101
|
Hansen JM, Ashina M. Calcitonin gene-related peptide and migraine with aura: A systematic review. Cephalalgia 2014; 34:695-707. [DOI: 10.1177/0333102413520084] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Calcitonin gene-related peptide (CGRP) is a key molecule in migraine pathophysiology. Most studies have focused on CGRP in relation to migraine without aura (MO). About one-third of migraine patients have attacks with aura (MA), and this is a systematic review of the current literature on CGRP and MA. Methods We performed a systematic literature search on MEDLINE for reports of CGRP and MA, covering basic science, animal and human studies as well as randomized clinical trials. Results The literature search identified 594 citations, of which 38 contained relevant, original data. Plasma levels of CGRP in MA patients are comparable to MO, but CGRP levels varied among studies. A number of animal studies, including knock-ins of familial hemiplegic migraine (FHM) genes, have examined the relationship between CGRP and cortical spreading depression. In patients, CGRP does not trigger migraine in FHM, but is a robust trigger of migraine-like headache both in MA and MO patients. The treatment effect of CGRP antagonists are well proven in the treatment of migraine, but no studies have studied the effect specifically in MA patients. Conclusion This systematic review indicates that the role of CGRP in MA is less studied than in MO. Further studies of the importance of CGRP for auras and migraine are needed.
Collapse
Affiliation(s)
- Jakob M Hansen
- The Danish Headache Center and Department of Neurology, Glostrup Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Messoud Ashina
- The Danish Headache Center and Department of Neurology, Glostrup Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
102
|
Ibrahimi K, Vermeersch S, Danser A, Villalón CM, van den Meiracker AH, de Hoon J, MaassenVanDenBrink A. Development of an experimental model to study trigeminal nerve-mediated vasodilation on the human forehead. Cephalalgia 2014; 34:514-22. [PMID: 24391116 DOI: 10.1177/0333102413517773] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/20/2013] [Indexed: 12/29/2022]
Abstract
BACKGROUND During migraine, trigeminal sensory nerve terminals release calcitonin gene-related peptide (CGRP), inducing nociception and vasodilation. Applied on the skin, capsaicin activates the transient receptor potential vanilloid type 1 (TRPV1) channel and releases CGRP from sensory nerve terminals, thus increasing dermal blood flow (DBF). Using capsaicin application and electrical stimulation of the forehead skin, a trigeminal nerve-innervated dermatome, we aimed to develop a model to measure trigeminal nerve-mediated vasodilation in humans. METHODS Using laser Doppler imaging, forehead DBF responses to application of capsaicin (0.06 mg/ml and 6.0 mg/ml) and saline, with and without iontophoresis, were studied in healthy subjects. The within-subject coefficient of variation (WCV) of repeated DBF measurements was calculated to assess reproducibility. RESULTS Maximal DBF responses to 6.0 mg/ml capsaicin with and without iontophoresis did not differ (Emax 459 ± 32 and 424 ± 32 arbitrary units (a.u.), WCV 6 ± 4%). In contrast, DBF responses to 0.06 mg/ml capsaicin were significantly larger with than without iontophoresis (Emax 307 ± 60 versus 187 ± 21 a.u., WCV 21 ± 13%). Saline with iontophoresis significantly increased DBF (Emax: 245 ± 26 a.u, WCV 11 ± 8%), while saline application without iontophoresis did not affect DBF. CONCLUSION Topical application of capsaicin and electrical stimulation induce reproducible forehead DBF increases and therefore are suitable to study trigeminal nerve-mediated vasodilation in humans.
Collapse
Affiliation(s)
- K Ibrahimi
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, the Netherlands
| | - S Vermeersch
- Center for Clinical Pharmacology, University Hospital Gasthuisberg (KU Leuven), Belgium
| | - Ahj Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, the Netherlands
| | - C M Villalón
- Departamento de Farmacobiología, Cinvestav-Coapa, México
| | - A H van den Meiracker
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, the Netherlands
| | - J de Hoon
- Center for Clinical Pharmacology, University Hospital Gasthuisberg (KU Leuven), Belgium
| | - A MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, the Netherlands
| |
Collapse
|
103
|
Kaniecki RG, Taylor FR, Landy SH. Abstracts and Citations. Headache 2014. [DOI: 10.1111/head.12264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
104
|
Abstract
We studied the effects of Russian preparation of porcine calcitonin (Calcitrinum, 1 U/100 g) on the level of glucose and total calcium, glycogen concentration in the liver, and glucose consumption by the muscle and adipose tissues in vivo and in vitro. The basal level of insulin and secretion of insulin in the dynamics of glucose tolerance test were studied after treatment with calcitonin. In addition to hypocalcemic effect, this substance produced significant hyperglycemic effects, decreased glycogen amount in the liver, inhibited insulin-induced glucose consumption by muscular and adipose tissues in vivo and in vitro, slowed down insulin secretion during glucose load, and impaired glucose tolerance. Thus, calcitonin had contra-insular effects on glucose metabolism.
Collapse
Affiliation(s)
- S S Moisa
- State Scientific Center of the Russian Federation Institute for Biomedical Problems, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
105
|
Kaiser EA, Russo AF. CGRP and migraine: could PACAP play a role too? Neuropeptides 2013; 47:451-61. [PMID: 24210136 PMCID: PMC3859433 DOI: 10.1016/j.npep.2013.10.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 09/27/2013] [Accepted: 10/09/2013] [Indexed: 11/24/2022]
Abstract
Migraine is a debilitating neurological disorder that affects about 12% of the population. In the past decade, the role of the neuropeptide calcitonin gene-related peptide (CGRP) in migraine has been firmly established by clinical studies. CGRP administration can trigger migraines, and CGRP receptor antagonists ameliorate migraine. In this review, we will describe multifunctional activities of CGRP that could potentially contribute to migraine. These include roles in light aversion, neurogenic inflammation, peripheral and central sensitization of nociceptive pathways, cortical spreading depression, and regulation of nitric oxide production. Yet clearly there will be many other contributing genes that could act in concert with CGRP. One candidate is pituitary adenylate cyclase-activating peptide (PACAP), which shares some of the same actions as CGRP, including the ability to induce migraine in migraineurs and light aversive behavior in rodents. Interestingly, both CGRP and PACAP act on receptors that share an accessory subunit called receptor activity modifying protein-1 (RAMP1). Thus, comparisons between the actions of these two migraine-inducing neuropeptides, CGRP and PACAP, may provide new insights into migraine pathophysiology.
Collapse
Affiliation(s)
- Eric A. Kaiser
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242
| | - Andrew F. Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242
- Department of Neurology, University of Iowa, Iowa City, IA 52242
- Veterans Affairs Medical Center, Iowa City, IA 52246
- Corresponding Author: Andrew F. Russo, University of Iowa, Department of Molecular Physiology and Biophysics, 5-432 BSB, 51 Newton Rd, Iowa City, IA 52242; Tel (319) 335-7872; Fax (319) 335-7330;
| |
Collapse
|
106
|
Okuma H, Iijima K, Yasuda T, Tokuoka K, Kitagawa Y. Preventive effect of cyproheptadine hydrochloride in refractory patients with frequent migraine. SPRINGERPLUS 2013; 2:573. [PMID: 24255866 PMCID: PMC3824712 DOI: 10.1186/2193-1801-2-573] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 10/15/2013] [Indexed: 11/17/2022]
Abstract
Cyproheptadine hydrochloride (CH) is rarely used to treat adult patients with migraine in Japan because it causes sleepiness. In this study, we investigated the preventive effect of CH in 12 patients who had failed to respond to conventional preventive treatments among 103 migraine patients treated at our hospital. These 12 subjects had all received unsuccessful migraine prophylaxis with lomerizine, valproic acid and topiramate, or had discontinued these treatments due to adverse reactions. Initially, the subjects were given 4 mg CH before sleeping. In those who experienced no clinically significant sleepiness following the treatment, the drug was orally administered at 4 mg after breakfast as well (8 mg per day in total). Drug efficacy was evaluated by examining the frequency of migraine at one month and three months after the start of treatment. The frequency of migraine was dramatically reduced in all patients within 7 to 10 days after starting treatment. The average frequency of migraine during the three-month period was 2.6 episodes per month, representing a significant (p < 0.01) reduction from the pretreatment frequency of over 10 per month. Our results indicate that CH may be effective as a migraine-preventive treatment for patients in whom conventional drugs have been ineffective or have caused side effects. But this study is not a double blind randomized trial, and an open study with no control group.
Collapse
Affiliation(s)
- Hirohisa Okuma
- Department of Neurology, Tokai University Hachioji Hospital, 1838 Ishikawa-cho, Hachioji city, Tokyo 192-0032 Japan
| | - Kazuyuki Iijima
- Department of Neurology, Tokai University Hachioji Hospital, 1838 Ishikawa-cho, Hachioji city, Tokyo 192-0032 Japan
| | - Takashi Yasuda
- Department of Neurology, Tokai University Hachioji Hospital, 1838 Ishikawa-cho, Hachioji city, Tokyo 192-0032 Japan
| | - Kentaro Tokuoka
- Department of Neurology, Tokai University Hachioji Hospital, 1838 Ishikawa-cho, Hachioji city, Tokyo 192-0032 Japan
| | - Yasuhisa Kitagawa
- Department of Neurology, Tokai University Hachioji Hospital, 1838 Ishikawa-cho, Hachioji city, Tokyo 192-0032 Japan
| |
Collapse
|
107
|
Cady R, Turner I, Dexter K, Beach ME, Cady R, Durham P. An exploratory study of salivary calcitonin gene-related peptide levels relative to acute interventions and preventative treatment with onabotulinumtoxinA in chronic migraine. Headache 2013; 54:269-77. [PMID: 24147647 DOI: 10.1111/head.12250] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2013] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To determine if baseline/interictal saliva calcitonin gene-related peptide (CGRP) levels would be lower in subjects with chronic migraine receiving onabotulinumtoxinA compared with those receiving saline. BACKGROUND CGRP is considered central to the pathogenesis of episodic migraine, but its relationship to chronic migraine is less understood. OnabotulinumtoxinA is an effective treatment for chronic migraine and has been demonstrated to inhibit the vesicular release of CGRP. METHODS This was an exploratory, randomized, placebo-controlled, crossover pilot study of 20 subjects that received onabotulinumtoxinA and saline injection (placebo). The amount of CGRP in saliva samples collected on a nonheadache or low headache day, and prior to and after treatment of a headache exacerbation was measured. Daily headache records, medications, and response to treatment were recorded in a diary. RESULTS A decrease in baseline/interictal saliva CGRP levels for subjects receiving onabotulinumtoxinA from 39.4 ± 7.5 pg CGRP/mg total protein after the first month to 25.5 ± 4.1 pg after the third month was observed. However, this difference did not reach significance nor was it significant when compared to the saline treatment. There was a reduction in the number of headache days for both onabotulinumtoxinA and saline over baseline throughout the active phases of the study. However, there was no statistical difference in headache days between groups. Subjects with a greater than 50% response to onabotulinumtoxinA had better 2-hour pain relief with acute treatment than non-responders to onabotulinumtoxinA or saline. CONCLUSION While CGRP levels were not elevated during a migraine attack in chronic migraine subjects as has been reported in episodic migraine, there was an overall decrease in the baseline/interictal levels in response to onabotulinumtoxinA.
Collapse
Affiliation(s)
- Roger Cady
- Headache Care Center, Springfield, MO, USA
| | | | | | | | | | | |
Collapse
|
108
|
Ramírez Rosas MB, Labruijere S, Villalón CM, Maassen Vandenbrink A. Activation of 5-hydroxytryptamine1B/1D/1F receptors as a mechanism of action of antimigraine drugs. Expert Opin Pharmacother 2013; 14:1599-610. [PMID: 23815106 DOI: 10.1517/14656566.2013.806487] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The introduction of the triptans (5-hydroxytryptamine (5-HT)1B/1D receptor agonists) was a great improvement in the acute treatment of migraine. However, shortcomings of the triptans have prompted research on novel serotonergic targets for the treatment of migraine. AREAS COVERED In this review the different types of antimigraine drugs acting at 5-HT receptors, their discovery and development are discussed. The first specific antimigraine drugs were the ergot alkaloids, consisting of ergotamine, dihydroergotamine and methysergide, which are agonists at 5-HT receptors, but can also bind α-adrenoceptors and dopamine receptors. In the 1990s, the triptans became available on the market. They are 5-HT1B/1D receptor agonists, showing fewer side effects due to their receptor specificity. In the last years, compounds that bind specifically to 5-HT1D, 5-HT1F and 5-HT7 receptors have been explored for their antimigraine potential. Furthermore, the serotonergic system seems to act in tight connection with the glutamatergic as well as the CGRP-ergic systems, which may open novel therapeutic avenues. EXPERT OPINION Although the triptans are very effective in treating migraine attacks, their shortcomings have stimulated the search for novel drugs. Currently, the focus is on 5-HT1F receptor agonists, which seem devoid of vascular side effects. Moreover, novel compounds that affect multiple transmitter and/or neuropeptide systems that are involved in migraine could be of therapeutic relevance.
Collapse
Affiliation(s)
- Martha B Ramírez Rosas
- Erasmus Medical Centre, Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
109
|
Hoyer D, Bartfai T. Neuropeptides and neuropeptide receptors: drug targets, and peptide and non-peptide ligands: a tribute to Prof. Dieter Seebach. Chem Biodivers 2013; 9:2367-87. [PMID: 23161624 DOI: 10.1002/cbdv.201200288] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Indexed: 11/06/2022]
Abstract
The number of neuropeptides and their corresponding receptors has increased steadily over the last fourty years: initially, peptides were isolated from gut or brain (e.g., Substance P, somatostatin), then by targeted mining in specific regions (e.g., cortistatin, orexin in the brain), or by deorphanization of G-protein-coupled receptors (GPCRs; orexin, ghrelin receptors) and through the completion the Human Genome Project. Neuropeptides (and their receptors) have regionally restricted distributions in the central and peripheral nervous system. The neuropeptide signaling is somewhat more distinct spatially than signaling with classical, low-molecular-weight neurotransmitters that are more widely expressed, and, therefore, one assumes that drugs acting at neuropeptide receptors may have more selective pharmacological actions with possibly fewer side effects than drugs acting on glutamatergic, GABAergic, monoaminergic, or cholinergic systems. Neuropeptide receptors, which may have a few or multiple subtypes and splice variants, belong almost exclusively to the GPCR family also known as seven-transmembrane receptors (7TM), a favorite class of drug targets in the pharmaceutical industry. Most neuropeptides are co-stored and co-released with classic neurotransmitters, albeit often only at higher frequencies of stimulation or at bursting activity, thus restricting the neuropeptide signaling to specific circumstances, another reason to assume that neuropeptide drug mimics may have less side effects. Neuropeptides possess a wide spectrum of functions from neurohormone, neurotransmitter to growth factor, but also as key inflammatory mediators. Neuropeptides become 'active' when the nervous system is challenged, e.g., by stress, injury, drug abuse, or neuropsychiatric disorders with genetic, epigenetic, and/or environmental components. The unsuspected number of true neuropeptides and their cognate receptors provides opportunities to identify novel targets for the treatment of both central and peripheral nervous system disorders. Both, receptor subtype-selective antagonists and agonists are being developed, as illustrated by the success of somatostatin agonists, angiotensin, and endothelin antagonists, and the expected clinical applications of NK-1/2/3 (substance P) receptor antagonists, CRF, vasopressin, NPY, neurotensin, orexin antagonists, or neuropeptide receptor modulators; such ligands have efficacy in preclinical or clinical models of pain and neuropsychiatric diseases, such as migraine, chronic/neuropathic pain, anxiety, sleep disorders, depression, and schizophrenia. In addition, both positive and negative allosteric modulators have been described with interesting in vivo activities (e.g., at galanin receptors). The field has become more complex now that an increasing number of heteromeric neuropeptide receptors are described, e.g., ghrelin receptors with 5-HT(2C) or dopamine D(1), D(2) receptors. At long last, structure-based drug discovery can now be envisaged with confidence, since crystal or solution structure of GPCRs and GPCR-ligand complexes, including peptide receptors, are published almost on a monthly basis. Finally, although most compounds acting at peptide receptors are still peptidomimetics, the last decade has seen the emergence of low-molecular-weight nonpeptide ligands (e.g., for orexin, ghrelin, or neurokinin receptors), and surprising progress has been made with β- and γ-peptides as very stable and potent mimetics of, e.g., somatostatin (SRIF), where the native SRIF has a half-life limited to 2-3 min. This last point will be illustrated more specifically, as we have had a long-standing collaboration with Prof. D. Seebach to whom this review is dedicated at the occasion of his 75th birthday.
Collapse
Affiliation(s)
- Daniel Hoyer
- Department of Pharmacology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | |
Collapse
|
110
|
Amin FM, Asghar MS, Ravneberg JW, de Koning PJH, Larsson HBW, Olesen J, Ashina M. The effect of sumatriptan on cephalic arteries: A 3T MR-angiography study in healthy volunteers. Cephalalgia 2013; 33:1009-16. [PMID: 23588794 DOI: 10.1177/0333102413483374] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To explore a possible differential effect of sumatriptan on extracerebral versus cerebral arteries, we examined the superficial temporal (STA), middle meningeal (MMA), extracranial internal carotid (ICAextra), intracranial internal carotid (ICAintra), middle cerebral (MCA) and basilar arteries (BA). METHODS The arterial circumferences were recorded blindly using high-resolution magnetic resonance angiography before and after subcutaneous sumatriptan injection (6 mg) in 18 healthy volunteers. RESULTS We found significant constrictions of MMA (16.5%), STA (16.4%) and ICAextra (15.2%) ( P ≤ 0.001). Smaller, but statistically significant, constrictions were seen in MCA (5.5%) and BA (2.1%) ( P ≤ 0.012). ICAintra change 1.8% was not significant ( P = 0.179). The constriction of cerebral arteries was significantly smaller than the constriction of extracerebral arteries ( P < 0.000001). CONCLUSION Sumatriptan constricts extracerebral arteries more than cerebral arteries. We suggest that sumatriptan may exert its anti-migraine action outside of the blood-brain barrier.
Collapse
|
111
|
Lone AM, Kim YG, Saghatelian A. Peptidomics methods for the identification of peptidase-substrate interactions. Curr Opin Chem Biol 2013; 17:83-9. [PMID: 23332665 DOI: 10.1016/j.cbpa.2012.10.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 10/30/2012] [Indexed: 11/26/2022]
Abstract
Peptidases have important roles in controlling physiological signaling through their regulation of bioactive peptides. Understanding and controlling bioactive peptide regulation is of great biomedical interest and approaches that elucidate the interplay between peptidases and their substrates are vital for achieving this goal. Here, we highlight the utility of recent peptidomics approaches in identifying endogenous substrates of peptidases. These approaches reveal bioactive substrates and help characterize the biochemical functions of the enzyme. Most recently, peptidomics approaches have been applied to address the challenging question of identifying the peptidases responsible for regulating specific bioactive peptides. Since peptidases are of great biomedical interest, these approaches will begin to impact our ability to identify new drug targets that regulate important bioactive peptides.
Collapse
Affiliation(s)
- Anna Mari Lone
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
112
|
Labruijere S, van Houten ELAF, de Vries R, Musterd-Bagghoe UM, Garrelds IM, Kramer P, Danser AHJ, Villalón CM, Visser JA, Van Den Brink AM. Analysis of the vascular responses in a murine model of polycystic ovary syndrome. J Endocrinol 2013; 218:205-13. [PMID: 23734045 DOI: 10.1530/joe-13-0094] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women of there productive age, but the exact pathophysiological mechanisms involved remain unclear. Cardiovascular disease risk is increased in PCOS patients and endothelial damage has been observed. We recently developed a mouse model of PCOS with reproductive and metabolic characteristics resembling those observed in women with PCOS. In this model we studied vascular function with particular emphasis on markers of vascular endothelial function. Animals were treated for 90 days with dihydrotestosterone (DHT; 27.5 mg/day) or placebo using subcutaneous continuous-release pellets. Aortas were isolated for isometric force recordings in organ baths to investigate endothelial and vascular smooth muscle characteristics. Lungs were used to analyze endothelial nitric oxide synthase (eNOS) expression and phosphorylation. Asymmetric dimethylarginine (ADMA) levels were investigated in serum to assess endothelial damage. Expression of androgen receptor (Ar) mRNA was studied in aortas. DHT treatment (compared with placebo) induced i) a significant decrease in acetylcholine-induced aortic relaxations, with no change in calcitonin gene related peptide- or sodium nitroprusside-induced relaxations, as well as 5-hydroxytryptamine-induced contractions; ii) no change in eNOS expression/phosphorylation in lungs or in plasma ADMA levels; and iii) a twofold increase in aortic AR expression. Our results suggest that, in DHT-exposed mice, hyperandrogenemia specifically decreases endothelium dependent vasorelaxation without deterioration of smooth muscle function. This study may initiate further investigations to elucidate underlying mechanism for the phenotype that is present in these animals, as well as in PCOS patients.
Collapse
Affiliation(s)
- Sieneke Labruijere
- Division of Vascular Medicine and Pharmacology, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Basic mechanisms of migraine and its acute treatment. Pharmacol Ther 2012; 136:319-33. [DOI: 10.1016/j.pharmthera.2012.08.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 08/13/2012] [Indexed: 12/27/2022]
|
114
|
Abstract
Migraine is a collection of perplexing neurological conditions in which the brain and its associated tissues have been implicated as major players during an attack. Once considered exclusively a disorder of blood vessels, compelling evidence has led to the realization that migraine represents a highly choreographed interaction between major inputs from both the peripheral and central nervous systems, with the trigeminovascular system and the cerebral cortex among the main players. Advances in in vivo and in vitro technologies have informed us about the significance to migraine of events such as cortical spreading depression and activation of the trigeminovascular system and its constituent neuropeptides, as well as about the importance of neuronal and glial ion channels and transporters that contribute to the putative cortical excitatory/inhibitory imbalance that renders migraineurs susceptible to an attack. This review focuses on emerging concepts that drive the science of migraine in both a mechanistic direction and a therapeutic direction.
Collapse
Affiliation(s)
- Daniela Pietrobon
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | | |
Collapse
|
115
|
Pietrobon D. Calcium channels and migraine. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1655-65. [PMID: 23165010 DOI: 10.1016/j.bbamem.2012.11.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/26/2012] [Accepted: 11/09/2012] [Indexed: 01/22/2023]
Abstract
Missense mutations in CACNA1A, the gene that encodes the pore-forming α1 subunit of human voltage-gated Ca(V)2.1 (P/Q-type) calcium channels, cause a rare form of migraine with aura (familial hemiplegic migraine type 1: FHM1). Migraine is a common disabling brain disorder whose key manifestations are recurrent attacks of unilateral headache that may be preceded by transient neurological aura symptoms. This review, first, briefly summarizes current understanding of the pathophysiological mechanisms that are believed to underlie migraine headache, migraine aura and the onset of a migraine attack, and briefly describes the localization and function of neuronal Ca(V)2.1 channels in the brain regions that have been implicated in migraine pathogenesis. Then, the review describes and discusses i) the functional consequences of FHM1 mutations on the biophysical properties of recombinant human Ca(V)2.1 channels and native Ca(V)2.1 channels in neurons of knockin mouse models carrying the mild R192Q or severe S218L mutations in the orthologous gene, and ii) the functional consequences of these mutations on neurophysiological processes in the cerebral cortex and trigeminovascular system thought to be involved in the pathophysiology of migraine, and the insights into migraine mechanisms obtained from the functional analysis of these processes in FHM1 knockin mice. This article is part of a Special Issue entitled: Calcium channels.
Collapse
|
116
|
Bhatt DK, Gupta S, Jansen-Olesen I, Andrews JS, Olesen J. NXN-188, a selective nNOS inhibitor and a 5-HT1B/1D receptor agonist, inhibits CGRP release in preclinical migraine models. Cephalalgia 2012; 33:87-100. [PMID: 23155193 DOI: 10.1177/0333102412466967] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND NXN-188 is a combined neuronal nitric oxide synthase (nNOS) inhibitor and 5-hydroxytryptamine 1B/1D (5-HT1B/1D) receptor agonist. Using preclinical models, we evaluated whether these two unique therapeutic principles have a synergistic effect in attenuating stimulated calcitonin gene-related peptide (CGRP) release, a marker of trigeminal activation. METHODS We examined the effect of NXN-188 on: (1) KCl-, capsaicin- and resiniferatoxin (RTX)-induced immunoreactive CGRP (iCGRP) release from isolated preparation of rat dura mater, trigeminal ganglion (TG) and trigeminal nucleus caudalis (TNC); and (2) capsaicin- and electrical stimulation (ES)-induced middle meningeal artery (MMA) dilation in a rat closed-cranial window. RESULTS NXN-188 inhibited: (1) KCl-stimulated iCGRP release from dura mater (% decrease mean ± SEM, lowest effective concentration) (35 ± 6%, 30 µM), TG (24 ± 11%, 10 µM) and TNC (40 ± 8%, 10 µM); (2) capsaicin- and RTX-induced iCGRP release from dura mater; and (3) capsaicin- and ES-induced increase in dural artery diameter (32 ± 5%, 3 mg kg(-1) intravenous (i.v.) and 36 ± 1%, 10 mg kg(-1) i.v.). CONCLUSIONS NXN-188 inhibits CGRP release from migraine-relevant cephalic tissues. Its effect is most likely mediated via a combination of nNOS-inhibition and 5-HT1B/1D receptor agonism in dura mater while the mechanisms of action for inhibition of CGRP release from TG and TNC have to be investigated further.
Collapse
Affiliation(s)
- Deepak K Bhatt
- Department of Neurology, Glostrup Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
117
|
Bowler KE, Worsley MA, Broad L, Sher E, Benschop R, Johnson K, Yates JM, Robinson PP, Boissonade FM. Evidence for anti-inflammatory and putative analgesic effects of a monoclonal antibody to calcitonin gene-related peptide. Neuroscience 2012; 228:271-82. [PMID: 23098803 DOI: 10.1016/j.neuroscience.2012.10.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 09/26/2012] [Accepted: 10/13/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) is a powerful pro-inflammatory mediator thought to play a significant role in the development of inflammation and pain. We investigated the role of CGRP in trigeminal inflammatory pain by determining the ability of a monoclonal antibody to CGRP to modify central Fos expression in response to stimulation of the inflamed ferret tooth pulp. We also assessed the effect of the antibody on pulpal inflammation. METHODS Ten adult ferrets were prepared under anaesthesia to allow stimulation of the upper and lower left canine pulps, recording from the digastric muscle and intravenous injections at subsequent experiments. In all animals, pulpal inflammation was induced by introducing human caries into a deep buccal cavity. Four days later animals were treated intravenously with either CGRP antibody (n=5) or vehicle (n=5). After a further 2 days animals were re-anaesthetised and the tooth pulps stimulated at 10 times jaw-opening reflex threshold. Brainstems and tooth pulps were processed immunohistochemically for Fos and the common leucocyte marker CD45, respectively. RESULTS Fos was expressed in ipsilateral trigeminal subnuclei caudalis (Vc) and oralis (Vo). Significantly fewer Fos-positive nuclei were present within Vc of CGRP antibody-treated animals (p=0.003 vs vehicle-treated). Mean percentage area of staining for CD45 was significantly less in antibody-treated animals (p=0.04 vs vehicle-treated). CONCLUSIONS This is the first direct evidence that sequestration of CGRP has anti-inflammatory and putative analgesic effects. Previous studies using this Fos model have demonstrated that it is able to predict clinical analgesic efficacy. Thus these data indicate that this antibody may have analgesic effects in dental pain and other types of inflammatory-mediated transmission, and suggest that this is in part due to peripheral anti-inflammatory effects.
Collapse
Affiliation(s)
- K E Bowler
- Unit of Oral & Maxillofacial Medicine & Surgery, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Marichal-Cancino BA, González-Hernández A, Manrique-Maldonado G, Ruiz-Salinas II, Altamirano-Espinoza AH, MaassenVanDenBrink A, Villalón CM. Intrathecal dihydroergotamine inhibits capsaicin-induced vasodilatation in the canine external carotid circulation via GR127935- and rauwolscine-sensitive receptors. Eur J Pharmacol 2012; 692:69-77. [DOI: 10.1016/j.ejphar.2012.07.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/22/2012] [Accepted: 07/10/2012] [Indexed: 10/28/2022]
|
119
|
Oshinsky ML, Sanghvi MM, Maxwell CR, Gonzalez D, Spangenberg RJ, Cooper M, Silberstein SD. Spontaneous trigeminal allodynia in rats: a model of primary headache. Headache 2012; 52:1336-49. [PMID: 22963523 DOI: 10.1111/j.1526-4610.2012.02247.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Animal models are essential for studying the pathophysiology of headache disorders and as a screening tool for new therapies. Most animal models modify a normal animal in an attempt to mimic migraine symptoms. They require manipulation to activate the trigeminal nerve or dural nociceptors. At best, they are models of secondary headache. No existing model can address the fundamental question: How is a primary headache spontaneously initiated? In the process of obtaining baseline periorbital von Frey thresholds in a wild-type Sprague-Dawley rat, we discovered a rat with spontaneous episodic trigeminal allodynia (manifested by episodically changing periorbital pain threshold). Subsequent mating showed that the trait is inherited. Animals with spontaneous trigeminal allodynia allow us to study the pathophysiology of primary recurrent headache disorders. To validate this as a model for migraine, we tested the effects of clinically proven acute and preventive migraine treatments on spontaneous changes in rat periorbital sensitivity. Sumatriptan, ketorolac, and dihydroergotamine temporarily reversed the low periorbital pain thresholds. Thirty days of chronic valproic acid treatment prevented spontaneous changes in trigeminal allodynia. After discontinuation, the rats returned to their baseline of spontaneous episodic threshold changes. We also tested the effects of known chemical human migraine triggers. On days when the rats did not have allodynia and showed normal periorbital von Frey thresholds, glycerol trinitrate and calcitonin gene related peptide induced significant decreases in the periorbital pain threshold. This model can be used as a predictive model for drug development and for studies of putative biomarkers for headache diagnosis and treatment.
Collapse
Affiliation(s)
- Michael L Oshinsky
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107-6799, USA.
| | | | | | | | | | | | | |
Collapse
|
120
|
Messlinger K, Lennerz JK, Eberhardt M, Fischer MJ. CGRP and NO in the Trigeminal System: Mechanisms and Role in Headache Generation. Headache 2012; 52:1411-27. [DOI: 10.1111/j.1526-4610.2012.02212.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
121
|
D'Andrea G, D'Arrigo A, Dalle Carbonare M, Leon A. Pathogenesis of migraine: role of neuromodulators. Headache 2012; 52:1155-63. [PMID: 22671857 DOI: 10.1111/j.1526-4610.2012.02168.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The pathogenesis of migraine is still, today, a hotly debated issue. Recent biochemical studies report the occurrence in migraine of metabolic abnormalities in the synthesis of neurotransmitters and neuromodulators. These include a metabolic shift directing tyrosine metabolism toward the decarboxylation pathway, therein resulting in an unphysiological production of noradrenaline and dopamine along with increased synthesis of traces amines such as tyramine, octopamine, and synephrine. This biochemical alteration is possibly favored by impaired mitochondrial function and high levels of glutamate in the central nervous system (CNS) of migraine patients. The unbalanced levels of the neurotransmitters (dopamine and noradrenaline) and neuromodulators (eg, tyramine, octopamine, and synephrine) in the synaptic dopaminergic and noradrenergic clefts of the pain matrix pathways may activate, downstream, the trigeminal system that releases calcitonin gene-related peptide. This induces the formation of an inflammatory soup, the sensitization of first trigeminal neuron, and the migraine attack. In view of this, we propose that migraine attacks derive from a top-down dysfunctional process that initiates in the frontal lobe in a hyperexcitable and hypoenergetic brain, thereafter progressing downstream resulting in abnormally activated nuclei of the pain matrix.
Collapse
Affiliation(s)
- Giovanni D'Andrea
- Research and Innovation S.p.A., Research Division, Via Svizzera 16, Padua, Italy
| | | | | | | |
Collapse
|
122
|
Hoffmann J, Wecker S, Neeb L, Dirnagl U, Reuter U. Primary trigeminal afferents are the main source for stimulus-induced CGRP release into jugular vein blood and CSF. Cephalalgia 2012; 32:659-67. [DOI: 10.1177/0333102412447701] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Jan Hoffmann
- Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
- Department of Neurology, University of California San Francisco, USA
| | - Sascha Wecker
- Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| | - Lars Neeb
- Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| | - Ulrich Dirnagl
- Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| | - Uwe Reuter
- Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| |
Collapse
|
123
|
Vecchia D, Pietrobon D. Migraine: a disorder of brain excitatory-inhibitory balance? Trends Neurosci 2012; 35:507-20. [PMID: 22633369 DOI: 10.1016/j.tins.2012.04.007] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/12/2012] [Accepted: 04/20/2012] [Indexed: 01/17/2023]
Abstract
Migraine is a common disabling brain disorder whose key manifestations are recurrent attacks of unilateral headache and interictal hypersensitivity to sensory stimuli. Migraine arises from a primary brain dysfunction that leads to episodic activation and sensitization of the trigeminovascular pain pathway and as a consequence to headache. Major open issues concern the molecular and cellular mechanisms of the primary brain dysfunction(s) and of migraine pain. We review here our current understanding of these mechanisms, focusing on recent advances regarding migraine genetics, headache mechanisms, and the primary brain dysfunction(s) underlying migraine onset and susceptibility to cortical spreading depression, the neurophysiological correlate of migraine aura. We also discuss insights obtained from the functional analysis of familial hemiplegic migraine mouse models.
Collapse
Affiliation(s)
- Dania Vecchia
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
| | | |
Collapse
|
124
|
Pharmacological evidence that spinal α2C- and, to a lesser extent, α2A-adrenoceptors inhibit capsaicin-induced vasodilatation in the canine external carotid circulation. Eur J Pharmacol 2012; 683:204-10. [DOI: 10.1016/j.ejphar.2012.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 03/02/2012] [Accepted: 03/06/2012] [Indexed: 11/24/2022]
|
125
|
Covasala O, Stirn SL, Albrecht S, De Col R, Messlinger K. Calcitonin gene-related peptide receptors in rat trigeminal ganglion do not control spinal trigeminal activity. J Neurophysiol 2012; 108:431-40. [PMID: 22539824 DOI: 10.1152/jn.00167.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Calcitonin gene-related peptide (CGRP) is regarded as a key mediator in the generation of primary headaches. CGRP receptor antagonists reduce migraine pain in clinical trials and spinal trigeminal activity in animal experiments. The site of CGRP receptor inhibition causing these effects is debated. Activation and inhibition of CGRP receptors in the trigeminal ganglion may influence the activity of trigeminal afferents and hence of spinal trigeminal neurons. In anesthetized rats extracellular activity was recorded from neurons with meningeal afferent input in the spinal trigeminal nucleus caudalis. Mechanical stimuli were applied at regular intervals to receptive fields located in the exposed cranial dura mater. α-CGRP (10(-5) M), the CGRP receptor antagonist olcegepant (10(-3) M), or vehicle was injected through the infraorbital canal into the trigeminal ganglion. The injection of volumes caused transient discharges, but vehicle, CGRP, or olcegepant injection was not followed by significant changes in ongoing or mechanically evoked activity. In animals pretreated intravenously with the nitric oxide donor glyceryl trinitrate (GTN, 250 μg/kg) the mechanically evoked activity decreased after injection of CGRP and increased after injection of olcegepant. In conclusion, the activity of spinal trigeminal neurons with meningeal afferent input is normally not controlled by CGRP receptor activation or inhibition in the trigeminal ganglion. CGRP receptors in the trigeminal ganglion may influence neuronal activity evoked by mechanical stimulation of meningeal afferents only after pretreatment with GTN. Since it has previously been shown that olcegepant applied to the cranial dura mater is ineffective, trigeminal activity driven by meningeal afferent input is more likely to be controlled by CGRP receptors located centrally to the trigeminal ganglion.
Collapse
Affiliation(s)
- Oana Covasala
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
126
|
Tfelt-Hansen PC, Olesen J. The 5-HT1F receptor agonist lasmiditan as a potential treatment of migraine attacks: a review of two placebo-controlled phase II trials. J Headache Pain 2012; 13:271-5. [PMID: 22430431 PMCID: PMC3356470 DOI: 10.1007/s10194-012-0428-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 02/16/2012] [Indexed: 11/26/2022] Open
Abstract
Lasmiditan is a novel selective 5-HT(1F) receptor agonist. It is both scientifically and clinically relevant to review whether a 5-HT(1F) receptor agonist is effective in the acute treatment of migraine. Two RCTs in the phase II development of lasmiditan was reviewed. In the intravenous placebo-controlled RCT, lasmiditan doses of 2.5-45 mg were used, and there was a linear association between headache relief (HR) rates and dose levels (P < 0.02). For lasmiditan 20 mg, HR was 64 % and for placebo it was 45 % (NS). In the oral placebo-controlled RCT, lasmiditan doses of 50, 100, 200 and 400 mg were used. For HR, all doses of lasmiditan were superior to placebo (P < 0.05). For lasmiditan 400 mg, HR was 64 % and it was 25 % for placebo. Adverse events (AEs) emerging from the treatment were reported by 22 % of the patients receiving placebo and by 65, 73, 87 and 87 % of patients receiving 50, 100, 200 and 400 mg, respectively. The majority of AEs after lasmiditan 100 and 400 mg were moderate or severe. For the understanding of migraine pathophysiology, it is very important to note that a selective 5-HT(1F) receptor agonist like lasmiditan is effective in the acute treatment of migraine. Thus, migraine can be treated with a drug that has no vasoconstrictor ability. While lasmiditan most likely is effective in the treatment of migraine attacks it had, unfortunately, a high incidence of CNS related AEs in the oral RCT. If confirmed in larger studies in phase III, this might adversely limit the use of this highly specific non-vascular acute treatment of migraine. Larger studies including the parameters of patients' preferences are necessary to accurately position this new treatment principle in relation to the triptans.
Collapse
Affiliation(s)
- Peer C Tfelt-Hansen
- Department of Neurology, Danish Headache Center, Glostrup Hospital, University of Copenhagen, Glostrup, Denmark.
| | | |
Collapse
|
127
|
Trigeminal satellite cells modulate neuronal responses to triptans: relevance for migraine therapy. ACTA ACUST UNITED AC 2012; 7:109-16. [DOI: 10.1017/s1740925x11000172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the present paper, we have further developed an in vitro model to study neuronal–glial interaction at trigeminal level by characterizing the effects of conditioned medium (CM) collected from activated primary cultures of satellite glial cells (SGCs) on calcitonin gene-related peptide (CGRP) release from rat trigeminal neurons. Moreover, we investigated whether such release is inhibited by a clinically relevant anti-migraine drug, sumatriptan. CM effects were tested on trigeminal neuronal cultures in different conditions of activation and at different time points. Long-term exposures of trigeminal neurons to CM increased directly neuronal CGRP release, which was further enhanced by the exposure to capsaicin. In this framework, the anti-migraine drug sumatriptan was able to inhibit the evoked CGRP release from naïve trigeminal neuron cultures, as well as from trigeminal cultures pre-exposed for 30 min to CM. On the contrary, sumatriptan failed to inhibit evoked CGRP release from trigeminal neurons after prolonged (4 and 8 h) pre-exposures to CM. These findings were confirmed in co-culture experiments (neurons and SGCs), where activation of SGCs or a bradykinin priming were used. Our data demonstrate that SGCs activation could influence neuronal excitability, and that this event affects the neuronal responses to triptans.
Collapse
|
128
|
Asghar MS, Hansen AE, Larsson HBW, Olesen J, Ashina M. Effect of CGRP and sumatriptan on the BOLD response in visual cortex. J Headache Pain 2012; 13:159-66. [PMID: 22246026 PMCID: PMC3274575 DOI: 10.1007/s10194-011-0415-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 12/28/2011] [Indexed: 11/09/2022] Open
Abstract
To test the hypothesis that calcitonin gene-related peptide (CGRP) modulates brain activity, we investigated the effect of intravenous CGRP on brain activity in response to a visual stimulus. In addition, we examined if possible alteration in brain activity was reversed by the anti-migraine drug sumatriptan. Eighteen healthy volunteers were randomly allocated to receive CGRP infusion (1.5 μg/min for 20 min) or placebo. In vivo activity in the visual cortex was recorded before, during and after infusion and after 6 mg subcutaneous sumatriptan by functional magnetic resonance imaging (3 T). 77% of the participants reported headache after CGRP. We found no changes in brain activity after CGRP (P = 0.12) or after placebo (P = 0.41). Sumatriptan did not affect brain activity after CGRP (P = 0.71) or after placebo (P = 0.98). Systemic CGRP or sumatriptan has no direct effects on the BOLD activity in visual cortex. This suggests that in healthy volunteers both CGRP and sumatriptan may exert their actions outside of the blood–brain barrier.
Collapse
Affiliation(s)
- Mohammad S Asghar
- Danish Headache Center and Department of Neurology, Faculty of Health Sciences, Glostrup Hospital, University of Copenhagen, Nordre Ringvej 57, Glostrup, 2600 Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
129
|
Filipović B, Matak I, Bach-Rojecky L, Lacković Z. Central action of peripherally applied botulinum toxin type A on pain and dural protein extravasation in rat model of trigeminal neuropathy. PLoS One 2012; 7:e29803. [PMID: 22238656 PMCID: PMC3251614 DOI: 10.1371/journal.pone.0029803] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 12/05/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Infraorbital nerve constriction (IoNC) is an experimental model of trigeminal neuropathy. We investigated if IoNC is accompanied by dural extravasation and if botulinum toxin type A (BoNT/A) can reduce pain and dural extravasation in this model. METHODOLOGY/PRINCIPAL FINDINGS Rats which developed mechanical allodynia 14 days after the IoNC were injected with BoNT/A (3.5 U/kg) into vibrissal pad. Allodynia was tested by von Frey filaments and dural extravasation was measured as colorimetric absorbance of Evans blue-plasma protein complexes. Presence of dural extravasation was also examined in orofacial formalin-induced pain. Unilateral IoNC, as well as formalin injection, produced bilateral dural extravasation. Single unilateral BoNT/A injection bilaterally reduced IoNC induced dural extravasation, as well as allodynia (lasting more than 2 weeks). Similarly, BoNT/A reduced formalin-induced pain and dural extravasation. Effects of BoNT/A on pain and dural extravasation in IoNC model were dependent on axonal transport through sensory neurons, as evidenced by colchicine injections (5 mM, 2 µl) into the trigeminal ganglion completely preventing BoNT/A effects. CONCLUSIONS/SIGNIFICANCE Two different types of pain, IoNC and formalin, are accompanied by dural extravasation. The lasting effect of a unilateral injection of BoNT/A in experimental animals suggests that BoNT/A might have a long-term beneficial effect in craniofacial pain associated with dural neurogenic inflammation. Bilateral effects of BoNT/A and dependence on retrograde axonal transport suggest a central site of its action.
Collapse
Affiliation(s)
- Boris Filipović
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Brain Research Institute, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital Sveti Duh, Zagreb, Croatia
| | - Ivica Matak
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Brain Research Institute, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Lidija Bach-Rojecky
- Department of Pharmacology, University of Zagreb School of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Zdravko Lacković
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Brain Research Institute, University of Zagreb School of Medicine, Zagreb, Croatia
- * E-mail:
| |
Collapse
|
130
|
Tringali G, Greco MC, Capuano A, Guerriero G, Currò D, Navarra P. Flupirtine inhibits calcitonin-gene related peptide release from rat brainstem in vitro. Neurosci Lett 2012; 506:332-5. [DOI: 10.1016/j.neulet.2011.11.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/18/2011] [Accepted: 11/21/2011] [Indexed: 12/18/2022]
|
131
|
Raddant AC, Russo AF. Calcitonin gene-related peptide in migraine: intersection of peripheral inflammation and central modulation. Expert Rev Mol Med 2011; 13:e36. [PMID: 22123247 PMCID: PMC3383830 DOI: 10.1017/s1462399411002067] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the past two decades, a convergence of basic and clinical evidence has established the neuropeptide calcitonin-gene-related peptide (CGRP) as a key player in migraine. Although CGRP is a recognised neuromodulator of nociception, its mechanism of action in migraine remains elusive. In this review, we present evidence that led us to propose that CGRP is well poised to enhance neurotransmission in migraine by both peripheral and central mechanisms. In the periphery, it is thought that local release of CGRP from the nerve endings of meningeal nociceptors following their initial activation by cortical spreading depression is critical for the induction of vasodilation, plasma protein extravasation, neurogenic inflammation and the consequential sensitisation of meningeal nociceptors. Mechanistically, we propose that CGRP release can give rise to a positive-feedback loop involved in localised increased synthesis and release of CGRP from neurons and a CGRP-like peptide called procalcitonin from trigeminal ganglion glia. Within the brain, the wide distribution of CGRP and CGRP receptors provides numerous possible targets for CGRP to act as a neuromodulator.
Collapse
Affiliation(s)
- Ann C. Raddant
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Andrew F. Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
132
|
Acupuncture as treatment of hot flashes and the possible role of calcitonin gene-related Peptide. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2012:579321. [PMID: 22110545 PMCID: PMC3205728 DOI: 10.1155/2012/579321] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 08/29/2011] [Indexed: 11/18/2022]
Abstract
The mechanisms behind hot flashes in menopausal women are not fully understood. The flashes in women are probably preceded by and actually initiated by a sudden downward shift in the set point for the core body temperature in the thermoregulatory center that is affected by sex steroids, β-endorphins, and other central neurotransmitters. Treatments that influence these factors may be expected to reduce hot flashes. Since therapy with sex steroids for hot flashes has appeared to cause a number of side effects and risks and women with hot flashes and breast cancer as well as men with prostate cancer and hot flashes are prevented from sex steroid therapy there is a great need for alternative therapies. Acupuncture affecting the opioid system has been suggested as an alternative treatment option for hot flashes in menopausal women and castrated men. The heat loss during hot flashes may be mediated by the potent vasodilator and sweat gland activator calcitonin gene-related peptide (CGRP) the concentration of which increases in plasma during flashes in menopausal women and, according to one study, in castrated men with flushes. There is also evidence for connections between the opioid system and the release of CGRP. In this paper we discuss acupuncture as a treatment alternative for hot flashes and the role of CGRP in this context.
Collapse
|
133
|
Nassini R, Materazzi S, Vriens J, Prenen J, Benemei S, De Siena G, la Marca G, Andrè E, Preti D, Avonto C, Sadofsky L, Di Marzo V, De Petrocellis L, Dussor G, Porreca F, Taglialatela-Scafati O, Appendino G, Nilius B, Geppetti P. The ‘headache tree’ via umbellulone and TRPA1 activates the trigeminovascular system. Brain 2011; 135:376-90. [DOI: 10.1093/brain/awr272] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
134
|
Fioretti B, Catacuzzeno L, Sforna L, Gerke-Duncan MB, van den Maagdenberg AMJM, Franciolini F, Connor M, Pietrobon D. Trigeminal ganglion neuron subtype-specific alterations of Ca(V)2.1 calcium current and excitability in a Cacna1a mouse model of migraine. J Physiol 2011; 589:5879-95. [PMID: 22005682 DOI: 10.1113/jphysiol.2011.220533] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Familial hemiplegic migraine type-1 (FHM1), a monogenic subtype of migraine with aura, is caused by gain-of-function mutations in Ca(V)2.1 (P/Q-type) calcium channels. The consequences of FHM1 mutations on the trigeminovascular pathway that generates migraine headache remain largely unexplored. Here we studied the calcium currents and excitability properties of two subpopulations of small-diameter trigeminal ganglion (TG) neurons from adult wild-type (WT) and R192Q FHM1 knockin (KI) mice: capsaicin-sensitive neurons without T-type calcium currents (CS) and capsaicin-insensitive neurons characterized by the expression of T-type calcium currents (CI-T). Small TG neurons retrogradely labelled from the dura are mostly CS neurons, while CI-T neurons were not present in the labelled population. CS and CI-T neurons express Ca(V)2.1 channels with different activation properties, and the Ca(V)2.1 channels are differently affected by the FHM1 mutation in the two TG neuron subtypes. In CI-T neurons from FHM1 KI mice there was a larger P/Q-type current density following mild depolarizations, a larger action potential (AP)-evoked calcium current and a longer AP duration when compared to CI-T neurons from WT mice. In striking contrast, the P/Q-type current density, voltage dependence and kinetics were not altered by the FHM1 mutation in CS neurons. The excitability properties of mutant CS neurons were also unaltered. Congruently, the FHM1 mutation did not alter depolarization-evoked CGRP release from the dura mater, while CGRP release from the trigeminal ganglion was larger in KI compared to WT mice. Our findings suggest that the facilitation of peripheral mechanisms of CGRP action, such as dural vasodilatation and nociceptor sensitization at the meninges, does not contribute to the generation of headache in FHM1.
Collapse
Affiliation(s)
- B Fioretti
- Department of Biomedical Sciences, University of Padova and CNR Institute of Neuroscience, 35121 Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Mathew R, Andreou AP, Chami L, Bergerot A, van den Maagdenberg AMJM, Ferrari MD, Goadsby PJ. Immunohistochemical characterization of calcitonin gene-related peptide in the trigeminal system of the familial hemiplegic migraine 1 knock-in mouse. Cephalalgia 2011; 31:1368-80. [DOI: 10.1177/0333102411418847] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Introduction: Familial hemiplegic migraine type 1 (FHM-1) is caused by mutations in the CACNA1A gene, with the R192Q mutation being the most common. Elevated calcitonin gene-related peptide (CGRP) levels in acute migraine and clinical trials using CGRP receptor antagonists suggest CGRP-related mechanisms are important in migraine. Methods: Wild-type and R192Q knock-in mice were anaesthetized and perfused. Using immunohistochemical staining, the expression of CGRP in the trigeminocervical complex (TCC) and in the trigeminal and dorsal root ganglia was characterized. Results: There was a 38% reduction in the percentage of CGRP-immunoreactive cells in the trigeminal ganglia ( p < 0.001) of R192Q knock-in mice compared to wild-type animals. The size distribution profile of CGRP-immunoreactive cells within the trigeminal ganglia demonstrated no significant difference in cell diameter between the two groups ( p ≥ 0.56). CGRP expression was also reduced in thoracic ganglia of R192Q knock-in mice (21% vs. 27% in wild-type group; p < 0.05), but not in other ganglia. In addition, decreased CGRP immunoreactivity was observed in the superficial laminae of the TCC in R192Q knock-in mice, when compared to the control group ( p < 0.005). Conclusion: The data demonstrates that the FHM-1 CACNA1A mutation alters CGRP expression in the trigeminal ganglion and TCC. This suggests further study of these animals is warranted to characterize better the role of these mutations in the neurobiology of migraine.
Collapse
|
136
|
Tfelt-Hansen PC, Koehler PJ. One hundred years of migraine research: major clinical and scientific observations from 1910 to 2010. Headache 2011; 51:752-78. [PMID: 21521208 DOI: 10.1111/j.1526-4610.2011.01892.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pain research, and headache research in particular, during the 20th century, has generated an enormous volume of literature promulgating theories, questions, and temporary answers. This narrative review describes the most important events in the history of migraine research between 1910 and 2010. Based on the standard textbooks of headache: Wolff's Headache (1948 and 1963) and The Headaches (1993, 2000, and 2006) topics were selected for a historical review. Most notably these included: isolation and clinical introduction of ergotamine (1918); further establishment of vasodilation in migraine and the constrictive action of ergotamine (1938); identification of pain-sensitive structures in the head (1941); Lashley's description of spreading scotoma (1941); cortical spreading depression (CSD) of Leão (1944); serotonin and the introduction of methysergide (1959); spreading oligemia in migraine with aura (1981); oligemia in the wake of CSD in rats (1982); neurogenic inflammation theory of migraine (1987); a new headache classification (1988); the discovery of sumatriptan (1988); migraine and calcitonin gene-related peptide (1990); the brainstem "migraine generator" and PET studies (1995); migraine as a channelopathy, including research from the genetic perspective (1996); and finally, meningeal sensitization, central sensitization, and allodynia (1996). Pathophysiological ideas have evolved within a limited number of paradigms, notably the vascular, neurogenic, neurotransmitter, and genetic/molecular biological paradigm. The application of various new technologies played an important role within these paradigms, in particular neurosurgical techniques, EEG, methods to measure cerebral blood flow, PET imaging, clinical epidemiological, genetic, and molecular biological methods, the latter putting migraine (at least hemiplegic migraine) within a completely new classification of diseases.
Collapse
Affiliation(s)
- Peer C Tfelt-Hansen
- Danish Headache Centre, Department of Neurology, University of Copenhagen, Glostrup Hospital, Glostrup, Denmark
| | | |
Collapse
|
137
|
Scheff NN, Gold MS. Sex differences in the inflammatory mediator-induced sensitization of dural afferents. J Neurophysiol 2011; 106:1662-8. [PMID: 21753025 DOI: 10.1152/jn.00196.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Approximately 20% of the adult population suffers from migraine. This debilitating pain disorder is three times more prevalent in women than in men. To begin to evaluate the underlying mechanisms that may contribute to this sex difference, we tested the hypothesis that there is a sex difference in the inflammatory mediator (IM)-induced sensitization of dural afferents. Acutely dissociated retrogradely labeled dural afferents from adult Sprague-Dawley rats were examined with whole cell patch-clamp recordings. Baseline passive and active electrophysiological properties of dural afferents from both sexes were comparable. However, while IM-induced increases in the excitability of dural afferents from male and female rats were also comparable, the proportion of dural afferents from female rats sensitized by IM (~100%) was significantly greater than that of dural afferents from male rats (~50%). This appeared to be due to differences downstream of IM receptors, as tetrodotoxin-resistant sodium current was increased by IM in a majority of male dural afferents (13/14). These data indicate that there are both quantitative and qualitative differences in the IM-induced sensitization of dural afferents that may contribute to the sex difference in the manifestation of migraine.
Collapse
Affiliation(s)
- N N Scheff
- The Center for Neuroscience at the University of Pittsburgh, PA 15213, USA
| | | |
Collapse
|
138
|
De Corato A, Lisi L, Capuano A, Tringali G, Tramutola A, Navarra P, Dello Russo C. Trigeminal satellite cells express functional calcitonin gene-related peptide receptors, whose activation enhances interleukin-1β pro-inflammatory effects. J Neuroimmunol 2011; 237:39-46. [PMID: 21719118 DOI: 10.1016/j.jneuroim.2011.05.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/26/2011] [Accepted: 05/27/2011] [Indexed: 12/12/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is the main mediator of trigeminal pain signal. Functional CGRP receptors were detected in trigeminal satellite cells, a specialized type of glia found within the sensory ganglia. CGRP displayed modest pro-inflammatory effects per se on trigeminal satellite cells, while it significantly enhanced IL-1β actions, increasing the expression and activity of cycloxygenase 2 as well as the expression of the inducible form of nitric oxide synthase and IL-1β. CGRP effects were reverted by a specific CGRP receptor antagonist and mimicked by elevation of intracellular cAMP levels. CGRP exerted also minor proinflammatory effects on cortical astrocytes.
Collapse
Affiliation(s)
- Alice De Corato
- Institute of Pharmacology, Catholic University Medical School, L.go F Vito 1, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
139
|
Guo S, Vecsei L, Ashina M. The L-kynurenine signalling pathway in trigeminal pain processing: A potential therapeutic target in migraine? Cephalalgia 2011; 31:1029-38. [DOI: 10.1177/0333102411404717] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction: In recent years the kynurenine family of compounds, metabolites of tryptophan, has become an area of intensive research because of its neuroactive properties. Two metabolites of this family have become of interest in relation to migraine and pain processing. Discussion: Experimental studies have shown that kynurenic acid (KYNA) plays an important role in the transmission of sensory impulses in the trigeminovascular system and that increased levels of KYNA decrease the sensitivity of the cerebral cortex to cortical spreading depression. Furthermore, another metabolite of the kynurenine family, L-kynurenine, exerts vasodilating effects similar to nitric oxide by increasing cyclic guanosine monophosphate. Conclusion: This review summarizes current knowledge of the role of kynurenine signalling in trigeminal and central pain processing, including its therapeutic prospects in migraine treatment.
Collapse
Affiliation(s)
- Song Guo
- University of Copenhagen, Denmark
| | | | | |
Collapse
|
140
|
Olesen J, Ashina M. Emerging migraine treatments and drug targets. Trends Pharmacol Sci 2011; 32:352-9. [PMID: 21459461 DOI: 10.1016/j.tips.2011.02.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/24/2011] [Accepted: 02/24/2011] [Indexed: 12/27/2022]
Abstract
Migraine has a 1-year prevalence of 10% and high socioeconomic costs. Despite recent drug developments, there is a huge unmet need for better pharmacotherapy. In this review we discuss promising anti-migraine strategies such as calcitonin gene-related peptide (CGRP) receptor antagonists and 5-hydroxytrypamine (5-HT)(1F) receptor agonists, which are in late-stage development. Nitric oxide antagonists are also in development. New forms of administration of sumatriptan might improve efficacy and reduce side effects. Botulinum toxin A has recently been approved for the prophylaxis of chronic migraine. Tonabersat, a cortical spreading depression inhibitor, has shown efficacy in the prophylaxis of migraine with aura. Several new drug targets such as nitric oxide synthase, the 5-HT(1D) receptor, the prostanoid receptors EP(2) and EP(4), and the pituitary adenylate cyclase receptor PAC1 await development. The greatest need is for new prophylactic drugs, and it seems likely that such compounds will be developed in the coming decade.
Collapse
Affiliation(s)
- Jes Olesen
- Danish Headache Center & Department of Neurology, Glostrup Hospital, Faculty of Health Sciences, University of Copenhagen, Ndr. Ringvej 57, DK-2600 Glostrup, Denmark.
| | | |
Collapse
|
141
|
Hansen JM, Thomsen LL, Olesen J, Ashina M. Calcitonin Gene-Related Peptide Does Not Cause Migraine Attacks in Patients With Familial Hemiplegic Migraine. Headache 2011; 51:544-53. [DOI: 10.1111/j.1526-4610.2011.01861.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
142
|
Potential mechanisms of prospective antimigraine drugs: A focus on vascular (side) effects. Pharmacol Ther 2011; 129:332-51. [DOI: 10.1016/j.pharmthera.2010.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 11/09/2010] [Indexed: 12/13/2022]
|
143
|
Balaban CD, Jacob RG, Furman JM. Neurologic bases for comorbidity of balance disorders, anxiety disorders and migraine: neurotherapeutic implications. Expert Rev Neurother 2011; 11:379-94. [PMID: 21375443 PMCID: PMC3107725 DOI: 10.1586/ern.11.19] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The comorbidity among balance disorders, anxiety disorders and migraine has been studied extensively from clinical and basic research perspectives. From a neurological perspective, the comorbid symptoms are viewed as the product of sensorimotor, interoceptive and cognitive adaptations that are produced by afferent interoceptive information processing, a vestibulo-parabrachial nucleus network, a cerebral cortical network (including the insula, orbitofrontal cortex, prefrontal cortex and anterior cingulate cortex), a raphe nuclear-vestibular network, a coeruleo-vestibular network and a raphe-locus coeruleus loop. As these pathways overlap extensively with pathways implicated in the generation, perception and regulation of emotions and affective states, the comorbid disorders and effective treatment modalities can be viewed within the contexts of neurological and psychopharmacological sites of action of current therapies.
Collapse
|
144
|
Abstract
Cortical spreading depression (CSD) is believed to be a phenomenon underlying migraine auras. The mutations of hemiplegic migraine genes are demonstrated to cause a reduction of CSD threshold. Consistently, tonabersat, which was developed for its ability to inhibit CSD, showed a preventive effect on attacks of migraine with aura. Besides, CSD has also been reported to activate the trigemino-vascular system, which subsequently causes migraine headache. The transient receptor potential cation channel, subfamily V, member 1 (TRPV1) receptor is known as one of the nociceptive receptors, and exists in the dura mater and the trigeminal ganglion. We demonstrated that the dural TRPV1 receptor conducts pain sensation to the trigeminal nucleus caudalis via the trigeminal ganglion, which implies possible contribution of the TRPV1 receptor to migraine headache. Also our recent data have raised the possibility that the TRPV1 receptor may play a pivotal role for the chronification of migraine. Furthermore, the TRPV1 receptor regulates the release of calcitonin gene-related peptide (CGRP). CGRP has been recognized to be associated with migraine because of its potent effect for dilation of intracranial and extracranial blood vessels. Some newly developed CGRP receptor antagonists have revealed the efficaciousness for acute migraine attacks. The present review discusses the relevance of recent advance of basic migraine research to future migraine treatment.
Collapse
|
145
|
|
146
|
Capuano A, Currò D, Navarra P, Tringali G. Cortistatin modulates calcitonin gene-related peptide release from neuronal tissues of rat. Comparison with somatostatin. Peptides 2011; 32:138-43. [PMID: 20883741 DOI: 10.1016/j.peptides.2010.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/21/2010] [Accepted: 09/21/2010] [Indexed: 12/16/2022]
Abstract
Cortistatin (CST) is an endogenous neuropeptide bearing strong structural and functional analogies with somatostatin (SST). Gene expression of CST and its putative receptor MrgX2 in dorsal root ganglia (DRG) neurons in man suggests the involvement of CST in pain transmission. In this study we have investigated the effects of CST and SST on calcitonin gene-related peptide (CGRP, the main neuropeptide mediator of pain transmission) from primary cultures of rat trigeminal neurons. Moreover, here for the first time we used organotypic cultures of rat brainstem to investigate the release of CGRP form nucleus caudalis as a model of pre-synaptic peptide release. In both experimental paradigm CGRP release was evaluated in the presence of CST or SST, with or without the addition of known secretagogues (namely high KCl concentrations, veratridine and capsaicin). We found that CST and SST do not modify basal CGRP secretion from trigeminal neurons, but both peptides were able to inhibit in a concentration-dependent manner the release of CGRP stimulated by KCl, veratridine or capsaicin. Likewise, in brainstem organotypic cultures CST and SST did not modify baseline CGRP secretion. Of the secretagogues used, capsaicin proved to be most effective compared to KCl and veratridine (8-fold vs 2-fold increase, respectively). Thereafter, CST and SST were tested on capsaicin-stimulated CGPR release only. Under these conditions, CST but not SST was able to inhibit in a significant manner pre-synaptic CGRP release from the brainstem, providing further evidence in support of a role for CST in pain transmission.
Collapse
Affiliation(s)
- Alessandro Capuano
- Institute of Pharmacology, Catholic University School of Medicine, L.go F. Vito, 1, 00168 Rome, Italy.
| | | | | | | |
Collapse
|
147
|
Abstract
Headache is a common presenting complaint in the practice of child neurology. The medical and social impact of headache is often very severe both for the affected child and for his/her family. As there exist few good clinical studies to guide practitioners in choosing appropriate medications, treatments are mostly based on extrapolation of adult study results. Personal trial-and-error experience and specialized considerations for patients also influence choice and implementation. A careful medical history, however, can enable optimal choices for abortive and prophylactic use in the context of a multi-disciplinary approach toward headache management. This article provides a pathophysiologically-based overview of a wide range of therapeutic options for children and adolescents with headache.
Collapse
Affiliation(s)
- Kara Stuart Lewis
- Barrow Neurological Institute, St Joseph's Hospital, Medical Center, Phoenix, AZ, USA.
| |
Collapse
|
148
|
Tfelt-Hansen P. Excellent Tolerability But Relatively Low Initial Clinical Efficacy of Telcagepant in Migraine. Headache 2010; 51:118-23. [DOI: 10.1111/j.1526-4610.2010.01797.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
149
|
Chan KY, Gupta S, de Vries R, Danser AHJ, Villalón CM, Muñoz-Islas E, Maassenvandenbrink A. Effects of ionotropic glutamate receptor antagonists on rat dural artery diameter in an intravital microscopy model. Br J Pharmacol 2010; 160:1316-25. [PMID: 20590623 DOI: 10.1111/j.1476-5381.2010.00733.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE During migraine, trigeminal nerves may release calcitonin gene-related peptide (CGRP), inducing cranial vasodilatation and central nociception; hence, trigeminal inhibition or blockade of craniovascular CGRP receptors may prevent this vasodilatation and abort migraine headache. Several preclinical studies have shown that glutamate receptor antagonists affect the pathophysiology of migraine. This study investigated whether antagonists of NMDA (ketamine and MK801), AMPA (GYKI52466) and kainate (LY466195) glutamate receptors affected dural vasodilatation induced by alpha-CGRP, capsaicin and periarterial electrical stimulation in rats, using intravital microscopy. EXPERIMENTAL APPROACH Male Sprague-Dawley rats were anaesthetized and the overlying bone was thinned to visualize the dural artery. Then, vasodilator responses to exogenous (i.v. alpha-CGRP) and endogenous (released by i.v. capsaicin and periarterial electrical stimulation) CGRP were elicited in the absence or presence of the above antagonists. KEY RESULTS alpha-CGRP, capsaicin and periarterial electrical stimulation increased dural artery diameter. Ketamine and MK801 inhibited the vasodilator responses to capsaicin and electrical stimulation, while only ketamine attenuated those to alpha-CGRP. In contrast, GYKI52466 only attenuated the vasodilatation to exogenous alpha-CGRP, while LY466195 did not affect the vasodilator responses to endogenous or exogenous CGRP. CONCLUSIONS AND IMPLICATIONS Although GYKI52466 has not been tested clinically, our data suggest that it would not inhibit migraine via vascular mechanisms. Similarly, the antimigraine efficacy of LY466195 seems unrelated to vascular CGRP-mediated pathways and/or receptors. In contrast, the cranial vascular effects of ketamine and MK801 may represent a therapeutic mechanism, although the same mechanism might contribute, peripherally, to cardiovascular side effects.
Collapse
Affiliation(s)
- K Y Chan
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
150
|
Xu F, Zacuto M, Yoshikawa N, Desmond R, Hoerrner S, Itoh T, Journet M, Humphrey GR, Cowden C, Strotman N, Devine P. Asymmetric synthesis of telcagepant, a CGRP receptor antagonist for the treatment of migraine. J Org Chem 2010; 75:7829-41. [PMID: 20954694 DOI: 10.1021/jo101704b] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A highly efficient, asymmetric synthesis of telcagepant (1), a CGRP receptor antagonist for the treatment of migraine, is described. This synthesis features the first application of iminium organocatalysis on an industrial scale. The key to the success of this organocatalytic transformation was the identification of a dual acid cocatalyst system, which allowed striking a balance of the reaction efficiency and product stability effectively. As such, via an iminium species, the necessnary C-6 stereogenicity was practically established in one operation in >95% ee. Furthermore, we enlisted an unprecedented Doebner-Knoevenagel coupling, which was also via an iminium species, to efficiently construct the C3-C4 bond with desired functionality. In order to prepare telcagepant (1) in high quality, a practical new protocol was discovered to suppress the formation of desfluoro impurities formed under hydrogenation conditions to <0.2%. An efficient lactamization facilitated by t-BuCOCl followed by a dynamic epimerization-crystallization resulted in the isolation of caprolactam acetamide with the desired C3 (R) and C6 (S) configuration cleanly. Isolating only three intermediates, the overall yield of this cost-effective synthesis was up to 27%. This environmentally responsible synthesis contains all of the elements required for a manufacturing process and prepares telcagepant (1) with the high quality required for pharmaceutical use.
Collapse
Affiliation(s)
- Feng Xu
- Department of Process Research, Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|