, Pogodinskaya Street, Moscow, 119121 Russian Federation
| | - Tatiana A Semashko
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
| | - Darya K Slizhikova
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
| | - Vasilij V Ptushenko
- />A. N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskye Gory, House 1, Building 40, Moscow, 119992 Russian Federation
| | - Alexey Y Gorbachev
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
| | - Vadim M Govorun
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
- />Research Institute of Physical-Chemical Medicine, Federal Medical & Biological Agency, 1a, Malaya Pirogovskaya, Moscow, 119992 Russian Federation
- />Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700 Russian Federation
| | - Vadim T Ivanov
- />Department of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10, Miklukho-Maklaya, GSP-7, Moscow, 117997 Russian Federation
| |
Collapse
|
105
|
Biologically active and antimicrobial peptides from plants. BIOMED RESEARCH INTERNATIONAL 2015; 2015:102129. [PMID: 25815307 PMCID: PMC4359881 DOI: 10.1155/2015/102129] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/13/2014] [Accepted: 10/31/2014] [Indexed: 11/22/2022]
Abstract
Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application.
Collapse
|
106
|
Martel C, Zhurov V, Navarro M, Martinez M, Cazaux M, Auger P, Migeon A, Santamaria ME, Wybouw N, Diaz I, Van Leeuwen T, Navajas M, Grbic M, Grbic V. Tomato Whole Genome Transcriptional Response to Tetranychus urticae Identifies Divergence of Spider Mite-Induced Responses Between Tomato and Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:343-61. [PMID: 25679539 DOI: 10.1094/mpmi-09-14-0291-fi] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The two-spotted spider mite Tetranychus urticae is one of the most significant mite pests in agriculture, feeding on more than 1,100 plant hosts, including model plants Arabidopsis thaliana and tomato, Solanum lycopersicum. Here, we describe timecourse tomato transcriptional responses to spider mite feeding and compare them with Arabidopsis in order to determine conserved and divergent defense responses to this pest. To refine the involvement of jasmonic acid (JA) in mite-induced responses and to improve tomato Gene Ontology annotations, we analyzed transcriptional changes in the tomato JA-signaling mutant defenseless1 (def-1) upon JA treatment and spider mite herbivory. Overlay of differentially expressed genes (DEG) identified in def-1 onto those from the timecourse experiment established that JA controls expression of the majority of genes differentially regulated by herbivory. Comparison of defense responses between tomato and Arabidopsis highlighted 96 orthologous genes (of 2,133 DEG) that were recruited for defense against spider mites in both species. These genes, involved in biosynthesis of JA, phenylpropanoids, flavonoids, and terpenoids, represent the conserved core of induced defenses. The remaining tomato DEG support the establishment of tomato-specific defenses, indicating profound divergence of spider mite-induced responses between tomato and Arabidopsis.
Collapse
|
107
|
Kim NH, Hwang BK. Pepper pathogenesis-related protein 4c is a plasma membrane-localized cysteine protease inhibitor that is required for plant cell death and defense signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:81-94. [PMID: 25335438 DOI: 10.1111/tpj.12709] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/05/2014] [Accepted: 10/15/2014] [Indexed: 05/20/2023]
Abstract
Xanthomonas campestris pv. vesicatoria (Xcv) type III effector AvrBsT triggers programmed cell death (PCD) and activates the hypersensitive response (HR) in plants. Here, we isolated and identified the plasma membrane localized pathogenesis-related (PR) protein 4c gene (CaPR4c) from pepper (Capsicum annuum) leaves undergoing AvrBsT-triggered HR cell death. CaPR4c encodes a protein with a signal peptide and a Barwin domain. Recombinant CaPR4c protein expressed in Escherichia coli exhibited cysteine protease-inhibitor activity and ribonuclease (RNase) activity. Subcellular localization analyses revealed that CaPR4c localized to the plasma membrane in plant cells. CaPR4c expression was rapidly and specifically induced by avirulent Xcv (avrBsT) infection. Transient expression of CaPR4c caused HR cell death in pepper leaves, which was accompanied by enhanced accumulation of H2 O2 and significant induction of some defense-response genes. Deletion of the signal peptide from CaPR4c abolished the induction of HR cell death, indicating a requirement for plasma membrane localization of CaPR4c for HR cell death. CaPR4c silencing in pepper disrupted both basal and AvrBsT-triggered resistance responses, and enabled Xcv proliferation in infected leaves. H2 O2 accumulation, cell-death induction, and defense-response gene expression were distinctly reduced in CaPR4c-silenced pepper. CaPR4c overexpression in transgenic Arabidopsis plants conferred greater resistance against infection by Pseudomonas syringae pv. tomato and Hyaloperonospora arabidopsidis. These results collectively suggest that CaPR4c plays an important role in plant cell death and defense signaling.
Collapse
Affiliation(s)
- Nak Hyun Kim
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea
| | | |
Collapse
|
108
|
Breen S, Solomon PS, Bedon F, Vincent D. Surveying the potential of secreted antimicrobial peptides to enhance plant disease resistance. FRONTIERS IN PLANT SCIENCE 2015; 6:900. [PMID: 26579150 PMCID: PMC4621407 DOI: 10.3389/fpls.2015.00900] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/09/2015] [Indexed: 05/20/2023]
Abstract
Antimicrobial peptides (AMPs) are natural products found across diverse taxa as part of the innate immune system against pathogen attacks. Some AMPs are synthesized through the canonical gene expression machinery and are called ribosomal AMPs. Other AMPs are assembled by modular enzymes generating nonribosomal AMPs and harbor unusual structural diversity. Plants synthesize an array of AMPs, yet are still subject to many pathogen invasions. Crop breeding programs struggle to release new cultivars in which complete disease resistance is achieved, and usually such resistance becomes quickly overcome by the targeted pathogens which have a shorter generation time. AMPs could offer a solution by exploring not only plant-derived AMPs, related or unrelated to the crop of interest, but also non-plant AMPs produced by bacteria, fungi, oomycetes or animals. This review highlights some promising candidates within the plant kingdom and elsewhere, and offers some perspectives on how to identify and validate their bioactivities. Technological advances, particularly in mass spectrometry (MS) and nuclear magnetic resonance (NMR), have been instrumental in identifying and elucidating the structure of novel AMPs, especially nonribosomal peptides which cannot be identified through genomics approaches. The majority of non-plant AMPs showing potential for plant disease immunity are often tested using in vitro assays. The greatest challenge remains the functional validation of candidate AMPs in plants through transgenic experiments, particularly introducing nonribosomal AMPs into crops.
Collapse
Affiliation(s)
- Susan Breen
- Plant Sciences Division, Research School of Biology, The Australian National UniversityCanberra, ACT, Australia
| | - Peter S. Solomon
- Plant Sciences Division, Research School of Biology, The Australian National UniversityCanberra, ACT, Australia
| | - Frank Bedon
- Department of Economic Development, AgriBioBundoora, VIC, Australia
- AgriBio, La Trobe UniversityBundoora, VIC, Australia
| | - Delphine Vincent
- Department of Economic Development, AgriBioBundoora, VIC, Australia
- *Correspondence: Delphine Vincent
| |
Collapse
|
109
|
Gully K, Hander T, Boller T, Bartels S. Perception of Arabidopsis AtPep peptides, but not bacterial elicitors, accelerates starvation-induced senescence. FRONTIERS IN PLANT SCIENCE 2015; 6:14. [PMID: 25667591 PMCID: PMC4304247 DOI: 10.3389/fpls.2015.00014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/07/2015] [Indexed: 05/07/2023]
Abstract
Members of the AtPep group of Arabidopsis endogenous peptides have frequently been reported to induce pattern-triggered immunity (PTI) and to increase resistance to diverse pathogens by amplifying the innate immune response. Here, we made the surprising observation that dark-induced leaf senescence was accelerated by the presence of Peps. Adult leaves as well as leaf discs of Col-0 wild type plants showed a Pep-triggered early onset of chlorophyll breakdown and leaf yellowing whereas pepr1 pepr2 double mutant plants were insensitive. In addition, this response was dependent on ethylene signaling and inhibited by the addition of cytokinins. Notably, addition of the bacterial elicitors flg22 or elf18, both potent inducers of PTI, did not provoke an early onset of leaf senescence. Continuous darkness leads to energy deprivation and starvation and therewith promotes leaf senescence. We found that continuous darkness also strongly induced PROPEP3 transcription. Moreover, Pep-perception led to a rapid induction of PAO, APG7, and APG8a, genes indispensable for chlorophyll degradation as well as autophagy, respectively, and all three hallmarks of starvation and senescence. Notably, addition of sucrose as a source of energy inhibited the Pep-triggered early onset of senescence. In conclusion, we report that Pep-perception accelerates dark/starvation-induced senescence via an early induction of chlorophyll degradation and autophagy. This represents a novel and unique characteristic of PEPR signaling, unrelated to PTI.
Collapse
Affiliation(s)
| | | | | | - Sebastian Bartels
- *Correspondence: Sebastian Bartels, Department of Environmental Sciences, Botany, Zürich-Basel Plant Science Center, University of Basel, Hebelstrasse 1, CH-4056 Basel, Switzerland e-mail:
| |
Collapse
|
110
|
Wu S, Shan L, He P. Microbial signature-triggered plant defense responses and early signaling mechanisms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:118-26. [PMID: 25438792 PMCID: PMC4254448 DOI: 10.1016/j.plantsci.2014.03.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/28/2014] [Accepted: 03/01/2014] [Indexed: 05/19/2023]
Abstract
It has long been observed that microbial elicitors can trigger various cellular responses in plants. Microbial elicitors have recently been referred to as pathogen or microbe-associated molecular patterns (PAMPs or MAMPs) and remarkable progress has been made on research of their corresponding receptors, signaling mechanisms and critical involvement in disease resistance. Plants also generate endogenous signals due to the damage or wounds caused by microbes. These signals were originally called endogenous elicitors and subsequently renamed damage-associated molecular patterns (DAMPs) that serve as warning signals for infections. The cellular responses induced by PAMPs and DAMPs include medium alkalinization, ion fluxes across the membrane, reactive oxygen species (ROS) and ethylene production. They collectively contribute to plant pattern-triggered immunity (PTI) and play an important role in plant basal defense against a broad spectrum of microbial infections. In this review, we provide an update on multiple PTI responses and early signaling mechanisms and discuss its potential applications to improve crop disease resistance.
Collapse
Affiliation(s)
- Shujing Wu
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Laboratory of Apple Molecular Biology and Biotechnology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Libo Shan
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Ping He
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
111
|
Hou S, Wang X, Chen D, Yang X, Wang M, Turrà D, Di Pietro A, Zhang W. The secreted peptide PIP1 amplifies immunity through receptor-like kinase 7. PLoS Pathog 2014; 10:e1004331. [PMID: 25188390 PMCID: PMC4154866 DOI: 10.1371/journal.ppat.1004331] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 07/11/2014] [Indexed: 11/18/2022] Open
Abstract
In plants, innate immune responses are initiated by plasma membrane-located pattern recognition receptors (PRRs) upon recognition of elicitors, including exogenous pathogen-associated molecular patterns (PAMPs) and endogenous damage-associated molecular patterns (DAMPs). Arabidopsis thaliana produces more than 1000 secreted peptide candidates, but it has yet to be established whether any of these act as elicitors. Here we identified an A. thaliana gene family encoding precursors of PAMP-induced secreted peptides (prePIPs) through an in-silico approach. The expression of some members of the family, including prePIP1 and prePIP2, is induced by a variety of pathogens and elicitors. Subcellular localization and proteolytic processing analyses demonstrated that the prePIP1 product is secreted into extracellular spaces where it is cleaved at the C-terminus. Overexpression of prePIP1 and prePIP2, or exogenous application of PIP1 and PIP2 synthetic peptides corresponding to the C-terminal conserved regions in prePIP1 and prePIP2, enhanced immune responses and pathogen resistance in A. thaliana. Genetic and biochemical analyses suggested that the receptor-like kinase 7 (RLK7) functions as a receptor of PIP1. Once perceived by RLK7, PIP1 initiates overlapping and distinct immune signaling responses together with the DAMP PEP1. PIP1 and PEP1 cooperate in amplifying the immune responses triggered by the PAMP flagellin. Collectively, these studies provide significant insights into immune modulation by Arabidopsis endogenous secreted peptides. Both animals and plants have evolved mechanisms to trigger innate immunity through perception of exogenous and endogenous molecules. In the model plant Arabidopsis thaliana, endogenous molecules such as the peptide elicitor PEP1 activate the immune response by means of cell surface-located receptors. Here we describe a new gene family in A. thaliana named prePIPs, whose members encode secreted peptide precursors, and show that one of its members, prePIP1, is secreted into extracellular space and cleaved at the C-terminus. Exogenous application of PIP1, the synthetic 13-amino acid peptide corresponding to the conserved C-terminal region of prePIP1, triggered immune responses and led to enhanced pathogen resistance in A. thaliana. We further provide evidence showing that PIP1 signals via the receptor-like kinase 7 (RLK7) and employs both shared and distinct components with the PEP1 signaling pathway. Both PIP1 and PEP1 cooperatively amplify the immune response triggered by flg22, the active epitope of bacterial flagellin.
Collapse
Affiliation(s)
- Shuguo Hou
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Xin Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Donghua Chen
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Xue Yang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Mei Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
| | - David Turrà
- Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| | | | - Wei Zhang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
| |
Collapse
|
112
|
Li B, Lu D, Shan L. Ubiquitination of pattern recognition receptors in plant innate immunity. MOLECULAR PLANT PATHOLOGY 2014; 15:737-746. [PMID: 25275148 PMCID: PMC4183980 DOI: 10.1111/mpp.12128] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Lacking an adaptive immune system, plants largely rely on plasma membrane-resident pattern recognition receptors (PRRs) to sense pathogen invasion. The activation of PRRs leads to the profound immune responses that coordinately contribute to the restriction of pathogen multiplication. Protein post-translational modifications dynamically shape the intensity and duration of the signalling pathways. In this review, we discuss the specific regulation of PRR activation and signalling by protein ubiquitination, endocytosis and degradation, with a particular focus on the bacterial flagellin receptor FLS2 (flagellin sensing 2) in Arabidopsis.
Collapse
Affiliation(s)
- Bo Li
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dongping Lu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Libo Shan
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
113
|
Onrubia M, Pollier J, Vanden Bossche R, Goethals M, Gevaert K, Moyano E, Vidal-Limon H, Cusidó RM, Palazón J, Goossens A. Taximin, a conserved plant-specific peptide is involved in the modulation of plant-specialized metabolism. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:971-83. [PMID: 24852175 DOI: 10.1111/pbi.12205] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/31/2014] [Accepted: 04/24/2014] [Indexed: 05/22/2023]
Abstract
Small peptides play important roles in the signalling cascades that steer plant growth, development and defence, and often crosstalk with hormonal signalling. Thereby, they also modulate metabolism, including the production of bioactive molecules that are of high interest for human applications. Yew species (Taxus spp.) produce diterpenes such as the powerful anticancer agent paclitaxel, the biosynthesis of which can be stimulated by the hormone jasmonate, both in whole plants and cell suspension cultures. Here, we identified Taximin, as a gene encoding a hitherto unreported, plant-specific, small, cysteine-rich signalling peptide, through a transcriptome survey of jasmonate-elicited T. baccata suspension cells grown in two-media cultures. Taximin expression increased in a coordinated manner with that of paclitaxel biosynthesis genes. Tagged Taximin peptides were shown to enter the secretory system and localize to the plasma membrane. In agreement with this, the exogenous application of synthetic Taximin peptide variants could transiently modulate the biosynthesis of taxanes in T. baccata cell suspension cultures. Importantly, the Taximin peptide is widely conserved in the higher plant kingdom with a high degree of sequence conservation. Accordingly, Taximin overexpression could stimulate the production of nicotinic alkaloids in Nicotiana tabacum hairy root cultures in a synergistic manner with jasmonates. In contrast, no pronounced effects of Taximin overexpression on the specialized metabolism in Medicago truncatula roots were observed. This study increases our understanding of the regulation of Taxus diterpene biosynthesis in particular and plant metabolism in general. Ultimately, Taximin might increase the practical potential of metabolic engineering of medicinal plants.
Collapse
Affiliation(s)
- Miriam Onrubia
- Departament de Ciències Experimentals i de Salut, Universitat Pompeu Fabra, Barcelona, Spain; Department of Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Singh S. A review on possible elicitor molecules of cyanobacteria: their role in improving plant growth and providing tolerance against biotic or abiotic stress. J Appl Microbiol 2014; 117:1221-44. [DOI: 10.1111/jam.12612] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 07/25/2014] [Accepted: 07/25/2014] [Indexed: 11/28/2022]
Affiliation(s)
- S. Singh
- Center for Biotechnology; Department of Biological Sciences; Birla Institute of Technology and Science; Pilani India
| |
Collapse
|
115
|
Zipfel C. Plant pattern-recognition receptors. Trends Immunol 2014; 35:345-51. [DOI: 10.1016/j.it.2014.05.004] [Citation(s) in RCA: 645] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/17/2014] [Accepted: 05/21/2014] [Indexed: 12/18/2022]
|
116
|
Ma C, Guo J, Kang Y, Doman K, Bryan AC, Tax FE, Yamaguchi Y, Qi Z. AtPEPTIDE RECEPTOR2 mediates the AtPEPTIDE1-induced cytosolic Ca(2+) rise, which is required for the suppression of Glutamine Dumper gene expression in Arabidopsis roots. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:684-94. [PMID: 24450616 DOI: 10.1111/jipb.12171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 01/17/2014] [Indexed: 05/07/2023]
Abstract
AtPEPTIDE RECEPTOR2 (AtPEPR2) is a member of leucine-rich repeat receptor-like kinase family and binds to a group of AtPROPEP gene-encoded endogenous peptides, AtPeps. Previously, we found that AtPEPR2 plays a moderate role in the AtPep1-mediated innate immunity responses in Arabidopsis leaf. In this study, we found that AtPEPR2 promoter has strong activity in the vascular tissues of the roots and the atpepr2 mutants showed a moderate but significantly shorter root phenotype. AtPEPR2 partially mediated AtPep1-induced root elongation inhibition. AtPep1-triggered cytosolic Ca(2+) transient rise in roots showed partial dependence on AtPEPR2 and fully on extracellular Ca(2+) ([Ca(2+) ]ext ). Transcriptional profiling analysis found that expression of 75% of AtPep1-modulated genes in roots was fully dependent on AtPEPR2, of which two dramatically induced genes showed partial dependence on the [Ca(2+) ]ext . Arabidopsis genome contains seven Glutamine Dumpers genes (AtGDUs), encoding amino acid exporters. Three of them (AtGDU2, 3, 5) were among the top 10 genes that were downregulated by AtPep1 through AtPEPR2 fully dependent pathway. Treatment with AtPep1 strongly suppressed promoter activity of AtGDU3 in roots, which was relieved by chelating [Ca(2+) ]ext . Arabidopsis overexpressing AtGDU3 showed a shorter root phenotype and decreased sensitivity to the AtPep1-mediated inhibition of root elongation. Taken together, this study demonstrated a significant role of AtPEPR2 in the AtPep1-mediated signaling in the roots.
Collapse
Affiliation(s)
- Chunli Ma
- College of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Novel properties of antimicrobial peptide anoplin. Biochem Biophys Res Commun 2014; 444:520-4. [PMID: 24472551 DOI: 10.1016/j.bbrc.2014.01.097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 01/19/2014] [Indexed: 12/24/2022]
Abstract
Antimicrobial decapeptide anoplin was tested for its antifungal activity against plant pathogen Leptosphaeria maculans and protection of Brassica napus plants from disease. To reveal the mode of action of the peptide, a natural form of anoplin amidated on C-terminus (ANP-NH2), and its carboxylated analog (ANP-OH) were used in the study. We demonstrated strong antifungal activity of anoplin in vitro regardless C-terminus modification. In addition we show that both ANP-NH2 and ANP-OH induce expression of defence genes in B. napus and protects plants from L. maculans infection. The results indicate that the amidation of anoplin is not essential for its antifungal and plant defence stimulating activities.
Collapse
|
118
|
Delaunois B, Jeandet P, Clément C, Baillieul F, Dorey S, Cordelier S. Uncovering plant-pathogen crosstalk through apoplastic proteomic studies. FRONTIERS IN PLANT SCIENCE 2014; 5:249. [PMID: 24917874 PMCID: PMC4042593 DOI: 10.3389/fpls.2014.00249] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/15/2014] [Indexed: 05/14/2023]
Abstract
Plant pathogens have evolved by developing different strategies to infect their host, which in turn have elaborated immune responses to counter the pathogen invasion. The apoplast, including the cell wall and extracellular space outside the plasma membrane, is one of the first compartments where pathogen-host interaction occurs. The plant cell wall is composed of a complex network of polysaccharides polymers and glycoproteins and serves as a natural physical barrier against pathogen invasion. The apoplastic fluid, circulating through the cell wall and intercellular spaces, provides a means for delivering molecules and facilitating intercellular communications. Some plant-pathogen interactions lead to plant cell wall degradation allowing pathogens to penetrate into the cells. In turn, the plant immune system recognizes microbial- or damage-associated molecular patterns (MAMPs or DAMPs) and initiates a set of basal immune responses, including the strengthening of the plant cell wall. The establishment of defense requires the regulation of a wide variety of proteins that are involved at different levels, from receptor perception of the pathogen via signaling mechanisms to the strengthening of the cell wall or degradation of the pathogen itself. A fine regulation of apoplastic proteins is therefore essential for rapid and effective pathogen perception and for maintaining cell wall integrity. This review aims to provide insight into analyses using proteomic approaches of the apoplast to highlight the modulation of the apoplastic protein patterns during pathogen infection and to unravel the key players involved in plant-pathogen interaction.
Collapse
Affiliation(s)
| | | | | | | | | | - Sylvain Cordelier
- *Correspondence: Sylvain Cordelier, Laboratoire Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne-EA 4707, Université de Reims Champagne-Ardenne, Moulin de la Housse – BP 1039, 51687 Reims cedex 2, France e-mail:
| |
Collapse
|
119
|
Mendoza-Figueroa JS, Soriano-García M, Valle-Castillo LB, Méndez-Lozano J. Peptides and Peptidomics: A Tool with Potential in Control of Plant Viral Diseases. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/aim.2014.49060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
120
|
Okamoto M, Higuchi-Takeuchi M, Shimizu M, Shinozaki K, Hanada K. Substantial expression of novel small open reading frames in Oryza sativa. PLANT SIGNALING & BEHAVIOR 2014; 9:e27848. [PMID: 24526015 PMCID: PMC4091330 DOI: 10.4161/psb.27848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In our previous integrated study combining informatics and molecular biology analyses, we revealed that Arabidopsis small open reading frames (sORFs) predicted by computational analysis have biological functions in morphogenesis. Here, we report that sequences homologous to Arabidopsis sORFs are abundant in intergenic regions of the rice genome. These sequences represent a subset of non-protein-coding DNA, and some are transcribed into mRNA. These results indicate that many sORFs associated with morphogenesis are hidden in the genomes of crop species.
Collapse
Affiliation(s)
- Masanori Okamoto
- Arid Land Research Center; Tottori University; Tottori, Japan
- RIKEN Center for Sustainable Resource Science; Yokohama, Japan
| | | | - Minami Shimizu
- RIKEN Center for Sustainable Resource Science; Yokohama, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science; Yokohama, Japan
| | - Kousuke Hanada
- RIKEN Center for Sustainable Resource Science; Yokohama, Japan
- Frontier Research Academy for Young Researchers; Kyushu Institute of Technology; Fukuoka, Japan
- Correspondence to: Kousuke Hanada,
| |
Collapse
|
121
|
Zhurov V, Navarro M, Bruinsma KA, Arbona V, Santamaria ME, Cazaux M, Wybouw N, Osborne EJ, Ens C, Rioja C, Vermeirssen V, Rubio-Somoza I, Krishna P, Diaz I, Schmid M, Gómez-Cadenas A, Van de Peer Y, Grbić M, Clark RM, Van Leeuwen T, Grbić V. Reciprocal responses in the interaction between Arabidopsis and the cell-content-feeding chelicerate herbivore spider mite. PLANT PHYSIOLOGY 2014; 164:384-99. [PMID: 24285850 PMCID: PMC3875816 DOI: 10.1104/pp.113.231555] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Most molecular-genetic studies of plant defense responses to arthropod herbivores have focused on insects. However, plant-feeding mites are also pests of diverse plants, and mites induce different patterns of damage to plant tissues than do well-studied insects (e.g. lepidopteran larvae or aphids). The two-spotted spider mite (Tetranychus urticae) is among the most significant mite pests in agriculture, feeding on a staggering number of plant hosts. To understand the interactions between spider mite and a plant at the molecular level, we examined reciprocal genome-wide responses of mites and its host Arabidopsis (Arabidopsis thaliana). Despite differences in feeding guilds, we found that transcriptional responses of Arabidopsis to mite herbivory resembled those observed for lepidopteran herbivores. Mutant analysis of induced plant defense pathways showed functionally that only a subset of induced programs, including jasmonic acid signaling and biosynthesis of indole glucosinolates, are central to Arabidopsis's defense to mite herbivory. On the herbivore side, indole glucosinolates dramatically increased mite mortality and development times. We identified an indole glucosinolate dose-dependent increase in the number of differentially expressed mite genes belonging to pathways associated with detoxification of xenobiotics. This demonstrates that spider mite is sensitive to Arabidopsis defenses that have also been associated with the deterrence of insect herbivores that are very distantly related to chelicerates. Our findings provide molecular insights into the nature of, and response to, herbivory for a representative of a major class of arthropod herbivores.
Collapse
|
122
|
Petre B, Hacquard S, Duplessis S, Rouhier N. Genome analysis of poplar LRR-RLP gene clusters reveals RISP, a defense-related gene coding a candidate endogenous peptide elicitor. FRONTIERS IN PLANT SCIENCE 2014; 5:111. [PMID: 24734035 PMCID: PMC3975113 DOI: 10.3389/fpls.2014.00111] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 03/09/2014] [Indexed: 05/18/2023]
Abstract
In plants, cell-surface receptors control immunity and development through the recognition of extracellular ligands. Leucine-rich repeat receptor-like proteins (LRR-RLPs) constitute a large multigene family of cell-surface receptors. Although this family has been intensively studied, a limited number of ligands has been identified so far, mostly because methods used for their identification and characterization are complex and fastidious. In this study, we combined genome and transcriptome analyses to describe the LRR-RLP gene family in the model tree poplar (Populus trichocarpa). In total, 82 LRR-RLP genes have been identified in P. trichocarpa genome, among which 66 are organized in clusters of up to seven members. In these clusters, LRR-RLP genes are interspersed by orphan, poplar-specific genes encoding small proteins of unknown function (SPUFs). In particular, the nine largest clusters of LRR-RLP genes (47 LRR-RLPs) include 71 SPUF genes that account for 59% of the non-LRR-RLP gene content within these clusters. Forty-four LRR-RLP and 55 SPUF genes are expressed in poplar leaves, mostly at low levels, except for members of some clusters that show higher and sometimes coordinated expression levels. Notably, wounding of poplar leaves strongly induced the expression of a defense SPUF gene named Rust-Induced Secreted protein (RISP) that has been previously reported as a marker of poplar defense responses. Interestingly, we show that the RISP-associated LRR-RLP gene is highly expressed in poplar leaves and slightly induced by wounding. Both gene promoters share a highly conserved region of ~300 nucleotides. This led us to hypothesize that the corresponding pair of proteins could be involved in poplar immunity, possibly as a ligand/receptor couple. In conclusion, we speculate that some poplar SPUFs, such as RISP, represent candidate endogenous peptide ligands of the associated LRR-RLPs and we discuss how to investigate further this hypothesis.
Collapse
Affiliation(s)
- Benjamin Petre
- INRA, Interactions Arbres/Microorganismes, UMR 1136Champenoux, France
- Université de Lorraine, Interactions Arbres/Microorganismes, UMR 1136Vandoeuvre-lès-Nancy, France
| | - Stéphane Hacquard
- INRA, Interactions Arbres/Microorganismes, UMR 1136Champenoux, France
- Université de Lorraine, Interactions Arbres/Microorganismes, UMR 1136Vandoeuvre-lès-Nancy, France
| | - Sébastien Duplessis
- INRA, Interactions Arbres/Microorganismes, UMR 1136Champenoux, France
- Université de Lorraine, Interactions Arbres/Microorganismes, UMR 1136Vandoeuvre-lès-Nancy, France
- *Correspondence: Sébastien Duplessis, INRA, Interactions Arbres/Microorganismes, UMR 1136 INRA Université de Lorraine, Centre INRA de Nancy, 54280 Champenoux, France e-mail:
| | - Nicolas Rouhier
- INRA, Interactions Arbres/Microorganismes, UMR 1136Champenoux, France
- Université de Lorraine, Interactions Arbres/Microorganismes, UMR 1136Vandoeuvre-lès-Nancy, France
- Nicolas Rouhier, Faculté des Sciences, Université de Lorraine, Interactions Arbres/Microorganismes, UMR1136, Bd des Aiguillettes, 54500 Vandoeuvre-lès-Nancy, France e-mail:
| |
Collapse
|
123
|
Ross A, Yamada K, Hiruma K, Yamashita-Yamada M, Lu X, Takano Y, Tsuda K, Saijo Y. The Arabidopsis PEPR pathway couples local and systemic plant immunity. EMBO J 2013; 33:62-75. [PMID: 24357608 DOI: 10.1002/embj.201284303] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recognition of microbial challenges leads to enhanced immunity at both the local and systemic levels. In Arabidopsis, EFR and PEPR1/PEPR2 act as the receptor for the bacterial elongation factor EF-Tu (elf18 epitope) and for the endogenous PROPEP-derived Pep epitopes, respectively. The PEPR pathway has been described to mediate defence signalling following microbial recognition. Here we show that PROPEP2/PROPEP3 induction upon pathogen challenges is robust against jasmonate, salicylate, or ethylene dysfunction. Comparative transcriptome profiling between Pep2- and elf18-treated plants points to co-activation of otherwise antagonistic jasmonate- and salicylate-mediated immune branches as a key output of PEPR signalling. Accordingly, as well as basal defences against hemibiotrophic pathogens, systemic immunity is reduced in pepr1 pepr2 plants. Remarkably, PROPEP2/PROPEP3 induction is essentially restricted to the pathogen challenge sites during pathogen-induced systemic immunity. Localized Pep application activates genetically separable jasmonate and salicylate branches in systemic leaves without significant PROPEP2/PROPEP3 induction. Our results suggest that local PEPR activation provides a critical step in connecting local to systemic immunity by reinforcing separate defence signalling pathways.
Collapse
Affiliation(s)
- Annegret Ross
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Bartels S, Lori M, Mbengue M, van Verk M, Klauser D, Hander T, Böni R, Robatzek S, Boller T. The family of Peps and their precursors in Arabidopsis: differential expression and localization but similar induction of pattern-triggered immune responses. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5309-21. [PMID: 24151300 DOI: 10.1093/jxb/ert330] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In Arabidopsis thaliana, the endogenous danger peptides, AtPeps, have been associated with plant defences reminiscent of those induced in pattern-triggered immunity. AtPeps are perceived by two homologous receptor kinases, PEPR1 and PEPR2, and are encoded in the C termini of the PROPEP precursors. Here, we report that, contrary to the seemingly redundant AtPeps, the PROPEPs fall at least into two distinct groups. As revealed by promoter-β-glucuronidase studies, expression patterns of PROPEP1-3, -5, and -8 partially overlapped and correlated with those of the PEPR1 and -2 receptors, whereas those of PROPEP4 and -7 did not share any similarities with the former. Moreover, bi-clustering analysis indicated an association of PROPEP1, -2, and -3 with plant defence, whereas PROPEP5 expression was related to patterns of plant reproduction. In addition, at the protein level, PROPEPs appeared to be distinct. PROPEP3::YFP (fused to yellow fluorescent protein) was present in the cytosol, but, in contrast to previous predictions, PROPEP1::YFP and PROPEP6::YFP localized to the tonoplast. Together with the expression patterns, this could point to potentially non-redundant roles among the members of the PROPEP family. By contrast, their derived AtPeps, including the newly reported AtPep8, when applied exogenously, provoked activation of defence-related responses in a similar manner, suggesting a high level of functional redundancy between the AtPeps. Taken together, our findings reveal an apparent antagonism between AtPep redundancy and PROPEP variability, and indicate new roles for PROPEPs besides plant immunity.
Collapse
Affiliation(s)
- Sebastian Bartels
- Zürich-Basel Plant Science Center, University of Basel, Department of Environmental Sciences, Botany, Hebelstrasse 1, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Abstract
Plants are confronted with several biotic stresses such as microbial pathogens and other herbivores. To defend against such attackers, plants possess an array of pattern recognition receptors (PRRs) that sense the danger and consequently initiate a defence programme that prevents further damage and spreading of the pest. Characteristic pathogenic structures, so-called microbe-associated molecular patterns (MAMPs), serve as signals that allow the plant to sense invaders. Additionally, pathogens wound or damage the plant and the resulting release of damage-associated molecular patterns (DAMPs) serves as a warning signal. This review focuses on peptides that serve as triggers or amplifiers of plant defence and thus follow the definition of a MAMP or a DAMP.
Collapse
Affiliation(s)
- Markus Albert
- University of Tübingen, Center for Plant Molecular Biology, Department of Plant Biochemistry, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| |
Collapse
|
126
|
Kørner CJ, Klauser D, Niehl A, Domínguez-Ferreras A, Chinchilla D, Boller T, Heinlein M, Hann DR. The immunity regulator BAK1 contributes to resistance against diverse RNA viruses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1271-80. [PMID: 23902263 DOI: 10.1094/mpmi-06-13-0179-r] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The plant's innate immune system detects potential biotic threats through recognition of microbe-associated molecular patterns (MAMPs) or danger-associated molecular patterns (DAMPs) by pattern recognition receptors (PRR). A central regulator of pattern-triggered immunity (PTI) is the BRI1-associated kinase 1 (BAK1), which undergoes complex formation with PRR upon ligand binding. Although viral patterns inducing PTI are well known from animal systems, nothing similar has been reported for plants. Rather, antiviral defense in plants is thought to be mediated by post-transcriptional gene silencing of viral RNA or through effector-triggered immunity, i.e., recognition of virus-specific effectors by resistance proteins. Nevertheless, infection by compatible viruses can also lead to the induction of defense gene expression, indicating that plants may also recognize viruses through PTI. Here, we show that PTI, or at least the presence of the regulator BAK1, is important for antiviral defense of Arabidopsis plants. Arabidopsis bak1 mutants show increased susceptibility to three different RNA viruses during compatible interactions. Furthermore, crude viral extracts but not purified virions induce several PTI marker responses in a BAK1-dependent manner. Overall, we conclude that BAK1-dependent PTI contributes to antiviral resistance in plants.
Collapse
|
127
|
Ma Y, Zhao Y, Walker RK, Berkowitz GA. Molecular steps in the immune signaling pathway evoked by plant elicitor peptides: Ca2+-dependent protein kinases, nitric oxide, and reactive oxygen species are downstream from the early Ca2+ signal. PLANT PHYSIOLOGY 2013; 163:1459-71. [PMID: 24019427 PMCID: PMC3813664 DOI: 10.1104/pp.113.226068] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Endogenous plant elicitor peptides (Peps) can act to facilitate immune signaling and pathogen defense responses. Binding of these peptides to the Arabidopsis (Arabidopsis thaliana) plasma membrane-localized Pep receptors (PEPRs) leads to cytosolic Ca(2+) elevation, an early event in a signaling cascade that activates immune responses. This immune response includes the amplification of signaling evoked by direct perception of pathogen-associated molecular patterns by plant cells under assault. Work included in this report further characterizes the Pep immune response and identifies new molecular steps in the signal transduction cascade. The PEPR coreceptor BRASSINOSTEROID-INSENSITIVE1 Associated Kinase1 contributes to generation of the Pep-activated Ca(2+) signal and leads to increased defense gene expression and resistance to a virulent bacterial pathogen. Ca(2+)-dependent protein kinases (CPKs) decode the Ca(2+) signal, also facilitating defense gene expression and enhanced resistance to the pathogen. Nitric oxide and reduced nicotinamide adenine dinucleotide phosphate oxidase-dependent reactive oxygen species generation (due to the function of Respiratory Burst Oxidase Homolog proteins D and F) are also involved downstream from the Ca(2+) signal in the Pep immune defense signal transduction cascade, as is the case with BRASSINOSTEROID-INSENSITIVE1 Associated Kinase1 and CPK5, CPK6, and CPK11. These steps of the pathogen defense response are required for maximal Pep immune activation that limits growth of a virulent bacterial pathogen in the plant. We find a synergism between function of the PEPR and Flagellin Sensing2 receptors in terms of both nitric oxide and reactive oxygen species generation. Presented results are also consistent with the involvement of the secondary messenger cyclic GMP and a cyclic GMP-activated Ca(2+)-conducting channel in the Pep immune signaling pathway.
Collapse
|
128
|
Jeandroz S, Lamotte O, Astier J, Rasul S, Trapet P, Besson-Bard A, Bourque S, Nicolas-Francès V, Ma W, Berkowitz GA, Wendehenne D. There's more to the picture than meets the eye: nitric oxide cross talk with Ca2+ signaling. PLANT PHYSIOLOGY 2013; 163:459-70. [PMID: 23749853 PMCID: PMC3793028 DOI: 10.1104/pp.113.220624] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/07/2013] [Indexed: 05/18/2023]
Abstract
Calcium and nitric oxide (NO) are two important biological messengers. Increasing evidence indicates that Ca(2+) and NO work together in mediating responses to pathogenic microorganisms and microbe-associated molecular patterns. Ca(2+) fluxes were recognized to account for NO production, whereas evidence gathered from a number of studies highlights that NO is one of the key messengers mediating Ca(2+) signaling. Here, we present a concise description of the current understanding of the molecular mechanisms underlying the cross talk between Ca(2+) and NO in plant cells exposed to biotic stress. Particular attention will be given to the involvement of cyclic nucleotide-gated ion channels and Ca(2+) sensors. Notably, we provide new evidence that calmodulin might be regulated at the posttranslational level by NO through S-nitrosylation. Furthermore, we report original transcriptomic data showing that NO produced in response to oligogalacturonide regulates the expression of genes related to Ca(2+) signaling. Deeper insight into the molecules involved in the interplay between Ca(2+) and NO not only permits a better characterization of the Ca(2+) signaling system but also allows us to further understand how plants respond to pathogen attack.
Collapse
|
129
|
Santamaria ME, Martínez M, Cambra I, Grbic V, Diaz I. Understanding plant defence responses against herbivore attacks: an essential first step towards the development of sustainable resistance against pests. Transgenic Res 2013; 22:697-708. [PMID: 23793555 DOI: 10.1007/s11248-013-9725-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/10/2013] [Indexed: 11/25/2022]
Abstract
Plant-herbivore relationships are complex interactions encompassing elaborate networks of molecules, signals and strategies used to overcome defences developed by each other. Herbivores use multiple feeding strategies to obtain nutrients from host plants. In turn, plants respond by triggering defence mechanisms to inhibit, block or modify the metabolism of the pest. As part of these defences, herbivore-challenged plants emit volatiles to attract natural enemies and warn neighbouring plants of the imminent threat. In response, herbivores develop a variety of strategies to suppress plant-induced protection. Our understanding of the plant-herbivore interphase is limited, although recent molecular approaches have revealed the participation of a battery of genes, proteins and volatile metabolites in attack-defence processes. This review describes the intricate and dynamic defence systems governing plant-herbivore interactions by examining the diverse strategies plants employ to deny phytophagous arthropods the ability to breach newly developed mechanisms of plant resistance. A cornerstone of this understanding is the use of transgenic tools to unravel the complex networks that control these interactions.
Collapse
Affiliation(s)
- M Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Universidad Politécnica de Madrid, Campus Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
| | | | | | | | | |
Collapse
|
130
|
Logemann E, Birkenbihl RP, Rawat V, Schneeberger K, Schmelzer E, Somssich IE. Functional dissection of the PROPEP2 and PROPEP3 promoters reveals the importance of WRKY factors in mediating microbe-associated molecular pattern-induced expression. THE NEW PHYTOLOGIST 2013; 198:1165-1177. [PMID: 23496690 DOI: 10.1111/nph.12233] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 02/14/2013] [Indexed: 05/07/2023]
Abstract
· In Arabidopsis thaliana, small peptides (AtPeps) encoded by PROPEP genes act as damage-associated molecular patterns (DAMPs) that are perceived by two leucine-rich repeat receptor kinases, PEPR1 and PEPR2, to amplify defense responses. In particular, expression of PROPEP2 and PROPEP3 is strongly and rapidly induced by AtPeps, in response to bacterial, oomycete, and fungal pathogens, and microbe-associated molecular patterns (MAMPs). · The cis-regulatory modules (CRMs) within the PROPEP2 and PROPEP3 promoters that mediate MAMP responsiveness were delineated, employing parsley (Petroselinum crispum) protoplasts and transgenic A. thaliana plants harboring promoter-reporter constructs. By chromatin immunoprecipitation in vivo, DNA interactions with a specific transcription factor were detected. Furthermore, the PHASTCONS program was used to identify conserved regions of the PROPEP3 locus in different Brassicaceae species. · The major MAMP-responsive CRM within the PROPEP2 promoter is composed of several W boxes and an as1/OCS (activation sequence-1/octopine synthase) enhancer element, while in the PROPEP3 promoter the CRM is comprised of six W boxes. The WRKY33 transcription factor binds in vivo to these promoter regions in a MAMP-dependent manner. Both the position and orientation of the six W boxes are conserved within the PROPEP3 promoters of four other Brassicaceae family members. · WRKY factors are the major regulators of MAMP-induced PROPEP2 and PROPEP3 expression.
Collapse
Affiliation(s)
- Elke Logemann
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Rainer P Birkenbihl
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Vimal Rawat
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Korbinian Schneeberger
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Elmon Schmelzer
- Central Microscopy (CeMic), Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Imre E Somssich
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| |
Collapse
|
131
|
Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. ANNALS OF BOTANY 2013; 111:1021-58. [PMID: 23558912 PMCID: PMC3662512 DOI: 10.1093/aob/mct067] [Citation(s) in RCA: 1536] [Impact Index Per Article: 128.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/23/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Jasmonates are important regulators in plant responses to biotic and abiotic stresses as well as in development. Synthesized from lipid-constituents, the initially formed jasmonic acid is converted to different metabolites including the conjugate with isoleucine. Important new components of jasmonate signalling including its receptor were identified, providing deeper insight into the role of jasmonate signalling pathways in stress responses and development. SCOPE The present review is an update of the review on jasmonates published in this journal in 2007. New data of the last five years are described with emphasis on metabolites of jasmonates, on jasmonate perception and signalling, on cross-talk to other plant hormones and on jasmonate signalling in response to herbivores and pathogens, in symbiotic interactions, in flower development, in root growth and in light perception. CONCLUSIONS The last few years have seen breakthroughs in the identification of JASMONATE ZIM DOMAIN (JAZ) proteins and their interactors such as transcription factors and co-repressors, and the crystallization of the jasmonate receptor as well as of the enzyme conjugating jasmonate to amino acids. Now, the complex nature of networks of jasmonate signalling in stress responses and development including hormone cross-talk can be addressed.
Collapse
Affiliation(s)
- C Wasternack
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg, 3, Halle (Saale), Germany.
| | | |
Collapse
|
132
|
Chalfoun NR, Grellet-Bournonville CF, Martínez-Zamora MG, Díaz-Perales A, Castagnaro AP, Díaz-Ricci JC. Purification and characterization of AsES protein: a subtilisin secreted by Acremonium strictum is a novel plant defense elicitor. J Biol Chem 2013; 288:14098-14113. [PMID: 23530047 DOI: 10.1074/jbc.m112.429423] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In this work, the purification and characterization of an extracellular elicitor protein, designated AsES, produced by an avirulent isolate of the strawberry pathogen Acremonium strictum, are reported. The defense eliciting activity present in culture filtrates was recovered and purified by ultrafiltration (cutoff, 30 kDa), anionic exchange (Q-Sepharose, pH 7.5), and hydrophobic interaction (phenyl-Sepharose) chromatographies. Two-dimensional SDS-PAGE of the purified active fraction revealed a single spot of 34 kDa and pI 8.8. HPLC (C2/C18) and MS/MS analysis confirmed purification to homogeneity. Foliar spray with AsES provided a total systemic protection against anthracnose disease in strawberry, accompanied by the expression of defense-related genes (i.e. PR1 and Chi2-1). Accumulation of reactive oxygen species (e.g. H2O2 and O2(˙)) and callose was also observed in Arabidopsis. By using degenerate primers designed from the partial amino acid sequences and rapid amplification reactions of cDNA ends, the complete AsES-coding cDNA of 1167 nucleotides was obtained. The deduced amino acid sequence showed significant identity with fungal serine proteinases of the subtilisin family, indicating that AsES is synthesized as a larger precursor containing a 15-residue secretory signal peptide and a 90-residue peptidase inhibitor I9 domain in addition to the 283-residue mature protein. AsES exhibited proteolytic activity in vitro, and its resistance eliciting activity was eliminated when inhibited with PMSF, suggesting that its proteolytic activity is required to induce the defense response. This is, to our knowledge, the first report of a fungal subtilisin that shows eliciting activity in plants. This finding could contribute to develop disease biocontrol strategies in plants by activating its innate immunity.
Collapse
Affiliation(s)
- Nadia R Chalfoun
- Instituto Superior de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, and Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, T4000ILJ San Miguel de Tucumán, Argentina
| | - Carlos F Grellet-Bournonville
- Instituto Superior de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, and Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, T4000ILJ San Miguel de Tucumán, Argentina
| | - Martín G Martínez-Zamora
- Instituto Superior de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, and Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, T4000ILJ San Miguel de Tucumán, Argentina
| | - Araceli Díaz-Perales
- Unidad de Química y Bioquímica, Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Atilio P Castagnaro
- Sección Biotecnología, Estación Experimental Agroindustrial Obispo Colombres, T4101XAC Las Talitas, Tucumán, Argentina
| | - Juan C Díaz-Ricci
- Instituto Superior de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, and Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, T4000ILJ San Miguel de Tucumán, Argentina.
| |
Collapse
|
133
|
Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense. Proc Natl Acad Sci U S A 2013; 110:5707-12. [PMID: 23509266 DOI: 10.1073/pnas.1214668110] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Insect-induced defenses occur in nearly all plants and are regulated by conserved signaling pathways. As the first described plant peptide signal, systemin regulates antiherbivore defenses in the Solanaceae, but in other plant families, peptides with analogous activity have remained elusive. In the current study, we demonstrate that a member of the maize (Zea mays) plant elicitor peptide (Pep) family, ZmPep3, regulates responses against herbivores. Consistent with being a signal, expression of the ZmPROPEP3 precursor gene is rapidly induced by Spodoptera exigua oral secretions. At concentrations starting at 5 pmol per leaf, ZmPep3 stimulates production of jasmonic acid, ethylene, and increased expression of genes encoding proteins associated with herbivory defense. These include proteinase inhibitors and biosynthetic enzymes for production of volatile terpenes and benzoxazinoids. In accordance with gene expression data, plants treated with ZmPep3 emit volatiles similar to those from plants subjected to herbivory. ZmPep3-treated plants also exhibit induced accumulation of the benzoxazinoid phytoalexin 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside. Direct and indirect defenses induced by ZmPep3 contribute to resistance against S. exigua through significant reduction of larval growth and attraction of Cotesia marginiventris parasitoids. ZmPep3 activity is specific to Poaceous species; however, peptides derived from PROPEP orthologs identified in Solanaceous and Fabaceous plants also induce herbivory-associated volatiles in their respective species. These studies demonstrate that Peps are conserved signals across diverse plant families regulating antiherbivore defenses and are likely to be the missing functional homologs of systemin outside of the Solanaceae.
Collapse
|
134
|
Layered pattern receptor signaling via ethylene and endogenous elicitor peptides during Arabidopsis immunity to bacterial infection. Proc Natl Acad Sci U S A 2013; 110:6211-6. [PMID: 23431187 DOI: 10.1073/pnas.1216780110] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recognition of molecular patterns characteristic of microbes or altered-self leads to immune activation in multicellular eukaryotes. In Arabidopsis thaliana, the leucine-rich-repeat receptor kinases FLAGELLIN-SENSING2 (FLS2) and EF-TU RECEPTOR (EFR) recognize bacterial flagellin and elongation factor EF-Tu (and their elicitor-active epitopes flg22 and elf18), respectively. Likewise, PEP1 RECEPTOR1 (PEPR1) and PEPR2 recognize the elicitor-active Pep epitopes conserved in Arabidopsis ELICITOR PEPTIDE PRECURSORs (PROPEPs). Here we reveal that loss of ETHYLENE-INSENSITIVE2 (EIN2), a master signaling regulator of the phytohormone ethylene (ET), lowers sensitivity to both elf18 and flg22 in different defense-related outputs. Remarkably, in contrast to a large decrease in FLS2 expression, EFR expression and receptor accumulation remain unaffected in ein2 plants. Genome-wide transcriptome profiling has uncovered an inventory of EIN2-dependent and EFR-regulated genes. This dataset highlights important aspects of how ET modulates EFR-triggered immunity: the potentiation of salicylate-based immunity and the repression of a jasmonate-related branch. EFR requires ET signaling components for PROPEP2 activation but not for PROPEP3 activation, pointing to both ET-dependent and -independent engagement of the PEPR pathway during EFR-triggered immunity. Moreover, PEPR activation compensates the ein2 defects for a subset of EFR-regulated genes. Accordingly, ein2 pepr1 pepr2 plants exhibit additive defects in EFR-triggered antibacterial immunity, compared with ein2 or pepr1 pepr2 plants. Our findings suggest that the PEPR pathway not only mediates ET signaling but also compensates for its absence in enhancing plant immunity.
Collapse
|
135
|
Delano-Frier JP, Pearce G, Huffaker A, Stratmann JW. Systemic Wound Signaling in Plants. LONG-DISTANCE SYSTEMIC SIGNALING AND COMMUNICATION IN PLANTS 2013. [DOI: 10.1007/978-3-642-36470-9_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
136
|
Linking ligand perception by PEPR pattern recognition receptors to cytosolic Ca2+ elevation and downstream immune signaling in plants. Proc Natl Acad Sci U S A 2012; 109:19852-7. [PMID: 23150556 DOI: 10.1073/pnas.1205448109] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Little is known about molecular steps linking perception of pathogen invasion by cell surface sentry proteins acting as pattern recognition receptors (PRRs) to downstream cytosolic Ca(2+) elevation, a critical step in plant immune signaling cascades. Some PRRs recognize molecules (such as flagellin) associated with microbial pathogens (pathogen-associated molecular patterns, PAMPs), whereas others bind endogenous plant compounds (damage-associated molecular patterns, DAMPs) such as peptides released from cells upon attack. This work focuses on the Arabidopsis DAMPs plant elicitor peptides (Peps) and their receptors, PEPR1 and PEPR2. Pep application causes in vivo cGMP generation and downstream signaling that is lost when the predicted PEPR receptor guanylyl cyclase (GC) active site is mutated. Pep-induced Ca(2+) elevation is attributable to cGMP activation of a Ca(2+) channel. Some differences were identified between Pep/PEPR signaling and the Ca(2+)-dependent immune signaling initiated by the flagellin peptide flg22 and its cognate receptor Flagellin-sensing 2 (FLS2). FLS2 signaling may have a greater requirement for intracellular Ca(2+) stores and inositol phosphate signaling, whereas Pep/PEPR signaling requires extracellular Ca(2+). Maximal FLS2 signaling requires a functional Pep/PEPR system. This dependence was evidenced as a requirement for functional PEPR receptors for maximal flg22-dependent Ca(2+) elevation, H(2)O(2) generation, defense gene [WRKY33 and Plant Defensin 1.2 (PDF1.2)] expression, and flg22/FLS2-dependent impairment of pathogen growth. In a corresponding fashion, FLS2 loss of function impaired Pep signaling. In addition, a role for PAMP and DAMP perception in bolstering effector-triggered immunity (ETI) is reported; loss of function of either FLS2 or PEPR receptors impaired the hypersensitive response (HR) to an avirulent pathogen.
Collapse
|
137
|
Abstract
The frontline of plant defense against non-viral pathogens such as bacteria, fungi and oomycetes is provided by transmembrane pattern recognition receptors that detect conserved pathogen-associated molecular patterns (PAMPs), leading to pattern-triggered immunity (PTI). To counteract this innate defense, pathogens deploy effector proteins with a primary function to suppress PTI. In specific cases, plants have evolved intracellular resistance (R) proteins detecting isolate-specific pathogen effectors, leading to effector-triggered immunity (ETI), an amplified version of PTI, often associated with hypersensitive response (HR) and programmed cell death (PCD). In the case of plant viruses, no conserved PAMP was identified so far and the primary plant defense is thought to be based mainly on RNA silencing, an evolutionary conserved, sequence-specific mechanism that regulates gene expression and chromatin states and represses invasive nucleic acids such as transposons. Endogenous silencing pathways generate 21-24 nt small (s)RNAs, miRNAs and short interfering (si)RNAs, that repress genes post-transcriptionally and/or transcriptionally. Four distinct Dicer-like (DCL) proteins, which normally produce endogenous miRNAs and siRNAs, all contribute to the biogenesis of viral siRNAs in infected plants. Growing evidence indicates that RNA silencing also contributes to plant defense against non-viral pathogens. Conversely, PTI-based innate responses may contribute to antiviral defense. Intracellular R proteins of the same NB-LRR family are able to recognize both non-viral effectors and avirulence (Avr) proteins of RNA viruses, and, as a result, trigger HR and PCD in virus-resistant hosts. In some cases, viral Avr proteins also function as silencing suppressors. We hypothesize that RNA silencing and innate immunity (PTI and ETI) function in concert to fight plant viruses. Viruses counteract this dual defense by effectors that suppress both PTI-/ETI-based innate responses and RNA silencing to establish successful infection.
Collapse
Affiliation(s)
- Anna S Zvereva
- Institute of Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland.
| | | |
Collapse
|
138
|
Vorhölter FJ, Wiggerich HG, Scheidle H, Sidhu VK, Mrozek K, Küster H, Pühler A, Niehaus K. Involvement of bacterial TonB-dependent signaling in the generation of an oligogalacturonide damage-associated molecular pattern from plant cell walls exposed to Xanthomonas campestris pv. campestris pectate lyases. BMC Microbiol 2012; 12:239. [PMID: 23082751 PMCID: PMC3551730 DOI: 10.1186/1471-2180-12-239] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 09/25/2012] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Efficient perception of attacking pathogens is essential for plants. Plant defense is evoked by molecules termed elicitors. Endogenous elicitors or damage-associated molecular patterns (DAMPs) originate from plant materials upon injury or pathogen activity. While there are comparably well-characterized examples for DAMPs, often oligogalacturonides (OGAs), generated by the activity of fungal pathogens, endogenous elicitors evoked by bacterial pathogens have been rarely described. In particular, the signal perception and transduction processes involved in DAMP generation are poorly characterized. RESULTS A mutant strain of the phytopathogenic bacterium Xanthomonas campestris pv. campestris deficient in exbD2, which encodes a component of its unusual elaborate TonB system, had impaired pectate lyase activity and caused no visible symptoms for defense on the non-host plant pepper (Capsicum annuum). A co-incubation of X. campestris pv. campestris with isolated cell wall material from C. annuum led to the release of compounds which induced an oxidative burst in cell suspension cultures of the non-host plant. Lipopolysaccharides and proteins were ruled out as elicitors by polymyxin B and heat treatment, respectively. After hydrolysis with trifluoroacetic acid and subsequent HPAE chromatography, the elicitor preparation contained galacturonic acid, the monosaccharide constituent of pectate. OGAs were isolated from this crude elicitor preparation by HPAEC and tested for their biological activity. While small OGAs were unable to induce an oxidative burst, the elicitor activity in cell suspension cultures of the non-host plants tobacco and pepper increased with the degree of polymerization (DP). Maximal elicitor activity was observed for DPs exceeding 8. In contrast to the X. campestris pv. campestris wild type B100, the exbD2 mutant was unable to generate elicitor activity from plant cell wall material or from pectin. CONCLUSIONS To our knowledge, this is the second report on a DAMP generated by bacterial features. The generation of the OGA elicitor is embedded in a complex exchange of signals within the framework of the plant-microbe interaction of C. annuum and X. campestris pv. campestris. The bacterial TonB-system is essential for the substrate-induced generation of extracellular pectate lyase activity. This is the first demonstration that a TonB-system is involved in bacterial trans-envelope signaling in the context of a pathogenic interaction with a plant.
Collapse
Affiliation(s)
- Frank-Jörg Vorhölter
- Department of Proteome and Metabolome Research, Faculty of Biology, Universität Bielefeld, Universitätsstr 25, Bielefeld 33615, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Savory EA, Adhikari BN, Hamilton JP, Vaillancourt B, Buell CR, Day B. mRNA-Seq analysis of the Pseudoperonospora cubensis transcriptome during cucumber (Cucumis sativus L.) infection. PLoS One 2012; 7:e35796. [PMID: 22545137 PMCID: PMC3335787 DOI: 10.1371/journal.pone.0035796] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/22/2012] [Indexed: 11/18/2022] Open
Abstract
Pseudoperonospora cubensis, an oomycete, is the causal agent of cucurbit downy mildew, and is responsible for significant losses on cucurbit crops worldwide. While other oomycete plant pathogens have been extensively studied at the molecular level, Ps. cubensis and the molecular basis of its interaction with cucurbit hosts has not been well examined. Here, we present the first large-scale global gene expression analysis of Ps. cubensis infection of a susceptible Cucumis sativus cultivar, ‘Vlaspik’, and identification of genes with putative roles in infection, growth, and pathogenicity. Using high throughput whole transcriptome sequencing, we captured differential expression of 2383 Ps. cubensis genes in sporangia and at 1, 2, 3, 4, 6, and 8 days post-inoculation (dpi). Additionally, comparison of Ps. cubensis expression profiles with expression profiles from an infection time course of the oomycete pathogen Phytophthora infestans on Solanum tuberosum revealed similarities in expression patterns of 1,576–6,806 orthologous genes suggesting a substantial degree of overlap in molecular events in virulence between the biotrophic Ps. cubensis and the hemi-biotrophic P. infestans. Co-expression analyses identified distinct modules of Ps. cubensis genes that were representative of early, intermediate, and late infection stages. Collectively, these expression data have advanced our understanding of key molecular and genetic events in the virulence of Ps. cubensis and thus, provides a foundation for identifying mechanism(s) by which to engineer or effect resistance in the host.
Collapse
Affiliation(s)
- Elizabeth A Savory
- Department of Plant Pathology, Michigan State University, East Lansing, Michigan, United States of America
| | | | | | | | | | | |
Collapse
|
140
|
|
141
|
Kemmerling B, Halter T, Mazzotta S, Mosher S, Nürnberger T. A genome-wide survey for Arabidopsis leucine-rich repeat receptor kinases implicated in plant immunity. FRONTIERS IN PLANT SCIENCE 2011; 2:88. [PMID: 22645555 PMCID: PMC3355784 DOI: 10.3389/fpls.2011.00088] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/07/2011] [Indexed: 05/02/2023]
Abstract
Receptor-like kinases (RLK) are among the largest gene families encoded by plant genomes. Common structural features of plant RLKs are an extracellular ligand binding domain, a membrane spanning domain, and an intracellular protein kinase domain. The largest subfamily of plant RLKs is characterized by extracellular leucine-rich repeat (LRR-RLK) structures that are known biochemical modules for mediating ligand binding and protein-protein interactions. In the frame of the Arabidopsis Functional Genomics Network initiative of the German Research Foundation (DFG) we have conducted a comprehensive survey for and functional characterization of LRR-RLKs potentially implicated in Arabidopsis thaliana immunity to microbial infection. Arabidopsis gene expression patterns suggested an important role of this class of proteins in biotic stress adaptation. Detailed biochemical and physiological characterization of the brassinosteroid insensitive 1-associated receptor kinase 1 (BAK1) revealed brassinolide-independent roles of this protein in plant immunity, in addition to its well-established function in plant development. The LRR-RLK BAK1 has further been shown to form heteromeric complexes with various other LRR-RLKs in a ligand-dependent manner, suggesting a role as adapter or co-receptor in plant receptor complexes. Here, we review the current status of BAK1 and BAK1-interacting LRR-RLKs in plant immunity.
Collapse
Affiliation(s)
- Birgit Kemmerling
- Zentrum für Molekularbiologie der Pflanzen-Pflanzenbiochemie, Eberhard-Karls-Universität TübingenTübingen, Germany
- *Correspondence: Birgit Kemmerling and Thorsten Nürnberger, Zentrum für Molekularbiologie der Pflanzen, Pflanzenbiochemie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany. e-mail: ;
| | - Thierry Halter
- Zentrum für Molekularbiologie der Pflanzen-Pflanzenbiochemie, Eberhard-Karls-Universität TübingenTübingen, Germany
| | - Sara Mazzotta
- Zentrum für Molekularbiologie der Pflanzen-Pflanzenbiochemie, Eberhard-Karls-Universität TübingenTübingen, Germany
| | - Stephen Mosher
- Zentrum für Molekularbiologie der Pflanzen-Pflanzenbiochemie, Eberhard-Karls-Universität TübingenTübingen, Germany
| | - Thorsten Nürnberger
- Zentrum für Molekularbiologie der Pflanzen-Pflanzenbiochemie, Eberhard-Karls-Universität TübingenTübingen, Germany
- *Correspondence: Birgit Kemmerling and Thorsten Nürnberger, Zentrum für Molekularbiologie der Pflanzen, Pflanzenbiochemie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany. e-mail: ;
| |
Collapse
|