101
|
Yuan S, Gopal JV, Ren S, Chen L, Liu L, Gao Z. Anticancer fungal natural products: Mechanisms of action and biosynthesis. Eur J Med Chem 2020; 202:112502. [PMID: 32652407 DOI: 10.1016/j.ejmech.2020.112502] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 01/07/2023]
Abstract
Many fungal metabolites show promising anticancer properties both in vitro and in animal models, and some synthetic analogs of those metabolites have progressed into clinical trials. However, currently, there are still no fungi-derived agents approved as anticancer drugs. Two potential reasons could be envisioned: 1) lacking a clear understanding of their anticancer mechanism of action, 2) unable to supply enough materials to support the preclinical and clinic developments. In this review, we will summarize recent efforts on elucidating the anticancer mechanisms and biosynthetic pathways of several promising anticancer fungal natural products.
Collapse
Affiliation(s)
- Siwen Yuan
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jannu Vinay Gopal
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shuya Ren
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Litong Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Zhizeng Gao
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
102
|
Gharibi T, Babaloo Z, Hosseini A, Abdollahpour-alitappeh M, Hashemi V, Marofi F, Nejati K, Baradaran B. Targeting STAT3 in cancer and autoimmune diseases. Eur J Pharmacol 2020; 878:173107. [DOI: 10.1016/j.ejphar.2020.173107] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 02/08/2023]
|
103
|
STAT3 Pathway in Gastric Cancer: Signaling, Therapeutic Targeting and Future Prospects. BIOLOGY 2020; 9:biology9060126. [PMID: 32545648 PMCID: PMC7345582 DOI: 10.3390/biology9060126] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
Molecular signaling pathways play a significant role in the regulation of biological mechanisms, and their abnormal expression can provide the conditions for cancer development. The signal transducer and activator of transcription 3 (STAT3) is a key member of the STAT proteins and its oncogene role in cancer has been shown. STAT3 is able to promote the proliferation and invasion of cancer cells and induces chemoresistance. Different downstream targets of STAT3 have been identified in cancer and it has also been shown that microRNA (miR), long non-coding RNA (lncRNA) and other molecular pathways are able to function as upstream mediators of STAT3 in cancer. In the present review, we focus on the role and regulation of STAT3 in gastric cancer (GC). miRs and lncRNAs are considered as potential upstream mediators of STAT3 and they are able to affect STAT3 expression in exerting their oncogene or onco-suppressor role in GC cells. Anti-tumor compounds suppress the STAT3 signaling pathway to restrict the proliferation and malignant behavior of GC cells. Other molecular pathways, such as sirtuin, stathmin and so on, can act as upstream mediators of STAT3 in GC. Notably, the components of the tumor microenvironment that are capable of targeting STAT3 in GC, such as fibroblasts and macrophages, are discussed in this review. Finally, we demonstrate that STAT3 can target oncogene factors to enhance the proliferation and metastasis of GC cells.
Collapse
|
104
|
Park SK, Byun WS, Lee S, Han YT, Jeong YS, Jang K, Chung SJ, Lee J, Suh YG, Lee SK. A novel small molecule STAT3 inhibitor SLSI-1216 suppresses proliferation and tumor growth of triple-negative breast cancer cells through apoptotic induction. Biochem Pharmacol 2020; 178:114053. [PMID: 32450253 DOI: 10.1016/j.bcp.2020.114053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer, characterized by the lack of expression of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Owing to the absence of molecular targets, there are limited treatment options, and TNBC patients exhibit high mortality rates. Signal transducer and activator of transcription 3 (STAT3) is overexpressed and aberrantly activated in TNBC cells. Therefore, inhibition of STAT3-mediated signaling provides a potential strategy for the treatment of TNBC. In this study, A series of synthetic derivatives of SLSI-1 (a STAT3 inhibitor) were designed and evaluated for antitumor activity in TNBC cells. A novel derivative (SLSI-1216) exhibited the most potent anti-proliferative activity. SLSI-1216 effectively inhibited STAT3 activity and activation of STAT3, leading to the downregulation of AXL, a downstream target of STAT3 and epithelial-mesenchymal transition (EMT) progression. The inhibition of EMT by SLSI-1216 was associated with modulation of E-cadherin and N-cadherin. Furthermore, SLSI-1216 induced apoptosis by targeting STAT3 and effectively inhibited tumor growth in vivo. These findings suggest that SLSI-1216, as a potential inhibitor of STAT3, may be a promising therapeutic agent for TNBC.
Collapse
Affiliation(s)
- Soo Kyung Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Woong Sub Byun
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungbeom Lee
- College of Pharmacy, CHA University, Gyeonggi-do 11160, Republic of Korea
| | - Young Taek Han
- College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Yoo-Seong Jeong
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyungkuk Jang
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Suk-Jae Chung
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeeyeon Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Ger Suh
- College of Pharmacy, CHA University, Gyeonggi-do 11160, Republic of Korea.
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
105
|
Vitexin abrogates invasion and survival of hepatocellular carcinoma cells through targeting STAT3 signaling pathway. Biochimie 2020; 175:58-68. [PMID: 32445654 DOI: 10.1016/j.biochi.2020.05.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is a major malignancy that stands second in terms of global cancer-related mortality. STAT3 has been described as a latent transcription factor that promotes tumorigenesis. This study was designed to examine the effect of vitexin on STAT3 signaling and important hallmarks of cancer. HCC cells were employed to decipher the impact of vitexin on activation of STAT3 signaling using Western blotting, EMSA, immunocytochemistry, and reporter assay. The combinational apoptotic effects of vitexin with approved anti-cancer drugs was examined by live-dead assay, and its anti-invasive potential was studied using matrigel assay. The results obtained in cell-based assays were verified using in silico analysis. Vitexin effectively inhibited sustained activation of JAK1, JAK2, Src, and STAT3 in HCC cells. Vitexin downregulated DNA binding ability, reduced the nuclear pool of STAT3, and diminished epidermal growth factor (EGF)-driven STAT3 gene expression. Interestingly, treatment with tyrosine phosphatase inhibitor altered the vitexin-induced STAT3 phosphorylation, and the attenuation of STAT3 by vitexin was found to be driven through the upregulation of PTPεC. The combinational studies indicated that vitexin can exhibit substantial apoptotic effects with doxorubicin and sorafenib. It also suppressed the CXCL12-induced cell invasion. The results of cell-based assays are supported by in silico analysis as the vitexin displayed favorable interaction with kinase domain of JAK2 protein. Overall, this study demonstrated that vitexin can act as a potential blocker of the STAT3 signaling cascade and mitigate the survival as well as invasion of HCC cells.
Collapse
|
106
|
Xu J, Chen Y, Yang R, Zhou T, Ke W, Si Y, Yang S, Zhang T, Liu X, Zhang L, Xiang K, Guo Y, Liu Y. Cucurbitacin B inhibits gastric cancer progression by suppressing STAT3 activity. Arch Biochem Biophys 2020; 684:108314. [PMID: 32088220 DOI: 10.1016/j.abb.2020.108314] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/30/2020] [Accepted: 02/19/2020] [Indexed: 12/24/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is expressed aberrantly in multiple tumors, including gastric cancer (GC). STAT3 overexpression and excessive activation have been confirmed to play vital roles in tumorigenesis. Cucurbitacin B (CuB) is a natural product with potent anti-cancer activities in solid tumors. Here, we systematically studied the underlying molecular mechanisms of CuB inhibition of GC both in vitro and in vivo. In GC cell lines, nanomolar concentrations of CuB decreased the phosphorylation of TYR-705 in STAT3 and suppressed STAT3 target gene expression, including c-Myc and Bcl-xL. Computational docking analysis showed that CuB interacts with the DNA-binding domain of STAT3 at several hydrophobic residues. In addition, pull-down experiments showed that CuB is a direct inhibitor of STAT3. CuB in combination with the conventional chemotherapy drug cisplatin exerted enhanced cytotoxicity in GC cells, possibly due to the potentiated inhibition of STAT3 activation. Moreover, a xenograft mouse model confirmed the therapeutic effect of CuB in vivo. These characteristics render CuB a promising candidate drug for further development in the design of new effective STAT3 inhibitors for treating GC.
Collapse
Affiliation(s)
- Jiaxin Xu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yunhe Chen
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, Hubei, China
| | - Rui Yang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, Hubei, China
| | - Tong Zhou
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wei Ke
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yuan Si
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shusheng Yang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, Hubei, China
| | - Te Zhang
- Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xuewen Liu
- Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan, Hubei, China
| | - Liang Zhang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ke Xiang
- Department of Science and Education, Gucheng People's Hospital, Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Yang Guo
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Ying Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Laboratory of Molecular Target Therapy of Cancer, Biomedical Research Institute, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research and Institute of Medicinal Chemistry, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China.
| |
Collapse
|
107
|
Wang Z, Li MY, Zhang ZH, Zuo HX, Wang JY, Xing Y, Ri M, Jin HL, Jin CH, Xu GH, Piao LX, Jiang CG, Ma J, Jin X. Panaxadiol inhibits programmed cell death-ligand 1 expression and tumour proliferation via hypoxia-inducible factor (HIF)-1α and STAT3 in human colon cancer cells. Pharmacol Res 2020; 155:104727. [DOI: 10.1016/j.phrs.2020.104727] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022]
|
108
|
Protein Kinase Cα Promotes Proliferation and Migration of Schwann Cells by Activating ERK Signaling Pathway. Neuroscience 2020; 433:94-107. [PMID: 32171817 DOI: 10.1016/j.neuroscience.2020.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/28/2022]
Abstract
Wallerian degeneration (WD) and axon regeneration generally take place following peripheral nerve injury (PNI). Schwann cells (SCs) and macrophages play major role in WD. SCs, acting as repair cells and primary signal mediators, dedifferentiate and proliferate to remove the debris, form Büngner's bands and secrete trophic factors during these processes. However, the underlying mechanisms remain poorly understood. Here, we found that protein kinase Cα (PKCα), a serine/threonine kinase, expressed in SCs was significantly up-regulated after PNI. Activating PKCα with phorbol 12-myristate 13-acetate (PMA), a phorbol ester binds and activates PKCα) promoted SCs proliferation and migration. While, silence of PKCα by siRNAs inhibited these processes. PD184352, an inhibitor of MEK1, reversed the effect induced by PMA on SCs. Mechanism studies revealed that PKCα functioned through activating the ERK signaling pathway. Furthermore, PKCα also exhibited a neuroprotective role by upregulating the expression of neurotrophic factors in SCs. To sum up, this study offers novel insights for clarifying our understanding of the involvement of PKCα in the mechanism of peripheral nerve degeneration as well as regeneration.
Collapse
|
109
|
Mohan CD, Rangappa S, Preetham HD, Chandra Nayaka S, Gupta VK, Basappa S, Sethi G, Rangappa KS. Targeting STAT3 signaling pathway in cancer by agents derived from Mother Nature. Semin Cancer Biol 2020; 80:157-182. [DOI: 10.1016/j.semcancer.2020.03.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023]
|
110
|
Gu Y, Mohammad IS, Liu Z. Overview of the STAT-3 signaling pathway in cancer and the development of specific inhibitors. Oncol Lett 2020; 19:2585-2594. [PMID: 32218808 PMCID: PMC7068531 DOI: 10.3892/ol.2020.11394] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Signal transducer and activator of transcription (STAT) proteins represent novel therapeutic targets for the treatment of cancer. In particular, STAT-3 serves critical roles in several cellular processes, including the cell cycle, cell proliferation, cellular apoptosis and tumorigenesis. Persistent activation of STAT-3 has been reported in a variety of cancer types, and a poor prognosis of cancer may be associated with the phosphorylation level of STAT-3. Furthermore, elevated STAT-3 activity has been demonstrated in a variety of mammalian cancers, both in vitro and in vivo. This indicates that STAT-3 serves an important role in the progression of numerous cancer types. A significant obstacle in developing STAT-3 inhibitors is the demonstration of the antitumor efficacy in in vivo systems and the lack of animal models for human tumors. Therefore, it is crucial to determine whether available STAT-3 inhibitors are suitable for clinical trials. Moreover, further preclinical studies are necessary to focus on the impact of STAT-3 inhibitors on tumor cells. When considering STAT-3 hyper-activation in human cancer, selective targeting to these proteins holds promise for significant advancement in cancer treatment. In the present study, advances in our knowledge of the structure of STAT-3 protein and its regulatory mechanisms are summarized. Moreover, the STAT-3 signaling pathway and its critical role in malignancy are discussed, in addition to the development of STAT-3 inhibitors in various cancer types.
Collapse
Affiliation(s)
- Yuchen Gu
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, P.R. China.,College of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Imran Shair Mohammad
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Zhe Liu
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, P.R. China.,College of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| |
Collapse
|
111
|
Qi H, Yang Z, Dai C, Wang R, Ke X, Zhang S, Xiang X, Chen K, Li C, Luo J, Shao J, Shen J. STAT3 activates MSK1-mediated histone H3 phosphorylation to promote NFAT signaling in gastric carcinogenesis. Oncogenesis 2020; 9:15. [PMID: 32041943 PMCID: PMC7010763 DOI: 10.1038/s41389-020-0195-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/18/2019] [Accepted: 01/16/2020] [Indexed: 12/22/2022] Open
Abstract
Epigenetic abnormalities contribute significantly to the development and progression of gastric cancer. However, the underlying regulatory networks from oncogenic signaling pathway to epigenetic dysregulation remain largely unclear. Here we showed that STAT3 signaling, one of the critical links between inflammation and cancer, acted as a control pathway in gastric carcinogenesis. STAT3 aberrantly transactivates the epigenetic kinase mitogen- and stress-activated protein kinase 1 (MSK1), thereby phosphorylating histone H3 serine10 (H3S10) and STAT3 itself during carcinogen-induced gastric tumorigenesis. We further identified the calcium pathway transcription factor NFATc2 as a novel downstream target of the STAT3-MSK1 positive-regulating loop. STAT3 forms a functional complex with MSK1 at the promoter of NFATc2 to promote its transcription in a H3S10 phosphorylation-dependent way, thus affecting NFATc2-related inflammatory pathways in gastric carcinogenesis. Inhibiting the STAT3/MSK1/NFATc2 signaling axis significantly suppressed gastric cancer cell proliferation and xenograft tumor growth, which provides a potential novel approach for gastric carcinogenesis intervention by regulating aberrant epigenetic and transcriptional mechanisms.
Collapse
Affiliation(s)
- Hongyan Qi
- Department of Pathology and Pathophysiology, and Department of Radiation Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhiyi Yang
- Department of Pathology and Pathophysiology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Chujun Dai
- Department of Pathology and Pathophysiology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Runan Wang
- Department of Pathology and Pathophysiology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xinxin Ke
- Department of Pathology and Pathophysiology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Shuilian Zhang
- Department of Pathology and Pathophysiology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xueping Xiang
- Department of Pathology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Kailin Chen
- Department of Pathology and Pathophysiology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Chen Li
- Institute of Genetics and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jindan Luo
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jimin Shao
- Department of Pathology and Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Jing Shen
- Department of Pathology and Pathophysiology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
112
|
Arshad S, Naveed M, Ullia M, Javed K, Butt A, Khawar M, Amjad F. Targeting STAT-3 signaling pathway in cancer for development of novel drugs: Advancements and challenges. Genet Mol Biol 2020; 43:e20180160. [PMID: 32167126 PMCID: PMC7198026 DOI: 10.1590/1678-4685-gmb-2018-0160] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 10/20/2018] [Indexed: 12/25/2022] Open
Abstract
Signal transducers and activators of transcription 3 (STAT-3) is a transcription
factor that regulates the gene expression of several target genes. These factors
are activated by the binding of cytokines and growth factors with STAT-3
specific receptors on cell membrane. Few years ago, STAT-3 was considered an
acute phase response element having several cellular functions such as
inflammation, cell survival, invasion, metastasis and proliferation, genetic
alteration, and angiogenesis. STAT-3 is activated by several types of
inflammatory cytokines, carcinogens, viruses, growth factors, and oncogenes.
Thus, the STAT3 pathway is a potential target for cancer therapeutics. Abnormal
STAT-3 activity in tumor development and cellular transformation can be targeted
by several genomic and pharmacological methodologies. An extensive review of the
literature has been conducted to emphasize the role of STAT-3 as a unique cancer
drug target. This review article discusses in detail the wide range of STAT-3
inhibitors that show antitumor effects both in vitro and
in vivo. Thus, targeting constitutive STAT-3 signaling is a
remarkable therapeutic methodology for tumor progression. Finally, current
limitations, trials and future perspectives of STAT-3 inhibitors are also
critically discussed.
Collapse
Affiliation(s)
- Sundas Arshad
- University of Lahore, Department of Allied Health Sciences, Gujrat Campus, Pakistan
| | - Muhammad Naveed
- University of Central Punjab, Faculty of life sciences, Department of Biotechnology, Lahore, Pakistan
| | - Mahad Ullia
- University of Gujrat, Department of Biochemistry and Biotechnology Sialkot sub Campus, Pakistan
| | - Khadija Javed
- University of Gujrat, Department of Biochemistry and Biotechnology Sialkot sub Campus, Pakistan
| | - Ayesha Butt
- University of Gujrat, Department of Biochemistry and Biotechnology Sialkot sub Campus, Pakistan
| | - Masooma Khawar
- University of Gujrat, Department of Biochemistry and Biotechnology Sialkot sub Campus, Pakistan
| | - Fazeeha Amjad
- University of Gujrat, Department of Biochemistry and Biotechnology Sialkot sub Campus, Pakistan
| |
Collapse
|
113
|
Nottingham E, Sekar V, Mondal A, Safe S, Rishi AK, Singh M. The Role of Self-Nanoemulsifying Drug Delivery Systems of CDODA-Me in Sensitizing Erlotinib-Resistant Non-Small Cell Lung Cancer. J Pharm Sci 2020; 109:1867-1882. [PMID: 31954111 DOI: 10.1016/j.xphs.2020.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/02/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022]
Abstract
We have investigated the effects of combination treatment involving ERL (erlotinib) with a glycyrrhetinic acid analog, CDODA-Me in overcoming ERL resistance, providing efforts to improve the oral bioavailability of this treatment using self-nanoemulsifying drug delivery systems (SNEDDS). A Qbd (quality-by-design) approach was used to prepare CDMS (CDODA-SNEDDS, 2 μΜ), which was characterized using surface response methodology to optimize drug content, particle size, and drug release. CDMS/ERL combinations showed synergism in wild-type and resistant H1975 and HCC827 cell lines with combination index values less than 1. Increased apoptosis, mitochondrial membrane potential depletion, and enhanced intracellular ROS levels were also observed in combination therapy. Western blot analysis showed that combination therapy inhibited phosphorylation of epidermal growth factor receptor (EGFR) (p < 0.01 in all cell lines) and Met receptor tyrosine kinase (MET) (p < 0.01 in all cell lines). In vivo, the relative bioavailability of CDMS increased significantly from 22.13 to 151.76 μg/mL compared to the dosing of oral suspension (dose equivalent). Our results demonstrate that combination therapy involving ERL and CDODA-Me overcomes resistance through dual inhibition of p-EGFR and p-MET leading to the induction of apoptosis, intracellular ROS accumulation, and decreased mitochondrial potential. Furthermore, CDMS improved the oral bioavailability of CDODA-Me.
Collapse
Affiliation(s)
- Ebony Nottingham
- Department of Basic Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32305
| | - Vasanthakumar Sekar
- Department of Basic Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32305
| | - Arindam Mondal
- Department of Basic Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32305
| | - Stephen Safe
- Department of Veterinary Medicine and Biomedical Sciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843
| | - Arun K Rishi
- Department on Oncology and Internal Medicine, Wayne State University, Detroit, Michigan 48202
| | - Mandip Singh
- Department of Basic Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32305.
| |
Collapse
|
114
|
Rahmati M, Johari B, Kadivar M, Rismani E, Mortazavi Y. Suppressing the metastatic properties of the breast cancer cells using STAT3 decoy oligodeoxynucleotides: A promising approach for eradication of cancer cells by differentiation therapy. J Cell Physiol 2020; 235:5429-5444. [PMID: 31912904 DOI: 10.1002/jcp.29431] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022]
Abstract
Due to the presence of cancer stem cells (CSCs), breast cancer often relapsed after conventional therapies. Strategies that induce differentiation of CSCs will be helpful in eradication of tumor cells, so we designed an oligodeoxynucleotide (ODNs) for targeting of signal transducer and activator of transcription 3 (STAT3) transcription factor which is involved in stemness, and constitutively activated in triple-negative breast cancer. Molecular docking and electrophoretic mobility shift assay analysis showed that decoy ODN bound specifically to the DNA binding site of STAT3 protein. The prevalent uptake of Cy3-labeled ODNs is in the cytoplasm and the nucleus of MDA-MB-231 treated cells. STAT3 decoy ODNs treatment showed cell growth inhibition by decreasing cell viability (17%), increasing the percentage of arrested cells in G0/G1 phases (18%), and triggering apoptosis (29%). Migration and invasion potential decreased from 10.77 to 6.76 µm/hr, by wound closure rate, and migrated/invaded percentage by 26.4% and 15.4% in the transwell assays, respectively. CD44 protein expression level on the cell surface also decreased, while CD24 increased. Mammosphere formation efficiency reduced in terms of tumorsphere size by 47%, while the required time increased. Cells morphology was changed, and lipid droplets were accumulated in the cytoplasm compared to the control and scrambled groups, in all assays (repeated triplicate). Furthermore, the gene expression of all downstream targets significantly decreased owing to suppressing the STAT3 transcription factor. Overall, the results confirmed the antitumor effects of STAT3 decoy in MDA-MB-231 cells. Thus, it seems that STAT3 decoy ODNs might be considered as an auxiliary tool for breast cancer eradicating by the differentiation therapy approach.
Collapse
Affiliation(s)
- Mohammad Rahmati
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behrooz Johari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehdi Kadivar
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Rismani
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | - Yousef Mortazavi
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
115
|
Pterostilbene Suppresses both Cancer Cells and Cancer Stem-Like Cells in Cervical Cancer with Superior Bioavailability to Resveratrol. Molecules 2020; 25:molecules25010228. [PMID: 31935877 PMCID: PMC6982958 DOI: 10.3390/molecules25010228] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/25/2019] [Accepted: 01/04/2020] [Indexed: 12/27/2022] Open
Abstract
Increasing studies have reported that cancer stem cells (CSCs) play critical roles in therapeutic resistance, recurrence, and metastasis of tumors, including cervical cancer. Pterostilbene, a dimethylated derivative of resveratrol, is a plant polyphenol compound with potential chemopreventive activity. However, the therapeutic effect of pterostilbene against cervical CSCs remains unclear. In this study, we compared the anticancer effects of resveratrol and pterostilbene using both HeLa cervical cancer adherent and stem-like cells. Pterostilbene more effectively inhibited the growth and clonogenic survival, as well as metastatic ability of HeLa adherent cells than those of resveratrol. Moreover, the superior inhibitory effects of pterostilbene compared to resveratrol were associated with the enhanced activation of multiple mechanisms, including cell cycle arrest at S and G2/M phases, induction of ROS-mediated caspase-dependent apoptosis, and inhibition of matrix metalloproteinase (MMP)-2/-9 expression. Notably, pterostilbene exhibited a greater inhibitory effect on the tumorsphere-forming and migration abilities of HeLa cancer stem-like cells compared to resveratrol. This greater effect was achieved through more potent inhibition of the expression levels of stemness markers, such as CD133, Oct4, Sox2, and Nanog, as well as signal transducer and activator of transcription 3 signaling. These results suggest that pterostilbene might be a potential anticancer agent targeting both cancer cells and cancer stem-like cells of cervical cancer via the superior bioavailability to resveratrol.
Collapse
|
116
|
Dai C, Liu P, Wang X, Yin Y, Jin W, Shen L, Chen Y, Chen Z, Wang Y. The Antipsychotic Agent Sertindole Exhibited Antiproliferative Activities by Inhibiting the STAT3 Signaling Pathway in Human Gastric Cancer Cells. J Cancer 2020; 11:849-857. [PMID: 31949488 PMCID: PMC6959018 DOI: 10.7150/jca.34847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related death. Although the therapeutic approaches have improved, the 5-year survival rate of GC patients after surgical resection remains low due to the high rates of metastasis and recurrence. Patients with schizophrenia have significantly lower incidences of cancer after long-term drug treatment, suggesting the potential or partially ameliorate the risk of cancer development of antipsychotic drugs. The goal of this study was to explore antipsychotic drugs with an optional effective therapy against gastric cellular carcinoma. We found that sertindole, an atypical antipsychotic, exhibited anti-tumor efficacy on human GC cells in vitro and in vivo. Moreover, sertindole in combination with cisplatin dramatically enhanced apoptosis-induction in GC cells. In addition, the pro-apoptotic effect of sertindole on GC might in part, involved in inhibition of STAT3 activation and downstream signals, including Mcl1, surviving, c-Myc, cyclin D1. Collectively, these results suggested that sertindole could be a potential anticancer reagent and be an attractive therapeutic adjuvant for the treatment of human GC.
Collapse
Affiliation(s)
- Chunyan Dai
- Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, China
| | - Pei Liu
- Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, China
| | - Xi Wang
- Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, China
| | - Yifei Yin
- Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, China
| | - Weiyang Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310006, China
| | - Li Shen
- Institute of Basic Theory of TCM, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuzong Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy and Center for Computational Science and Engineering, National University of Singapore, 117543, Singapore
| | - Zhe Chen
- Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, China
| | - Yiping Wang
- Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, 310006, China.,Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diagnosis and Treatment of Digestive System Tumor, the First Affiliated Hospital of Zhejiang Chinese Medical University,54 Youdian Road, Hangzhou, 310006, China
| |
Collapse
|
117
|
Liposome Delivery of Natural STAT3 Inhibitors for the Treatment of Cancer. PHARMACEUTICAL FRONTIERS 2019; 1. [PMID: 31886474 DOI: 10.20900/pf20190007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the tumor microenvironment, cytokines, growth factors, and oncogenes mediate constitutive activation of the signal transducer and activator of transcription 3 (STAT3) signaling pathway in both cancer cells and infiltrating immune cells. STAT3 activation in cancer cells drives tumorigenic changes that allow for increased survival, proliferation, and resistance to apoptosis. The modulation of immune cells is more complicated and conflicting. STAT3 signaling drives the myeloid cell phenotype towards an immune suppressive state, which mediates T cell inhibition. On the other hand, STAT3 signaling in T cells leads to proliferation and T cell activity required for an anti-tumor response. Targeted delivery of STAT3 inhibitors to cancer cells and myeloid cells could therefore improve therapeutic outcomes. Many compounds that inhibit the STAT3 pathways for cancer treatment include peptide drugs, small molecule inhibitors, and natural compounds. However, natural compounds that inhibit STAT3 are often hydrophobic, which reduces their bioavailability and leads to unfavorable pharmacokinetics. This review focuses specifically on liposome-encapsulated natural STAT3 inhibitors and their ability to target cancer cells and myeloid cells to reduce tumor growth and decrease STAT3-mediated immune suppression. Many of these liposome formulations have led to profound tumor reduction and examples of combination formulations have been shown to eliminate tumors through immune modulation.
Collapse
|
118
|
Yang MH, Jung SH, Chinnathambi A, Alahmadi TA, Alharbi SA, Sethi G, Ahn KS. Attenuation of STAT3 Signaling Cascade by Daidzin Can Enhance the Apoptotic Potential of Bortezomib against Multiple Myeloma. Biomolecules 2019; 10:biom10010023. [PMID: 31878046 PMCID: PMC7022648 DOI: 10.3390/biom10010023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022] Open
Abstract
Daidzin (DDZ) extracted from Pueraria lobate (Fabaceae) is a widely known phytoestrogen. DDZ can display anti-cancer activities against breast and prostate cancers, but its anti-oncogenic actions in multiple myeloma (MM) cells have not been studied. The signal transducer and activator of transcription 3 (STAT3) can control key processes including proliferation, differentiation, and survival in MM cells. Here, we noted that DDZ abrogated STAT3 activation (both constitutive as well as inducible) at Tyr705 and Ser727 in MM cells. Additionally, DDZ mitigated the phosphorylation of STAT3 upstream Janus-activated kinases (JAK1/2) and c-Src kinases. Pervanadate (tyrosine phosphatase blocker) exposure altered the DDZ-induced inhibition of STAT3 activation, thus affecting the action of this phytoestrogen on apoptosis. Moreover, DDZ impeded proliferation and augmented the apoptotic effects of bortezomib (Bor) in MM cells. Overall, the data indicate that DDZ may act as a potent suppressor of STAT3 signaling cascade, and the co-treatment of DDZ and Bor could be a promising therapeutic strategy, specifically in MM.
Collapse
Affiliation(s)
- Min Hee Yang
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea; (M.H.Y.); (S.H.J.)
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Sang Hoon Jung
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea; (M.H.Y.); (S.H.J.)
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.C.); (S.A.A.)
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University Medical City, Riyadh 11461, Saudi Arabia;
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.C.); (S.A.A.)
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (G.S.); (K.S.A.)
| | - Kwang Seok Ahn
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea; (M.H.Y.); (S.H.J.)
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Correspondence: (G.S.); (K.S.A.)
| |
Collapse
|
119
|
The IκB Kinase Inhibitor ACHP Targets the STAT3 Signaling Pathway in Human Non-Small Cell Lung Carcinoma Cells. Biomolecules 2019; 9:biom9120875. [PMID: 31847229 PMCID: PMC6995615 DOI: 10.3390/biom9120875] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022] Open
Abstract
STAT3 is an oncogenic transcription factor that regulates the expression of genes which are involved in malignant transformation. Aberrant activation of STAT3 has been observed in a wide range of human malignancies and its role in negative prognosis is well-documented. In this report, we performed high-throughput virtual screening in search of STAT3 signaling inhibitors using a cheminformatics platform and identified 2-Amino-6-[2-(Cyclopropylmethoxy)-6-Hydroxyphenyl]-4-Piperidin-4-yl Nicotinonitrile (ACHP) as the inhibitor of the STAT3 signaling pathway. The predicted hit was evaluated in non-small cell lung cancer (NSCLC) cell lines for its STAT3 inhibitory activity. In vitro experiments suggested that ACHP decreased the cell viability and inhibited the phosphorylation of STAT3 on Tyr705 of NSCLC cells. In addition, ACHP imparted inhibitory activity on the constitutive activation of upstream protein tyrosine kinases, including JAK1, JAK2, and Src. ACHP decreased the nuclear translocation of STAT3 and downregulated its DNA binding ability. Apoptosis was evidenced by cleavage of caspase-3 and PARP with the subsequent decline in antiapoptotic proteins, including Bcl-2, Bcl-xl, and survivin. Overall, we report that ACHP can act as a potent STAT3 signaling inhibitor in NSCLC cell lines.
Collapse
|
120
|
Yan K, Xu X, Wu T, Li J, Cao G, Li Y, Ji Z. Knockdown of PYCR1 inhibits proliferation, drug resistance and EMT in colorectal cancer cells by regulating STAT3-Mediated p38 MAPK and NF-κB signalling pathway. Biochem Biophys Res Commun 2019; 520:486-491. [PMID: 31606203 DOI: 10.1016/j.bbrc.2019.10.059] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/05/2019] [Indexed: 12/17/2022]
Abstract
PYCR1 exerts an important role in various cancers, but its effect on colorectal cancer (CRC) and the potential mechanism remain to be clarified. In this study, we aimed to explore the effect of PYCR1 on CRC and further explore the special molecular mechanism. The expression of PYCR1 in CRC tissues and cells was analysed by RT-PCR assay. Cell proliferation was explored using an MTT assay. A CoIP assay was performed to determine the binding activity of PYCR1 and STAT3. Western blot was used to measure the protein expression of P-gp, MRP1, E-cadherin and vimentin. The results revealed that PYCR1 is highly expressed in CRC tissues and cells. PYCR1-siRNA inhibited the proliferation, drug resistance and epithelial-mesenchymal transition (EMT) of CRC cells. The CoIP assay result demonstrated that PYCR1 interacts directly with STAT3, and STAT3 overexpression partly reverses the effect of PYCR1 on proliferation, drug resistance and EMT of CRC cells. What is more, si-PYCR1 inhibited STAT3-mediated p38 MAPK and NF-κB signalling pathways. Collectively, it suggests that knockdown of PYCR1 inhibits proliferation, drug resistance and EMT potentially by regulating STAT3-mediated p38 MAPK and NF-κB signalling pathways in CRC cells.
Collapse
Affiliation(s)
- Kun Yan
- Department of General Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Xin Xu
- Department of General Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Tao Wu
- Department of General Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jie Li
- Department of General Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Gang Cao
- Department of General Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yiming Li
- Department of General Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Zongzheng Ji
- Department of General Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
121
|
Huang Q, Zhong Y, Dong H, Zheng Q, Shi S, Zhu K, Qu X, Hu W, Zhang X, Wang Y. Revisiting signal transducer and activator of transcription 3 (STAT3) as an anticancer target and its inhibitor discovery: Where are we and where should we go? Eur J Med Chem 2019; 187:111922. [PMID: 31810784 DOI: 10.1016/j.ejmech.2019.111922] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022]
Abstract
As a transcription factor, STAT3 protein transduces extracellular signals to the nucleus and then activates transcription of target genes. STAT3 has been well validated as an attractive anticancer target due to its important roles in cancer initiation and progression. Identification of specific and potent STAT3 inhibitors has attracted much attention, while there has been no STAT3 targeted drug approved for clinical application. In this review, we will briefly introduce STAT3 protein and review its role in multiple aspects of cancer, and systematically summarize the recent advances in discovery of STAT3 inhibitors, especially the ones discovered in the past five years. In the last part of the review, we will discuss the possible new strategies to overcome the difficulties of developing potent and specific STAT3 inhibitors and hope to shed light on future drug design and inhibitor optimization.
Collapse
Affiliation(s)
- Qiuyao Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yan Zhong
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hui Dong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qiyao Zheng
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shuo Shi
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Kai Zhu
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xinming Qu
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiaolei Zhang
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Yuanxiang Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
122
|
Zheng M, Cao MX, Yu XH, Li L, Wang K, Wang SS, Wang HF, Tang YJ, Tang YL, Liang XH. STAT3 Promotes Invasion and Aerobic Glycolysis of Human Oral Squamous Cell Carcinoma via Inhibiting FoxO1. Front Oncol 2019; 9:1175. [PMID: 31750256 PMCID: PMC6848388 DOI: 10.3389/fonc.2019.01175] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/18/2019] [Indexed: 02/05/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3), a previously accepted tumor-promoting protein in various malignancies, plays a key role in the process of cancer glycolysis. However, the role and potential mechanism of STAT3 in aerobic glycolysis and progression of oral squamous cell carcinoma (OSCC) has not been explored. In the present study, we demonstrated that STAT3 knockdown remarkably inhibited migration, invasion, expressions of epithelial-mesenchymal transition (EMT) markers, and aerobic glycolysis of OSCC cells by up-regulation of FoxO1. Consistently, the expression of nuclear Tyr705-phosphorylated STAT3, an active form of STAT3, was significantly elevated in OSCC tissues compared with adjacent normal tissues, and increased nuclear staining of Tyr705-phosphorylated STAT3 was associated with metastasis and shorter overall survival. Moreover, FoxO1, which was also mainly expressed in OSCC specimens, decreased in poorly-differentiated tissues compared with the relatively well-differentiated ones, and inversely correlated with the expression of nuclear Tyr705-phosphorylated STAT3 from patients with OSCC. Hence, our findings collectively characterized the contributing role of STAT3/FoxO1 in invasion and aerobic glycolysis of OSCC cells, which may lead to the worse clinical outcome.
Collapse
Affiliation(s)
- Min Zheng
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, China
| | - Ming-Xin Cao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiang-Hua Yu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Li
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, China
| | - Ke Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sha-Sha Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hao-Fan Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
123
|
Kim BH, Lee H, Song Y, Park JS, Gadhe CG, Choi J, Lee CG, Pae AN, Kim S, Ye SK. Development of Oxadiazole-Based ODZ10117 as a Small-Molecule Inhibitor of STAT3 for Targeted Cancer Therapy. J Clin Med 2019; 8:jcm8111847. [PMID: 31684051 PMCID: PMC6912340 DOI: 10.3390/jcm8111847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022] Open
Abstract
Persistently activated STAT3 is a promising target for a new class of anticancer drug development and cancer therapy, as it is associated with tumor initiation, progression, malignancy, drug resistance, cancer stem cell properties, and recurrence. Here, we discovered 3-(2,4-dichloro-phenoxymethyl)-5-trichloromethyl-[1,2,4]oxadiazole (ODZ10117) as a small-molecule inhibitor of STAT3 to be used in STAT3-targeted cancer therapy. ODZ10117 targeted the SH2 domain of STAT3 regardless of other STAT family proteins and upstream regulators of STAT3, leading to inhibition of the tyrosine phosphorylation, dimerization, nuclear translocation, and transcriptional activity of STAT3. The inhibitory effect of ODZ10117 on STAT3 was stronger than the known STAT3 inhibitors such as S3I-201, STA-21, and nifuroxazide. ODZ10117 suppressed the migration and invasion, induced apoptosis, reduced tumor growth and lung metastasis, and extended the survival rate in both in vitro and in vivo models of breast cancer. Overall, we demonstrated that ODZ10117 is a novel STAT3 inhibitor and may be a promising agent for the development of anticancer drugs.
Collapse
Affiliation(s)
- Byung-Hak Kim
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea.
- CYTUS H&B Corporation, Cheongju 28159, Korea.
| | - Haeri Lee
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea.
| | - Yeonghun Song
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Joon-Suk Park
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea.
| | - Changdev G Gadhe
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Korea.
| | - Jiwon Choi
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.
| | | | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Korea.
- Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea.
| | - Sanghee Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sang-Kyu Ye
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul 03080, Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea.
- Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul 03080, Korea.
| |
Collapse
|
124
|
Hu YS, Han X, Liu XH. STAT3: A Potential Drug Target for Tumor and Inflammation. Curr Top Med Chem 2019; 19:1305-1317. [PMID: 31218960 DOI: 10.2174/1568026619666190620145052] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/25/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022]
Abstract
STAT (Signal Transducers and Activators of Transcription) is a cellular signal transcription factor involved in the regulation of many cellular activities, such as cell differentiation, proliferation, angiogenesis in normal cells. During the study of the STAT family, STAT3 was found to be involved in many diseases, such as high expression and sustained activation of STAT3 in tumor cells, promoting tumor growth and proliferation. In the study of inflammation, it was found that it plays an important role in the anti-inflammatory and repairing of damage tissues. Because of the important role of STAT3, a large number of studies have been obtained. At the same time, after more than 20 years of development, STAT3 has also been used as a target for drug therapy. And the discovery of small molecule inhibitors also promoted the study of STAT3. Since STAT3 has been extensively studied in inflammation and tumor regulation, this review presents the current state of research on STAT3.
Collapse
Affiliation(s)
- Yang Sheng Hu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, China
| | - Xu Han
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, China
| | - Xin Hua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
125
|
De Stefanis D, Scimè S, Accomazzo S, Catti A, Occhipinti A, Bertea CM, Costelli P. Anti-Proliferative Effects of an Extra-Virgin Olive Oil Extract Enriched in Ligstroside Aglycone and Oleocanthal on Human Liver Cancer Cell Lines. Cancers (Basel) 2019; 11:cancers11111640. [PMID: 31653043 PMCID: PMC6896128 DOI: 10.3390/cancers11111640] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/27/2022] Open
Abstract
Oleocanthal and ligstroside aglycone are olive oil-derived polyphenols. The former interferes with tumor growth with minor or no cytotoxicity on non-tumorigenic primary cell lines. The information about the bioactivity of ligstroside aglycone are scanty, with the exception of a known antioxidant power. Hepatocellular carcinoma is a malignant tumor with high mortality rates. Systemic chemotherapy is only marginally effective and is frequently complicated by toxicity. Previous observations have shown that hepatocellular carcinoma cell lines become more sensitive to taxol when it is combined with Tumor Necrosis Factor α (TNFα). The present work aimed to assess the effects of a polyphenolic extract containing both oleocanthal and ligstroside aglycone on proliferation and/or death in three liver cancer cell lines (HepG2, Huh7 and Hep3B). The possibility to enhance such effect by the addition of TNFα was also investigated. Both cell proliferation and death were enhanced by the exposure to the polyphenolic extract. Such effect was associated with induction of autophagy and could be potentiated by TNFα. The presence of ligstroside aglycone in the extract lowered the oleocanthal concentration required for cytotoxicity. These results show for the first time that the effects of a polyphenol extract can be potentiated by TNFα and that modulation of autophagy likely account for these effects.
Collapse
Affiliation(s)
- Daniela De Stefanis
- Department of Clinical and Biological Sciences, Experimental Medicine and Clinical Pathology Unit, University of Turin, 10125 Torino, Italy.
| | - Salvatore Scimè
- Department of Clinical and Biological Sciences, Experimental Medicine and Clinical Pathology Unit, University of Turin, 10125 Torino, Italy.
| | - Simone Accomazzo
- Department of Clinical and Biological Sciences, Experimental Medicine and Clinical Pathology Unit, University of Turin, 10125 Torino, Italy.
| | - Andrea Catti
- Department of Clinical and Biological Sciences, Experimental Medicine and Clinical Pathology Unit, University of Turin, 10125 Torino, Italy.
| | - Andrea Occhipinti
- Department of Life Sciences and Systems Biology, University of Turin, 10125 Torino, Italy.
| | | | - Paola Costelli
- Department of Clinical and Biological Sciences, Experimental Medicine and Clinical Pathology Unit, University of Turin, 10125 Torino, Italy.
| |
Collapse
|
126
|
Wang H, Tang F, Bian E, Zhang Y, Ji X, Yang Z, Zhao B. IFITM3/STAT3 axis promotes glioma cells invasion and is modulated by TGF-β. Mol Biol Rep 2019; 47:433-441. [PMID: 31637620 DOI: 10.1007/s11033-019-05146-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/16/2019] [Indexed: 12/22/2022]
Abstract
Glioma is the most aggressive primary brain tumor. We have previously provided evidence that IFITM3 promoted glioma cells migration. However, the mechanism of how IFITM3 regulates glioma cells invasion and whether IFITM3 participates in TGF-β-mediated glioma invasion are still unknown. In this paper, we proved that IFITM3 was notably up-regulated in glioma tissues. Knockdown of IFITM3 suppressed STAT3 phosphorylation in vitro, and a specific STAT3 inhibitor AG490 reversed IFITM3-induced invasion of glioma cells. Furthermore, IFITM3 expression was induced by TGF-β in glioma and IFITM3 knockdown abolished TGF-β-mediated glioma cells invasion. Collectively, the results indicate that IFITM3/STAT3 axis may promote TGF-β-induced glioma cells invasion. This study provided some suggestions for the clinical treatment of the brain tumor.
Collapse
Affiliation(s)
- Hongliang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China
| | - Feng Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China
| | - Erbao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China
| | - Yile Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China
| | - Xinghu Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China
| | - Zhihao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China. .,Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China.
| |
Collapse
|
127
|
Brusatol, a Nrf2 Inhibitor Targets STAT3 Signaling Cascade in Head and Neck Squamous Cell Carcinoma. Biomolecules 2019; 9:biom9100550. [PMID: 31575007 PMCID: PMC6843503 DOI: 10.3390/biom9100550] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/17/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
STAT3 is a latent transcription factor that plays a vital role in the transmission of extracellular signal from receptors to the nucleus. It has been regarded as a master transcription factor due to its role in the regulation of a broad spectrum of genes, which can contribute to oncogenesis. Persistent activation of STAT3 and deregulation of its signaling has been observed in various human cancers including head and neck squamous cell carcinoma (HNSCC). In the present work, we identified brusatol (BT) as a potential blocker of STAT3 signaling pathway in diverse HNSCC cells. The data from the cell-based experiments suggested that BT-induced cytotoxicity and abrogated the activation of STAT3 and that of upstream kinases such as JAK1, JAK2, and Src. It reduced the levels of nuclear STAT3 and its DNA binding ability. BT treatment increased annexin-V-positive cells, promoted procaspase-3 and PARP cleavage, and downregulated the mRNA and protein expression of diverse proteins (Bcl-2, Bcl-xl, survivin) in HNSCC cells. Taken together, brusatol can function as a promising inhibitor targeting STAT3 signaling pathway in HNSCC.
Collapse
|
128
|
Ashrafizadeh M, Ahmadi Z, Kotla NG, Afshar EG, Samarghandian S, Mandegary A, Pardakhty A, Mohammadinejad R, Sethi G. Nanoparticles Targeting STATs in Cancer Therapy. Cells 2019; 8:E1158. [PMID: 31569687 PMCID: PMC6829305 DOI: 10.3390/cells8101158] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past decades, an increase in the incidence rate of cancer has been witnessed. Although many efforts have been made to manage and treat this life threatening condition, it is still one of the leading causes of death worldwide. Therefore, scientists have attempted to target molecular signaling pathways involved in cancer initiation and metastasis. It has been shown that signal transducers and activator of transcription (STAT) contributes to the progression of cancer cells. This important signaling pathway is associated with a number of biological processes including cell cycle, differentiation, proliferation and apoptosis. It appears that dysregulation of the STAT signaling pathway promotes the migration, viability and malignancy of various tumor cells. Hence, there have been many attempts to target the STAT signaling pathway. However, it seems that currently applied therapeutics may not be able to effectively modulate the STAT signaling pathway and suffer from a variety of drawbacks such as low bioavailability and lack of specific tumor targeting. In the present review, we demonstrate how nanocarriers can be successfully applied for encapsulation of STAT modulators in cancer therapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran.
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar 6451741117, Iran.
| | - Niranjan G Kotla
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Newcastle, Galway H91 W2TY, Ireland.
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran.
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur 9318614139, Iran.
| | - Ali Mandegary
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran.
| | - Abbas Pardakhty
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran.
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| |
Collapse
|
129
|
Zhong B, Shi D, Wu F, Wang S, Hu H, Cheng C, Qing X, Huang X, Luo X, Zhang Z, Shao Z. Dynasore suppresses cell proliferation, migration, and invasion and enhances the antitumor capacity of cisplatin via STAT3 pathway in osteosarcoma. Cell Death Dis 2019; 10:687. [PMID: 31534119 PMCID: PMC6751204 DOI: 10.1038/s41419-019-1917-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022]
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor. The prognosis of metastatic and recurrent OS patients still remains unsatisfactory. Cisplatin reveals undeniable anti-tumor effect while induces severe side effects that threatening patients’ health. Dynasore, a cell-permeable small molecule that inhibits dynamin activity, has been widely studied in endocytosis and phagocytosis. However, the anti-tumor effect of dynasore on OS has not yet been ascertained. In the present study, we suggested that dynasore inhibited cell proliferation, migration, invasion, and induced G0/G1 arrest of OS cells. Besides, dynasore repressed tumorigenesis of OS in xenograft mouse model. In addition, we demonstrated that dynasore improved the anti-tumor effect of cisplatin in vitro and in vivo without inducing nephrotoxicity and hepatotoxicity. Mechanistically, dynasore repressed the expression of CCND1, CDK4, p-Rb, and MMP-2. Furthermore, we found that dynasore exerts anti-tumor effects in OS partially via inhibiting STAT3 signaling pathway but not ERK-MAPK, PI3K-Akt or SAPK/JNK pathways. P38 MAPK pathway served as a negative regulatory mechanism in dynasore induced anti-OS effects. Taken together, our study indicated that dynasore does suppress cell proliferation, migration, and invasion via STAT3 signaling pathway, and enhances the antitumor capacity of cisplatin in OS. Our results suggest that dynasore is a novel candidate drug to inhibit the tumor growth of OS and enhance the anti-tumor effects of cisplatin.
Collapse
Affiliation(s)
- Binlong Zhong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Deyao Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Fashuai Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Shangyu Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Hongzhi Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Cheng Cheng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Xueying Luo
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan Mental Health Centre, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Zhicai Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China.
| |
Collapse
|
130
|
Fangchinoline, a Bisbenzylisoquinoline Alkaloid can Modulate Cytokine-Impelled Apoptosis via the Dual Regulation of NF-κB and AP-1 Pathways. Molecules 2019; 24:molecules24173127. [PMID: 31466313 PMCID: PMC6749215 DOI: 10.3390/molecules24173127] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 12/25/2022] Open
Abstract
Fangchinoline (FCN) derived from Stephaniae tetrandrine S. Moore can be employed to treat fever, inflammation, rheumatism arthralgia, edema, dysuria, athlete’s foot, and swollen wet sores. FCN can exhibit a plethora of anti-neoplastic effects although its precise mode of action still remains to be deciphered. Nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) can closely regulate carcinogenesis and thus we analyzed the possible action of FCN may have on these two signaling cascades in tumor cells. The effect of FCN on NF-κB and AP-1 signaling cascades and its downstream functions was deciphered using diverse assays in both human chronic myeloid leukemia (KBM5) and multiple myeloma (U266). FCN attenuated growth of both leukemic and multiple myeloma cells and repressed NF-κB, and AP-1 activation through diverse mechanisms, including attenuation of phosphorylation of IκB kinase (IKK) and p65. Furthermore, FCN could also cause significant enhancement in TNFα-driven apoptosis as studied by various molecular techniques. Thus, FCN may exhibit potent anti-neoplastic effects by affecting diverse oncogenic pathways and may be employed as pro-apoptotic agent against various malignancies.
Collapse
|
131
|
Roy NK, Parama D, Banik K, Bordoloi D, Devi AK, Thakur KK, Padmavathi G, Shakibaei M, Fan L, Sethi G, Kunnumakkara AB. An Update on Pharmacological Potential of Boswellic Acids against Chronic Diseases. Int J Mol Sci 2019; 20:ijms20174101. [PMID: 31443458 PMCID: PMC6747466 DOI: 10.3390/ijms20174101] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Natural compounds, in recent years, have attracted significant attention for their use in the prevention and treatment of diverse chronic diseases as they are devoid of major toxicities. Boswellic acid (BA), a series of pentacyclic triterpene molecules, is isolated from the gum resin of Boswellia serrata and Boswellia carteri. It proved to be one such agent that has exhibited efficacy against various chronic diseases like arthritis, diabetes, asthma, cancer, inflammatory bowel disease, Parkinson’s disease, Alzheimer’s, etc. The molecular targets attributed to its wide range of biological activities include transcription factors, kinases, enzymes, receptors, growth factors, etc. The present review is an attempt to demonstrate the diverse pharmacological uses of BA, along with its underlying molecular mechanism of action against different ailments. Further, this review also discusses the roadblocks associated with the pharmacokinetics and bioavailability of this promising compound and strategies to overcome those limitations for developing it as an effective drug for the clinical management of chronic diseases.
Collapse
Affiliation(s)
- Nand Kishor Roy
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Amrita Khwairakpam Devi
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Lu Fan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
132
|
Liu Y, Zhi Y, Song H, Zong M, Yi J, Mao G, Chen L, Huang G. S1PR1 promotes proliferation and inhibits apoptosis of esophageal squamous cell carcinoma through activating STAT3 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:369. [PMID: 31438989 PMCID: PMC6706905 DOI: 10.1186/s13046-019-1369-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide, which lacks effective biomarkers for prognosis. Therefore, it is urgent to explore new potential molecular markers to discriminate patients with poorer survival in ESCC. Methods Bioinformatics analysis, qRT-PCR, and western blot were applied to investigate S1PR1 expression. CCK-8 assay, colony formation assay, flow cytometry dual staining assay, and immunofluorescence were performed to examine cell proliferation ability and apoptosis rate. Mouse xenograft model of TE-13 cells was established to confirm the roles of S1PR1 in vivo. Gene set enrichment analysis (GSEA) was used to investigate the downstream signaling pathways related to S1PR1 functions. Co-IP was performed to verify the direct binding of S1PR1 and STAT3. Western blot was applied to determine the phosphorylation level of STAT3. Immunohistochemistry was conducted to identify protein expression of S1PR1 and p- STAT3 in tumor tissues. Results In the present study, we found that S1PR1 expression was higher in ESCC patients and was a potential biomarker for poor prognosis. Silencing S1PR1 expression inhibited proliferation, and increased apoptosis of ESCC cells, while overexpression of S1PR1 had opposite effects. Mechanistically, S1PR1 played the roles of promoting proliferation and attenuating apoptosis through directly activating p-STAT3. Furthermore, in vivo experiments verified this mechanism. Conclusion Our findings indicated that S1PR1 enhanced proliferation and inhibited apoptosis of ESCC cells by activating STAT3 signaling pathway. S1PR1 may serve as a prognostic biomarker for clinical applications. Electronic supplementary material The online version of this article (10.1186/s13046-019-1369-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Liu
- Department of Medical Oncology, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yingru Zhi
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Haizhu Song
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Mingzhu Zong
- Department of Medical Oncology, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jun Yi
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Guoxin Mao
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Guichun Huang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
133
|
Novel therapeutic interventions in cancer treatment using protein and peptide-based targeted smart systems. Semin Cancer Biol 2019; 69:249-267. [PMID: 31442570 DOI: 10.1016/j.semcancer.2019.08.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 01/12/2023]
Abstract
Cancer, being the most prevalent and resistant disease afflicting any gender, age or social status, is the ultimate challenge for the scientific community. The new generation therapeutics for cancer management has shifted the approach to personalized/precision medicine, making use of patient- and tumor-specific markers for specifying the targeted therapies for each patient. Peptides targeting these cancer-specific signatures hold enormous potential for cancer therapy and diagnosis. The rapid advancements in the combinatorial peptide libraries served as an impetus to the development of multifunctional peptide-based materials for targeted cancer therapy. The present review outlines benefits and shortcomings of peptides as cancer therapeutics and the potential of peptide modified nanomedicines for targeted delivery of anticancer agents.
Collapse
|
134
|
Dovitinib Triggers Apoptosis and Autophagic Cell Death by Targeting SHP-1/ p-STAT3 Signaling in Human Breast Cancers. JOURNAL OF ONCOLOGY 2019; 2019:2024648. [PMID: 31485222 PMCID: PMC6710795 DOI: 10.1155/2019/2024648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 07/29/2019] [Indexed: 01/13/2023]
Abstract
Breast cancer is the most common cancer and the leading cause of cancer deaths in women worldwide. The rising incidence rate and female mortality make it a significant public health concern in recent years. Dovitinib is a novel multitarget receptor tyrosine kinase inhibitor, which has been enrolled in several clinical trials in different cancers. However, its antitumor efficacy has not been well determined in breast cancers. Our results demonstrated that dovitinib showed significant antitumor activity in human breast cancer cell lines with dose- and time-dependent manners. Downregulation of phosphor-(p)-STAT3 and its subsequent effectors Mcl-1 and cyclin D1 was responsible for this drug effect. Ectopic expression of STAT3 rescued the breast cancer cells from cell apoptosis induced by dovitinib. Moreover, SHP-1 inhibitor reversed the downregulation of p-STAT3 induced by dovitinib, indicating that SHP-1 mediated the STAT3 inhibition effect of dovitinib. In addition to apoptosis, we found for the first time that dovitinib also activated autophagy to promote cell death in breast cancer cells. In conclusion, dovitinib induced both apoptosis and autophagy to block the growth of breast cancer cells by regulating the SHP-1-dependent STAT3 inhibition.
Collapse
|
135
|
Abu El-Asrar AM, Ahmad A, Allegaert E, Siddiquei MM, Gikandi PW, De Hertogh G, Opdenakker G. Interleukin-11 Overexpression and M2 Macrophage Density are Associated with Angiogenic Activity in Proliferative Diabetic Retinopathy. Ocul Immunol Inflamm 2019; 28:575-588. [DOI: 10.1080/09273948.2019.1616772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ahmed M. Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Dr. Nasser Al-Rashid Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ajmal Ahmad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Eef Allegaert
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, Leuven, Belgium
| | | | - Priscilla W. Gikandi
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Gert De Hertogh
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| |
Collapse
|
136
|
Huang M, Song K, Liu X, Lu S, Shen Q, Wang R, Gao J, Hong Y, Li Q, Ni D, Xu J, Chen G, Zhang J. AlloFinder: a strategy for allosteric modulator discovery and allosterome analyses. Nucleic Acids Res 2019; 46:W451-W458. [PMID: 29757429 PMCID: PMC6030990 DOI: 10.1093/nar/gky374] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/28/2018] [Indexed: 01/07/2023] Open
Abstract
Allostery tweaks innumerable biological processes and plays a fundamental role in human disease and drug discovery. Exploration of allostery has thus been regarded as a crucial requirement for research on biological mechanisms and the development of novel therapeutics. Here, based on our previously developed allosteric data and methods, we present an interactive platform called AlloFinder that identifies potential endogenous or exogenous allosteric modulators and their involvement in human allosterome. AlloFinder automatically amalgamates allosteric site identification, allosteric screening and allosteric scoring evaluation of modulator-protein complexes to identify allosteric modulators, followed by allosterome mapping analyses of predicted allosteric sites and modulators in human proteome. This web server exhibits prominent performance in the reemergence of allosteric metabolites and exogenous allosteric modulators in known allosteric proteins. Specifically, AlloFinder enables identification of allosteric metabolites for metabolic enzymes and screening of potential allosteric compounds for disease-related targets. Significantly, the feasibility of AlloFinder to discover allosteric modulators was tested in a real case of signal transduction and activation of transcription 3 (STAT3) and validated by mutagenesis and functional experiments. Collectively, AlloFinder is expected to contribute to exploration of the mechanisms of allosteric regulation between metabolites and metabolic enzymes, and to accelerate allosteric drug discovery. The AlloFinder web server is freely available to all users at http://mdl.shsmu.edu.cn/ALF/.
Collapse
Affiliation(s)
- Min Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Kun Song
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Xinyi Liu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Qiancheng Shen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.,Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Renxiao Wang
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jingze Gao
- Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Yuanyuan Hong
- Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Qian Li
- Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Duan Ni
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Jianrong Xu
- Department of Pharmacology, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Guoqiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.,Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| |
Collapse
|
137
|
Merarchi M, Jung YY, Fan L, Sethi G, Ahn KS. A Brief Overview of the Antitumoral Actions of Leelamine. Biomedicines 2019; 7:biomedicines7030053. [PMID: 31330969 PMCID: PMC6783843 DOI: 10.3390/biomedicines7030053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/27/2022] Open
Abstract
For the last couple of decades, natural products, either applied singly or in conjunction with other cancer therapies including chemotherapy and radiotherapy, have allowed us to combat different types of human cancers through the inhibition of their initiation and progression. The principal sources of these useful compounds are isolated from plants that were described in traditional medicines for their curative potential. Leelamine, derived from the bark of pine trees, was previously reported as having a weak agonistic effect on cannabinoid receptors and limited inhibitory effects on pyruvate dehydrogenase kinases (PDKs). It has been reported to possess a strong lysosomotropic property; this feature enables its assembly inside the acidic compartments within a cell, such as lysosomes, which may eventually hinder endocytosis. In this review, we briefly highlight the varied antineoplastic actions of leelamine that have found implications in pharmacological research, and the numerous intracellular targets affected by this agent that can effectively negate the oncogenic process.
Collapse
Affiliation(s)
- Myriam Merarchi
- Faculty of Pharmacy, University of Paris Descartes, 75006 Paris, France
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Young Yun Jung
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Lu Fan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
138
|
FEZF1-AS1: a novel vital oncogenic lncRNA in multiple human malignancies. Biosci Rep 2019; 39:BSR20191202. [PMID: 31175144 PMCID: PMC6591563 DOI: 10.1042/bsr20191202] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNAs (LncRNAs) refer to the RNA with a length of >200 nucleotides, which lack or have no open reading coding frame and have higher tissue and organ specificity compared with the protein coding genes. A surging number of studies have shown that lncRNA is involved in numerous essential regulatory processes, such as X chromosome silencing, genomic imprinting, chromatin modification, transcriptional activation, transcriptional interference and nuclear transport, which are closely related to the occurrence and development of human malignancies. FEZ family Zinc Finger 1-Antisense RNA 1 (FEZF1-AS1) of FEZ family is a recently discovered lncRNA. FEZF1-AS1 is highly expressed in pancreatic cancer, colorectal cancer, lung adenocarcinoma and other human malignancies, and is associated with poor prognosis. As an oncogene, it plays crucial role in the proliferation, migration, invasion and Warburg effect of various tumor cells. In addition, FEZF1-AS1 is also involved in the regulation of multiple signal pathways such as epithelial–mesenchymal transition (EMT), signal transducer and activator of transcription 3 (STAT3) and Wnt/ β-catenin. In this paper, the recent research progress of FEZF1-AS1 in tumorigenesis and development is reviewed systematically.
Collapse
|
139
|
Wang X, He Q, Wu K, Guo T, Du X, Zhang H, Fang L, Zheng N, Zhang Q, Ye F. Design, synthesis and activity of novel 2,6-disubstituted purine derivatives, potential small molecule inhibitors of signal transducer and activator of transcription 3. Eur J Med Chem 2019; 179:218-232. [PMID: 31254923 DOI: 10.1016/j.ejmech.2019.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022]
Abstract
Sustained activation of STAT3 is closely related to the cancer development, but the inhibitors for STAT3 overexpression are still in the clinical research stage. In this study, a series of 2,6-disubstituted purine derivatives were designed and synthesized, and their biological activities, as small molecule inhibitors of STAT3, were assessed. Compound PD26-TL07 exhibited remarkable antiproliferative activity against three cancer cell lines (IC50 values for HCT-116, SW480 and MDA-MB-231 were 1.77 ± 0.35, 1.51 ± 0.19, and 1.25 ± 0.38 μM, respectively). Moreover, detailed biological assays revealed that PD26-TL07 could effectively inhibited STAT3 phosphorylation, and had little inhibition to others'. The newly discovered PD26-TL07 displayed an expecting anticancer effect both in vitro and in vivo. The molecular docking models revealed that PD26-TL07 could bind to the SH2 domain of STAT3. Three additional compounds (PD26-BZ01, PD26-TL03 and PD26-AS06) were also able to inhibit this phosphorylation. This study described novel 2,6-disubstituted purine derivatives as potent anticancer agents targeting STAT3.
Collapse
Affiliation(s)
- Xuebao Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qin He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Kaiqi Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Taoning Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xuze Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Huan Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Longcheng Fang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Nan Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qihong Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Faqing Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
140
|
Hwang ST, Kim C, Lee JH, Chinnathambi A, Alharbi SA, Shair OHM, Sethi G, Ahn KS. Cycloastragenol can negate constitutive STAT3 activation and promote paclitaxel-induced apoptosis in human gastric cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152907. [PMID: 30981183 DOI: 10.1016/j.phymed.2019.152907] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/25/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cycloastragenol (CAG), a triterpene aglycone is commonly prescribed for treating hypertension, cardiovascular disease, diabetic nephropathy, viral hepatitis, and various inflammatory-linked diseases. HYPOTHESIS We investigated CAG for its action on signal transducer and activator of transcription 3 (STAT3) activation cascades, and its potential to sensitize gastric cancer cells to paclitaxel-induced apoptosis. METHODS The effect of CAG on STAT3 phosphorylation and other hallmarks of cancer was deciphered using diverse assays in both SNU-1 and SNU-16 cells. RESULTS We observed that CAG exhibited cytotoxic activity against SNU-1 and SNU-16 cells to a greater extent as compared to normal GES-1 cells. CAG predominantly caused negative regulation of STAT3 phosphorylation at tyrosine 705 through the abrogation of Src and Janus-activated kinases (JAK1/2) activation. We noted that CAG impaired translocation of STAT3 protein as well as its DNA binding activity. It further decreased cellular proliferation and mediated its anticancer effects predominantly by causing substantial apoptosis rather than autophagy. In addition, CAG potentiated paclitaxel-induced anti-oncogenic effects in gastric tumor cells. CONCLUSIONS Our results indicate that CAG can function to impede STAT3 activation in human gastric tumor cells and therefore it may be a suitable candidate agent for therapy of gastric cancer.
Collapse
Affiliation(s)
- Sun Tae Hwang
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Chulwon Kim
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong Hyun Lee
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Omar H M Shair
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
141
|
Banik K, Ranaware AM, Deshpande V, Nalawade SP, Padmavathi G, Bordoloi D, Sailo BL, Shanmugam MK, Fan L, Arfuso F, Sethi G, Kunnumakkara AB. Honokiol for cancer therapeutics: A traditional medicine that can modulate multiple oncogenic targets. Pharmacol Res 2019; 144:192-209. [DOI: 10.1016/j.phrs.2019.04.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
|
142
|
Ko H, Lee JH, Kim HS, Kim T, Han YT, Suh YG, Chun J, Kim YS, Ahn KS. Novel Galiellalactone Analogues Can Target STAT3 Phosphorylation and Cause Apoptosis in Triple-Negative Breast Cancer. Biomolecules 2019; 9:biom9050170. [PMID: 31058868 PMCID: PMC6571922 DOI: 10.3390/biom9050170] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/24/2022] Open
Abstract
Aberrant activation of signal transducer and activator of transcription 3 (STAT3) has been documented in various malignancies including triple-negative breast cancers (TNBCs). The STAT3 transcription factor can regulate the different important hallmarks of tumor cells, and thus, targeting it can be a potential strategy for treating TNBC, for which only limited therapeutic options are available. In this study, we analyzed the possible effect of (-)-galiellalactone and its novel analogues, SG-1709 and SG-1721, and determined whether these agents exerted their antineoplastic effects by suppressing the STAT3 signaling pathway in TNBC cells. The two analogues, SG-1709 and SG-1721, inhibited both constitutive as well as inducible STAT3 phosphorylation at tyrosine 705 more effectively than (-)-galiellalactone, which indicates that the analogues are more potent STAT3 blockers. Moreover, SG-1721 not only inhibited nuclear translocation and DNA binding of STAT3 but also induced apoptosis, and decreased expression of diverse oncogenic proteins. Interestingly, SG-1721 also exhibited an enhanced apoptotic effect when combined with radiotherapy. Furthermore, in vivo administration of SG-1721 significantly attenuated breast xenograft tumor growth via decreasing levels of p-STAT3. Therefore, SG-1721 may be a promising candidate for further application as a pharmacological agent that can target STAT3 protein in treating TNBC.
Collapse
Affiliation(s)
- Hyejin Ko
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Jong Hyun Lee
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Hyun Su Kim
- College of Pharmacy, CHA University, 120 Haeryong-ro, Pochen-si, Gyenggi-do 11160, Korea.
| | - Taewoo Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Young Taek Han
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 330-714, Korea.
| | - Young-Ger Suh
- College of Pharmacy, CHA University, 120 Haeryong-ro, Pochen-si, Gyenggi-do 11160, Korea.
| | - Jaemoo Chun
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Yeong Shik Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
143
|
Bian C, Yuan L, Gai H. A long non-coding RNA LINC01288 facilitates non-small cell lung cancer progression through stabilizing IL-6 mRNA. Biochem Biophys Res Commun 2019; 514:443-449. [PMID: 31054777 DOI: 10.1016/j.bbrc.2019.04.132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/18/2019] [Indexed: 12/24/2022]
Abstract
The non-small cell lung cancer (NSCLC) denotes a malignant type of cancers. Long non-coding RNAs (lncRNAs) can actively participate in cancer development. However, the exact role of lncRNAs in NSCLC remains largely elusive. In current work, we report a novel intergenic lncRNA LINC01288 involved in NSCLC. We found that LINC01288 is frequently upregulated in NSCLC samples and cell lines. LINC01288 significantly promotes viability, migration, xenograft tumor growth and metastasis in vitro and in vivo. LINC01288 physically interacts with the IL-6 mRNA and increase the stability of IL-6 transcripts. Subsequently, the autocrine induction of IL-6 and enhanced STAT3 activation may facilitate NSCLC progression. Collectively, our data have demonstrated that LINC01288 serves as a crucial mediator of IL-6/STAT3 pathway and created novel interplay between lncRNAs and tumor development.
Collapse
Affiliation(s)
- Cuixia Bian
- Department of Respiratory Medicine, Jining First People's Hospital, Jining, 272000, Shandong, China
| | - Luna Yuan
- Department of Respiratory Medicine, Jining First People's Hospital, Jining, 272000, Shandong, China.
| | - Huirong Gai
- Department of Medicine II, Qingdao Central Hospital, Qingdao, 266042, Shandong, China
| |
Collapse
|
144
|
Focus on Formononetin: Anticancer Potential and Molecular Targets. Cancers (Basel) 2019; 11:cancers11050611. [PMID: 31052435 PMCID: PMC6562434 DOI: 10.3390/cancers11050611] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/22/2019] [Accepted: 04/28/2019] [Indexed: 12/11/2022] Open
Abstract
Formononetin, an isoflavone, is extracted from various medicinal plants and herbs, including the red clover (Trifolium pratense) and Chinese medicinal plant Astragalus membranaceus. Formononetin's antioxidant and neuroprotective effects underscore its therapeutic use against Alzheimer's disease. Formononetin has been under intense investigation for the past decade as strong evidence on promoting apoptosis and against proliferation suggests for its use as an anticancer agent against diverse cancers. These anticancer properties are observed in multiple cancer cell models, including breast, colorectal, and prostate cancer. Formononetin also attenuates metastasis and tumor growth in various in vivo studies. The beneficial effects exuded by formononetin can be attributed to its antiproliferative and cell cycle arrest inducing properties. Formononetin regulates various transcription factors and growth-factor-mediated oncogenic pathways, consequently alleviating the possible causes of chronic inflammation that are linked to cancer survival of neoplastic cells and their resistance against chemotherapy. As such, this review summarizes and critically analyzes current evidence on the potential of formononetin for therapy of various malignancies with special emphasis on molecular targets.
Collapse
|
145
|
Zhang Z, Bu H, Yu J, Chen Y, Pei C, Yu L, Huang X, Tan G, Tan Y. The cell-penetrating FOXM1 N-terminus (M1-138) demonstrates potent inhibitory effects on cancer cells by targeting FOXM1 and FOXM1-interacting factor SMAD3. Am J Cancer Res 2019; 9:2882-2896. [PMID: 31244930 PMCID: PMC6568178 DOI: 10.7150/thno.32693] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/29/2019] [Indexed: 12/24/2022] Open
Abstract
Transcription factor FOXM1 is involved in stimulating cell proliferation, enhancing DNA damage repair, promoting metastasis of cancer cells, and the inhibition of FOXM1 has been shown to prevent the initiation and progression of multiple cancers and FOXM1 is considered to be an effective target for tumor therapeutic drug development. The N-terminus of FOXM1 has been found to prevent transcriptional activities of FOXM1 and to mediate the interaction between FOXM1 and SMAD3. Methods: A recombinant FOXM1 N-terminal domain (1-138aa) fused with a nine arginine cell-penetrating peptide is produced with an E. coli expression system and named as M1-138. The effects of M1-138 on the proliferation, migration, and tumorigenic ability of cancer cells are analyzed in vitro with cell counting, transwell assays, and colony formation assays. Electrophoretic mobility shift assays (EMSAs) and Luciferase activity assays are used to test the DNA binding ability and transcriptional activity of transcription factors. The levels of mRNAs and proteins are measured by quantitative-PCR, Western blotting or Immunohistochemistry. The interactions among proteins are analyzed with Pull-down and Co-immunoprecipitation (Co-IP) assays. The nude mouse engrafted tumor models are used to test the inhibitory effects of M1-138 in vivo. Results: M1-138 diminishes the proliferation and migration abilities of cancer cells through binding to FOXM1 and FOXM1-interacting factor SMAD3, and consequently attenuating FOXM1 transcriptional activities from both direct and indirect FOXM1-promoter binding mechanisms and interfering with the interaction between FOXM1 and SMAD3. Treatment of M1-138 prevents tumorigenicity of cancer cells and inhibits tumor growth in nude mouse xenograft models with no obvious signs of toxicity. Conclusion: M1-138 is a promising drug candidate for the development of anti-cancer therapeutics targeting FOXM1 and SMAD3.
Collapse
|
146
|
Vitamin E and cancer: an update on the emerging role of γ and δ tocotrienols. Eur J Nutr 2019; 59:845-857. [PMID: 31016386 DOI: 10.1007/s00394-019-01962-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
Despite significant advances in the diagnosis and treatment of cancer, the latter still remains a fatal disease due to the lack of prevention, early diagnosis, and effective drugs. Radiotherapy, chemotherapy, and surgery are not only expensive but produce a number of side effects that are detrimental to the patients' quality of life. Therefore, there is a great need to discover anti-cancer therapies that are specific to cancer cells and affordable, safe, and well tolerated by the patients. Vitamin E is a potential candidate due to its safety. Accumulating evidence on the anti-cancer potency of vitamin E has shifted the focus from tocopherols (TOCs) to tocotrienols (TTs). γ-TT and δ-TT have the highest anti-cancer activities and target common molecular pathways involved in the inhibition of the cell cycle, the induction of apoptosis and autophagy, and the inhibition of invasion, metastasis, and angiogenesis. Future directions should focus on further investigating how γ-TT and δ-TT (solely or in combination) induce anti-cancer molecular pathways when used in the presence of conventional chemotherapeutic drugs. These studies should be carried out in vitro, and promising results and combinations should then be assessed in in vivo experiments and finally in clinical trials. Finally, future research should focus on further evaluating the roles of γ-TT and δ-TT in the chemoprevention of cancer.
Collapse
|
147
|
Dual functions of STAT3 in LPS-induced angiogenesis of hepatocellular carcinoma. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:566-574. [DOI: 10.1016/j.bbamcr.2018.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/22/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022]
|
148
|
Yang MH, Jung SH, Sethi G, Ahn KS. Pleiotropic Pharmacological Actions of Capsazepine, a Synthetic Analogue of Capsaicin, against Various Cancers and Inflammatory Diseases. Molecules 2019; 24:molecules24050995. [PMID: 30871017 PMCID: PMC6429077 DOI: 10.3390/molecules24050995] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/21/2022] Open
Abstract
Capsazepine is a synthetic analogue of capsaicin that can function as an antagonist of TRPV1. Capsazepine can exhibit diverse effects on cancer (prostate cancer, breast cancer, colorectal cancer, oral cancer, and osteosarcoma) growth and survival, and can be therapeutically used against other major disorders such as colitis, pancreatitis, malaria, and epilepsy. Capsazepine has been reported to exhibit pleiotropic anti-cancer effects against numerous tumor cell lines. Capsazepine can modulate Janus activated kinase (JAK)/signal transducer and activator of the transcription (STAT) pathway, intracellular Ca2+ concentration, and reactive oxygen species (ROS)-JNK-CCAAT/enhancer-binding protein homologous protein (CHOP) pathways. It can inhibit cell proliferation, metastasis, and induce apoptosis. Moreover, capsazepine can exert anti-inflammatory effects through the downregulation of lipopolysaccharide (LPS)-induced nuclear transcription factor-kappa B (NF-κB), as well as the blockage of activation of both transient receptor potential cation channel subfamily V member 1 (TRPV1) and transient receptor potential cation channel, subfamily A, and member 1 (TRPA1). This review briefly summarizes the diverse pharmacological actions of capsazepine against various cancers and inflammatory conditions.
Collapse
Affiliation(s)
- Min Hee Yang
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea.
| | - Sang Hoon Jung
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Kwang Seok Ahn
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea.
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
- Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
149
|
Lee JH, Kim C, Lee J, Um JY, Sethi G, Ahn KS. Arctiin is a pharmacological inhibitor of STAT3 phosphorylation at tyrosine 705 residue and potentiates bortezomib-induced apoptotic and anti-angiogenic effects in human multiple myeloma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:282-292. [PMID: 30668440 DOI: 10.1016/j.phymed.2018.06.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/19/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Arctiin is a main component from the fruits of Arctium lappa L., that can be prescribed for cold or flu in East Asian countries; it has also been found to exert chemopreventive actions against various tumor cells. HYPOTHESIS In view of this evidence, we examined arctiin for its ability to trigger apoptosis and inhibit the activation of signal transducer and activator of transcription 3 (STAT3) in human multiple myeloma (MM) cells. METHODS We evaluated the effect of arctiin on STAT3 signaling cascades and its regulated functional responses in MM cells. RESULTS Arctiin effectively blocked the constitutive activation of STAT3 phosphorylation in the residue of tyrosine 705. Arctiin also abrogated the constitutive activation of Src phosphorylation and Janus-activated kinases (JAKs) 1/2. Furthermore, it was found that arctiin treatment clearly enhanced the mRNA and protein levels of protein tyrosine phosphatase ε (PTPε), and the silencing of PTPε caused a reversal of the arctiin-induced PTPε expression and the blockadge of STAT3 phosphorylation. Interestingly, arctiin could not repress IL-6-induced STAT3 activation in serum-starved U266 cells and when arctiin was incubated with a complete culture medium in RPMI 8226 and MM.1S cells. Arctiin suppressed cell proliferation, accumulated cells in the G2/M cell-cycle phase, and induced apoptosis within U266 cells, although the knockdown of PTPε prevented PARP cleavage and caspase-3 activation induced by the arctiin. In addition, arctiin exerted cytotoxicity in MM cells, but did not do so in peripheral blood mononuclear cells. Arctiin down-modulated diverse oncogenic gene products regulated by STAT3, although the induction of apoptosis by arctiin was abrogated upon transfection with pMXs-STAT3C in mouse embryonic fibroblast (MEF) cells. Arctiin also potentiated bortezomib-induced antitumor effects in U266 cells. CONCLUSION On the whole, our results indicate that arctiin is a potentially new inhibitor of constitutive STAT3 activation through the induction of PTPε in MM, cells and therefore has great value in treating various tumors sheltering constitutively activated STAT3.
Collapse
Affiliation(s)
- Jong Hyun Lee
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - Chulwon Kim
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - Junhee Lee
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - Jae-Young Um
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea.
| |
Collapse
|
150
|
Andersen MN, Etzerodt A, Graversen JH, Holthof LC, Moestrup SK, Hokland M, Møller HJ. STAT3 inhibition specifically in human monocytes and macrophages by CD163-targeted corosolic acid-containing liposomes. Cancer Immunol Immunother 2019; 68:489-502. [PMID: 30637473 PMCID: PMC11028169 DOI: 10.1007/s00262-019-02301-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/06/2019] [Indexed: 01/05/2023]
Abstract
Tumor-associated macrophages (TAMs) are of major importance in cancer-related immune suppression, and tumor infiltration by CD163pos TAMs is associated with poor outcome in most human cancers. Therefore, therapeutic strategies for reprogramming TAMs from a tumor-supporting (M2-like) phenotype towards a tumoricidal (M1-like) phenotype are of great interest. Activation of the transcription factor STAT3 within the tumor microenvironment is associated with worse prognosis, and STAT3 activation promotes the immunosuppressive phenotype of TAMs. Therefore, we aimed to develop a drug for inhibition of STAT3 specifically within human TAMs by targeting the endocytic CD163 scavenger receptor, which is highly expressed on TAMs. Here, we report the first data on a CD163-targeted STAT3-inhibitory drug consisting of corosolic acid (CA) packaged within long-circulating liposomes (LCLs), which are CD163-targeted by modification with monoclonal anti-CD163 antibodies (αCD163)-CA-LCL-αCD163. We show, that activation of STAT3 (by phosphorylation) was inhibited by CA-LCL-αCD163 specifically within CD163pos cells, with minor effect on CD163neg cells. Furthermore, CA-LCL-αCD163 inhibited STAT3-regulated gene expression of IL-10, and increased expression of TNFα, thus indicating a pro-inflammatory effect of the drug on human macrophages. This M1-like reprogramming at the mRNA level was confirmed by significantly elevated levels of pro-inflammatory cytokines (IFNγ, IL-12, TNFα, IL-2) in the culture medium. Since liposomes are attractive vehicles for novel anti-cancer drugs, and since direct TAM-targeting may decrease adverse effects of systemic inhibition of STAT3, the present results encourage future investigation of CA-LCL-αCD163 in the in vivo setting.
Collapse
Affiliation(s)
- Morten Nørgaard Andersen
- Department of Clinical Biochemistry, Aarhus University Hospital, Palle Juul-Jensen Boulevard 99, 8200, Aarhus N, Denmark.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark.
| | - Anders Etzerodt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jonas H Graversen
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lisa C Holthof
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Søren K Moestrup
- Department of Clinical Biochemistry, Aarhus University Hospital, Palle Juul-Jensen Boulevard 99, 8200, Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Holger J Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Palle Juul-Jensen Boulevard 99, 8200, Aarhus N, Denmark
| |
Collapse
|