101
|
Abstract
The pregnane X receptor (PXR) and constitutive androstane receptor (CAR), 2 closely related and liver-enriched members of the nuclear receptor superfamily, and aryl hydrocarbon receptor (AhR), a nonnuclear receptor transcription factor (TF), are major receptors/TFs regulating the expression of genes for the clearance and detoxification of xenobiotics. They are hence defined as "xenobiotic receptors". Recent studies have demonstrated that PXR, CAR and AhR also regulate the expression of key proteins involved in endobiotic responses such as the metabolic homeostasis of lipids, glucose, and bile acid, and inflammatory processes. It is suggested that the functions of PXR, CAR and AhR may be closely implicated in the pathogeneses of metabolic vascular diseases, such as hyperlipidemia, atherogenesis, and hypertension. Therefore, manipulation of the activities of these receptors may provide novel strategies for the treatment of vascular diseases. Here, we review the pathophysiological roles of PXR, CAR and AhR in the vascular system.
Collapse
Affiliation(s)
- Lei Xiao
- Cardiovascular Research Center, School of Medicine, Xi'an Jiaotong University
| | | | | |
Collapse
|
102
|
Sex differences in the effect of cytochrome P450 2C19 polymorphisms on the risk of diabetic retinopathy: a retrospective longitudinal study in Japanese patients with type 2 diabetes. Pharmacogenet Genomics 2014; 23:717-20. [PMID: 24113215 DOI: 10.1097/fpc.0000000000000009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cytochrome P450 2C19 (CYP2C19) is expressed in human endothelial cells and catalyzes the biosynthesis of vasoprotective epoxyeicosatrienoic acids and 19-hydroxyeicosatetraenoic acid from arachidonic acid. This study investigated the association between CYP2C19 polymorphisms and an increased risk of diabetic retinopathy (DR). A clinic-based retrospective longitudinal analysis was carried out that included 383 Japanese patients with type 2 diabetes mellitus. Compared with male extensive metabolizers, female intermediate metabolizers [adjusted odds ratio (OR), 2.43; 95% confidence interval (95% CI), 1.17-5.06] and poor metabolizers (OR, 7.49; 95% CI, 2.64-21.26) were at a significantly higher risk of developing DR. Furthermore, the CYP2C19 poor metabolizer genotype was found to be an independent risk factor for DR only in women when patients were stratified by sex (OR, 4.18; 95% CI, 1.42-12.26). This is the first report showing the interactive effect of sex and CYP2C19 polymorphisms on microvascular disease in humans, although further investigations are needed to verify these findings.
Collapse
|
103
|
Athinarayanan S, Wei R, Zhang M, Bai S, Traber MG, Yates K, Cummings OW, Molleston J, Liu W, Chalasani N. Genetic polymorphism of cytochrome P450 4F2, vitamin E level and histological response in adults and children with nonalcoholic fatty liver disease who participated in PIVENS and TONIC clinical trials. PLoS One 2014; 9:e95366. [PMID: 24759732 PMCID: PMC3997354 DOI: 10.1371/journal.pone.0095366] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/26/2014] [Indexed: 12/17/2022] Open
Abstract
Vitamin E improved liver histology in children and adults with NAFLD who participated in TONIC and PIVENS clinical trials, but with significant inter-individual variability in its efficacy. Cytochrome P450 4F2 (CYP4F2) is the major enzyme metabolizing Vit E, with two common genetic variants (V433M, rs2108622 and W12G, rs3093105) found to alter its activity. We investigated the relationship between CYP4F2 genotypes, α-tocopherol levels and histological improvement in these two trials. V433M and W12G variants were genotyped in TONIC (n = 155) and PIVENS (n = 213) DNA samples. The relationships between CYP4F2 genotypes, plasma α-tocopherol levels at baseline and weeks 48 (w48) and 96 (w96) and histological end points (overall improvement in liver histology and resolution of NASH) were investigated. As a result, the V433M genotype was significantly associated with baseline plasma α-tocopherol in the TONIC trial (p = 0.004), but not in PIVENS. Among those receiving Vit E treatment, CYP4F2 V433M genotype was associated with significantly decreased plasma α-tocopherol levels at w48 (p = 0.003 for PIVENS and p = 0.026 for TONIC) but not at w96. The w96 α-tocopherol level was significantly associated with resolution of NASH (p = 0.006) and overall histology improvement (p = 0.021)in the PIVENS, but not in the TONIC trial. There was no significant association between CYP4F2 genotypes and histological end points in either trial. Our study suggested the a moderate role of CYP4F2 polymorphisms in affecting the pharmacokinetics of Vit E as a therapeutic agent. In addition, there may be age-dependent relationship between CYP4F2 genetic variability and Vit E pharmacokinetics in NAFLD.
Collapse
Affiliation(s)
- Shaminie Athinarayanan
- Department of Medicinal Chemistry and Molecular Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Rongrong Wei
- Department of Medicinal Chemistry and Molecular Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Min Zhang
- Department of Statistics, Purdue University, West Lafayette, Indiana, United States of America
| | - Shaochun Bai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Maret G. Traber
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, United States of America
| | - Katherine Yates
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Massachusetts, United States of America
| | - Oscar W. Cummings
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jean Molleston
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Wanqing Liu
- Department of Medicinal Chemistry and Molecular Medicine, Purdue University, West Lafayette, Indiana, United States of America
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Indiana Fatty Liver Disease Research Group, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail: (WL); (NC)
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Indiana Fatty Liver Disease Research Group, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail: (WL); (NC)
| |
Collapse
|
104
|
Sun D, Cuevas AJ, Gotlinger K, Hwang SH, Hammock BD, Schwartzman ML, Huang A. Soluble epoxide hydrolase-dependent regulation of myogenic response and blood pressure. Am J Physiol Heart Circ Physiol 2014; 306:H1146-53. [PMID: 24561863 DOI: 10.1152/ajpheart.00920.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid via cytochrome P450 (CYP)/epoxygenases. EETs possess cardioprotective properties and are catalyzed by soluble epoxide hydrolase (sEH) to dihydroxyeicosatrienoic acids (DHETs) that lack vasoactive property. To date, the role of sEH in the regulation of myogenic response of resistant arteries, a key player in the control of blood pressure, remains unknown. To this end, experiments were conducted on sEH-knockout (KO) mice, wild-type (WT) mice, and endothelial nitric oxide synthase (eNOS)-KO mice treated with t-TUCB, a sEH inhibitor, for 4 wk. sEH-KO and t-TUCB-treated mice displayed significantly lower blood pressure, associated with significantly increased vascular EETs and ratio of EETs/DHETs. Pressure-diameter relationships were assessed in isolated and cannulated gracilis muscle arterioles. All arterioles constricted in response to increases in transmural pressure from 60 to 140 mmHg. The myogenic constriction was significantly reduced, expressed as an upward shift of pressure-diameter curve, in arterioles of sEH-KO and t-TUCB-treated eNOS-KO mice compared with their controls. Removal of the endothelium, or treatment of the vessels with PPOH, an inhibitor of EET synthase, restored the attenuated pressure-induced constriction to the levels similar to those observed in their controls but had no effects on control vessels. No difference was observed in the myogenic index, or in the vascular expression of eNOS, CYP2C29 (EET synthase), and CYP4A (20-HETE synthase) among these groups of mice. In conclusion, the increased EET bioavailability, as a function of deficiency/inhibition of sEH, potentiates vasodilator responses that counteract pressure-induced vasoconstriction to lower blood pressure.
Collapse
Affiliation(s)
- Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York
| | | | | | | | | | | | | |
Collapse
|
105
|
Gaio V, Nunes B, Fernandes A, Mendonça F, Horta Correia F, Beleza Á, Gil AP, Bourbon M, Vicente A, Dias CM, Barreto da Silva M. Genetic variation at the CYP2C19 gene associated with metabolic syndrome susceptibility in a South Portuguese population: results from the pilot study of the European Health Examination Survey in Portugal. Diabetol Metab Syndr 2014; 6:23. [PMID: 24548628 PMCID: PMC3932792 DOI: 10.1186/1758-5996-6-23] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is a cluster of conditions that occur together, increasing the risk of heart disease, stroke and diabetes. Since pathways implicated in different diseases reveal surprising insights into shared genetic bases underlying apparently unrelated traits, we hypothesize that there are common genetic components involved in the clustering of MetS traits. With the aim of identifying these common genetic components, we have performed a genetic association study by integrating MetS traits in a continuous MetS score. METHODS A cross-sectional study developed in the context of the Portuguese Component of the European Health Examination Survey (EHES) was used. Data was collected through a detailed questionnaire and physical examination. Blood samples were collected and biochemical analyses were performed. Waist circumference, blood pressure, glucose, triglycerides and high density lipoprotein cholesterol (HDL) levels were used to compute a continuous MetS score, obtained by Principal Component Analysis. A total of 37 single nucleotide polymorphisms (SNPs) were genotyped and individually tested for association with the score, adjusting for confounding variables. RESULTS A total of 206 individuals were studied. Calculated MetS score increased progressively with increasing number of risk factors (P < 0.001). We found a significant association between CYP2C19 rs4244285 and the MetS score not detected using the MetS dichotomic approach. Individuals with the A allelic variant seem to be protected against MetS, displaying a lower MetS score (Mean difference: 0.847; 95%CI: 0.163-1.531; P = 0.015), after adjustment for age, gender, smoking status, excessive alcohol consumption and physical inactivity. An additive genetic effect of GABRA2 rs279871, NPY rs16147 and TPMT rs1142345 in the MetS score variation was also found. CONCLUSIONS This is the first report of a genetic association study using a continuous MetS score. The significant association found between the CYP2C19 polymorphism and the MetS score but not with the individual associated traits, emphasizes the importance of lipid metabolism in a MetS common etiological pathway and consequently on the clustering of different cardiovascular risk factors. Despite the sample size limitation of our study, this strategy can be useful to find genetic factors involved in the etiology of other disorders that are defined in a dichotomized way.
Collapse
Affiliation(s)
- Vânia Gaio
- Departamento de Epidemiologia, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal
| | - Baltazar Nunes
- Departamento de Epidemiologia, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal
| | - Aida Fernandes
- Laboratório de Saúde Pública Dra. Laura Ayres, Faro, Portugal
| | | | | | - Álvaro Beleza
- Laboratório de Saúde Pública Dra. Laura Ayres, Faro, Portugal
| | - Ana Paula Gil
- Departamento de Epidemiologia, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal
| | - Mafalda Bourbon
- Departamento de Promoção da Saúde e Prevenção das Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal
| | - Astrid Vicente
- Departamento de Promoção da Saúde e Prevenção das Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal
| | - Carlos Matias Dias
- Departamento de Epidemiologia, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal
| | - Marta Barreto da Silva
- Departamento de Epidemiologia, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal
| |
Collapse
|
106
|
Xu M, Ju W, Hao H, Wang G, Li P. Cytochrome P450 2J2: distribution, function, regulation, genetic polymorphisms and clinical significance. Drug Metab Rev 2014; 45:311-52. [PMID: 23865864 DOI: 10.3109/03602532.2013.806537] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cytochrome P450 2J2 (CYP2J2) is an enzyme mainly found in human extrahepatic tissues, with predominant expression in the cardiovascular systems and lower levels in the intestine, kidney, lung, pancreas, brain, liver, etc. During the past 15 years, CYP2J2 has attracted much attention for its epoxygenase activity in arachidonic acid (AA) metabolism. It converts AA to four epoxyeicosatrienoic acids (EETs) that have various biological effects, especially in the cardiovascular systems. In recent publications, CYP2J2 is shown highly expressed in various human tumor cells, and its EET metabolites are demonstrated to implicate in the pathologic development of human cancers. CYP2J2 is also a human CYP that involved in phase I xenobiotics metabolism. Antihistamine drugs and many other compounds were identified as the substrates of CYP2J2, and studies have demonstrated that these substrates have a broad structural diversity. CYP2J2 is found not readily induced by known P450 inducers; however, its expression could be regulated in some pathological conditions, might through the activator protein-1(AP-1), the AP-1-like element and microRNA let-7b. Several genetic mutations in the CYP2J2 gene have been identified in humans, and some of them have been shown to have potential associations with some diseases. With the increasing awareness of its roles in cancer disease and drug metabolism, studies about CYP2J2 are still going on, and various inhibitors of CYP2J2 have been determined. Further studies are needed to delineate the roles of CYP2J2 in disease pathology, drug development and clinical practice.
Collapse
Affiliation(s)
- Meijuan Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | | | | | | | | |
Collapse
|
107
|
Duflot T, Roche C, Lamoureux F, Guerrot D, Bellien J. Design and discovery of soluble epoxide hydrolase inhibitors for the treatment of cardiovascular diseases. Expert Opin Drug Discov 2014; 9:229-43. [PMID: 24490654 DOI: 10.1517/17460441.2014.881354] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Cardiovascular diseases are a leading cause of death in developed countries. Increasing evidence shows that the alteration in the normal functions of the vascular endothelium plays a major role in the development of cardiovascular diseases. However, specific agents designed to prevent endothelial dysfunction and related cardiovascular complications are still lacking. One emerging strategy is to increase the bioavailability of epoxyeicosatrienoic acids (EETs), synthesized by cytochrome P450 epoxygenases from arachidonic acid. EETs are endothelium-derived hyperpolarising and relaxing factors and display attractive anti-inflammatory and metabolic properties. Genetic polymorphism studies in humans, and experiments in animal models of diseases, have identified soluble epoxide hydrolase (sEH), the major enzyme involved in EET degradation, as a potential pharmacological target. AREAS COVERED This review presents EET pathway and its functions and summarises the data supporting the development of sEH inhibitors for the treatment of cardiovascular and metabolic diseases. Furthermore, the authors present the different chemical families of sEH inhibitors developed and their effects in animal models of cardiovascular and metabolic diseases. EXPERT OPINION Several generations of sEH inhibitors have now been designed to treat endothelial dysfunction and cardiovascular complications for a variety of diseases. The safety of these drugs remains to be carefully investigated, particularly in relation to carcinogenesis. The increasing knowledge of the biological role of each of the EET isomers and of their metabolites may improve their pharmacological profile. This, in turn, could potentially lead to the identification of new pharmacological agents that achieve the cellular effects needed without the deleterious side effects.
Collapse
Affiliation(s)
- Thomas Duflot
- Rouen University Hospital, Department of Pharmacology , Rouen , France
| | | | | | | | | |
Collapse
|
108
|
Characterization of CYP1A2, CYP2C19, CYP3A4 and CYP3A5 polymorphisms in South Brazilians. Mol Biol Rep 2014; 41:1453-60. [DOI: 10.1007/s11033-013-2990-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 12/24/2013] [Indexed: 12/11/2022]
|
109
|
Rowland A, Mangoni AA. Cytochrome P450 and ischemic heart disease: current concepts and future directions. Expert Opin Drug Metab Toxicol 2013; 10:191-213. [PMID: 24274646 DOI: 10.1517/17425255.2014.859675] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The P450 enzymes (P450s) mediate the biotransformation of several drugs, steroid hormones, eicosanoids, cholesterol, vitamins, fatty acids and bile acids, many of which affect cardiovascular homeostasis. Experimental studies have demonstrated that several P450s modulate important steps in the pathogenesis of ischemic heart disease (IHD). AREAS COVERED This article discusses the current knowledge on i) the expression of P450s in cardiovascular and renal tissues; ii) the role of P450s in the pathophysiology of IHD, in particular the modulation of blood pressure and cardiac hypertrophy, coronary arterial tone, ischemia-reperfusion injury and the metabolism of cardiovascular drugs; iii) the available evidence from observational studies on the association between P450 gene polymorphisms and risk of myocardial infarction (MI); and iv) suggestions for further research in this area. EXPERT OPINION P450s exert important modulatory effects in experimental models of IHD and MI. However, observational studies have provided conflicting results on the association between P450 genetic polymorphisms and MI. Further, adequately powered studies are required to ascertain the biological and clinical impact of P450s on clinical IHD end-points, that is, fatal and nonfatal MI, revascularization and long-term outcomes post MI. Pharmacogenetic substudies of recently completed cardiovascular clinical trials might represent an alternative strategy in this context.
Collapse
Affiliation(s)
- Andrew Rowland
- Flinders University, School of Medicine, Department of Clinical Pharmacology , Bedford Park, SA 5042 , Australia
| | | |
Collapse
|
110
|
Association between the CYP4A11 T8590C variant and essential hypertension: new data from Han Chinese and a meta-analysis. PLoS One 2013; 8:e80072. [PMID: 24278241 PMCID: PMC3836999 DOI: 10.1371/journal.pone.0080072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 10/08/2013] [Indexed: 01/11/2023] Open
Abstract
Objective CYP4A11 oxidizes endogenous arachidonic acid to 20-hydroxyeicosatetraenoic acid, a renal vasoconstrictor and natriuretic in humans. Previous studies demonstrated an association between a functional variant (T8590C) of CYP4A11 and essential hypertension, though with conflicting results. To elucidate this relationship, a case-control study and meta-analysis were performed to assess the possible association of essential hypertension with CYP4A11 genetic variations. Methods Associations between the T8590C polymorphism and essential hypertension were examined in 328 unrelated cases and 297 age-matched controls in Han Chinese individuals. High-resolution melting was used to identify the CYP4A11 variant. To further investigate the association, we conducted a meta-analysis including eight studies published previously in July 2012. Results The frequency of the CYP4A11 T8590C polymorphism showed no significant difference between cases and controls (all P>0.05). However, the meta-analysis showed that the CYP4A11 T8590C polymorphism may increase the risk of essential hypertension in an additive model (OR: 1.15, 95% CI: 1.02–1.29, P = 0.02), a dominant model (OR: 1.06, 95% CI: 1.01–1.32, P = 0.03), a recessive model (OR: 1.52, 95% CI: 1.15–2.02, P = 0.003) and a homozygote contrast (OR: 1.38, 95% CI: 1.07–1.78, P = 0.01). Also, a significant relationship was observed among Caucasians in the additive model, the homozygote contrast, the recessive model and the dominant model (all P<0.05). However, no association was observed in an Asian population (all P>0.05). Conclusions This meta-analysis suggests there is a significant association between the CYP4A11 T8590C variant and essential hypertension, especially in Caucasians. The case-control study did not find a significant association among the Han Chinese population, but the controls were poorly matched and meaningful conclusions cannot therefore be made. Further large-scale studies are needed to clarify whether the CYP4A11 T8590C polymorphism is associated with hypertension risk in Asians or has a gender-specific effect.
Collapse
|
111
|
Development of cardiac hypertrophy by sunitinib in vivo and in vitro rat cardiomyocytes is influenced by the aryl hydrocarbon receptor signaling pathway. Arch Toxicol 2013; 88:725-38. [PMID: 24247421 DOI: 10.1007/s00204-013-1159-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 11/05/2013] [Indexed: 12/23/2022]
Abstract
Sunitinib (SUN) is a new tyrosine kinase inhibitor that possesses both anti-angiogenic and anti-tumor activities. Although SUN has improved survival rate in cancer patients, cardiotoxicity has been reported as a significant side effect. Several studies suggested a role for the aryl hydrocarbon receptor (AhR) and its regulated genes such as cytochrome P4501A1 (CYP1A1) in the pathogenesis of heart failure and cardiac hypertrophy. To test the hypothesis that SUN induces cardiac hypertrophy through the modulation of AhR, Wistar albino rats were treated for 15 and 30 days with increasing doses of SUN (25, 50, and 100 mg/kg), whereas at the in vitro level, rat cardiomyocyte H9c2 cells were incubated with SUN (1, 2.5, and 5 μM). Thereafter, cardiac hypertrophy parameters were determined at the biochemical, histopathology, and gene expression levels. SUN treatment causes increase in cardiac enzymes, changes in histopathology, and induction in several hypertrophic markers. This was associated with proportional increase in the CYP1A1 gene in a concentration- and time-dependent manner. The direct involvement of AhR in the SUN-induced cardiac hypertrophy in H9c2 cells was supported by the ability of resveratrol, an AhR antagonist, to block the SUN-induced hypertrophy and the ability of SB203580, a novel AhR agonist, to potentiate SUN-induced hypertrophic genes. This is the first demonstration that SUN induces hypertrophic genes in vivo and in vitro rat cardiomyocyte through AhR/CYP1A1-mediated mechanism.
Collapse
|
112
|
Yang H, Fu Z, Ma Y, Huang D, Zhu Q, Erdenbat C, Xie X, Liu F, Zheng Y. CYP4A11 gene T8590C polymorphism is associated with essential hypertension in the male western Chinese Han population. Clin Exp Hypertens 2013; 36:398-403. [DOI: 10.3109/10641963.2013.846353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
113
|
Al Bakheet SA, Attafi IM, Maayah ZH, Abd-Allah AR, Asiri YA, Korashy HM. Effect of long-term human exposure to environmental heavy metals on the expression of detoxification and DNA repair genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 181:226-232. [PMID: 23872045 DOI: 10.1016/j.envpol.2013.06.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 06/02/2023]
Abstract
The present study was designed to evaluate the influence of long-term environmental human exposure to three heavy metals, lead (Pb), cadmium (Cd), and mercury (Hg), on the expression of detoxifying, xenobiotic metabolizing, and DNA repair genes in Mahd Ad-Dahab city. The study groups consisted of 40 healthy male residents (heavy metal-exposed) and 20 healthy male from Riyadh city, 700 km away, and served as control group. The heavy metal-exposed group with high exposure to Pb, Cd, or Hg was divided into three subgroups Pb-, Cd-, and Hg-exposed groups, respectively. The mRNA expression levels of detoxifying, NQO1, HO-1, GSTA1, MT-1, and HSP70, were significantly decreased in all heavy metal-exposed group as compared to control group. This was accompanied with a proportional decrease in the expression of xenobiotic metabolizing gene, cytochrome P4501A1. On the other hand, the DNA repair gene OGG1 and the 8-OHdG level were dramatically inhibited in Cd-exposed group only.
Collapse
Affiliation(s)
- Saleh A Al Bakheet
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | | | | | | | | | | |
Collapse
|
114
|
Shahabi P, Siest G, Visvikis-siest S. Influence of inflammation on cardiovascular protective effects of cytochrome P450 epoxygenase-derived epoxyeicosatrienoic acids. Drug Metab Rev 2013; 46:33-56. [DOI: 10.3109/03602532.2013.837916] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
115
|
A novel polymorphism of the CYP2J2 gene is associated with coronary artery disease in Uygur population in China. Clin Biochem 2013; 46:1047-1054. [DOI: 10.1016/j.clinbiochem.2013.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 04/13/2013] [Accepted: 05/03/2013] [Indexed: 12/12/2022]
|
116
|
Capdevila J, Wang W. Role of cytochrome P450 epoxygenase in regulating renal membrane transport and hypertension. Curr Opin Nephrol Hypertens 2013; 22:163-9. [PMID: 23302865 DOI: 10.1097/mnh.0b013e32835d911e] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW Cytochrome P450 (CYP)-epoxygenase is highly expressed in the kidney and its metabolism of arachidonic acid plays important roles in regulating renal Na transport and in modulating vasoactivity in the kidney. In the past several years, progress has been made not only in characterizing the specific CYP-epoxygenases responsible for the regulation of membrane transport and vasoactivity in the kidney but also in exploring the mechanism by which they regulate renal Na transport and vasodilation of preglomerular arterioles. This review summarizes and updates recent progress in this area of research. RECENT FINDINGS CYP-epoxygenase metabolites of arachidonic acid inhibit epithelial Na channel (ENaC) in the cortical collecting duct (CCD), and 11,12-epoxyeicosatrienoic acid (11,12-EET) is mainly responsible for mediating the inhibitory effect on ENaC. Downregulation of CYP2C44 abolishes arachidonic acid mediated inhibition of ENaC and increases ENaC activity. In addition, 11,12-EET stimulates Ca-activated big conductance K channels in the CCD and afferent arterioles smooth muscles. Activation of big conductance K channels by 11,12-EET is responsible for EET-induced vasodilation in preglomerular arterioles. 11,12-EET-induced vasodilation is absent in preglomerular arterioles pretreated with okadaic acid. SUMMARY CYP-epoxygenase mediated suppression of renal Na transport is partially achieved by inhibition of ENaC activity in the CCD and CYP2C44-derived EETs are responsible for inhibition of ENaC. Stimulation of serine/threonine protein phosphatase 2A (PP2A) contributes to 11,12-EET-induced activation of big conductance K channels and vasodilation in preglomerular arterioles.
Collapse
Affiliation(s)
- Jorge Capdevila
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | | |
Collapse
|
117
|
Zhang C, Wang L, Liao Q, Zhang L, Xu L, Chen C, Ye H, Xu X, Ye M, Duan S. Genetic associations with hypertension: meta-analyses of six candidate genetic variants. Genet Test Mol Biomarkers 2013; 17:736-42. [PMID: 23859711 DOI: 10.1089/gtmb.2013.0080] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AIMS The aim of this study was to perform combined analyses of six genetic variants for the risk of hypertension. METHODS After a comprehensive literature search for genetic variants involved with the association study of hypertension, we harvested a total of five genes (six variants) for the current meta-analyses. These genes consisted of CYP4A11 (T8590C), RGS2 (1891-1892del TC and G638A), HTR2A (T102C), GNAS (T393C), and HSD3B1 (T→C Leu338). RESULTS A total of 20 studies among 13,816 cases and 19,248 controls were retrieved for the meta-analyses of six genetic variants. It was shown that the RGS2 1891-1892del TC (OR=1.10, 95% CI=1.02-1.19, p=0.02) polymorphism and the CYP4A11 T8590C (OR=1.19, 95% CI=1.00-1.41, p=0.05) polymorphism were significantly associated with increased risk of hypertension. No association was found between the other four variants and the risk of hypertension. CONCLUSION This meta-analysis revealed that the RGS2 1891-1892del TC polymorphism and CYP4A11 T8590C polymorphism were associated with hypertension risk. However, HSD3B1 T→C Leu338, HTR2A T102C, GNAS T393C, and RGS2 G638A polymorphisms were not associated with hypertension risk.
Collapse
Affiliation(s)
- Cheng Zhang
- 1 Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University , Ningbo, Zhejiang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Das UN. Polyunsaturated fatty acids and their metabolites in the pathobiology of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42:122-34. [PMID: 22735394 DOI: 10.1016/j.pnpbp.2012.06.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 05/27/2012] [Accepted: 06/13/2012] [Indexed: 01/01/2023]
Abstract
Schizophrenia can be considered as a low-grade systemic inflammatory disease with its origins in the perinatal period. It is likely that genetic, environmental, and nutritional factors interact to induce excess production of pro-inflammatory cytokines that, in turn, damage fetal neurons leading to the adult onset of schizophrenia. Polyunsaturated fatty acids (PUFAs) and their metabolites such as lipoxins, resolvins, protectins, maresins and nitrolipids not only have potent neuroprotective action but also are capable of inhibiting the production of pro-inflammatory cytokines. Decreased formation of PUFAs as a result of low activity of Δ(6) and Δ(5) desaturases can result in an increase in the production of pro-inflammatory cytokines due to the absence of negative control exerted by PUFAs and their anti-inflammatory metabolites that, in turn, may predispose to neuronal damage and development of schizophrenia in adult life. Furthermore, PUFAs are essential for brain growth and development. If this proposal is correct, this implies that perinatal and adult supplementation of PUFAs not only prevents but also helps in the treatment of schizophrenia. Furthermore, synthetic analogs of lipoxins, resolvins, and protectins may be of significant benefit in schizophrenia.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 13800 Fairhill Road, Shaker Heights, OH 44120, USA.
| |
Collapse
|
119
|
The role of aryl hydrocarbon receptor signaling pathway in cardiotoxicity of acute lead intoxication in vivo and in vitro rat model. Toxicology 2013; 306:40-9. [DOI: 10.1016/j.tox.2013.01.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/26/2013] [Accepted: 01/29/2013] [Indexed: 11/17/2022]
|
120
|
|
121
|
Metabolomic profiles delineate signature metabolic shifts during estrogen deficiency-induced bone loss in rat by GC-TOF/MS. PLoS One 2013; 8:e54965. [PMID: 23408954 PMCID: PMC3567117 DOI: 10.1371/journal.pone.0054965] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/17/2012] [Indexed: 12/14/2022] Open
Abstract
Postmenopausal osteoporosis is a complicated and multi-factorial disease. To study the metabolic profiles and pathways activated in osteoporosis, Eight rats were oophorectomized (OVX group) to represent postmenopausal osteoporosis and the other eight rats were sham operated (Sham group) to be the control. The biochemical changes were assessed with metabolomics using a gas chromatography/time-of-flight mass spectrometry. Metabolomic profile using serial blood samples obtained prior to and at different time intervals after OVX were analyzed by principal component analysis (PCA) and Partial least squares-discriminant analysis (PLS-DA). The conventional indicators (bone mineral density, serum Bone alkaline phosphatase (B-ALP) and N-telopeptide of type I collagen (NTx) of osteoporosis in rats were also determined simultaneously. In OVX group, the metabolomics method could describe the endogenous changes of the disease more sensitively and systematically than the conventional criteria during the progression of osteoporosis. Significant metabolomic difference was also observed between the OVX and Sham groups. The metabolomic analyses of rat plasma showed that levels of arachidonic acid, octadecadienoic acid, branched-chain amino acids (valine, leucine and isoleucine), homocysteine, hydroxyproline and ketone bodies (3-Hydroxybutyric Acid) significantly elevated, while levels of docosahexaenoic acid, dodecanoic acid and lysine significantly decreased in OVX group compared with those in the homeochronous Sham group. Considering such metabolites are closely related to the pathology of the postmenopausal osteoporosis, the results suggest that potential biomarkers for the early diagnosis or the pathogenesis of osteoporosis might be identified via metabolomic study.
Collapse
|
122
|
Quercetin induces hepatic lipid omega-oxidation and lowers serum lipid levels in mice. PLoS One 2013; 8:e51588. [PMID: 23359794 PMCID: PMC3554747 DOI: 10.1371/journal.pone.0051588] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 11/05/2012] [Indexed: 01/07/2023] Open
Abstract
Elevated circulating lipid levels are known risk factors for cardiovascular diseases (CVD). In order to examine the effects of quercetin on lipid metabolism, mice received a mild-high-fat diet without (control) or with supplementation of 0.33% (w/w) quercetin for 12 weeks. Gas chromatography and 1H nuclear magnetic resonance were used to quantitatively measure serum lipid profiles. Whole genome microarray analysis of liver tissue was used to identify possible mechanisms underlying altered circulating lipid levels. Body weight, energy intake and hepatic lipid accumulation did not differ significantly between the quercetin and the control group. In serum of quercetin-fed mice, triglycerides (TG) were decreased with 14% (p<0.001) and total poly unsaturated fatty acids (PUFA) were increased with 13% (p<0.01). Palmitic acid, oleic acid, and linoleic acid were all decreased by 9–15% (p<0.05) in quercetin-fed mice. Both palmitic acid and oleic acid can be oxidized by omega (ω)-oxidation. Gene expression profiling showed that quercetin increased hepatic lipid metabolism, especially ω-oxidation. At the gene level, this was reflected by the up-regulation of cytochrome P450 (Cyp) 4a10, Cyp4a14, Cyp4a31 and Acyl-CoA thioesterase 3 (Acot3). Two relevant regulators, cytochrome P450 oxidoreductase (Por, rate limiting for cytochrome P450s) and the transcription factor constitutive androstane receptor (Car; official symbol Nr1i3) were also up-regulated in the quercetin-fed mice. We conclude that quercetin intake increased hepatic lipid ω-oxidation and lowered corresponding circulating lipid levels, which may contribute to potential beneficial effects on CVD.
Collapse
|
123
|
Wang Q, Pang W, Cui Z, Shi J, Liu Y, Liu B, Zhou Y, Guan Y, Hammock BD, Wang Y, Zhu Y. Upregulation of soluble epoxide hydrolase in proximal tubular cells mediated proteinuria-induced renal damage. Am J Physiol Renal Physiol 2013; 304:F168-76. [PMID: 23152298 PMCID: PMC3543623 DOI: 10.1152/ajprenal.00129.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 11/13/2012] [Indexed: 01/24/2023] Open
Abstract
Epoxyeicosatrienoic acids, hydrolyzed by soluble epoxide hydrolase (sEH), have multiple biological functions, including the regulation of vascular tone, renal tubular transport, and being anti-inflammatory. Inhibitors of sEH have been demonstrated to be antihypertensive and renal protective. To elucidate the role of sEH in glomerulonephritis, we first determined the expression of sEH in human kidney by examining biopsies from 153 patients with a variety of glomerulonephritis, including minimal-change, membranous, and IgA nephropathy. Immunohistochemical staining of frozen kidney biopsy samples revealed sEH preferentially expressed in the renal proximal tubular cells, and its expression increased in all patients with glomerulonephritis. The level of sEH in the cortex was positively correlated with proteinuria and negatively with serum albumin level. To investigate the role of sEH in proteinuria-induced renal damage, we incubated purified urine protein from patients with rat renal proximal tubular epithelial cells in vitro. The level of sEH was elevated, as were monocyte chemoattractant protein 1 and the process of tubular epithelial-to-mesenchymal transition, characterized with increased α-smooth muscle actin (α-SMA) and decreased E-cadherin. These effects were attenuated by administration of a potent sEH inhibitor and mimicked with adenovirus-mediated sEH overexpression. In adriamycin-induced nephropathic mice, sEH inhibitor did not ameliorate proteinuria or level of serum albumin but reduced the long-term elevated serum creatinine level, interstitial inflammation, fibrosis, and α-SMA expression. Thus upregulation of sEH in proximal tubular cells in chronic proteinuric kidney diseases may mediate proteinuria-induced renal damage; sEH inhibition by increasing renal eicosanoid levels could prevent the progression of chronic proteinuric kidney diseases.
Collapse
Affiliation(s)
- Qian Wang
- Dept. of Physiology and Pathophysiology, Peking Univ. Health Science Center, Beijing, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Hardwick JP, Eckman K, Lee YK, Abdelmegeed MA, Esterle A, Chilian WM, Chiang JY, Song BJ. Eicosanoids in metabolic syndrome. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 66:157-266. [PMID: 23433458 DOI: 10.1016/b978-0-12-404717-4.00005-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic persistent inflammation plays a significant role in disease pathology of cancer, cardiovascular disease, and metabolic syndrome (MetS). MetS is a constellation of diseases that include obesity, diabetes, hypertension, dyslipidemia, hypertriglyceridemia, and hypercholesterolemia. Nonalcoholic fatty liver disease (NAFLD) is associated with many of the MetS diseases. These metabolic derangements trigger a persistent inflammatory cascade, which includes production of lipid autacoids (eicosanoids) that recruit immune cells to the site of injury and subsequent expression of cytokines and chemokines that amplify the inflammatory response. In acute inflammation, the transcellular synthesis of antiinflammatory eicosanoids resolve inflammation, while persistent activation of the autacoid-cytokine-chemokine cascade in metabolic disease leads to chronic inflammation and accompanying tissue pathology. Many drugs targeting the eicosanoid pathways have been shown to be effective in the treatment of MetS, suggesting a common linkage between inflammation, MetS and drug metabolism. The cross-talk between inflammation and MetS seems apparent because of the growing evidence linking immune cell activation and metabolic disorders such as insulin resistance, dyslipidemia, and hypertriglyceridemia. Thus modulation of lipid metabolism through either dietary adjustment or selective drugs may become a new paradigm in the treatment of metabolic disorders. This review focuses on the mechanisms linking eicosanoid metabolism to persistent inflammation and altered lipid and carbohydrate metabolism in MetS.
Collapse
Affiliation(s)
- James P Hardwick
- Biochemistry and Molecular Pathology, Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA.
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Haplotype study of the CYP4A11 gene and coronary artery disease in Han and Uygur populations in China. Gene 2013; 512:510-6. [DOI: 10.1016/j.gene.2012.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 09/04/2012] [Accepted: 10/08/2012] [Indexed: 11/20/2022]
|
126
|
Liang Y, Yeligar SM, Brown LAS. Exhaled breath condensate: a promising source for biomarkers of lung disease. ScientificWorldJournal 2012; 2012:217518. [PMID: 23365513 PMCID: PMC3539342 DOI: 10.1100/2012/217518] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 11/25/2012] [Indexed: 12/26/2022] Open
Abstract
Exhaled breath condensate (EBC) has been increasingly studied as a noninvasive research method for sampling the alveolar and airway space and is recognized as a promising source of biomarkers of lung diseases. Substances measured in EBC include oxidative stress and inflammatory mediators, such as arachidonic acid derivatives, reactive oxygen/nitrogen species, reduced and oxidized glutathione, and inflammatory cytokines. Although EBC has great potential as a source of biomarkers in many lung diseases, the low concentrations of compounds within the EBC present challenges in sample collection and analysis. Although EBC is viewed as a noninvasive method for sampling airway lining fluid (ALF), validation is necessary to confirm that EBC truly represents the ALF. Likewise, a dilution factor for the EBC is needed in order to compare across subjects and determine changes in the ALF. The aims of this paper are to address the characteristics of EBC; strategies to standardize EBC sample collection and review available analytical techniques for EBC analysis.
Collapse
Affiliation(s)
- Yan Liang
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Emory University and Emory+Children's Healthcare of Atlanta Center for Developmental Lung Biology, Atlanta, GA 30322, USA
| | - Samantha M. Yeligar
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Emory University and Emory+Children's Healthcare of Atlanta Center for Developmental Lung Biology, Atlanta, GA 30322, USA
- Department of Medicine, Atlanta Veterans' Affairs and Emory University Medical Centers, Decatur, GA 30033, USA
| | - Lou Ann S. Brown
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Emory University and Emory+Children's Healthcare of Atlanta Center for Developmental Lung Biology, Atlanta, GA 30322, USA
| |
Collapse
|
127
|
Nayeem MA, Pradhan I, Mustafa SJ, Morisseau C, Falck JR, Zeldin DC. Adenosine A2A receptor modulates vascular response in soluble epoxide hydrolase-null mice through CYP-epoxygenases and PPARγ. Am J Physiol Regul Integr Comp Physiol 2012; 304:R23-32. [PMID: 23152114 DOI: 10.1152/ajpregu.00213.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The interaction between adenosine and soluble epoxide hydrolase (sEH) in vascular response is not known. Therefore, we hypothesized that lack of sEH in mice enhances adenosine-induced relaxation through A(2A) adenosine receptors (AR) via CYP-epoxygenases and peroxisome proliferator-activated receptor γ (PPARγ). sEH(-/-) showed an increase in A(2A) AR, CYP2J, and PPARγ by 31%, 65%, and 36%, respectively, and a decrease in A(1)AR and PPARα (30% and 27%, respectively) vs. sEH(+/+). 5'-N-ethylcarboxamidoadenosine (NECA, an adenosine receptor agonist), CGS 21680 (A(2A) AR-agonist), and GW 7647 (PPARα-agonist)-induced responses were tested with nitro-l-arginine methyl ester (l-NAME) (NO-inhibitor; 10(-4) M), ZM-241385, SCH-58261 (A(2A) AR-antagonists; 10(-6) M), 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE, an epoxyeicosatrienoic acid-antagonist; 10(-5) M), 12-(3-adamantan-1-yl-ureido) dodecanoic acid (AUDA; 10 μM) or trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB, sEH-inhibitors; 10(-5) M), and T0070907 (PPARγ-antagonist; 10(-7) M). In sEH(-/-) mice, ACh response was not different from sEH(+/+) (P > 0.05), and l-NAME blocked ACh-responses in both sEH(-/-) and sEH(+/+) mice (P < 0.05). NECA (10(-6) M)-induced relaxation was higher in sEH(-/-) (+12.94 ± 3.2%) vs. sEH(+/+) mice (-5.35 ± 5.2%); however, it was blocked by ZM-241385 (-22.42 ± 1.9%) and SCH-58261(-30.04 ± 4.2%). CGS-21680 (10(-6) M)-induced relaxation was higher in sEH(-/-) (+37.4 ± 5.4%) vs. sEH(+/+) (+2.14 ± 2.8%). l-NAME (sEH(-/-), +30.28 ± 4.8%, P > 0.05) did not block CGS-21680-induced response, whereas 14,15-EEZE (-7.1 ± 3.7%, P < 0.05) did. Also, AUDA and t-AUCB did not change CGS-21680-induced response in sEH(-/-) (P > 0.05), but reversed in sEH(+/+) (from +2.14 ± 2.8% to +45.33 ± 4.1%, and +63.37 ± 7.2, respectively). PPARα-agonist did not relax as CGS 21680 (-2.48 ± 1.1 vs. +37.4 ± 5.4%) in sEH(-/-), and PPARγ-antagonist blocked (from +37.4 ± 5.4% to +9.40 ± 3.1) CGS 21680-induced relaxation in sEH(-/-). Our data suggest that adenosine-induced relaxation in sEH(-/-) may depend on the upregulation of A(2A) AR, CYP2J, and PPARγ, and the downregulation of A(1) AR and PPARα.
Collapse
Affiliation(s)
- Mohammed A Nayeem
- Dept. of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences, West Virginia University, Morgantown, USA.
| | | | | | | | | | | |
Collapse
|
128
|
Das UN. Is multiple sclerosis a proresolution deficiency disorder? Nutrition 2012; 28:951-8. [DOI: 10.1016/j.nut.2011.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 12/26/2011] [Accepted: 12/26/2011] [Indexed: 12/31/2022]
|
129
|
Hypertension, cardiovascular risk and polymorphisms in genes controlling the cytochrome P450 pathway of arachidonic acid: A sex-specific relation? Prostaglandins Other Lipid Mediat 2012; 98:75-85. [DOI: 10.1016/j.prostaglandins.2011.11.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 11/16/2011] [Accepted: 11/21/2011] [Indexed: 01/11/2023]
|
130
|
Majed BH, Khalil RA. Molecular mechanisms regulating the vascular prostacyclin pathways and their adaptation during pregnancy and in the newborn. Pharmacol Rev 2012; 64:540-82. [PMID: 22679221 PMCID: PMC3400831 DOI: 10.1124/pr.111.004770] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Prostacyclin (PGI(2)) is a member of the prostanoid group of eicosanoids that regulate homeostasis, hemostasis, smooth muscle function and inflammation. Prostanoids are derived from arachidonic acid by the sequential actions of phospholipase A(2), cyclooxygenase (COX), and specific prostaglandin (PG) synthases. There are two major COX enzymes, COX1 and COX2, that differ in structure, tissue distribution, subcellular localization, and function. COX1 is largely constitutively expressed, whereas COX2 is induced at sites of inflammation and vascular injury. PGI(2) is produced by endothelial cells and influences many cardiovascular processes. PGI(2) acts mainly on the prostacyclin (IP) receptor, but because of receptor homology, PGI(2) analogs such as iloprost may act on other prostanoid receptors with variable affinities. PGI(2)/IP interaction stimulates G protein-coupled increase in cAMP and protein kinase A, resulting in decreased [Ca(2+)](i), and could also cause inhibition of Rho kinase, leading to vascular smooth muscle relaxation. In addition, PGI(2) intracrine signaling may target nuclear peroxisome proliferator-activated receptors and regulate gene transcription. PGI(2) counteracts the vasoconstrictor and platelet aggregation effects of thromboxane A(2) (TXA(2)), and both prostanoids create an important balance in cardiovascular homeostasis. The PGI(2)/TXA(2) balance is particularly critical in the regulation of maternal and fetal vascular function during pregnancy and in the newborn. A decrease in PGI(2)/TXA(2) ratio in the maternal, fetal, and neonatal circulation may contribute to preeclampsia, intrauterine growth restriction, and persistent pulmonary hypertension of the newborn (PPHN), respectively. On the other hand, increased PGI(2) activity may contribute to patent ductus arteriosus (PDA) and intraventricular hemorrhage in premature newborns. These observations have raised interest in the use of COX inhibitors and PGI(2) analogs in the management of pregnancy-associated and neonatal vascular disorders. The use of aspirin to decrease TXA(2) synthesis has shown little benefit in preeclampsia, whereas indomethacin and ibuprofen are used effectively to close PDA in the premature newborn. PGI(2) analogs have been used effectively in primary pulmonary hypertension in adults and have shown promise in PPHN. Careful examination of PGI(2) metabolism and the complex interplay with other prostanoids will help design specific modulators of the PGI(2)-dependent pathways for the management of pregnancy-related and neonatal vascular disorders.
Collapse
MESH Headings
- Adaptation, Physiological
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/chemistry
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Cytochrome P-450 Enzyme Inhibitors
- Cytochrome P-450 Enzyme System/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/metabolism
- Enzyme Inhibitors/chemistry
- Enzyme Inhibitors/pharmacology
- Enzyme Inhibitors/therapeutic use
- Epoprostenol/analogs & derivatives
- Epoprostenol/biosynthesis
- Epoprostenol/pharmacology
- Female
- Humans
- Infant, Newborn
- Intramolecular Oxidoreductases/antagonists & inhibitors
- Intramolecular Oxidoreductases/metabolism
- Ligands
- Pregnancy
- Pregnancy Complications, Cardiovascular/enzymology
- Pregnancy Complications, Cardiovascular/metabolism
- Pregnancy Complications, Cardiovascular/prevention & control
- Prostaglandin-Endoperoxide Synthases/metabolism
- Receptors, Epoprostenol/agonists
- Receptors, Epoprostenol/antagonists & inhibitors
- Receptors, Epoprostenol/metabolism
- Signal Transduction
- Thromboxane-A Synthase/antagonists & inhibitors
- Thromboxane-A Synthase/metabolism
- Vascular Diseases/enzymology
- Vascular Diseases/metabolism
- Vascular Diseases/prevention & control
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Batoule H Majed
- Harvard Medical School, Brigham and Women's Hospital, Division of Vascular Surgery, 75 Francis St., Boston, MA 02115, USA
| | | |
Collapse
|
131
|
Corthals AP. Multiple sclerosis is not a disease of the immune system. QUARTERLY REVIEW OF BIOLOGY 2012; 86:287-321. [PMID: 22384749 DOI: 10.1086/662453] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Multiple sclerosis is a complex neurodegenerative disease, thought to arise through autoimmunity against antigens of the central nervous system. The autoimmunity hypothesis fails to explain why genetic and environmental risk factors linked to the disease in one population tend to be unimportant in other populations. Despite great advances in documenting the cell and molecular mechanisms underlying MS pathophysiology, the autoimmunity framework has also been unable to develop a comprehensive explanation of the etiology of the disease. I propose a new framework for understanding MS as a dysfunction of the metabolism of lipids. Specifically, the homeostasis of lipid metabolism collapses during acute-phase inflammatory response triggered by a pathogen, trauma, or stress, starting a feedback loop of increased oxidative stress, inflammatory response, and proliferation of cytoxic foam cells that cross the blood brain barrier and both catabolize myelin and prevent remyelination. Understanding MS as a chronic metabolic disorder illuminates four aspects of disease onset and progression: 1) its pathophysiology; 2) genetic susceptibility; 3) environmental and pathogen triggers; and 4) the skewed sex ratio of patients. It also suggests new avenues for treatment.
Collapse
Affiliation(s)
- Angelique P Corthals
- Department of Sciences, John Jay College of Criminal Justice, City University of New York New York, New York 10019, USA.
| |
Collapse
|
132
|
Fu Z, Ma Y, Xie X, Huang D, Yang H, Nakayama T, Sato N. A novel polymorphism of the CYP4A11 gene is associated with coronary artery disease. Clin Appl Thromb Hemost 2012; 19:60-5. [PMID: 22327816 DOI: 10.1177/1076029611436197] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND CYP4A11 (cytochrome P450, family 4, subfamily A, polypeptide 11) converts arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE), which plays a crucial role in the modulation of cardiovascular homeostasis. The aim of the present study was to assess the association between the human CYP4A11 gene and coronary artery disease (CAD). METHODS A total of 361 patients with CAD and 315 controls were genotyped for 4 single-nucleotide polymorphisms (SNPs) of the human CYP4A11 gene (rs9332978, rs4660980, rs3890011, and rs1126742). The data were assessed for 3 groups: total participants, men, and women via case-control studies. RESULTS For total participants and men, the distribution of SNP3 (rs3890011) genotypes showed a significant difference between CAD and control participants (P = .030 and P = .013, respectively), the distribution of the recessive model of SNP3 (GG vs CC + GC) was significantly higher in CAD patients than in control participants (P = .011 and P = .014, respectively), the significant difference was retained after adjustment for covariates (for total participants, 95% confidence interval [CI]: 1.137-2.423, P = .009; and for males, 95% CI: 1.173-3.013, P = .009). CONCLUSIONS rs3890011 maybe a novel polymorphism of the CYP4A11 gene associated with CAD in a Han Chinese population.
Collapse
Affiliation(s)
- Zhenyan Fu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | | | | | | | | | | | | |
Collapse
|
133
|
Sun P, Antoun J, Lin DH, Yue P, Gotlinger KH, Capdevila J, Wang WH. Cyp2c44 epoxygenase is essential for preventing the renal sodium absorption during increasing dietary potassium intake. Hypertension 2011; 59:339-47. [PMID: 22184322 DOI: 10.1161/hypertensionaha.111.178475] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aim of this study is to test whether the Cyp2c44 epoxygenase-dependent metabolism of arachidonic acid prevents the hypertensive effect of a high K (HK) intake by inhibiting the epithelial sodium channel (ENaC) activity. A HK intake elevated Cyp2c44 mRNA expression and 11,12-epoxyeicosatrienoic acid levels in the cortical collecting duct in Cyp2c44(+/+) mice (wild-type [wt]). However, an HK intake failed to increase 11,12-epoxyeicosatrienoic acid formation in the cortical collecting ducts of Cyp2c44(-/-) mice. Moreover, increasing K intake enhanced arachidonic acid-induced inhibition of ENaC in the wt but not in Cyp2c44(-/-) mice. In contrast, 11,12-epoxyeicosatrienoic acid, a Cyp2c44 metabolite, inhibited ENaC in the wt and Cyp2c44(-/-) mice. The notion that Cyp2c44 is the epoxygenase responsible for mediating the inhibitory effects of arachidonic acid on ENaC is further suggested by the observation that inhibiting Cyp-epoxygenase increased the whole-cell Na currents in principal cells of wt but not in Cyp2c44(-/-) mice. Feeding mice with an HK diet raised the systemic blood pressures of Cyp2c44(-/-) mice but was without an effect on wt mice. Moreover, application of amiloride abolished the HK-induced hypertension in Cyp2c44(-/-) mice. The HK-induced hypertension of Cyp2c44(-/-) mice was accompanied by decreasing 24-hour urinary Na excretion and increasing the plasma Na concentration, and the effects were absent in wt mice. In contrast, disruption of the Cyp2c44 gene did not alter K excretion. We conclude that Cyp2c44 epoxygenase mediates the inhibitory effect of arachidonic acid on ENaC and that Cyp2c44 functions as an HK-inducible antihypertensive enzyme responsible for inhibiting ENaC activity and Na absorption in the aldosterone-sensitive distal nephron.
Collapse
Affiliation(s)
- Peng Sun
- Department of Pharmacology, New York Medical College, 15 Dana Rd, Valhalla, NY 10595, USA
| | | | | | | | | | | | | |
Collapse
|
134
|
Das UN. A defect in the activities of Δ and Δ desaturases and pro-resolution bioactive lipids in the pathobiology of non-alcoholic fatty liver disease. World J Diabetes 2011; 2:176-88. [PMID: 22087354 PMCID: PMC3215767 DOI: 10.4239/wjd.v2.i11.176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/28/2011] [Accepted: 10/31/2011] [Indexed: 02/05/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a low-grade systemic inflammatory condition, since liver and adipose tissue tumor necrosis factor-α (TNF-α) and TNF receptor 1 transcripts and serum TNF-α levels are increased and IL-6(-/-) mice are less prone to NAFLD. Fatty liver damage caused by high-fat diets is associated with the generation of pro-inflammatory prostaglandin E(2) (PGE(2)). A decrease in the levels of arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and the usefulness of EPA and DHA both in the prevention and management of NAFLD has been reported. AA, EPA and DHA and their anti-inflammatory products lipoxins (LXs), resolvins and protectins suppress IL-6 and TNF-α and PGE(2) production. These results suggest that the activities of Δ(6) and Δ(5) desaturases are reduced in NAFLD and hence, the dietary essential fatty acids, linoleic acid (LA) and α-linolenic acid (ALA) are not metabolized to their long-chain products AA, EPA and DHA, the precursors of anti-inflammatory molecules, LXs, resolvins and protectins that could pre vent NAFLD. This suggests that an imbalance between pro- and anti-inflammatory bioactive lipids contribute to NAFLD. Hence, it is proposed that plasma and tissue levels of AA, EPA, DHA and LXs, resolvins and protectins could be used as predictors and prognostic biomarkers of NAFLD. It is suggested that the synthesis and use of more stable analogues of LXs, resolvins and protectins need to be explored in the prevention and management of NAFLD.
Collapse
Affiliation(s)
- Undurti N Das
- Undurti N Das, UND Life Sciences, 13800 Fairhill Road, 321, Shaker Heights, OH 44120, United States
| |
Collapse
|
135
|
Wu CC, Schwartzman ML. The role of 20-HETE in androgen-mediated hypertension. Prostaglandins Other Lipid Mediat 2011; 96:45-53. [PMID: 21722750 PMCID: PMC3248593 DOI: 10.1016/j.prostaglandins.2011.06.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 12/25/2022]
Abstract
Androgen plays an important role in blood pressure regulation. Epidemiological studies have shown that men have a higher prevalence for developing hypertension than aged-matched, premenopausal women. Interestingly, postmenopausal women and women with polycystic ovary syndrome, both of which have increased endogenous androgen production, have elevated risks for hypertension suggesting that androgen may contribute to its development. Studies from our laboratory and others have provided substantial evidence that 20-hydroxyeicosatetraenoic acid (20-HETE) mediates the hypertension seen in rodents treated with androgen. 20-HETE is the cytochrome P450 (CYP)-derived ω-hydroxylated metabolite of arachidonic acid. 20-HETE plays a complex role in blood pressure regulation. In the kidney tubules, 20-HETE decreases blood pressure by promoting natriuresis, while in the microvasculature it has a pressor effect. In the microcirculation, 20-HETE participates in the regulation of vascular tone by sensitizing the smooth muscle cells to constrictor stimuli and contributes to myogenic, mitogenic and angiogenic responses. In addition, 20-HETE acts on the endothelium to promote endothelial dysfunction and endothelial activation. Recently, we have demonstrated that 20-HETE induces endothelial ACE thus setting forth a potential feed forward mechanism through activation of the renin-angiotensin-aldosterone system. In this review, we will discuss the pro-hypertensive effects of 20-HETE and its role in androgen-induced vascular dysfunction and hypertension.
Collapse
Affiliation(s)
- Cheng-Chia Wu
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA. chengchia
| | | |
Collapse
|
136
|
Abstract
PURPOSE OF REVIEW This review highlights recent advances in eicosanoid biology, especially linked to the cytochrome P450 (CYP)/soluble epoxide hydrolase (sEH) axis in vascular biology and disease. RECENT FINDINGS Since the first reports that CYP-derived metabolites of arachidonic acid can elicit vascular smooth muscle hyperpolarization and relaxation, it has become clear that fatty acid epoxides and diols are important lipid signaling molecules. Targeting CYP epoxygenases in vivo is difficult as these enzymes are involved in the metabolism of many currently used clinical agents. However, targeting the sEH which metabolizes fatty acid epoxides to their corresponding diols is a highly effective way of manipulating levels of these lipid mediators in vivo. Indeed, sEH-/- mice are protected against the development of some forms of hypertension, and have altered adipocyte metabolism and insulin resistance, phenomena reproduced by selective sEH inhibitors. SUMMARY Given that elevated epoxide levels have been linked with decreased blood pressure and inflammation in animal models, inhibitors of the sEH are currently being developed for the treatment of human hypertension and inflammation/atherosclerosis. This review focuses on outlining recent insights gained in the beneficial as well as the potentially adverse aspects of interfering with the CYP/sEH axis.
Collapse
Affiliation(s)
- Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt, Germany.
| |
Collapse
|
137
|
Role of CYP1A1 (T6235C) polymorphism and cigarette smoking in the development of coronary heart disease in Tunisian population. J Genet 2011; 90:303-7. [DOI: 10.1007/s12041-011-0058-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
138
|
Bellien J, Joannides R, Richard V, Thuillez C. Modulation of cytochrome-derived epoxyeicosatrienoic acids pathway: A promising pharmacological approach to prevent endothelial dysfunction in cardiovascular diseases? Pharmacol Ther 2011; 131:1-17. [DOI: 10.1016/j.pharmthera.2011.03.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 03/21/2011] [Indexed: 01/11/2023]
|
139
|
du Souich P, Fradette C. The effect and clinical consequences of hypoxia on cytochrome P450, membrane carrier proteins activity and expression. Expert Opin Drug Metab Toxicol 2011; 7:1083-100. [DOI: 10.1517/17425255.2011.586630] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
140
|
Das UN. Lipoxins as biomarkers of lupus and other inflammatory conditions. Lipids Health Dis 2011; 10:76. [PMID: 21569625 PMCID: PMC3114772 DOI: 10.1186/1476-511x-10-76] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 05/15/2011] [Indexed: 12/13/2022] Open
Abstract
Inflammatory events persist in systemic lupus erythematosus (lupus) despite the use of anti-inflammatory (both steroidal and non-steroidal) and immunosuppressive drugs leading to delay in the healing/repair process and so tissue/organ damage continues. The continuation of inflammation in lupus could be attributed to failure of the resolution process due to deficiency of potent endogenous pro-resolution-inducing molecules such as lipoxin A4 (LXA4). It is likely that progression and flares of lupus and lupus nephritis are due to decreased formation and release of LXA4. Hence, administration of LXA4 and its analogues could be of benefit in lupus. Furthermore, plasma and urinary measurement of lipoxins may be used to predict prognosis and response to therapy. It is likely that lipoxins and other bioactive anti-inflammatory lipids such as resolvins, protectins, maresins and nitrolipids play a significant role in other auto-immune diseases such as rheumatoid arthritis, type 1 diabetes mellitus and multiple sclerosis and hence, could be of significant benefit in these diseases.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 13800 Fairhill Road, #321 Shaker Heights, OH 44120, USA.
| |
Collapse
|
141
|
Abstract
Arachidonic acid is metabolized by enzymes of the CYP4A and 4F families to 20-hydroxyeicosatetraeonic acid (20-HETE), which plays an important role in the regulation of renal function, vascular tone, and the long-term control of arterial pressure. In the vasculature, 20-HETE is a potent vasoconstrictor, and upregulation of the production of this compound contributes to the elevation in oxidative stress and endothelial dysfunction and the increase in peripheral vascular resistance associated with some forms of hypertension. In kidney, 20-HETE inhibits Na transport in the proximal tubule and thick ascending loop of Henle, and deficiencies in the renal formation of 20-HETE contributes to sodium retention and development of some salt-sensitive forms of hypertension. 20-HETE also has renoprotective actions and opposes the effects of transforming growth factor β to promote proteinuria and renal end organ damage in hypertension. Several new inhibitors of the synthesis of 20-HETE and 20-HETE agonists and antagonists have recently been developed. These compounds along with peroxisome proliferator-activated receptor-α agonists that induce the renal formation of 20-HETE seem to have promise as antihypertensive agents. This review summarizes the rationale for the development of drugs that target the 20-HETE pathway for the treatment of hypertension and associated cardiovascular complications.
Collapse
|
142
|
Lee HJ, Park MK, Park YR, Kim D, Yun CH, Chun YJ, Shin HJ, Na HS, Chung MW, Lee CH. Expression of CYP2A6, CYP2D6 and CYP4A11 Polymorphisms in COS7 Mammalian Cell Line. Toxicol Res 2011; 27:25-9. [PMID: 24278547 PMCID: PMC3834515 DOI: 10.5487/tr.2011.27.1.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 01/16/2011] [Accepted: 01/19/2011] [Indexed: 12/03/2022] Open
Abstract
The cytochrome P450 (P450, CYP) are the superfamily of heme-containing monooxygenase enzymes, found throughout all nature including mammals, plants, and microorganisms. Mammalian P450 enzymes are involved in oxidative metabolism of a wide range of endo- and exogenous chemicals. Especially P450s involved in drug metabolisms are important for drug efficacy and polymorphisms of P450s in individuals reflect differences of drug responses between people. To study the functional differences of CYP2A6, CYP2D6, and CYP4A11 variants, we cloned the four CYP2A6, three CYP2D6, and three CYP4A11 variants, which were found in Korean populations, in mammalian expression vector pcDNA by PCR and examined their expressions in COS-7 mammalian cells using immunoblots using P450 specific polyclonal antibodies. Three of four CYP2A6, two of three CYP4A11, and two of three CYP2D6 variants showed expressions in COS-7 cells but the relative levels of expressions are remarkably different in those of each variants. Our findings may help to study and explain the differences between functions of CYP variants and drug responses in Korean populations.
Collapse
Affiliation(s)
- Hye Ja Lee
- College of Pharmacy, Dongguk University, Seoul 100-715
| | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Inhibition of Soluble Epoxide Hydrolase Confers Cardioprotection and Prevents Cardiac Cytochrome P450 Induction by Benzo(a)pyrene. J Cardiovasc Pharmacol 2011; 57:273-81. [DOI: 10.1097/fjc.0b013e3182055baf] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
144
|
Das UN. Current and emerging strategies for the treatment and management of systemic lupus erythematosus based on molecular signatures of acute and chronic inflammation. J Inflamm Res 2010; 3:143-70. [PMID: 22096364 PMCID: PMC3218729 DOI: 10.2147/jir.s9425] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lupus is a chronic, systemic inflammatory condition in which eicosanoids, cytokines, nitric oxide (NO), a deranged immune system, and genetics play a significant role. Our studies revealed that an imbalance in the pro- and antioxidants and NO and an alteration in the metabolism of essential fatty acids exist in lupus. The current strategy of management includes administration of nonsteroidal anti-inflammatory drugs such as hydroxychloroquine and immunosuppressive drugs such as corticosteroids. Investigational drugs include the following: 1) belimumab, a fully human monoclonal antibody that specifically recognizes and inhibits the biological activity of B-lymphocyte stimulator, also known as B-cell-activation factor of the TNF family; 2) stem cell transplantation; 3) rituximab, a chimeric monoclonal antibody against CD20, which is primarily found on the surface of B-cells and can therefore destroy B-cells; and 4) IL-27, which has potent anti-inflammatory actions. Our studies showed that a regimen of corticosteroids and cyclophosphamide, and methods designed to enhance endothelial NO synthesis and augment antioxidant defenses, led to induction of long-lasting remission of the disease. These results suggest that methods designed to modulate molecular signatures of the disease process and suppress inflammation could be of significant benefit in lupus. Some of these strategies could be vagal nerve stimulation, glucose-insulin infusion, and administration of lipoxins, resolvins, protectins, and nitrolipids by themselves or their stable synthetic analogs that are known to suppress inflammation and help in the resolution and healing of the inflammation-induced damage. These strategies are likely to be useful not only in lupus but also in other conditions, such as rheumatoid arthritis, scleroderma, ischemia-reperfusion injury to the myocardium, ischemic heart disease, and sepsis.
Collapse
Affiliation(s)
- Undurti N Das
- Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, India; UND Life Sciences, Shaker Heights, OH, USA
| |
Collapse
|
145
|
Role of cytochrome P450 enzymes in the bioactivation of polyunsaturated fatty acids. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:210-22. [PMID: 20869469 DOI: 10.1016/j.bbapap.2010.09.009] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 09/07/2010] [Accepted: 09/09/2010] [Indexed: 12/21/2022]
Abstract
Cytochrome P450 (CYP)-dependent metabolites of arachidonic acid (AA), such as epoxyeicosatrienoic acids and 20-hydroxyeicosatetraenoic acid, serve as second messengers of various hormones and growth factors and play pivotal roles in the regulation of vascular, renal and cardiac function. As discussed in the present review, virtually all of the major AA metabolizing CYP isoforms accept a variety of other polyunsaturated fatty acids (PUFA), including linoleic, eicosapentaenoic (EPA) and docosahexaenoic acids (DHA), as efficient alternative substrates. The metabolites of these alternative PUFAs also elicit profound biological effects. The CYP enzymes respond to alterations in the chain-length and double bond structure of their substrates with remarkable changes in the regio- and stereoselectivity of product formation. The omega-3 double bond that distinguishes EPA and DHA from their omega-6 counterparts provides a preferred epoxidation site for CYP1A, CYP2C, CYP2J and CYP2E subfamily members. CYP4A enzymes that predominantly function as AA ω-hydroxylases show largely increased (ω-1)-hydroxylase activities towards EPA and DHA. Taken together, these findings indicate that CYP-dependent signaling pathways are highly susceptible to changes in the relative bioavailability of the different PUFAs and may provide novel insight into the complex mechanisms that link essential dietary fatty acids to the development of cardiovascular disease.
Collapse
|
146
|
Félétou M, Köhler R, Vanhoutte PM. Endothelium-derived vasoactive factors and hypertension: possible roles in pathogenesis and as treatment targets. Curr Hypertens Rep 2010; 12:267-75. [PMID: 20532699 PMCID: PMC2910890 DOI: 10.1007/s11906-010-0118-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Endothelial cells regulate vascular tone by releasing various contracting and relaxing factors including nitric oxide (NO), arachidonic acid metabolites (derived from cyclooxygenases, lipoxygenases, and cytochrome P450 monooxygenases), reactive oxygen species, and vasoactive peptides. Additionally, another pathway associated with the hyperpolarization of the underlying smooth muscle cells plays a predominant role in resistance arteries. Endothelial dysfunction is a multifaceted disorder, which has been associated with hypertension of diverse etiologies, involving not only alterations of the L-arginine NO-synthase-soluble guanylyl cyclase pathway but also reduced endothelium-dependent hyperpolarizations and enhanced production of contracting factors, particularly vasoconstrictor prostanoids. This brief review highlights these different endothelial pathways as potential drug targets for novel treatments in hypertension and the associated endothelial dysfunction and end-organ damage.
Collapse
Affiliation(s)
- Michel Félétou
- Department of Angiology, Institut de Recherches Servier, Suresnes, France
| | - Ralf Köhler
- Institute of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Paul M. Vanhoutte
- Department Pharmacology and Pharmacy, Li Ka Shing Faculty Medicine, University of Hong Kong, 22 Sassoon Road, Hong Kong, China
- Department BIN Fusion Technology, Chonbuk National University, Jeonju, Korea
| |
Collapse
|