101
|
Vriend J, Nachtigal MW. Ubiquitin Proteasome Pathway Transcriptome in Epithelial Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13112659. [PMID: 34071321 PMCID: PMC8198060 DOI: 10.3390/cancers13112659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/26/2022] Open
Abstract
In this article, we reviewed the transcription of genes coding for components of the ubiquitin proteasome pathway in publicly available datasets of epithelial ovarian cancer (EOC). KEGG analysis was used to identify the major pathways distinguishing EOC of low malignant potential (LMP) from invasive high-grade serous ovarian carcinomas (HGSOC), and to identify the components of the ubiquitin proteasome system that contributed to these pathways. We identified elevated transcription of several genes encoding ubiquitin conjugases associated with HGSOC. Fifty-eight genes coding for ubiquitin ligases and more than 100 genes encoding ubiquitin ligase adaptors that were differentially expressed between LMP and HGSOC were also identified. Many differentially expressed genes encoding E3 ligase adaptors were Cullin Ring Ligase (CRL) adaptors, and 64 of them belonged to the Cullin 4 DCX/DWD family of CRLs. The data suggest that CRLs play a role in HGSOC and that some of these proteins may be novel therapeutic targets. Differential expression of genes encoding deubiquitinases and proteasome subunits was also noted.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Correspondence: ; Tel.: +1-204-789-3732
| | - Mark W. Nachtigal
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Department of Obstetrics, Gynecology & Reproductive Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
102
|
Meng Z, Wu J, Liu X, Zhou W, Ni M, Liu S, Guo S, Jia S, Zhang J. Identification of potential hub genes associated with the pathogenesis and prognosis of hepatocellular carcinoma via integrated bioinformatics analysis. J Int Med Res 2021; 48:300060520910019. [PMID: 32722976 PMCID: PMC7391448 DOI: 10.1177/0300060520910019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective The objective was to identify potential hub genes associated with the pathogenesis and prognosis of hepatocellular carcinoma (HCC). Methods Gene expression profile datasets were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between HCC and normal samples were identified via an integrated analysis. A protein–protein interaction network was constructed and analyzed using the STRING database and Cytoscape software, and enrichment analyses were carried out through DAVID. Gene Expression Profiling Interactive Analysis and Kaplan–Meier plotter were used to determine expression and prognostic values of hub genes. Results We identified 11 hub genes (CDK1, CCNB2, CDC20, CCNB1, TOP2A, CCNA2, MELK, PBK, TPX2, KIF20A, and AURKA) that might be closely related to the pathogenesis and prognosis of HCC. Enrichment analyses indicated that the DEGs were significantly enriched in metabolism-associated pathways, and hub genes and module 1 were highly associated with cell cycle pathway. Conclusions In this study, we identified key genes of HCC, which indicated directions for further research into diagnostic and prognostic biomarkers that could facilitate targeted molecular therapy for HCC.
Collapse
Affiliation(s)
- Ziqi Meng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mengwei Ni
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuyu Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Siyu Guo
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shanshan Jia
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
103
|
Qi SM, Dong J, Xu ZY, Cheng XD, Zhang WD, Qin JJ. PROTAC: An Effective Targeted Protein Degradation Strategy for Cancer Therapy. Front Pharmacol 2021; 12:692574. [PMID: 34025443 PMCID: PMC8138175 DOI: 10.3389/fphar.2021.692574] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/26/2021] [Indexed: 01/09/2023] Open
Abstract
Proteolysis targeting chimeric (PROTAC) technology is an effective endogenous protein degradation tool developed in recent years that can ubiquitinate the target proteins through the ubiquitin-proteasome system (UPS) to achieve an effect on tumor growth. A number of literature studies on PROTAC technology have proved an insight into the feasibility of PROTAC technology to degrade target proteins. Additionally, the first oral PROTACs (ARV-110 and ARV-471) have shown encouraging results in clinical trials for prostate and breast cancer treatment, which inspires a greater enthusiasm for PROTAC research. Here we focus on the structures and mechanisms of PROTACs and describe several classes of effective PROTAC degraders based on E3 ligases.
Collapse
Affiliation(s)
- Si-Min Qi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinyun Dong
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Zhi-Yuan Xu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xiang-Dong Cheng
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Wei-Dong Zhang
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Jiang-Jiang Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
104
|
Identification of Hub Genes Associated with Lung Adenocarcinoma Based on Bioinformatics Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021. [DOI: 10.1155/2021/5550407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lung adenocarcinoma (LUAD) is one of the malignant lung tumors. However, its pathology has not been fully understood. The purpose of this study is to identify the hub genes associated with LUAD by bioinformatics methods. Three gene expression datasets including GSE116959, GSE74706, and GSE85841 downloaded from the Gene Expression Omnibus (GEO) database were used in this study. The differentially expressed genes (DEGs) related to LUAD were screened by using the limma package. Gene Ontology (GO) and KEGG analysis of DEGs were carried out through the DAVID website. The protein-protein interaction (PPI) of differentially expressed genes was drawn by the STRING website, and the results were imported into Cytoscape for visualization. Then, the PPI network was analyzed by using MCODE, and the modules with a score greater than 5 were found by using cytoHubba. Finally, the GEPIA database and UALCAN database were used to verify and analyze the survival of hub genes. We identified 67 upregulated genes and 277 downregulated genes from three LUAD datasets. The results of GO analysis showed that the downregulated genes were significantly enriched in matrix adhesion and angiogenesis and upregulated differential genes were significantly enriched in cell adhesion and vascular development. KEGG pathway analysis showed that the differential genes of LUAD were significantly enriched in viral carcinogenesis and adhesion spots. The PPI network of differentially expressed genes consists of 269 nodes and 625 interactions. In addition, three modules with scores greater than 5 and seven hub genes, namely, MCM4, BIRC5, CDC20, CDC25C, FOXM1, GTSE1, and RFC4, playing an important role in the PPI network were screened out. In this study, we obtained the hub genes and pathways related to LUAD, revealing the molecular mechanism and pathogenesis of LUAD, which is helpful for the early detection of LUAD and provides a new idea for the treatment of LUAD.
Collapse
|
105
|
Jiang J, Liu C, Xu G, Liang T, Yu C, Liao S, Zhang Z, Lu Z, Wang Z, Chen J, Chen T, Li H, Zhan X. Identification of Hub Genes Associated With Melanoma Development by Comprehensive Bioinformatics Analysis. Front Oncol 2021; 11:621430. [PMID: 33912448 PMCID: PMC8072149 DOI: 10.3389/fonc.2021.621430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction This study aimed to identify important genes associated with melanoma to further develop new target gene therapies and analyze their significance concerning prognosis. Materials and methods Gene expression data for melanoma and normal tissue were downloaded from three databases. Differentially co-expressed genes were identified by WGCNA and DEGs analysis. These genes were subjected to GO, and KEGG enrichment analysis and construction of the PPI visualized with Cytoscape and screened for the top 10 Hub genes using CytoHubba. We validated the Hub gene's protein levels with an immunohistochemical assay to confirm the accuracy of our analysis. Results A total of 435 differentially co-expressed genes were obtained. Survival curves showed that high expression of FOXM1,\ EXO1, KIF20A, TPX2, and CDC20 in melanoma patients with 5 of the top 10 hub genes was associated with reduced overall survival (OS). Immunohistochemistry showed that all five genes were expressed at higher protein levels in melanoma than in paracancerous tissues. Conclusion FOXM1, EXO1, KIF20A, TPX2, and CDC20 are prognosis-associated core genes of melanoma, and their high expression correlates with the low prognosis of melanoma patients and can be used as biomarkers for melanoma diagnosis, treatment, and prognosis prediction.
Collapse
Affiliation(s)
- Jie Jiang
- Spinal Orthopedic Ward, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chong Liu
- Spinal Orthopedic Ward, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guoyong Xu
- Spinal Orthopedic Ward, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tuo Liang
- Spinal Orthopedic Ward, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chaojie Yu
- Spinal Orthopedic Ward, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shian Liao
- Spinal Orthopedic Ward, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zide Zhang
- Spinal Orthopedic Ward, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhaojun Lu
- Spinal Orthopedic Ward, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zequn Wang
- Spinal Orthopedic Ward, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiarui Chen
- Spinal Orthopedic Ward, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tianyou Chen
- Spinal Orthopedic Ward, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hao Li
- Spinal Orthopedic Ward, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xinli Zhan
- Spinal Orthopedic Ward, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
106
|
Inhibition of Cdc20 suppresses the metastasis in triple negative breast cancer (TNBC). Breast Cancer 2021; 28:1073-1086. [PMID: 33813687 DOI: 10.1007/s12282-021-01242-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cdc20 is a crucial activator of the anaphase-promoting complex (APC/C) and is known to be essential in mitosis regulation. Abnormally high expression of Cdc20 has been reported in several malignancies. We aimed to study the Cdc20 expression in human breast cancer tissues, focusing specifically on Cdc20 in Triple-Negative Breast Cancer (TNBC). METHODS The expression of mitotic regulators mRNA in three TNBC cell lines or three other breast cancer cell lines was determined by the RNA-sequencing database. 14,713 human breast cancer patient samples included in Breast Cancer-GenExminer v4.5 were used to analyze whether cell division cycle 20 (Cdc20) expression was related to TNBC. To find whether Cdc20 expression impacted prognosis in TNBC, we used 2,249 TNBC patients database. The loss of Cdc20 by RNA interference (shRNA) and several mitotic inhibitors including Apcin, ZM447439, BI 2536, and VX-680 on the capacities of proliferation, migration, invasion were evaluated by colony-forming, wound-healing, transwell assay, and western blot, respectively. RESULTS We studied the mitosis-related genes and proteins that are closely related to TNBC through the National Center for Biotechnology Information (NCBI) database. We found that Cdc20, one of the central mitotic regulators, is significantly upregulated in human TNBC, and its expression level is positively correlated with metastasis-free and relapse-free patient survival. We also found Cdc20 is highly conserved in TNBC in comparison to other breast cancer subtype cell lines. Cdc20 deficiency results in a decrease in cell growth and migration in four TNBC cell lines. Also, several mitotic inhibitors, such as Apcin, VX-680, ZM447439, and BI 2536, blocked cancer cell growth and invasion. CONCLUSIONS These results suggest an essential role of Cdc20 in tumor formation and metastasis of TNBC, which might be a potential target therapy for TNBC treatment.
Collapse
|
107
|
Zhang X, Zhang X, Li X, Bao H, Li G, Li N, Li H, Dou J. Connection Between CDC20 Expression and Hepatocellular Carcinoma Prognosis. Med Sci Monit 2021; 27:e926760. [PMID: 33788826 PMCID: PMC8020723 DOI: 10.12659/msm.926760] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) occurs frequently in China, with high morbidity and mortality. Cell division cycle 20 homolog (CDC20) is reportedly related to many cancers. In this study, we discuss a potential link of CDC20 expression to HCC patients’ prognoses. Material/Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to assess CDC20 expression in HCC and the paired noncancerous tissues. Chi-square analysis was used to assess potential association of CDC20 expression with clinicopathologic profiles among HCC patients. The overall survival for HCC patients with different CDC20 expressions was assessed using the Kaplan-Meier method. To evaluate the prognostic value for HCC patients, Cox regression analyses were performed. Results The expression of CDC20 was elevated among HCC specimens compared with adjacent noncancerous ones (P<0.05). The expression of CDC20 was significantly related to differentiation (P<0.001), tumor node metastasis stage (P<0.001), and lymphatic metastasis (P<0.001). Moreover, HCC patients with high CDC20 expression had dismal overall survival rates compared with low CDC20 expression (P<0.05). CDC20 alone could forecast HCC prognoses according to multivariable Cox regression analysis (hazard ratio=2.354, 95% confidence interval=1.177–4.709, P=0.016). Conclusions Overexpressed CDC20 may act as a reliable biomarker for dismal prognoses among HCC patients.
Collapse
Affiliation(s)
- Xianfeng Zhang
- Department of Hepatopancreatobiliary Surgery, Harrison International Peace Hospital, Hengshui, Hebei, China (mainland)
| | - Xianjun Zhang
- Department of Gynaecology, Harrison International Peace Hospital, Hengshui, Hebei, China (mainland)
| | - Xinguo Li
- Department of Hepatopancreatobiliary Surgery, Harrison International Peace Hospital, Hengshui, Hebei, China (mainland)
| | - Hongbing Bao
- Department of Hepatopancreatobiliary Surgery, Harrison International Peace Hospital, Hengshui, Hebei, China (mainland)
| | - Guang Li
- Department of Hepatopancreatobiliary Surgery, Harrison International Peace Hospital, Hengshui, Hebei, China (mainland)
| | - Ning Li
- Department of Hepatopancreatobiliary Surgery, Harrison International Peace Hospital, Hengshui, Hebei, China (mainland)
| | - Hengli Li
- Department of Hepatopancreatobiliary Surgery, Harrison International Peace Hospital, Hengshui, Hebei, China (mainland)
| | - Jian Dou
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
108
|
Baroni M, Yi C, Choudhary S, Lei X, Kosti A, Grieshober D, Velasco M, Qiao M, Burns SS, Araujo PR, DeLambre T, Son MY, Plateroti M, Ferreira MAR, Hasty EP, Penalva LOF. Musashi1 Contribution to Glioblastoma Development via Regulation of a Network of DNA Replication, Cell Cycle and Division Genes. Cancers (Basel) 2021; 13:1494. [PMID: 33804958 PMCID: PMC8036803 DOI: 10.3390/cancers13071494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 11/21/2022] Open
Abstract
RNA-binding proteins (RBPs) function as master regulators of gene expression. Alterations in their levels are often observed in tumors with numerous oncogenic RBPs identified in recent years. Musashi1 (Msi1) is an RBP and stem cell gene that controls the balance between self-renewal and differentiation. High Msi1 levels have been observed in multiple tumors including glioblastoma and are often associated with poor patient outcomes and tumor growth. A comprehensive genomic analysis identified a network of cell cycle/division and DNA replication genes and established these processes as Msi1's core regulatory functions in glioblastoma. Msi1 controls this gene network via two mechanisms: direct interaction and indirect regulation mediated by the transcription factors E2F2 and E2F8. Moreover, glioblastoma lines with Msi1 knockout (KO) displayed increased sensitivity to cell cycle and DNA replication inhibitors. Our results suggest that a drug combination strategy (Msi1 + cell cycle/DNA replication inhibitors) could be a viable route to treat glioblastoma.
Collapse
Affiliation(s)
- Mirella Baroni
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Caihong Yi
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
- Third Xiangya Hospital, Central South University, Changsha 410000, China
| | - Saket Choudhary
- Computational Biology and Bioinformatics, University of Southern California, Los Angeles, CA 90089, USA;
| | - Xiufen Lei
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Adam Kosti
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Denise Grieshober
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Mitzli Velasco
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Mei Qiao
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Suzanne S. Burns
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Patricia R. Araujo
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Talia DeLambre
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
| | - Mi Young Son
- Department of Molecular Medicine, Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX 78229, USA; (M.Y.S.); (E.P.H.)
| | - Michelina Plateroti
- Team: Development, Cancer and Stem Cells, Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FMTS, 67200 Strasbourg, France;
| | | | - E. Paul Hasty
- Department of Molecular Medicine, Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX 78229, USA; (M.Y.S.); (E.P.H.)
| | - Luiz O. F. Penalva
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA; (M.B.); (C.Y.); (X.L.); (A.K.); (D.G.); (M.V.); (M.Q.); (P.R.A.); (T.D.)
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
109
|
Sungwan P, Lert-itthiporn W, Silsirivanit A, Klinhom-on N, Okada S, Wongkham S, Seubwai W. Bioinformatics analysis identified CDC20 as a potential drug target for cholangiocarcinoma. PeerJ 2021; 9:e11067. [PMID: 33777535 PMCID: PMC7980698 DOI: 10.7717/peerj.11067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/15/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a malignancy that originates from bile duct cells. The incidence and mortality of CCA are very high especially in Southeast Asian countries. Moreover, most CCA patients have a very poor outcome. Presently, there are still no effective treatment regimens for CCA. The resistance to several standard chemotherapy drugs occurs frequently; thus, searching for a novel effective treatment for CCA is urgently needed. METHODS In this study, comprehensive bioinformatics analyses for identification of novel target genes for CCA therapy based on three microarray gene expression profiles (GSE26566, GSE32225 and GSE76297) from the Gene Expression Omnibus (GEO) database were performed. Based on differentially expressed genes (DEGs), gene ontology and pathway enrichment analyses were performed. Protein-protein interactions (PPI) and hub gene identifications were analyzed using STRING and Cytoscape software. Then, the expression of candidate genes from bioinformatics analysis was measured in CCA cell lines using real time PCR. Finally, the anti-tumor activity of specific inhibitor against candidate genes were investigated in CCA cell lines cultured under 2-dimensional and 3-dimensional cell culture models. RESULTS The three microarray datasets exhibited an intersection consisting of 226 DEGs (124 up-regulated and 102 down-regulated genes) in CCA. DEGs were significantly enriched in cell cycle, hemostasis and metabolism pathways according to Reactome pathway analysis. In addition, 20 potential hub genes in CCA were identified using the protein-protein interaction (PPI) network and sub-PPI network analysis. Subsequently, CDC20 was identified as a potential novel targeted drug for CCA based on a drug prioritizing program. In addition, the anti-tumor activity of a potential CDC20 inhibitor, namely dinaciclib, was investigated in CCA cell lines. Dinaciclib demonstrated huge anti-tumor activity better than gemcitabine, the standard chemotherapeutic drug for CCA. CONCLUSION Using integrated bioinformatics analysis, CDC20 was identified as a novel candidate therapeutic target for CCA.
Collapse
Affiliation(s)
- Prin Sungwan
- Biomedical Science Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | | | - Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nathakan Klinhom-on
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Seiji Okada
- Division of Hematopoeisis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Sopit Wongkham
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Wunchana Seubwai
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
110
|
Identification of prognostic significance of BIRC5 in breast cancer using integrative bioinformatics analysis. Biosci Rep 2021; 40:222088. [PMID: 32043523 PMCID: PMC7029152 DOI: 10.1042/bsr20193678] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/24/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
Aims: Baculoviral inhibitor of apoptosis repeat containing 5 (BIRC5) plays vital roles in carcinogenesis by influencing cell division and proliferation and by inhibiting apoptosis. However, the prognostic significance of BIRC5 remains unclear in breast cancer. Methods:BIRC5 expression and methylation status were evaluated using the Oncomine and The Cancer Genome Atlas (TCGA) databases. The relevance between BIRC5 and different clinicopathological features as well as survival information was analyzed using the bc-GenExMiner database and Kaplan–Meier Plotter. BIRC5–drug interaction network was obtained using the Comparative Toxicogenomics Database. Results: Based on the results from databases and own hospital data, BIRC5 was higher expressed in different breast cancer subtypes compared with the matched normal individuals. Hormone receptors were negatively correlated with BIRC5 expression, whereas the Scarff–Bloom–Richardson (SBR) grade, Nottingham Prognostic Index (NPI), human epidermal growth factor receptor-2 (HER-2) status, basal-like status, and triple-negative status were positively related to BIRC5 level in breast cancer samples with respect to normal tissues. High BIRC5 expression was responsible for shorter relapse-free survival, worse overall survival, reduced distant metastasis free survival, and increased risk of metastatic relapse event. BIRC5–drug interaction network indicated that several common drugs could modulate BIRC5 expression. Furthermore, a positive correlation between BIRC5 andcell-division cycle protein 20 (CDC20) gene was confirmed. Conclusion:BIRC5 may be adopted as a promising predictive marker and potential therapeutic target in breast cancer. Further large-scale studies are needed to more precisely confirm the value of BIRC5 in treatment of breast cancer.
Collapse
|
111
|
Huang C, Chen L, Savage SR, Eguez RV, Dou Y, Li Y, da Veiga Leprevost F, Jaehnig EJ, Lei JT, Wen B, Schnaubelt M, Krug K, Song X, Cieślik M, Chang HY, Wyczalkowski MA, Li K, Colaprico A, Li QK, Clark DJ, Hu Y, Cao L, Pan J, Wang Y, Cho KC, Shi Z, Liao Y, Jiang W, Anurag M, Ji J, Yoo S, Zhou DC, Liang WW, Wendl M, Vats P, Carr SA, Mani DR, Zhang Z, Qian J, Chen XS, Pico AR, Wang P, Chinnaiyan AM, Ketchum KA, Kinsinger CR, Robles AI, An E, Hiltke T, Mesri M, Thiagarajan M, Weaver AM, Sikora AG, Lubiński J, Wierzbicka M, Wiznerowicz M, Satpathy S, Gillette MA, Miles G, Ellis MJ, Omenn GS, Rodriguez H, Boja ES, Dhanasekaran SM, Ding L, Nesvizhskii AI, El-Naggar AK, Chan DW, Zhang H, Zhang B. Proteogenomic insights into the biology and treatment of HPV-negative head and neck squamous cell carcinoma. Cancer Cell 2021; 39:361-379.e16. [PMID: 33417831 PMCID: PMC7946781 DOI: 10.1016/j.ccell.2020.12.007] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/13/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023]
Abstract
We present a proteogenomic study of 108 human papilloma virus (HPV)-negative head and neck squamous cell carcinomas (HNSCCs). Proteomic analysis systematically catalogs HNSCC-associated proteins and phosphosites, prioritizes copy number drivers, and highlights an oncogenic role for RNA processing genes. Proteomic investigation of mutual exclusivity between FAT1 truncating mutations and 11q13.3 amplifications reveals dysregulated actin dynamics as a common functional consequence. Phosphoproteomics characterizes two modes of EGFR activation, suggesting a new strategy to stratify HNSCCs based on EGFR ligand abundance for effective treatment with inhibitory EGFR monoclonal antibodies. Widespread deletion of immune modulatory genes accounts for low immune infiltration in immune-cold tumors, whereas concordant upregulation of multiple immune checkpoint proteins may underlie resistance to anti-programmed cell death protein 1 monotherapy in immune-hot tumors. Multi-omic analysis identifies three molecular subtypes with high potential for treatment with CDK inhibitors, anti-EGFR antibody therapy, and immunotherapy, respectively. Altogether, proteogenomics provides a systematic framework to inform HNSCC biology and treatment.
Collapse
Affiliation(s)
- Chen Huang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lijun Chen
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rodrigo Vargas Eguez
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | | | - Eric J Jaehnig
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathan T Lei
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael Schnaubelt
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Xiaoyu Song
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marcin Cieślik
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hui-Yin Chang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Kai Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Antonio Colaprico
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Division of Biostatistics, Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Qing Kay Li
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - David J Clark
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Yingwei Hu
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Liwei Cao
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Jianbo Pan
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Yuefan Wang
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Kyung-Cho Cho
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Zhiao Shi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuxing Liao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wen Jiang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meenakshi Anurag
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jiayi Ji
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seungyeul Yoo
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel Cui Zhou
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Wen-Wei Liang
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Michael Wendl
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Pankaj Vats
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Zhen Zhang
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Xi S Chen
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Division of Biostatistics, Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alexander R Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Eunkyung An
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick NaVonal Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrew G Sikora
- Department of Head and Neck Surgery, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 71-252 Szczecin, Poland; International Institute for Molecular Oncology, 60-203 Poznań, Poland
| | - Małgorzata Wierzbicka
- Poznań University of Medical Sciences, 61-701 Poznań, Poland; Institute of Human Genetics Polish Academy of Sciences, 60-479 Poznań, Poland
| | - Maciej Wiznerowicz
- International Institute for Molecular Oncology, 60-203 Poznań, Poland; Poznań University of Medical Sciences, 61-701 Poznań, Poland
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - George Miles
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Saravana M Dhanasekaran
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adel K El-Naggar
- Department of Pathology, Division of Pathology and Laboratory Medicine, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daniel W Chan
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA.
| | - Hui Zhang
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA.
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
112
|
Shi Q, Meng Z, Tian XX, Wang YF, Wang WH. Identification and validation of a hub gene prognostic index for hepatocellular carcinoma. Future Oncol 2021; 17:2193-2208. [PMID: 33620260 DOI: 10.2217/fon-2020-1112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aims: We aim to provide new insights into the mechanisms of hepatocellular carcinoma (HCC) and identify key genes as biomarkers for the prognosis of HCC. Materials & methods: Differentially expressed genes between HCC tissues and normal tissues were identified via the Gene Expression Omnibus tool. The top ten hub genes screened by the degree of the protein nodes in the protein-protein interaction network also showed significant associations with overall survival in HCC patients. Results: A prognostic model containing a five-gene signature was constructed to predict the prognosis of HCC via multivariate Cox regression analysis. Conclusion: This study identified a novel five-gene signature (CDK1, CCNB1, CCNB2, BUB1 and KIF11) as a significant independent prognostic factor.
Collapse
Affiliation(s)
- Q Shi
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Z Meng
- The People's Hospital of Henan Province, Zhengzhou, Henan, 450003, China
| | - X X Tian
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Y F Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - W H Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| |
Collapse
|
113
|
Shi M, Dai WQ, Jia RR, Zhang QH, Wei J, Wang YG, Xiang SH, Liu B, Xu L. APC CDC20-mediated degradation of PHD3 stabilizes HIF-1a and promotes tumorigenesis in hepatocellular carcinoma. Cancer Lett 2021; 496:144-155. [PMID: 33039559 DOI: 10.1016/j.canlet.2020.10.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/10/2020] [Accepted: 10/06/2020] [Indexed: 01/04/2023]
Abstract
CDC20 regulates cell cycle progression by targeting key substrates for destruction, but its role in hepatocellular carcinoma (HCC) tumorigenesis remains to be explored. Here, by using weighted gene co-expression network analysis (WGCNA), we identified CDC20 as a hub gene in HCC. We demonstrated that CDC20 expression is correlated with HIF-1 activity and overall survival (OS) of clinic HCC patients. The activity of HIF-1 is regulated by the stability of HIF-1a subunit, which is hydroxylated by oxygen-dependent prolyl hydroxylase enzymes, the PHDs. In addition, we show that genetic ablation or pharmacological inhibition of CDC20 can accelerate the degradation of HIF-1a and impair VEGF secretion in HCC cells. Mechanistically, we found that CDC20 binds to the destruction-box (D-box) motif present in the PHD3 protein to promote its polyubiquitination and degradation. The depletion of endogenous PHD3 in CDC20 knockdown HCC cells greatly attenuated the decline of HIF-1a protein and restored the secretion of VEGF. In contrast, overexpression of a non-degradable PHD3 mutant significantly inhibited the proliferation of HCC cells both in vitro and in vivo. Collectively, our findings indicate that CDC20 plays a crucial role in the development of HCC by governing PHD3 protein.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cdc20 Proteins/genetics
- Cdc20 Proteins/metabolism
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/chemistry
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor-Proline Dioxygenases/genetics
- Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Prognosis
- Protein Stability
- Proteolysis
- Survival Rate
- Tumor Cells, Cultured
- Ubiquitination
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Min Shi
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Wei-Qi Dai
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Rong-Rong Jia
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Qing-Hui Zhang
- Department of Clinical Laboratory, Kunshan First People's Hospital, Jiangsu University, Kunshan, 215300, China
| | - Jue Wei
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Yu-Gang Wang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Shi-Hao Xiang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Ling Xu
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China.
| |
Collapse
|
114
|
Liu Y, Cui Y, Bai X, Feng C, Li M, Han X, Ai B, Zhang J, Li X, Han J, Zhu J, Jiang Y, Pan Q, Wang F, Xu M, Li C, Wang Q. MiRNA-Mediated Subpathway Identification and Network Module Analysis to Reveal Prognostic Markers in Human Pancreatic Cancer. Front Genet 2020; 11:606940. [PMID: 33362865 PMCID: PMC7756031 DOI: 10.3389/fgene.2020.606940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
Background Pancreatic cancer (PC) remains one of the most lethal cancers. In contrast to the steady increase in survival for most cancers, the 5-year survival remains low for PC patients. Methods We describe a new pipeline that can be used to identify prognostic molecular biomarkers by identifying miRNA-mediated subpathways associated with PC. These modules were then further extracted from a comprehensive miRNA-gene network (CMGN). An exhaustive survival analysis was performed to estimate the prognostic value of these modules. Results We identified 105 miRNA-mediated subpathways associated with PC. Two subpathways within the MAPK signaling and cell cycle pathways were found to be highly related to PC. Of the miRNA-mRNA modules extracted from CMGN, six modules showed good prognostic performance in both independent validated datasets. Conclusions Our study provides novel insight into the mechanisms of PC. We inferred that six miRNA-mRNA modules could serve as potential prognostic molecular biomarkers in PC based on the pipeline we proposed.
Collapse
Affiliation(s)
- Yuejuan Liu
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Yuxia Cui
- School of Nursing, Harbin Medical University, Daqing, China
| | - Xuefeng Bai
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Chenchen Feng
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Meng Li
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Xiaole Han
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Bo Ai
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Jian Zhang
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Xuecang Li
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jiang Zhu
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Yong Jiang
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Qi Pan
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Fan Wang
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Mingcong Xu
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Chunquan Li
- School of Medical Informatics, Harbin Medical University, Daqing, China
| | - Qiuyu Wang
- School of Medical Informatics, Harbin Medical University, Daqing, China
| |
Collapse
|
115
|
Wang L, Yang C, Chu M, Wang ZW, Xue B. Cdc20 induces the radioresistance of bladder cancer cells by targeting FoxO1 degradation. Cancer Lett 2020; 500:172-181. [PMID: 33290869 DOI: 10.1016/j.canlet.2020.11.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022]
Abstract
Ionizing radiation is a conventional therapy for cancer patients, but patients often experience distant metastasis and recurrence, which lead to a poor prognosis after the implementation of this treatment. Moreover, the underlying mechanisms by which radioresistance contributes to metastatic potential is still elusive. Here, we explored the molecular mechanisms that contribute to radioresistance in bladder cancer. To achieve this, we established two irradiation-resistant (IR) cell lines, T24R and 5637R, which were derived from parental bladder cancer cell lines. Cell viability was detected by CCK-8 assay, while migration and invasion abilities were examined by wound healing and Transwell chamber assays, respectively. Furthermore, the role of Cdc20 in the regulation of epithelial to mesenchymal transition (EMT) in IR cells was explored by Western blotting, immunoprecipitation and immunofluorescence staining. The IR cells exhibited EMT properties, and our data showed that Cdc20 expression was significantly elevated in IR cells. Remarkably, Cdc20 silencing reversed the EMT phenotype in IR cells. Mechanistically, Cdc20 governed IR-mediated EMT in part by governing forkhead box O1 (FoxO1) degradation. Taken together, our findings showed that the inactivation of Cdc20 or the activation of FoxO1 might be a potential strategy to overcome radioresistance in bladder cancer.
Collapse
Affiliation(s)
- Lixia Wang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Chuanlai Yang
- Scientific Research Department, The Second Affiliated Hospital of Soochow University, China
| | - Man Chu
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China; Department of Obstetrics and gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China.
| | - Boxin Xue
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
116
|
Digital gene expression profiling analysis of A549 cells cultured with PM10 in moxa smoke. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
117
|
Zeng Y, Li N, Chen R, Liu W, Chen T, Zhu J, Zeng M, Cheng J, Huang J. Screening of hub genes associated with prognosis in non-small cell lung cancer by integrated bioinformatics analysis. Transl Cancer Res 2020; 9:7149-7164. [PMID: 35117319 PMCID: PMC8798611 DOI: 10.21037/tcr-20-1073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/12/2020] [Indexed: 12/18/2022]
Abstract
Background Lung cancer is an intractable disease and the second leading cause of cancer-related deaths and morbidity in the world. This study conducted a bioinformatics analysis to identify critical genes associated with poor prognosis in non-small cell lung cancer (NSCLC). Methods We downloaded three datasets (GSE33532, GSE27262, and GSE18842) from the gene expression omnibus (GEO), and used the GEO2R online tools to identify the differentially expressed genes (DEGs). We then used the Search Tool for Retrieval of Interacting Genes (STRING) database to establish a protein-protein interaction (PPI) network and used the Cytoscape software to perform a module analysis of the PPI network. A Kaplan-Meier plotter was used to perform the overall survival (OS) analysis, and the Gene Expression Profiling Interactive Analysis (GEPIA) database was used for expression level analysis of hub genes. Further, the UALCAN database was used to validate the relationship between the gene expression level of each hub gene and clinical characteristics. Results We identified 254 DEGs, which were composed of 66 up-regulated genes and 188 down-regulated genes. Out of these, five DEGs were identified as hub genes (CDC20, BUB1, CCNB2, CCNB1, UBE2C) by constructing a PPI network. The use of a Kaplan-Meier plotter to generate patient survival curves suggested a strong relationship between the five hub genes with worse OS. Validation of the above results using the GEPIA database showed that all the hub genes were highly expressed in NSCLC tissues. Using the UALACN data mining platform, we found that the five hub genes are correlated with tumor stage and the status of node metastasis in NSCLC patients. Conclusions We identified five hub DEGs that might provide perspectives in the explorations of pathogenesis and treatments for NSCLC.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School, Guangdong Medical University, Zhanjiang, China
| | - Nanhong Li
- Graduate School, Guangdong Medical University, Zhanjiang, China.,Pathological Diagnosis and Research Center, Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Riken Chen
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wang Liu
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tao Chen
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School, Guangdong Medical University, Zhanjiang, China
| | - Jinru Zhu
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School, Guangdong Medical University, Zhanjiang, China
| | - Mingqing Zeng
- First Clinical School of Medicine, Guangdong Medical University, Zhanjiang, China
| | - Junfen Cheng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jian Huang
- Pathological Diagnosis and Research Center, Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
118
|
Sun C, Li M, Feng Y, Sun F, Zhang L, Xu Y, Lu S, Zhu J, Huang J, Wang J, Hu Y, Zhang Y. MDM2-P53 Signaling Pathway-Mediated Upregulation of CDC20 Promotes Progression of Human Diffuse Large B-Cell Lymphoma. Onco Targets Ther 2020; 13:10475-10487. [PMID: 33116627 PMCID: PMC7575066 DOI: 10.2147/ott.s253758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/14/2020] [Indexed: 01/03/2023] Open
Abstract
Background Cell-division cycle 20 (CDC20) is overexpressed in a variety of tumor cells and is negatively regulated by wild-type p53 (wtp53). Our previous study uncovered that CDC20 was upregulated and associated with poor outcome in diffuse large B-cell lymphoma (DLBCL) based on bioinformatics analysis. Dysregulation of the MDM2-p53 is a major mechanism to promote DLBCL. Thus, we hypothesized that CDC20 could be a downstream gene of the MDM2-p53 signaling pathway. However, the clinical significance and mechanistic role of a novel MDM2-p53-CDC20 signaling pathway in DLBCL have still remained unclear. Materials and Methods RT-qPCR was performed in MDM2 knocked down (KD) and control (Ctrl) OCI-Ly3/OCI-Ly10 cells to investigate whether CDC20 was a downstream gene of the MDM2-p53 pathway. The effects of CDC20 on cell proliferation, cell cycle and apoptosis were assessed, as well as the role of CDC20 in suppressing tumorigenicity in vivo. Furthermore, we also investigated the roles of CDC20 and MDM2 in progression of DLBCL and the underlying mechanisms. Results The results of RT-qPCR revealed that CDC20 was downregulated while TP53 was upregulated in MDM2 KD OCI-Ly3 and OCI-Ly10 cells. It was unveiled that the expression levels of CDC20 and MDM2 were upregulated in DLBCL tissues and cells, and high CDC20 expression was correlated with adverse clinical features and poor outcome. Functional assays showed that downregulation of CDC20 could inhibit proliferation, induce apoptosis and cell cycle arrest in vitro. In addition, inactivation of the MDM2-p53 pathway by downregulation of MDM2 restored wtp53 expression level and reduced CDC20 protein level in OCI-Ly3 and OCI-Ly10 cells. Besides, targeting CDC20 was found to suppress tumorigenesis of DLBCL in vivo. Conclusion CDC20 was identified as a key downstream gene of the MDM2-p53 signaling pathway in DLBCL and may be used as a novel target gene to guide therapeutic applications.
Collapse
Affiliation(s)
- Chengtao Sun
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Mengzhen Li
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Yanfen Feng
- Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Feifei Sun
- Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Li Zhang
- Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Yanjie Xu
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Suying Lu
- Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Jia Zhu
- Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Junting Huang
- Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Juan Wang
- Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Yang Hu
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Yizhuo Zhang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China.,Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
119
|
Nagy Á, Győrffy B. muTarget: A platform linking gene expression changes and mutation status in solid tumors. Int J Cancer 2020; 148:502-511. [PMID: 32875562 DOI: 10.1002/ijc.33283] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/22/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
Large oncology repositories have paired genomic and transcriptomic data for all patients. We used these data to perform two independent analyses: to identify gene expression changes related to a gene mutation and to identify mutations altering the expression of a selected gene. All data processing steps were performed in the R statistical environment. RNA-sequencing and mutation data were acquired from The Cancer Genome Atlas (TCGA). The DESeq2 algorithm was applied for RNA-seq normalization, and transcript variants were annotated with AnnotationDbi. MuTect2-identified somatic mutation data were utilized, and the MAFtools Bioconductor program was used to summarize the data. The Mann-Whitney U test was used for differential expression analysis. The established database contains 7876 solid tumors from 18 different tumor types with both somatic mutation and RNA-seq data. The utility of the approach is presented via three analyses in breast cancer: gene expression changes related to TP53 mutations, gene expression changes related to CDH1 mutations and mutations resulting in altered progesterone receptor (PGR) expression. The breast cancer database was split into equally sized training and test sets, and these data sets were analyzed independently. The highly significant overlap of the results (chi-square statistic = 16 719.7 and P < .00001) validates the presented pipeline. Finally, we set up a portal at http://www.mutarget.com enabling the rapid identification of novel mutational targets. By linking somatic mutations and gene expression, it is possible to identify biomarkers and potential therapeutic targets in different types of solid tumors. The registration-free online platform can increase the speed and reduce the development cost of novel personalized therapies.
Collapse
Affiliation(s)
- Ádám Nagy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary.,Momentum Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary.,Momentum Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary.,2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
120
|
Downregulation of CDC20 Increases Radiosensitivity through Mcl-1/p-Chk1-Mediated DNA Damage and Apoptosis in Tumor Cells. Int J Mol Sci 2020; 21:ijms21186692. [PMID: 32932732 PMCID: PMC7555290 DOI: 10.3390/ijms21186692] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 01/08/2023] Open
Abstract
Radiotherapy is an important modality for the local control of human cancers, but the radioresistance induced by aberrant apoptotic signaling is a hallmark of cancers. Restoring the aberrant apoptotic pathways is an emerging strategy for cancer radiotherapy. In this study, we determined that targeting cell division cycle 20 (CDC20) radiosensitized colorectal cancer (CRC) cells through mitochondrial-dependent apoptotic signaling. CDC20 was overexpressed in CRC cells and upregulated after radiation. Inhibiting CDC20 activities genetically or pharmacologically suppressed the proliferation and increased radiation-induced DNA damage and intrinsic apoptosis in CRC cells. Mechanistically, knockdown of CDC20 suppressed the expression of antiapoptotic protein Mcl-1 but not other Bcl-2 family proteins. The expressions of CDC20 and Mcl-1 respond to radiation simultaneously through direct interaction, as evidenced by immunoprecipitation and glutathione S-transferase (GST) pull-down assays. Subsequently, decreased Mcl-1 expression inhibited the expression level of phosphorylated checkpoint kinase 1 (p-Chk1), thereby resulting in impaired DNA damage repair through downregulating the homologous recombination repair protein Rad51 and finally causing apoptotic signaling. In addition, both CDC20 and Chk1 inhibitors together, through in vivo studies, confirmed the radiosensitizing effect of CDC20 via inhibiting Mcl-1 and p-Chk1 expression. In summary, our results indicate that targeting CDC20 is a promising strategy to improve cancer radiotherapy.
Collapse
|
121
|
VanGenderen C, Harkness TAA, Arnason TG. The role of Anaphase Promoting Complex activation, inhibition and substrates in cancer development and progression. Aging (Albany NY) 2020; 12:15818-15855. [PMID: 32805721 PMCID: PMC7467358 DOI: 10.18632/aging.103792] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
The Anaphase Promoting Complex (APC), a multi-subunit ubiquitin ligase, facilitates mitotic and G1 progression, and is now recognized to play a role in maintaining genomic stability. Many APC substrates have been observed overexpressed in multiple cancer types, such as CDC20, the Aurora A and B kinases, and Forkhead box M1 (FOXM1), suggesting APC activity is important for cell health. We performed BioGRID analyses of the APC coactivators CDC20 and CDH1, which revealed that at least 69 proteins serve as APC substrates, with 60 of them identified as playing a role in tumor promotion and 9 involved in tumor suppression. While these substrates and their association with malignancies have been studied in isolation, the possibility exists that generalized APC dysfunction could result in the inappropriate stabilization of multiple APC targets, thereby changing tumor behavior and treatment responsiveness. It is also possible that the APC itself plays a crucial role in tumorigenesis through its regulation of mitotic progression. In this review the connections between APC activity and dysregulation will be discussed with regards to cell cycle dysfunction and chromosome instability in cancer, along with the individual roles that the accumulation of various APC substrates may play in cancer progression.
Collapse
Affiliation(s)
- Cordell VanGenderen
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Troy Anthony Alan Harkness
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Terra Gayle Arnason
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.,Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
122
|
Zhang W, Liu C, Li J, Liu R, Zhuang J, Feng F, Yao Y, Sun C. Target Analysis and Mechanism of Podophyllotoxin in the Treatment of Triple-Negative Breast Cancer. Front Pharmacol 2020; 11:1211. [PMID: 32848800 PMCID: PMC7427588 DOI: 10.3389/fphar.2020.01211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022] Open
Abstract
Background As the original compound of many podophyllotoxin derivatives, podophyllotoxin has a beneficial antitumor effect. The mechanism of podophyllotoxin activity in triple-negative breast cancer still needs to be explored. Methods We used cell proliferation assay, scratch and transwell experiments, and cell cycle and apoptosis analyses to observe the intervention effect of podophyllotoxin on breast cancer. Furthermore, we analyzed the differences between GSE31448, GSE65194, and GSE45827 in the Gene Expression Omnibus database (GEO) and explored the differential genes using a STRING database. Centiscape2.2, MCODE cluster analysis and KEGG pathway analysis were used to identify the most significant gene differences. Next, we utilized BATMAN-TCM and TCMSP databases for further screening to identify key genes. Finally, quantitative RT-PCR (qRT-PCR) and Western blotting were performed to detect the expression of key targets. Results Our research confirmed that podophyllotoxin could not only inhibit the migration and invasion of triple-negative breast cancer but also affect the cell cycle and induce apoptosis. In total, 566 differential genes were obtained by using the GEO database. After topological network analysis, cluster analysis, and molecular docking screening, we finally identified PLK1, CCDC20, and CDK1 as key target genes. The results of the qRT-PCR assay showed that the mRNA levels of PLK1, CDC20, and CDK1 decreased, while the expression of upstream P53 increased, after drug induction. The Gene Set Enrichment Analysis (GSEA) and conetwork analysis showed that PLK1 is a more critical regulatory factor. Further Western blotting analysis revealed that there was a negative regulatory relationship between the key gene PLK1 and P53 on the protein level. The results were presented as the mean ± standard deviation of triplicate experiments and P<0.05 was considered to indicate a statistically significant difference. Conclusion Podophyllotoxin has an intervention effect on the development of triple-negative breast cancer. The expression of PLK1, CDC20, and CDK1 in the cell cycle pathway is inhibited by regulating P53. Our research shows that natural drugs inhibit tumor activity by regulating the expression of cyclins, and the combination of natural drugs and modern extensive database analysis has a wide range of potential applications in the development of antitumor therapies.
Collapse
Affiliation(s)
- Wenfeng Zhang
- Clinical Medical Colleges, Weifang Medical University, Weifang, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruijuan Liu
- Department of Oncology, Weifang Traditional Chinese Medicine Hospital, Weifang, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Medicine Hospital, Weifang, China
| | - Fubin Feng
- Department of Oncology, Weifang Traditional Chinese Medicine Hospital, Weifang, China
| | - Yan Yao
- Clinical Medical Colleges, Weifang Medical University, Weifang, China
| | - Changgang Sun
- Chinese Medicine Innovation Institute, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
123
|
Wang W, Wang S, Pan L. Identification of key differentially expressed mRNAs and microRNAs in non-small cell lung cancer using bioinformatics analysis. Exp Ther Med 2020; 20:3720-3732. [PMID: 32855723 PMCID: PMC7444408 DOI: 10.3892/etm.2020.9105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of mortality worldwide. However, the pathogenesis of NSCLC remains to be fully elucidated. Therefore, the present study aimed to explore the differential expression of mRNAs and microRNAs (miRNAs/miRs) in NSCLC and to determine how these RNA molecules interact with one another to affect disease progression. Differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) were identified from the GSE18842, GSE32863 and GSE29250 datasets downloaded from the Gene Expression Omnibus (GEO database). Functional and pathway enrichment analysis were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. STRING, Cytoscape and MCODE were applied to construct a protein-protein interaction (PPI) network and to screen hub genes. The interactions between miRNAs and mRNAs were predicted using miRWalk 3.0 and a miRNA-mRNA regulatory network was constructed. The prognostic value of the identified hub genes was then evaluated via Kaplan-Meier survival analyses using datasets from The Cancer Genome Atlas. A total of 782 DEGs and 46 DEMs were identified from the 3 GEO datasets. The enriched pathways and functions of the DEGs and target genes of the DEMs included osteoclast differentiation, cell adhesion, response to a drug, plasma membrane, extracellular exosome and protein binding. A subnetwork composed of 11 genes was extracted from the PPI network and the genes in this subnetwork were mainly involved in the cell cycle, cell division and DNA replication. A miRNA-gene regulatory network was constructed with 247 miRNA-gene pairs based on 6 DEMs and 210 DEGs. Kaplan-Meier survival analysis indicated that the expression of ubiquitin E2 ligase C, cell division cycle protein 20, DNA topoisomerase IIα, aurora kinase A and B, cyclin B2, maternal embryonic leucine zipper kinase, slit guidance ligand 3, phosphoglucomutase 5, endomucin, cysteine dioxygenase type 1, dihydropyrimidinase-like 2, miR-130b, miR-1181 and miR-127 was significantly associated with overall survival of patients with lung adenocarcinoma. In the present study, a miRNA-mRNA regulatory network in NSCLC was established, which may provide future avenues for scientific exploration and therapeutic targeting of NSCLC.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Pulmonary and Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Shanshan Wang
- Department of Pulmonary and Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Lei Pan
- Department of Pulmonary and Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| |
Collapse
|
124
|
Li Y, Ding J, Xu X, Shi R, Saw PE, Wang J, Chung S, Li W, Aljaeid BM, Lee RJ, Tao W, Teng L, Farokhzad OC, Shi J. Dual Hypoxia-Targeting RNAi Nanomedicine for Precision Cancer Therapy. NANO LETTERS 2020; 20:4857-4863. [PMID: 32479088 PMCID: PMC7405292 DOI: 10.1021/acs.nanolett.0c00757] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As a hallmark of solid tumors, hypoxia promotes tumor growth, metastasis, and therapeutic resistance by regulating the expression of hypoxia-related genes. Hypoxia also represents a tumor-specific stimulus that has been exploited for the development of bioreductive prodrugs and advanced drug delivery systems. Cell division cycle 20 (CDC20) functions as an oncogene in tumorigenesis, and we demonstrated the significant upregulation of CDC20 mRNA in the tumor vs paratumor tissues of breast cancer patients and its positive correlation with tumor hypoxia. Herein, a hypoxia-responsive nanoparticle (HRNP) was developed by self-assembly of the 2-nitroimidazole-modified polypeptide and cationic lipid-like compound for delivery of siRNA to specifically target CDC20, a hypoxia-related protumorigenic gene, in breast cancer therapy. The delivery of siCDC20 by HRNPs sufficiently silenced the expression of CDC20 and exhibited potent antitumor efficacy. We expect that this strategy of targeting hypoxia-correlated protumorigenic genes by hypoxia-responsive RNAi nanoparticles may provide a promising approach in cancer therapy.
Collapse
Affiliation(s)
- Yujing Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- School of Life Science, Jilin University, Changchun 130012, P. R. China
| | - Jianxun Ding
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Xiaoding Xu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
| | - Run Shi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich 81379, Germany
| | - Phei Er Saw
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China
| | - Junqing Wang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Shirley Chung
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Wenliang Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | - Robert J Lee
- School of Life Science, Jilin University, Changchun 130012, P. R. China
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Lesheng Teng
- School of Life Science, Jilin University, Changchun 130012, P. R. China
| | - Omid C Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
125
|
Douglas P, Ye R, Radhamani S, Cobban A, Jenkins NP, Bartlett E, Roveredo J, Kettenbach AN, Lees-Miller SP. Nocodazole-Induced Expression and Phosphorylation of Anillin and Other Mitotic Proteins Are Decreased in DNA-Dependent Protein Kinase Catalytic Subunit-Deficient Cells and Rescued by Inhibition of the Anaphase-Promoting Complex/Cyclosome with proTAME but Not Apcin. Mol Cell Biol 2020; 40:e00191-19. [PMID: 32284347 PMCID: PMC7296215 DOI: 10.1128/mcb.00191-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/15/2019] [Accepted: 03/31/2020] [Indexed: 11/23/2022] Open
Abstract
The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) has well-established roles in DNA double-strand break repair, and recently, nonrepair functions have also been reported. To better understand its cellular functions, we deleted DNA-PKcs from HeLa and A549 cells using CRISPR/Cas9. The resulting cells were radiation sensitive, had reduced expression of ataxia-telangiectasia mutated (ATM), and exhibited multiple mitotic defects. Mechanistically, nocodazole-induced upregulation of cyclin B1, anillin, and securin was decreased in DNA-PKcs-deficient cells, as were phosphorylation of Aurora A on threonine 288, phosphorylation of Polo-like kinase 1 (PLK1) on threonine 210, and phosphorylation of targeting protein for Xenopus Klp2 (TPX2) on serine 121. Moreover, reduced nocodazole-induced expression of anillin, securin, and cyclin B1 and phosphorylation of PLK1, Aurora A, and TPX2 were rescued by inhibition of the anaphase-promoting complex/cyclosome (APC/C) by proTAME, which prevents binding of the APC/C-activating proteins Cdc20 and Cdh1 to the APC/C. Altogether, our studies suggest that loss of DNA-PKcs prevents inactivation of the APC/C in nocodazole-treated cells.
Collapse
Affiliation(s)
- Pauline Douglas
- Department of Biochemistry and Molecular Biology and Robson DNA Science Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ruiqiong Ye
- Department of Biochemistry and Molecular Biology and Robson DNA Science Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Suraj Radhamani
- Department of Biochemistry and Molecular Biology and Robson DNA Science Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alexander Cobban
- Department of Biochemistry and Molecular Biology and Robson DNA Science Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole P Jenkins
- Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon Campus at Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Edward Bartlett
- Department of Biochemistry and Molecular Biology and Robson DNA Science Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan Roveredo
- Department of Biochemistry and Molecular Biology and Robson DNA Science Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Arminja N Kettenbach
- Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon Campus at Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Susan P Lees-Miller
- Department of Biochemistry and Molecular Biology and Robson DNA Science Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
126
|
Ye Z, Zeng Z, Wang D, Lei S, Shen Y, Chen Z. Identification of key genes associated with the progression of intrahepatic cholangiocarcinoma using weighted gene co-expression network analysis. Oncol Lett 2020; 20:483-494. [PMID: 32565973 PMCID: PMC7286119 DOI: 10.3892/ol.2020.11600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to identify the key genes that are associated with the progression of intrahepatic cholangiocarcinoma through weighted gene co-expression network analysis (WGCNA). A total of three gene datasets were downloaded from the Gene Expression Omnibus database, including GSE107943, GSE119336 and GSE26566. Differentially expressed genes (DEGs) between intrahepatic cholangiocarcinoma tissues and adjacent liver tissues were identified using GSE107943, while tissue specific genes between bile duct and liver tissues were identified using GSE26566. Following the removal of tissue-specific genes, real DEGs were used to construct the WGCNA to investigate the association between gene modules and clinical traits. Following functional analysis, pathway enrichment analysis and the construction of a protein-protein interaction (PPI) network were performed, hub genes were selected and their diagnostic value was verified in GSE119336 using a receiver operating characteristic curve. Finally, the protein levels of the hub genes were also verified in intrahepatic cholangiocarcinoma tissues. A total of 1,643 real DEGs were identified and used to construct the WGCNA. Additionally, a total of seven co-expressed gene modules were identified following WGCNA, while genes in brown and yellow modules were identified to be associated with multiple clinical traits (the number of clinical traits >3) and used as key modules. A total of 63 core key module genes were subsequently identified, and it was indicated that these genes were most enriched in the nucleus (Gene Ontology term) and the cell cycle pathway (Kyoto Encyclopedia of Genes and Genomes term). Finally, a total of eight genes, including cyclin B1, cell division cycle 20, cell division cycle associated 8, cyclin dependent kinase 1, centrosomal protein 55, kinesin family member 2C, DNA topoisomerase IIα and TPX2 microtubule nucleation factor, exhibited the highest score in PPI analysis and had a high diagnostic value for intrahepatic cholangiocarcinoma. In addition, the protein levels of these genes were also revealed to be increased in most intrahepatic cholangiocarcinoma tissues. These eight genes may be used as novel biomarkers for the diagnosis of intrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Zi Ye
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhirui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China.,Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Da Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430060, P.R. China
| | - Shan Lei
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China.,Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Yiyi Shen
- Department of Liver-Biliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Zubing Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
127
|
Zhou W, Wu J, Liu X, Ni M, Meng Z, Liu S, Jia S, Zhang J, Guo S, Zhang X. Identification of crucial genes correlated with esophageal cancer by integrated high-throughput data analysis. Medicine (Baltimore) 2020; 99:e20340. [PMID: 32443386 PMCID: PMC7254712 DOI: 10.1097/md.0000000000020340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Esophageal cancer (ESCA) is one of the most deadly malignancies in the world. Although the management and treatment of patients with ESCA have improved, the overall 5-year survival rate is still very poor. METHODS The study aimed to identify potential key genes associated with the pathogenesis and prognosis of ESCA. In the study, integrated bioinformatics methods were used to screen differentially expressed genes (DEGs) between ESCA and normal tissue in the data set of gene expression profiles. The hub gene in DEGs was further analyzed by protein-protein interaction (PPI) network and survival analysis to explore its relationship with the pathogenesis and poor prognosis of ESCA. RESULTS 134 up-regulated genes and 183 down-regulated genes were obtained in ESCA compared with normal tissues. Moreover, the PPI network was established with 176 nodes and 800 interactions. Ten hub genes (AURKA, CDC20, BUB1, TOP2A, ASPM, DLGAP5, TPX2, CENPF, UBE2C, and NEK2) were filtered out based on the degree value. Functional enrichment analysis indicated that a variety of extracellular related items and ECM-receptor interaction pathway were all correlated with the ESCA. CONCLUSIONS The results of this study would provide some guidance for further study of diagnostic and prognostic biomarkers to promote ESCA treatment.
Collapse
|
128
|
Abstract
Multiple studies have confirmed that speckle-type pox virus and zinc finger (POZ) protein (SPOP) functions as a substrate adaptor of cullin 3-based E3 ligase and has a crucial role in various cellular processes via specific targeting of proteins for ubiquitination and subsequent proteasomal degradation. Dysregulation of SPOP-mediated proteolysis might be involved in the development and progression of human prostate and kidney cancers. In prostate cancer, SPOP seems to function as a tumour suppressor by targeting several proteins, including androgen receptor (AR), steroid receptor coactivator 3 (SRC3) and BRD4, for degradation, whereas it might function as an oncoprotein in kidney cancer, for example, by targeting phosphatase and tensin homologue (PTEN) for proteasomal degradation. In addition, nuclear SPOP targets AR for degradation and has a role as a tumour suppressor in prostate cancer; however, in kidney cancer, SPOP largely accumulates in the cytoplasm and fails to promote degradation of AR located in the nucleus, resulting in activation of AR-driven pathways and cancer progression. Owing to the context-dependent function of SPOP in human malignancies, further assessment of the molecular mechanisms involving SPOP in prostate and kidney cancers is needed to improve our understanding of its role in the development of these cancer types. Treatments that target SPOP might become therapeutic strategies in these malignancies in the future.
Collapse
|
129
|
Huang P, Le X, Huang F, Yang J, Yang H, Ma J, Hu G, Li Q, Chen Z. Discovery of a Dual Tubulin Polymerization and Cell Division Cycle 20 Homologue Inhibitor via Structural Modification on Apcin. J Med Chem 2020; 63:4685-4700. [PMID: 32290657 DOI: 10.1021/acs.jmedchem.9b02097] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Apcin is one of the few compounds that have been previously reported as a Cdc20 specific inhibitor, although Cdc20 is a very promising drug target. We reported here the design, synthesis, and biological evaluations of 2,2,2-trichloro-1-aryl carbamate derivatives as Cdc20 inhibitors. Among these derivatives, compound 9f was much more efficient than the positive compound apcin in inhibiting cancer cell growth, but it had approximately the same binding affinity with apcin in SPR assays. It is possible that another mechanism of action might exist. Further evidence demonstrated that compound 9f also inhibited tubulin polymerization, disorganized the microtubule network, and blocked the cell cycle at the M phase with changes in the expression of cyclins. Thus, it induced apoptosis through the activation of caspase-3 and PARP. In addition, compound 9f inhibited cell migration and invasion in a concentration-dependent manner. These results provide guidance for developing the current series as potential new anticancer therapeutics.
Collapse
Affiliation(s)
- Pan Huang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Xiangyang Le
- Department of Pharmacy, Yiyang Central Hospital, Yiyang 413000, Hunan, China
| | - Fei Huang
- Center for Medical Experiments, Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, China
| | - Jie Yang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Haofeng Yang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Junlong Ma
- Department of Good Clinical Practice, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| |
Collapse
|
130
|
Qiu E, Gao Y, Zhang B, Xia T, Zhang Z, Shang G. Upregulation of cell division cycle 20 in cisplatin resistance-induced epithelial-mesenchymal transition in osteosarcoma cells. Am J Transl Res 2020; 12:1309-1318. [PMID: 32355543 PMCID: PMC7191160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Cell division cycle 20 homologue (Cdc20) is characterized as an oncoprotein that is involved in carcinogenesis. Accumulated evidence reveals that Cdc20 plays an oncogenic role by governing cell growth, apoptosis, motility, and metastasis. The role of Cdc20 in drug resistance is elusive. In the present study, we exploited whether Cdc20 is involved in the cisplatin (DDP) resistance-induced epithelial-mesenchymal transition (EMT) of osteosarcoma cells. We found that DDP resistant U2OS and MG63 cells underwent EMT. Moreover, DDP-resistant cells exhibit the mesenchymal features such as enhanced attachment and detachment and increased invasion activity and migration. Mechanistically, Cdc20 was highly expressed in DDP-resistant osteosarcoma cells compared to parental cells. Consistently, downregulation of CdcC20 in DDP-resistant cells reversed the EMT phenotypes and changed the expression of EMT biomarkers. Our studies provide evidence for targeting Cdc20 as a promising approach to enhancing drug sensitivity for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Enduo Qiu
- Department of Orthopaedics, Cancer Hospital of China Medical UniversityShenyang, Liaoning Province, PR China
- Liaoning Cancer Hospital & InstituteShenyang 110042, Liaoning Province, PR China
| | - Yuan Gao
- Department of Orthopaedics, Cancer Hospital of China Medical UniversityShenyang, Liaoning Province, PR China
- Liaoning Cancer Hospital & InstituteShenyang 110042, Liaoning Province, PR China
| | - Benyuan Zhang
- Department of Orthopaedics, Cancer Hospital of China Medical UniversityShenyang, Liaoning Province, PR China
- Liaoning Cancer Hospital & InstituteShenyang 110042, Liaoning Province, PR China
| | - Tienan Xia
- Department of Orthopaedics, Cancer Hospital of China Medical UniversityShenyang, Liaoning Province, PR China
- Liaoning Cancer Hospital & InstituteShenyang 110042, Liaoning Province, PR China
| | - Zhihao Zhang
- Department of Orthopaedics, Cancer Hospital of China Medical UniversityShenyang, Liaoning Province, PR China
- Liaoning Cancer Hospital & InstituteShenyang 110042, Liaoning Province, PR China
| | - Guanning Shang
- Department of Orthopaedics, Cancer Hospital of China Medical UniversityShenyang, Liaoning Province, PR China
- Liaoning Cancer Hospital & InstituteShenyang 110042, Liaoning Province, PR China
| |
Collapse
|
131
|
Li G, Wang Y, Cai L, Zhou L. Screening for genes and subnetworks associated with atypical teratoid/rhabdoid tumors using bioinformatics analysis. Int J Neurosci 2020; 131:319-326. [PMID: 32202192 DOI: 10.1080/00207454.2020.1746306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objectives: Atypical teratoid/rhabdoid tumors (AT/RTs) are rare, fast-growing lesions of central nervous system and their prognosis is poor. Nowadays, multimodal managements, including surgery, chemotherapy and radiation therapy are advocated; however, low survival rate and severe neurocognitive toxicity of chemotherapy as well as the irreversible long-term sequelae of irradiation in infants and young children with AT/RTs are alarming. The aim of our study is to provide valid biological information for more tailored advance therapy for these lesions.Methods: Gene expression profile of GSE94349 was downloaded from GEO database and was analyzed using limma R package. Function and enrichment analyses of DEGs were performed based on DAVID database. PPI network construction, hub gene selection and module analysis were conducted in Cytoscape software.Results: In this study, 224 up-regulated genes and 572 down-regulated genes were selected as DEGs. The up-regulated genes were mainly enriched in molecular function and cell component, which mainly included protein binding and nucleus, respectively. The down-regulated DEGs were significantly involved in cell component such as plasma membrane and integral component of membrane. Cell cycle and retrograde endocannabinoid signaling were the main KEGG pathway of up and down DEGs, respectively. CDK1, CCNA2, CDC20, TOP2A were identified as hub genes and two significant network modules were also obtained.Conclusions: Our study may help to further understand the molecular characteristics and provide more tailored targets for future treatment of AT/RTs. Hub genes CDK1, CCNA2, CDC20, TOP2A as well as cell cycle signaling pathway may be new more tailored targets for future treatment of AT/RTs.
Collapse
Affiliation(s)
- Gaowei Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuelong Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Linjun Cai
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
132
|
Li H, Wei N, Ma Y, Wang X, Zhang Z, Zheng S, Yu X, Liu S, He L. Integrative module analysis of HCC gene expression landscapes. Exp Ther Med 2020; 19:1779-1788. [PMID: 32104233 PMCID: PMC7027144 DOI: 10.3892/etm.2020.8437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
Despite hepatocellular carcinoma (HCC) being a common cancer globally, its initiation and progression are not well understood. The present study was designed to investigate the hub genes and biological processes of HCC, which change substantially during its progression. Three gene expression profiles of 480 patients with HCC were obtained from the Gene Expression Omnibus database. Subsequent to performing functional annotations and constructing protein-protein interaction (PPI) networks, 657 differentially expressed genes were identified, which were subsequently used to screen candidate hub genes. PPI networks were modularized using the weighted gene correlation network analysis algorithm, the topological overlapping matrix and the hierarchical cluster tree, which were utilized via STRING. Clinical data obtained from The Cancer Genome Atlas were then analyzed to validate the experiments performed using six hub genes. Additionally, a transcription factor and microRNA-mRNA network were constructed to determine the potential regulatory mechanisms of six hub genes. The results revealed that the oxidation-reduction process and cell cycle associated processes were markedly involved in HCC progression. Six highly expressed genes, including cyclin B2, cell division cycle 20, mitotic arrest deficient 2 like 1, minichromosome maintenance complex component 2, centromere protein F and BUB mitotic checkpoint serine/threonine kinase B, were confirmed as hub genes and validated via experiments associated with cell division. These hub genes are necessary for confirmatory experiments and may be used in clinical gene therapy as biomarkers or drug targets.
Collapse
Affiliation(s)
- Hongshi Li
- Department of Medical Oncology, People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Ning Wei
- Department of Medical Oncology, People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Yi Ma
- Department of Medical Oncology, People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Xiaozhou Wang
- Department of Medical Oncology, People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Zhiqiang Zhang
- Department of Medical Oncology, People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Shuang Zheng
- Department of Medical Oncology, People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Xi Yu
- Department of Medical Oncology, People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Shuang Liu
- Department of Medical Oncology, People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Lijie He
- Department of Medical Oncology, People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
133
|
Guo L, Zhang Y, Yin Z, Ji Y, Yang G, Qian B, Li S, Wang J, Liang T, Li C, Li X. Screening and identification of genes associated with cell proliferation in cholangiocarcinoma. Aging (Albany NY) 2020; 12:2626-2646. [PMID: 32040444 PMCID: PMC7041743 DOI: 10.18632/aging.102766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/12/2020] [Indexed: 11/25/2022]
Abstract
Cholangiocarcinoma (CCA), an aggressive tumor with poor prognosis, is a malignant cancer with increasing incidence and mortality rates. It is important to survey crucial genes in CCA to find and design potential drug targets, especially for those genes associated with cell proliferation that is a key biological process in tumorgenesis. Herein, we surveyed genes associated with cell proliferation via a comprehensive pan-cancer analysis. Candidate genes were further analyzed using multiple approaches, including cross-analysis from diverse molecular levels, examination of potential function and interactions, and additional experimental validation. We primarily screened 15 potential genes based on 11 validated genes, and these 26 genes were further examined to delineate their biological functions and potential roles in cancer treatment. Several of them were involved synthetically lethal genetic interactions, especially for RECQL4, TOP2A, MKI67 and ASPM, indicating their potential roles in drug design and cancer treatment. Further experimental validation indicated that some genes were significantly upregulated in several cancer cell lines, implying their important roles in tumorigenesis. Our study identifies some genes associated with cell proliferation, which may be potential future targets in molecular targeted therapy.
Collapse
Affiliation(s)
- Li Guo
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yaodong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zibo Yin
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yaya Ji
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Guowei Yang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Bowen Qian
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Sunjing Li
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jun Wang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Changxian Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiangcheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
134
|
Li Q, Zhang L, Jiang J, Zhang Y, Wang X, Zhang Q, Wang Y, Liu C, Li F. CDK1 and CCNB1 as potential diagnostic markers of rhabdomyosarcoma: validation following bioinformatics analysis. BMC Med Genomics 2019; 12:198. [PMID: 31870357 PMCID: PMC6929508 DOI: 10.1186/s12920-019-0645-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 12/12/2019] [Indexed: 12/27/2022] Open
Abstract
Background Rhabdomyosarcoma (RMS), a common soft-tissue malignancy in pediatrics, presents high invasiveness and mortality. However, besides known changes in the PAX3/7-FOXO1 fusion gene in alveolar RMS, the molecular mechanisms of the disease remain incompletely understood. The purpose of the study is to recognize potential biomarkers related with RMS and analyse their molecular mechanism, diagnosis and prognostic significance. Methods The Gene Expression Omnibus was used to search the RMS and normal striated muscle data sets. Differentially expressed genes (DEGs) were filtered using R software. The DAVID has become accustomed to performing functional annotations and pathway analysis on DEGs. The protein interaction was constructed and further processed by the STRING tool and Cytoscape software. Kaplan–Meier was used to estimate the effect of hub genes on the ending of sarcoma sufferers, and the expression of these genes in RMS was proved by real-time polymerase chain reaction (RT-PCR). Finally, the expression of CDK1 and CCNB1 in RMS was validated by immunohistochemistry (IHC). Results A total of 1932 DEGs were obtained, amongst which 1505 were up-regulated and 427were down-regulated. Up-regulated genes were largely enriched in the cell cycle, ECM-receptor interaction, PI3K/Akt and p53 pathways, whilst down-regulated genes were primarily enriched in the muscle contraction process. CDK1, CCNB1, CDC20, CCNB2, AURKB, MAD2L1, HIST2H2BE, CENPE, KIF2C and PCNA were identified as hub genes by Cytoscape analyses. Survival analysis showed that, except for HIST2H2BE, the other hub genes were highly expressed and related to poor prognosis in sarcoma. RT-PCR validation showed that CDK1, CCNB1, CDC20, CENPE and HIST2H2BE were significantly differential expression in RMS compared to the normal control. IHC revealed that the expression of CDK1 (28/32, 87.5%) and CCNB1 (26/32, 81.25%) were notably higher in RMS than normal controls (1/9, 11.1%; 0/9, 0%). Moreover, the CCNB1 was associated with the age and location of the patient’s onset. Conclusions These results show that these hub genes, especially CDK1 and CCNB1, may be potential diagnostic biomarkers for RMS and provide a new perspective for the pathogenesis of RMS.
Collapse
Affiliation(s)
- Qianru Li
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi, Xinjiang, 832002, China
| | - Liang Zhang
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi, Xinjiang, 832002, China.,Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Jinfang Jiang
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi, Xinjiang, 832002, China
| | - Yangyang Zhang
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi, Xinjiang, 832002, China
| | - Xiaomeng Wang
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi, Xinjiang, 832002, China
| | - Qiaochu Zhang
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi, Xinjiang, 832002, China
| | - Yang Wang
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi, Xinjiang, 832002, China
| | - Chunxia Liu
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi, Xinjiang, 832002, China.
| | - Feng Li
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi, Xinjiang, 832002, China. .,Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China.
| |
Collapse
|
135
|
Gnocchi D, Kapoor S, Nitti P, Cavalluzzi MM, Lentini G, Denora N, Sabbà C, Mazzocca A. Novel lysophosphatidic acid receptor 6 antagonists inhibit hepatocellular carcinoma growth through affecting mitochondrial function. J Mol Med (Berl) 2019; 98:179-191. [PMID: 31863151 DOI: 10.1007/s00109-019-01862-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/08/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers worldwide and the commonest liver cancer. It is expected to become the third leading cause of cancer-related deaths in Western countries by 2030. Effective pharmacological approaches for HCC are still unavailable, and the currently approved systemic treatments are unsatisfactory in terms of therapeutic results, showing many side effects. Thus, searching for new effective and nontoxic molecules for HCC treatment is of paramount importance. We previously demonstrated that lysophosphatidic acid (LPA) is an important contributor to the pathogenesis of HCC and that lysophosphatidic acid receptor 6 (LPAR6) actively supports HCC tumorigenicity. Here, we screened for novel LPAR6 antagonists and found that two compounds, 4-methylene-2-octyl-5-oxotetra-hydrofuran-3-carboxylic acid (C75) and 9-xanthenylacetic acid (XAA), efficiently inhibit HCC growth, both in vitro and in vitro, without displaying toxic effects at the effective doses. We further investigated the mechanisms of action of C75 and XAA and found that these compounds determine a G1-phase cell cycle arrest, without inducing apoptosis at the effective doses. Moreover, we discovered that both molecules act on mitochondrial homeostasis, by increasing mitochondrial biogenesis and reducing mitochondrial membrane potential. Overall, our results show two newly identified LPAR6 antagonists with a concrete potential to be translated into effective and side effect-free molecules for HCC therapy.
Collapse
Affiliation(s)
- Davide Gnocchi
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Saketh Kapoor
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (deemed to be University), University Road, Derlakatte, Mangalore, Karnataka, 575018, India
| | - Patrizia Nitti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Licio Giorgieri 1, I-34127, Trieste, Italy
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, via Orabona, 4, 70125, Bari, Italy
| | - Giovanni Lentini
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, via Orabona, 4, 70125, Bari, Italy
| | - Nunzio Denora
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, via Orabona, 4, 70125, Bari, Italy
| | - Carlo Sabbà
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy.
| |
Collapse
|
136
|
Ghelli Luserna di Rorà A, Martinelli G, Simonetti G. The balance between mitotic death and mitotic slippage in acute leukemia: a new therapeutic window? J Hematol Oncol 2019; 12:123. [PMID: 31771633 PMCID: PMC6880427 DOI: 10.1186/s13045-019-0808-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022] Open
Abstract
Mitosis is the process whereby an eukaryotic cell divides into two identical copies. Different multiprotein complexes are involved in the fine regulation of cell division, including the mitotic promoting factor and the anaphase promoting complex. Prolonged mitosis can result in cellular division, cell death, or mitotic slippage, the latter leading to a new interphase without cellular division. Mitotic slippage is one of the causes of genomic instability and has an important therapeutic and clinical impact. It has been widely studied in solid tumors but not in hematological malignancies, in particular, in acute leukemia. We review the literature data available on mitotic regulation, alterations in mitotic proteins occurring in acute leukemia, induction of prolonged mitosis and its consequences, focusing in particular on the balance between cell death and mitotic slippage and on its therapeutic potentials. We also present the most recent preclinical and clinical data on the efficacy of second-generation mitotic drugs (CDK1-Cyclin B1, APC/CCDC20, PLK, Aurora kinase inhibitors). Despite the poor clinical activity showed by these drugs as single agents, they offer a potential therapeutic window for synthetic lethal combinations aimed to selectively target leukemic cells at the right time, thus decreasing the risk of mitotic slippage events.
Collapse
Affiliation(s)
- Andrea Ghelli Luserna di Rorà
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, FC, Italy.
| | - Giovanni Martinelli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, FC, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, FC, Italy
| |
Collapse
|
137
|
Melloy PG. The anaphase-promoting complex: A key mitotic regulator associated with somatic mutations occurring in cancer. Genes Chromosomes Cancer 2019; 59:189-202. [PMID: 31652364 DOI: 10.1002/gcc.22820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that helps control chromosome separation and exit from mitosis in many different kinds of organisms, including yeast, flies, worms, and humans. This review represents a new perspective on the connection between APC/C subunit mutations and cancer. The complex nature of APC/C and limited mutation analysis of its subunits has made it difficult to determine the relationship of each subunit to cancer. In this work, cancer genomic data were examined to identify APC/C subunits with a greater than 5% alteration frequency in 11 representative cancers using the cBioPortal database. Using the Genetic Determinants of Cancer Patient Survival database, APC/C subunits were also studied and found to be significantly associated with poor patient prognosis in several cases. In comparing these two kinds of cancer genomics data to published large-scale genomic analyses looking for cancer driver genes, ANAPC1 and ANAPC3/CDC27 stood out as being represented in all three types of analyses. Seven other subunits were found to be associated both with >5% alteration frequency in certain cancers and being associated with an effect on cancer patient prognosis. The aim of this review is to provide new approaches for investigators conducting in vivo studies of APC/C subunits and cancer progression. In turn, a better understanding of these APC/C subunits and their role in different cancers will help scientists design drugs that are more precisely targeted to certain cancers, using APC/C mutation status as a biomarker.
Collapse
Affiliation(s)
- Patricia G Melloy
- Department of Biological and Allied Health Sciences, Fairleigh Dickinson University, Madison, New Jersey
| |
Collapse
|
138
|
McHugh A, Fernandes K, Chinner N, Ibrahim AFM, Garg AK, Boag G, Hepburn LA, Proby CM, Leigh IM, Saville MK. The Identification of Potential Therapeutic Targets for Cutaneous Squamous Cell Carcinoma. J Invest Dermatol 2019; 140:1154-1165.e5. [PMID: 31705877 PMCID: PMC7254059 DOI: 10.1016/j.jid.2019.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 08/27/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
We performed a small interfering RNA screen to identify targets for cutaneous squamous cell carcinoma (cSCC) therapy in the ubiquitin/ubiquitin-like system. We provide evidence for selective anti-cSCC activity of knockdown of the E3 ubiquitin ligase MARCH4, the ATPase p97/VCP, the deubiquitinating enzyme USP8, the cullin-RING ligase (CRL) 4 substrate receptor CDT2/DTL, and components of the anaphase-promoting complex/cyclosome (APC/C). Specifically attenuating CRL4CDT2 by CDT2 knockdown can be more potent in killing cSCC cells than targeting CRLs or CRL4s in general by RBX1 or DDB1 depletion. Suppression of the APC/C or forced APC/C activation by targeting its repressor EMI1 are both potential therapeutic approaches. We observed that cSCC cells can be selectively killed by small-molecule inhibitors of USP8 (DUBs-IN-3/compound 22c) and the NEDD8 E1 activating enzyme/CRLs (MLN4924/pevonedistat). A substantial proportion of cSCC cell lines are very highly MLN4924-sensitive. Pathways that respond to defects in proteostasis are involved in the anti-cSCC activity of p97 suppression. Targeting USP8 can reduce the expression of growth factor receptors that participate in cSCC development. EMI1 and CDT2 depletion can selectively cause DNA re-replication and DNA damage in cSCC cells.
Collapse
Affiliation(s)
- Angela McHugh
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Kenneth Fernandes
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Nerime Chinner
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Adel F M Ibrahim
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Amit K Garg
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Garry Boag
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Lydia A Hepburn
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Charlotte M Proby
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom; Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Irene M Leigh
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom; Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mark K Saville
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
139
|
Chi JJ, Li H, Zhou Z, Izquierdo-Ferrer J, Xue Y, Wavelet CM, Schiltz GE, Zhang B, Cristofanilli M, Lu X, Bahar I, Wan Y. A novel strategy to block mitotic progression for targeted therapy. EBioMedicine 2019; 49:40-54. [PMID: 31669221 PMCID: PMC6945239 DOI: 10.1016/j.ebiom.2019.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Blockade of mitotic progression is an ideal approach to induce mitotic catastrophe that suppresses cancer cell expansion. Cdc20 is a critical mitotic factor governing anaphase initiation and the exit from mitosis through recruiting substrates to APC/C for degradation. Results from recent TCGA (The Cancer Genome Atlas) and pathological studies have demonstrated a pivotal oncogenic role for Cdc20-APC/C in tumor progression as well as drug resistance. Thus, deprivation of the mitotic role for Cdc20-APC/C by either inhibition of Cdc20-APC/C activity or elimination of Cdc20 protein via induced protein degradation emerges as an effective therapeutic strategy to control cancer. METHODS We designed a proteolysis targeting chimera, called CP5V, which comprises a Cdc20 ligand and VHL binding moiety bridged by a PEG5 linker that induces Cdc20 degradation. We characterized the effect of CP5V in destroying Cdc20, arresting mitosis, and inhibiting tumor progression by measuring protein degradation, 3D structure dynamics, cell cycle control, tumor cell killing and tumor inhibition using human breast cancer xenograft mouse model. FINDINGS Results from our study demonstrate that CP5V can specifically degrade Cdc20 by linking Cdc20 to the VHL/VBC complex for ubiquitination followed by proteasomal degradation. Induced degradation of Cdc20 by CP5V leads to significant inhibition of breast cancer cell proliferation and resensitization of Taxol-resistant cell lines. Results based on a human breast cancer xenograft mouse model show a significant role for CP5V in suppressing breast tumor progression. INTERPRETATION CP5V-mediated degradation of Cdc20 could be an effective therapeutic strategy for anti-mitotic therapy.
Collapse
Affiliation(s)
- Junlong Jack Chi
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, USA; Department of Biomedical Engineering, Northwestern University, USA
| | - Hongchun Li
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, USA
| | - Zhuan Zhou
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, USA
| | | | - Yifan Xue
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, USA
| | - Cindy M Wavelet
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, USA
| | - Gary E Schiltz
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, USA; Center for Molecular Innovation and Drug Discovery, Northwestern University, USA
| | - Bin Zhang
- Department of Medicine-Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, USA
| | - Massimo Cristofanilli
- Department of Medicine-Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, USA
| | - Xinghua Lu
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, USA
| | - Yong Wan
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, USA; Department of Pharmacology, Northwestern University Feinberg School of Medicine, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, USA; Chemical of Life Processes Institute, Northwestern University, USA.
| |
Collapse
|
140
|
Centromere Dysfunction Compromises Mitotic Spindle Pole Integrity. Curr Biol 2019; 29:3072-3080.e5. [DOI: 10.1016/j.cub.2019.07.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 06/21/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022]
|
141
|
Hemati M, Haghiralsadat F, Jafary F, Moosavizadeh S, Moradi A. Targeting cell cycle protein in gastric cancer with CDC20siRNA and anticancer drugs (doxorubicin and quercetin) co-loaded cationic PEGylated nanoniosomes. Int J Nanomedicine 2019; 14:6575-6585. [PMID: 31616144 PMCID: PMC6699499 DOI: 10.2147/ijn.s211844] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE In a past study, we developed and optimized a novel cationic PEGylated niosome containing anticancer drugs (doxorubicin or quercetin) and siRNA. This study intended to evaluate the anti-tumor effects of the combination therapy to target both the proteins and genes responsible for the development of gastric cancer. CDC20, known as an oncogene, is a good potential therapeutic candidate for gastric cancer. METHODS In order to increase the loading capacity of siRNA and achieve appropriate physical properties, we optimized the cationic PEGylated niosome in terms of the amount of the cationic lipids. Drugs (doxorubicin and quercetin) and CDC20siRNA were loaded into the co-delivery system, and physical characteristics, thermosensitive controlled-release, gene silencing efficiency, and apoptosis rate were determined. RESULTS The results showed that the designed co-delivery system for the drugs and gene silencer had an appropriate size and a high positive charge for loading siRNA, and also showed a thermosensitive drug release behavior, which successfully silenced the CDC20 expression when compared with the single delivery of siRNA or the drug. Moreover, the co-delivery of drugs and CDC20siRNA exhibited a highly inhibitory property for the cell growth of gastric cancer cells. CONCLUSION It seems that the novel cationic PEGylated niosomes co-loaded with anticancer drug and CDC20siRNA has a promising application for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Mahdie Hemati
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Haghiralsadat
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farzaneh Jafary
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedmohammad Moosavizadeh
- Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Moradi
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
142
|
Integration of Gene Expression Profile Data to Verify Hub Genes of Patients with Stanford A Aortic Dissection. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3629751. [PMID: 31380418 PMCID: PMC6662449 DOI: 10.1155/2019/3629751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/26/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022]
Abstract
Thoracic aortic dissection (TAD) is a catastrophic disease worldwide, but the pathogenic genes and pathways are largely unclear. This study aims at integrating two gene expression profile datasets and verifying hub genes and pathways involved in TAD as well as exploring potential molecular mechanisms. We will combine our mRNAs expression profile (6 TAD tissues versus 6 non-TAD tissues) and GSE52093 downloaded from the Gene Expression Omnibus (GEO) database. The two mRNAs expression profiles contained 13 TAD aortic tissues and 11 non-TAD tissues. The two expression profile datasets were integrated and we found out coexpression of differentially expressed genes (DEGs) using bioinformatics methods. The gene ontology and pathway enrichment of DEGs were performed by DAVID and Kyoto Encyclopedia of Genes and Genomes online analyses, respectively. The protein-protein interaction networks of the DEGs were constructed according to the data from the STRING database. Cytohubber calculating result shows the top 10 hub genes with CDC20, AURKA, RFC4, MCM4, TYMS, MCM2, DLGAP5, FANCI, BIRC5, and POLE2. Module analysis revealed that TAD was associated with significant pathways including cell cycle, vascular smooth muscle contraction, and adrenergic signaling in cardiomyocytes. The qRT-PCR result showed that the expression levels of all the hub genes were significantly increased in OA samples (p < 0.05), and these candidate genes could be used as potential diagnostic biomarkers and therapeutic targets of TAD.
Collapse
|
143
|
Yang B, Dai JX, Pan YB, Ma YB, Chu SH. Examining the biomarkers and molecular mechanisms of medulloblastoma based on bioinformatics analysis. Oncol Lett 2019; 18:433-441. [PMID: 31289514 PMCID: PMC6540325 DOI: 10.3892/ol.2019.10314] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/02/2019] [Indexed: 12/17/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children. The aim of the present study was to predict biomarkers and reveal their potential molecular mechanisms in MB. The gene expression profiles of GSE35493, GSE50161, GSE74195 and GSE86574 were downloaded from the Gene Expression Omnibus (GEO) database. Using the Limma package in R, a total of 1,006 overlapped differentially expressed genes (DEGs) with the cut-off criteria of P<0.05 and |log2fold-change (FC)|>1 were identified between MB and normal samples, including 540 upregulated and 466 downregulated genes. Furthermore, the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were also performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool to analyze functional and pathway enrichment. The Search Tool for Retrieval of Interacting Genes database was subsequently used to construct a protein-protein interaction (PPI) network and the network was visualized in Cytoscape. The top 11 hub genes, including CDK1, CCNB1, CCNB2, PLK1, CDC20, MAD2L1, AURKB, CENPE, TOP2A, KIF2C and PCNA, were identified from the PPI network. The survival curves for hub genes in the dataset GSE85217 predicted the association between the genes and survival of patients with MB. The top 3 modules were identified by the Molecular Complex Detection plugin. The results indicated that the pathways of DEGs in module 1 were primarily enriched in cell cycle, progesterone-mediated oocyte maturation and oocyte meiosis; and the most significant functional pathways in modules 2 and 3 were primarily enriched in mismatch repair and ubiquitin-mediated proteolysis, respectively. These results may help elucidate the pathogenesis and design novel treatments for MB.
Collapse
Affiliation(s)
- Biao Yang
- Department of Neurosurgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| | - Jun-Xi Dai
- Department of Neurosurgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| | - Yuan-Bo Pan
- Department of Neurosurgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| | - Yan-Bin Ma
- Department of Neurosurgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| | - Sheng-Hua Chu
- Department of Neurosurgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| |
Collapse
|
144
|
Multiple Molecular Targets Associated with Genomic Instability in Lung Cancer. Int J Genomics 2019; 2019:9584504. [PMID: 31355244 PMCID: PMC6636528 DOI: 10.1155/2019/9584504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/30/2019] [Indexed: 01/15/2023] Open
Abstract
Lung cancer (LC) is the first cause of cancer-related deaths worldwide. Elucidating the pathogenesis of LC will give information on key elements of tumor initiation and development while helping to design novel targeted therapies. LC is an heterogeneous disease that has the second highest mutation rate surpassed only by melanoma, since 90% of LC occurs in tobacco smokers. However, only a small percent of smokers develops LC, indicating an inherent genomic instability. Additionally, LC in never smokers suggests other molecular mechanisms not causally linked to tobacco carcinogens. This review presents a current outlook of the connection between LC and genomic instability at the molecular and clinical level summarizing its implications for diagnosis, therapy, and prognosis. The genomic landscape of LC shows widespread alterations such as DNA methylation, point mutations, copy number variation, chromosomal translocations, and aneuploidy. Genome maintenance mechanisms including cell cycle control, DNA repair, and mitotic checkpoints open a window to translational research for finding novel diagnostic biomarkers and targeted therapies in LC.
Collapse
|
145
|
Jin H, Huang X, Shao K, Li G, Wang J, Yang H, Hou Y. Integrated bioinformatics analysis to identify 15 hub genes in breast cancer. Oncol Lett 2019; 18:1023-1034. [PMID: 31423162 PMCID: PMC6607081 DOI: 10.3892/ol.2019.10411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to identify the hub genes and provide insight into the tumorigenesis and development of breast cancer. To examine the hub genes in breast cancer, integrated bioinformatics analysis was performed. Gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database and the differentially expressed genes (DEGs) were identified using the ‘limma’ package in R. Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis was used to determine the functional annotations and potential pathways of the DEGs. Subsequently, a protein-protein interaction network analysis and weighted correlation network analysis (WGCNA) were conducted to identify hub genes. To confirm the reliability of the identified hub genes, RNA gene expression profiles were obtained from The Cancer Genome Atlas (TCGA)-breast cancer database, and WGCNA was used to screen for genes that were markedly correlated with breast cancer. By combining the results from the GEO and TCGA datasets, 15 hub genes were identified to be associated with breast cancer pathophysiology. Overall survival analysis was performed to examine the association between the expression of hub genes and the overall survival time of patients with breast cancer. Higher expression of all hub genes was associated with significantly shorter overall survival in patients with breast cancer compared with patients with lower levels of expression of the respective gene.
Collapse
Affiliation(s)
- Haoxuan Jin
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518083, P.R. China.,BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China.,China National GeneBank, BGI-Shenzhen, Shenzhen, Guangdong 518120, P.R. China.,James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Xiaoyan Huang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518083, P.R. China.,BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China.,China National GeneBank, BGI-Shenzhen, Shenzhen, Guangdong 518120, P.R. China.,James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Kang Shao
- BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China.,China National GeneBank, BGI-Shenzhen, Shenzhen, Guangdong 518120, P.R. China.,James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Guibo Li
- BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China.,China National GeneBank, BGI-Shenzhen, Shenzhen, Guangdong 518120, P.R. China.,James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China.,James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China.,James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Yong Hou
- BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China.,China National GeneBank, BGI-Shenzhen, Shenzhen, Guangdong 518120, P.R. China.,James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| |
Collapse
|
146
|
Maes A, Maes K, De Raeve H, De Smedt E, Vlummens P, Szablewski V, Devin J, Faict S, De Veirman K, Menu E, Offner F, Spaargaren M, Moreaux J, Vanderkerken K, Van Valckenborgh E, De Bruyne E. The anaphase-promoting complex/cyclosome: a new promising target in diffuse large B-cell lymphoma and mantle cell lymphoma. Br J Cancer 2019; 120:1137-1146. [PMID: 31089208 PMCID: PMC6738099 DOI: 10.1038/s41416-019-0471-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 01/03/2023] Open
Abstract
Background The aggressive B-cell non-Hodgkin lymphomas diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) are characterised by a high proliferation rate. The anaphase-promoting complex/cyclosome (APC/C) and its co-activators Cdc20 and Cdh1 represent an important checkpoint in mitosis. Here, the role of the APC/C and its co-activators is examined in DLBCL and MCL. Methods The expression and prognostic value of Cdc20 and Cdh1 was investigated using GEP data and immunohistochemistry. Moreover, the therapeutic potential of APC/C targeting was evaluated using the small-molecule inhibitor proTAME and the underlying mechanisms of action were investigated by western blot. Results We demonstrated that Cdc20 is highly expressed in DLBCL and aggressive MCL, correlating with a poor prognosis in DLBCL. ProTAME induced a prolonged metaphase, resulting in accumulation of the APC/C-Cdc20 substrate cyclin B1, inactivation/degradation of Bcl-2 and Bcl-xL and caspase-dependent apoptosis. In addition, proTAME strongly enhanced the anti-lymphoma effect of the clinically relevant agents doxorubicin and venetoclax. Conclusion We identified for the first time APC/C as a new, promising target in DLBCL and MCL. Moreover, we provide evidence that Cdc20 might be a novel, independent prognostic factor in DLBCL and MCL.
Collapse
Affiliation(s)
- Anke Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ken Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hendrik De Raeve
- Department of Pathology, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eva De Smedt
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Philip Vlummens
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,Hematology, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | | | - Julie Devin
- Laboratory for Monitoring Innovative Therapies, Institute of Human Genetics, CNRS, Montpellier, France
| | - Sylvia Faict
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Fritz Offner
- Hematology, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Marcel Spaargaren
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jérôme Moreaux
- Laboratory for Monitoring Innovative Therapies, Institute of Human Genetics, CNRS, Montpellier, France
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Els Van Valckenborgh
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
147
|
Wang Y, Han T, Gan M, Guo M, Xie C, Jin J, Zhang S, Wang P, Cao J, Wang JB. A novel function of anaphase promoting complex subunit 10 in tumor progression in non-small cell lung cancer. Cell Cycle 2019; 18:1019-1032. [PMID: 31023143 DOI: 10.1080/15384101.2019.1609830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase, is responsible for the transition from metaphase to anaphase and the exit from mitosis. The anaphase promoting complex subunit 10 (APC10), a subunit of the APC/C, executes a vital function in substrate recognition. However, no research has reported the connection between APC10 and cancer until now. In this study, we uncovered a novel, unprecedented role of APC10 in tumor progression, which is independent of APC/C. First, aberrant increase of APC10 expression was validated in non-small cell lung cancer (NSCLC) cells and tissues, and the absence of APC10 repressed cell proliferation and migration. Of great interest, we found that APC10 inhibition induced cell cycle arrest at the G0/G1 phase and reduced the expression of the APC/C substrate, Cyclin B1; this finding is different from the conventional concept of the accumulation of Cyclin B1 and cell cycle arrest in metaphase. Further, APC10 was found to interact with glutaminase C (GAC), and the inhibition of APC10 weakened glutamine metabolism and induced excessive autophagy. Taken together, these findings identify a novel function of APC10 in the regulation of NSCLC tumorigenesis and point to the possibility of APC10 as a new target for cancer therapy.
Collapse
Affiliation(s)
- Yanan Wang
- a School of Life Sciences , Nanchang University , Nanchang City , Jiangxi , China.,b School of Basic Medical Sciences , Nanchang University , Nanchang City , Jiangxi , China
| | - Tianyu Han
- c Department of Respiration , The First Affiliated Hospital of Nanchang University , Nanchang City , Jiangxi , China
| | - Mingxi Gan
- b School of Basic Medical Sciences , Nanchang University , Nanchang City , Jiangxi , China
| | - Meng Guo
- b School of Basic Medical Sciences , Nanchang University , Nanchang City , Jiangxi , China
| | - Caifeng Xie
- b School of Basic Medical Sciences , Nanchang University , Nanchang City , Jiangxi , China
| | - Jiangbo Jin
- a School of Life Sciences , Nanchang University , Nanchang City , Jiangxi , China
| | - Song Zhang
- a School of Life Sciences , Nanchang University , Nanchang City , Jiangxi , China
| | - Pengcheng Wang
- a School of Life Sciences , Nanchang University , Nanchang City , Jiangxi , China
| | - Jiaqing Cao
- d Department of Gastrointestinal Surgery , the Second Affiliated Hospital of Nanchang University , Nanchang City , Jiangxi , China
| | - Jian-Bin Wang
- b School of Basic Medical Sciences , Nanchang University , Nanchang City , Jiangxi , China
| |
Collapse
|
148
|
Cheng S, Castillo V, Sliva D. CDC20 associated with cancer metastasis and novel mushroom‑derived CDC20 inhibitors with antimetastatic activity. Int J Oncol 2019; 54:2250-2256. [PMID: 31081056 DOI: 10.3892/ijo.2019.4791] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/26/2019] [Indexed: 11/06/2022] Open
Abstract
Aberrant expression of cell division cycle 20 (CDC20) is associated with malignant progression and poor prognosis in various types of cancer. The development of specific CDC20 inhibitors may be a novel strategy for the treatment of cancer with elevated expression of CDC20. The aim of the current study was to elucidate the role of CDC20 in cancer cell invasiveness and to identify novel natural inhibitors of CDC20. The authors found that CDC20 knockdown inhibited the migration of chemoresistant PANC‑1 pancreatic cancer cells and the metastatic MDA‑MB‑231 breast cancer cell line. By contrast, the overexpression of CDC20 by plasmid transfection promoted the metastasizing capacities of the PANC‑1 cells and MCF‑7 breast cancer cells. It was also identified that a triterpene mixture extracted from the mushroom Poria cocos (PTE), purified triterpenes dehydropachymic acid, and polyporenic acid C (PPAC) downregulated the expression of CDC20 in PANC‑1 cells dose‑dependently. Migration was also suppressed by PTE and PPAC in a dose‑dependent manner, which was consistent with expectations. Taken together, the present study is the first, to the best of our knowledge, to demonstrate that CDC20 serves an important role in cancer metastasis and that triterpenes from P. cocos inhibit the migration of pancreatic cancer cells associated with CDC20. Further investigations are in progress to investigate the specific mechanism associated with CDC20 and these triterpenes, which may have future potential use as natural agents in the treatment of metastatic cancer.
Collapse
Affiliation(s)
- Shujie Cheng
- Department of Food Quality and Safety, School of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
| | - Victor Castillo
- Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN 46202, USA
| | - Daniel Sliva
- Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN 46202, USA
| |
Collapse
|
149
|
Martini A, Wang J, Brown NM, Cumarasamy S, Sfakianos JP, Rastinehad AR, Haines KG, Wiklund NP, Nair SS, Tewari AK. A transcriptomic signature of tertiary Gleason 5 predicts worse clinicopathological outcome. BJU Int 2019; 124:155-162. [DOI: 10.1111/bju.14740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Alberto Martini
- Department of Urology; Icahn School of Medicine at Mount Sinai Hospital; New York NY USA
| | - Joanna Wang
- Department of Urology; Icahn School of Medicine at Mount Sinai Hospital; New York NY USA
| | - Nicholas M. Brown
- Department of Urology; Icahn School of Medicine at Mount Sinai Hospital; New York NY USA
| | - Shivaram Cumarasamy
- Department of Urology; Icahn School of Medicine at Mount Sinai Hospital; New York NY USA
| | - John P. Sfakianos
- Department of Urology; Icahn School of Medicine at Mount Sinai Hospital; New York NY USA
| | - Ardeshir R. Rastinehad
- Department of Urology; Icahn School of Medicine at Mount Sinai Hospital; New York NY USA
| | - Kenneth G. Haines
- Department of Pathology; Icahn School of Medicine at Mount Sinai Hospital; New York NY USA
| | - Nils Peter Wiklund
- Department of Urology; Icahn School of Medicine at Mount Sinai Hospital; New York NY USA
| | - Sujit S. Nair
- Department of Urology; Icahn School of Medicine at Mount Sinai Hospital; New York NY USA
| | - Ashutosh K. Tewari
- Department of Urology; Icahn School of Medicine at Mount Sinai Hospital; New York NY USA
| |
Collapse
|
150
|
Han T, Yin Q, Wan L. Cycling for renewal: Cell cycle machinery maintains prostate cancer stem-like cells. EBioMedicine 2019; 42:24-25. [PMID: 30930046 PMCID: PMC6491876 DOI: 10.1016/j.ebiom.2019.03.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/24/2023] Open
Affiliation(s)
- Tao Han
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Qing Yin
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|