101
|
Huang Z, Li G, Zhang Z, Gu R, Wang W, Lai X, Cui ZK, Zeng F, Xu S, Deng F. β2AR-HIF-1α-CXCL12 signaling of osteoblasts activated by isoproterenol promotes migration and invasion of prostate cancer cells. BMC Cancer 2019; 19:1142. [PMID: 31771535 PMCID: PMC6878637 DOI: 10.1186/s12885-019-6301-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/28/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Chronic stress is well known to promote tumor progression, however, little is known whether chronic stress-mediated regulation of osteoblasts contributes to the migration and invasion of metastatic cancer cells. METHODS The proliferation, migration and invasion of prostate cancer cells were assessed by CCK-8 and transwell assay. HIF-1α expression of osteoblasts and epithelial-mesenchymal transition (EMT) markers of prostate cancer cells were examined by Western blot. The mRNA level of cytokines associated with bone metastasis in osteoblasts and EMT markers in PC-3 and DU145 cells were performed by qRT-PCR. Functional rescue experiment of cells were performed by using siRNA, plasmid transfection and inhibitor treatment. RESULTS Isoproterenol (ISO), a pharmacological surrogate of sympathetic nerve activation induced by chronic stress, exhibited no direct effect on migration and invasion of PC-3 and DU145 prostate cancer cells. Whereas, osteoblasts pretreated with ISO promoted EMT, migration and invasion of PC-3 and DU145 cells, which could be inhibited by β2AR inhibitor. Mechanistically, ISO increased the secretion of CXCL12 via the β2AR-HIF-1α signaling in osteoblasts. Moreover, overexpression of HIF-1α osteoblasts promoted migration and invasion of PC-3 and DU145 cells, which was inhibited by addition of recombinant knockdown of CXCR4 in PC-3 and DU145 cells, and inhibiting CXCL12-CXCR4 signaling with LY2510924 blunted the effects of osteoblasts in response to ISO on EMT and migration as well as invasion of PC-3 and DU145 cells. CONCLUSIONS These findings demonstrated that β2AR-HIF-1α-CXCL12 signaling in osteoblasts facilitates migration and invasion as well as EMT of prostate cancer cells, and may play a potential role in affecting bone metastasis of prostate cancer.
Collapse
Affiliation(s)
- Zhibin Huang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280 China
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
- Department of Anesthesiology, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350001 China
| | - Guihuan Li
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Zhishuai Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Ruonan Gu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280 China
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Wenyang Wang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Xiaoju Lai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Zhong-Kai Cui
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Fangyin Zeng
- Department of Clinical Laboratory, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, 510900 China
| | - Shiyuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280 China
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| |
Collapse
|
102
|
Mousavi A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy. Immunol Lett 2019; 217:91-115. [PMID: 31747563 DOI: 10.1016/j.imlet.2019.11.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/01/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023]
Abstract
Chemokines are small molecules called "chemotactic cytokines" and regulate many processes like leukocyte trafficking, homing of immune cells, maturation, cytoskeletal rearrangement, physiology, migration during development, and host immune responses. These proteins bind to their corresponding 7-membrane G-protein-coupled receptors. Chemokines and their receptors are anti-inflammatory factors in autoimmune conditions, so consider as potential targets for neutralization in such diseases. They also express by cancer cells and function as angiogenic factors, and/or survival/growth factors that enhance tumor angiogenesis and development. Among chemokines, the CXCL12/CXCR4 axis has significantly been studied in numerous cancers and autoimmune diseases. CXCL12 is a homeostatic chemokine, which is acts as an anti-inflammatory chemokine during autoimmune inflammatory responses. In cancer cells, CXCL12 acts as an angiogenic, proliferative agent and regulates tumor cell apoptosis as well. CXCR4 has a role in leukocyte chemotaxis in inflammatory situations in numerous autoimmune diseases, as well as the high levels of CXCR4, observed in different types of human cancers. These findings suggest CXCL12/CXCR4 as a potential therapeutic target for therapy of autoimmune diseases and open a new approach to targeted-therapy of cancers by neutralizing CXCL12 and CXCR4. In this paper, we reviewed the current understanding of the role of the CXCL12/CXCR4 axis in disease pathology and cancer biology, and discuss its therapeutic implications in cancer and diseases.
Collapse
|
103
|
Wang J, Liu J, Tian F, Zhan Y, Kong D. Cyclin-dependent kinase 9 expression and its association with CD8 + T cell infiltration in microsatellite-stable colorectal cancer. Oncol Lett 2019; 18:6046-6056. [PMID: 31788079 PMCID: PMC6865572 DOI: 10.3892/ol.2019.10970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/20/2019] [Indexed: 12/24/2022] Open
Abstract
Programmed death 1 (PD-1)-targeted therapy has benefited patients with microsatellite instability-high metastatic colorectal cancer (mCRC). However, the efficacy of PD-1-targeted therapy is poor in patients with microsatellite-stable (MSS) mCRC. Therefore, it is imperative to explore additional co-inhibitory molecular signalling pathways to improve the efficacy of immunotherapy in MSS mCRC treatment. In the present study, the association between cyclin-dependent kinase 9 (CDK9) expression and the survival of patients with CRC was analysed using RNA sequencing data from 605 patients, including 121 cases of mortality, from human cancer datasets. Furthermore, 35 clinical MSS stage III–IV CRC specimens were collected to assess CDK9 protein expression by immunohistochemistry, and the frequency of tumor-infiltrating CD8+ T cells was assessed by flow cytometry. The human cancer datasets demonstrated that upregulation CDK9 significantly shortened the survival of patients with stage II–IV colon cancer. Additionally, CDK9 mRNA expression was positively correlated with the expression levels of genes associated with immune evasion in the tumor. Notably, CDK9 was expression was upregulated in stage IV CRC compared with para-cancerous tissues and early-stage tumors. Interestingly, CDK9 expression was negatively associated with the infiltration of CD8+ T cells at the tumor site. In addition, the expression levels of T-cell immunoglobulin mucin family member 3 and CD39, proteins associated with exhaustion, on tumor-infiltrating CD8+ T cells were significantly elevated in patients with abnormal CDK9 expression levels. The present study demonstrated that CDK9 expression was negatively associated with CD8+ T cell infiltration and positively associated with CD8+ T cell exhaustion in MSS mCRC. In conclusion, CDK9 may be utilized to evaluate the prognosis and the immune-type of the tumor microenvironment in patients with MSS mCRC.
Collapse
Affiliation(s)
- Jiefu Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Jia Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Fei Tian
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Yang Zhan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Dalu Kong
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| |
Collapse
|
104
|
Guo C, He J, Song X, Tan L, Wang M, Jiang P, Li Y, Cao Z, Peng C. Pharmacological properties and derivatives of shikonin-A review in recent years. Pharmacol Res 2019; 149:104463. [PMID: 31553936 DOI: 10.1016/j.phrs.2019.104463] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/26/2019] [Accepted: 09/20/2019] [Indexed: 01/09/2023]
Abstract
Shikonin is the major bioactive component extracted from the roots of Lithospermum erythrorhizon which is also known as "Zicao" in Traditional Chinese Medicine (TCM). Recent studies have shown that shikonin demonstrates various bioactivities related to the treatment of cancer, inflammation, and wound healing. This review aimed to provide an updated summary of recent studies on shikonin. Firstly, many studies have demonstrated that shikonin exerts strong anticancer effects on various types of cancer by inhibiting cell proliferation and migration, inducing apoptosis, autophagy, and necroptosis. Shikonin also triggers Reactive Oxygen Species (ROS) generation, suppressing exosome release, and activate anti-tumor immunity in multiple molecular mechanisms. Examples of these effects include modulating the PI3K/AKT/mTOR and MAPKs signaling; inhibiting the activation of TrxR1, PKM2, RIP1/3, Src, and FAK; and regulating the expression of ERP57, MMPs, ATF2, C-MYC, miR-128, and GRP78 (Bip). Next, the anti-inflammatory and wound-healing properties of shikonin were also reviewed. Furthermore, several studies focusing on shikonin derivatives were reviewed, and these showed that, with modification to the naphthazarin ring or side chain, some shikonin derivatives display stronger anticancer activity and lower toxicity than shikonin itself. Our findings suggest that shikonin and its derivatives could serve as potential novel drug for the treatment of cancer and inflammation.
Collapse
Affiliation(s)
- Chuanjie Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junlin He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Xiaominting Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Lu Tan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Miao Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Peidu Jiang
- Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China
| | - Yuzhi Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Zhixing Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China.
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
105
|
Stone ML, Beatty GL. Cellular determinants and therapeutic implications of inflammation in pancreatic cancer. Pharmacol Ther 2019; 201:202-213. [PMID: 31158393 PMCID: PMC6708742 DOI: 10.1016/j.pharmthera.2019.05.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022]
Abstract
Inflammation is a hallmark of cancer. For pancreatic ductal adenocarcinoma (PDAC), malignant cells arise in the context of a brisk inflammatory cell infiltrate surrounded by dense fibrosis that is seen beginning at the earliest stages of cancer conception. This inflammatory and fibrotic milieu supports cancer cell escape from immune elimination and promotes malignant progression and metastatic spread to distant organs. Targeting this inflammatory reaction in PDAC by inhibiting or depleting pro-tumor elements and by engaging the potential of inflammatory cells to acquire anti-tumor activity has garnered strong research and clinical interest. Herein, we describe the current understanding of key determinants of inflammation in PDAC; mechanisms by which inflammation drives immune suppression; the impact of inflammation on metastasis, therapeutic resistance, and clinical outcomes; and strategies to intervene on inflammation for providing therapeutic benefit.
Collapse
Affiliation(s)
- Meredith L Stone
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United states of America; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Gregory L Beatty
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United states of America; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America.
| |
Collapse
|
106
|
Zhou X, Liao X, Wang X, Huang K, Yang C, Yu T, Liu J, Han C, Zhu G, Su H, Qin W, Han Q, Liu Z, Huang J, Gong Y, Ye X, Peng T. Clinical significance and prospective molecular mechanism of C‑C motif chemokine receptors in patients with early‑stage pancreatic ductal adenocarcinoma after pancreaticoduodenectomy. Oncol Rep 2019; 42:1856-1868. [PMID: 31432181 PMCID: PMC6775805 DOI: 10.3892/or.2019.7277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/08/2019] [Indexed: 12/24/2022] Open
Abstract
The present study aimed to determine the clinical significance and potential molecular mechanisms of C‑C motif chemokine receptor (CCR) genes in patients with early‑stage pancreatic ductal adenocarcinoma (PDAC). The transcriptomic, survival and clinical data of 112 patients with early‑stage PDAC who underwent pancreaticoduodenectomy were obtained from The Cancer Genome Atlas. The prognostic values of the CCR genes involved in early‑stage PDAC were evaluated using Kaplan‑Meier analysis and the multivariate Cox proportional risk regression model, and the potential molecular mechanisms were determined using bioinformatics tools. The identified CCRs closely interacted with each other at both the gene and protein levels. High expression levels of CCR5 [adjusted P=0.012; adjusted hazard ration (HR)=0.478, 95% confidence interval (CI)=0.269‑0.852], CCR6 (adjusted P=0.026; adjusted HR=0.527, 95% CI=0.299‑0.927) and CCR9 (adjusted P=0.001; adjusted HR=0.374, 95% CI=0.209‑0.670) were significantly associated with longer overall survival times in patients with early‑stage PDAC. The contribution of CCR5, CCR6 and CCR9 to the outcome of early‑stage PDAC was also demonstrated. Combined survival analysis of CCR5, CCR6 and CCR9 suggested that patients with high expression levels of these CCRs exhibited the most favorable outcomes. A prognostic signature was constructed in terms of the expression level of CC5, CCR6 and CCR9, and time‑dependent receiver operating characteristic curves indicated that this signature was able to effectively predict the outcome of patients with early‑stage PDAC. The potential molecular mechanisms of CCR5, CC6 and CCR9 in PDAC include its intersection of the P53, nuclear factor (NF)‑κB, generic transcription, mitogen‑activated protein kinase and STAT signaling pathways. Collectively, this highlights that CCR5, CCR6 and CCR9 are potential prognostic biomarkers for early‑stage PDAC.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| | - Junqi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| | - Hao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| | - Wei Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| | - Quanfa Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| | - Zhengqian Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| | - Jianlv Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| | - Yizhen Gong
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R China
| |
Collapse
|
107
|
Jin Y, Yang Y. Identification and analysis of genes associated with head and neck squamous cell carcinoma by integrated bioinformatics methods. Mol Genet Genomic Med 2019; 7:e857. [PMID: 31304688 PMCID: PMC6687648 DOI: 10.1002/mgg3.857] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/19/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers worldwide, exhibiting high morbidity and mortality. The prognosis of HNSCC patients has remained poor, though considerable efforts have been made to improve the treatment of this cancer. Therefore, identifying significant differentially expressed genes (DEGs) involved in HNSCC progression and exploiting them as novel biomarkers or potential therapeutic targets for HNSCC is highly valuable. Methods Overlapping differentially expressed genes (DEGs) were screened out from three independent gene expression omnibus (GEO) datasets and subjected to GO and kyoto encyclopedia of genes and genomes pathway enrichment analyses. The protein–protein interactions network of DEGs was constructed in the STRING database, and the top ten hub genes were selected using cytoHubba. The relative expression of hub genes was detected in GEPIA, Oncomine, and human protein atlas (HPA) databases. Furthermore, the relationship of hub genes with the overall survival and disease‐free survival in HNSCC patients was investigated using the cancer genome atlas data. Results The top ten hub genes (SPP1, POSTN, COL1A2, FN1, IGFBP3, APP, MMP3, MMP13, CXCL8, and CXCL12) could be utilized as potential diagnostic indicators for HNSCC. The relative levels of FN1, APP, SPP1, and POSTN could be associated with the prognosis of HNSCC patients. The mRNA expression of APP and COL1A2 was validated in HNSCC samples. Conclusion This study identified effective and reliable molecular biomarkers for diagnosis and prognosis by integrated bioinformatics analysis, suggesting novel and essential therapeutic targets for HNSCC.
Collapse
Affiliation(s)
- Yu Jin
- Department of General Dentistry, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, PR China
| | - Ya Yang
- Department of General Dentistry, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, PR China
| |
Collapse
|
108
|
Jiang Q, Sun Y, Liu X. CXCR4 as a prognostic biomarker in gastrointestinal cancer: a meta-analysis. Biomarkers 2019; 24:510-516. [PMID: 31244335 DOI: 10.1080/1354750x.2019.1637941] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background: CXCR4 is a member of the C-X-C chemokine receptor family, which is associated with multiple types of cancer. Although it has been widely reported, the prognostic value of CXCR4 expression in gastrointestinal (GI) cancer remains controversial. Methods: A meta-analysis was conducted to investigate the relationship between CXCR4 and prognosis of patients with GI cancer. Subgroup analysis was also performed according to tumour subtypes and heterogeneity test. Results: A total of 24 studies including 3637 cases suggested that overexpression of CXCR4 is significantly associated with overall survival (OS) for patients with GI cancer (HR = 1.71, 95% CI = 1.45-2.03, p = 0.000). Subgroup analysis also indicated that high CXCR4 expression in oesophagus, gastric and colorectal cancer all predicted a worse prognosis (HR = 1.52, 95% CI = 1.26-1.84, p = 0.001 for oesophagus cancer; HR = 1.59, 95% CI = 1.10-2.30, p = 0.015 for gastric cancer; HR = 2.21, 95% CI = 1.56-3.14, p = 0.000 for colorectal cancer). Conclusions: CXCR4 may serve as a prognostic indicator in GI cancer patients.
Collapse
Affiliation(s)
- Qingtao Jiang
- a Department of Medicine, Jiangsu Health Vocational College , Nanjing , China
| | - Yun Sun
- b Center for Disease Prevention and Control of Changzhou , Changzhou , China
| | - Xin Liu
- c Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Prevention and Control , Nanjing , China
| |
Collapse
|
109
|
Bazzichetto C, Conciatori F, Falcone I, Cognetti F, Milella M, Ciuffreda L. Advances in Tumor-Stroma Interactions: Emerging Role of Cytokine Network in Colorectal and Pancreatic Cancer. JOURNAL OF ONCOLOGY 2019; 2019:5373580. [PMID: 31191652 PMCID: PMC6525927 DOI: 10.1155/2019/5373580] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/22/2019] [Indexed: 02/07/2023]
Abstract
Cytokines are a family of soluble factors (Growth Factors (GFs), chemokines, angiogenic factors, and interferons), which regulate a wide range of mechanisms in both physiological and pathological conditions, such as tumor cell growth and progression, angiogenesis, and metastasis. In recent years, the growing interest in developing new cancer targeted therapies has been accompanied by the effort to characterize Tumor Microenvironment (TME) and Tumor-Stroma Interactions (TSI). The connection between tumor and stroma is now well established and, in the last decade, evidence from genetic, pharmacological, and epidemiological data supported the importance of microenvironment in tumor progression. However, several of the mechanisms behind TSI and their implication in tumor progression remain still unclear and it is crucial to establish their potential in determining pharmacological response. Many studies have demonstrated that cytokines network can profoundly affect TME, thus displaying potential therapeutic efficacy in both preclinical and clinical models. The goal of this review is to give an overview of the most relevant cytokines involved in colorectal and pancreatic cancer progression and their implication in drug response.
Collapse
Affiliation(s)
- Chiara Bazzichetto
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Fabiana Conciatori
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Italia Falcone
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Francesco Cognetti
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona 37126, Italy
| | - Ludovica Ciuffreda
- Medical Oncology 1, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Rome 00144, Italy
| |
Collapse
|
110
|
Clinicopathological significance and prognostic role of chemokine receptor CXCR4 expression in pancreatic ductal adenocarcinoma, a meta-analysis and literature review. Int J Surg 2019; 65:32-38. [DOI: 10.1016/j.ijsu.2019.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/12/2019] [Accepted: 03/11/2019] [Indexed: 12/18/2022]
|
111
|
Li Z, Shen Y, Wang Y, Zhu L, Zhu C, Qian C, Sun M, Oupicky D. Perfluorocarbon Nanoemulsions for Combined Pulmonary siRNA Treatment of Lung Metastatic Osteosarcoma. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhaoting Li
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical University Nanjing 210009 China
| | - Yuexin Shen
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical University Nanjing 210009 China
| | - Yixin Wang
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical University Nanjing 210009 China
| | - Lianghan Zhu
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical University Nanjing 210009 China
| | - Chenfei Zhu
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical University Nanjing 210009 China
| | - Chenggen Qian
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical University Nanjing 210009 China
| | - Minjie Sun
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical University Nanjing 210009 China
| | - David Oupicky
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical University Nanjing 210009 China
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha, NE 68198 USA
| |
Collapse
|
112
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is predicted to become the second most common cause of cancer-related death in the United States by 2030. So far surgery remains the only curative option for pancreatic cancer, but fewer than 20% of patients have surgically resectable disease. Furthermore, pancreatic cancer exhibits a remarkable resistance to established therapeutic options, including chemotherapy, radiotherapy, and targeted therapy, because pancreatic cancer exhibits numerous mechanisms of resistance like genetic and epigenetic alterations and a complex and dense tumor microenvironment. The tumor microenvironment is populated with different types of immune cells that play a critical role in therapy resistance, tumor progression, and carcinogenesis. Cancer immunotherapy has now been recognized as the fourth pillar of cancer care and a number of preclinical and clinical studies have been conducted for pancreatic cancer. Targeting and modulating the tumor immune microenvironment could not only switch the immune system toward anti-cancer, but also may improve sensitivity toward established chemotherapy. In this review, we discuss both preclinical and clinical studies on pancreatic cancer immunotherapy with natural killer cells, dendritic cells, and chimeric antigen receptor T cells. Furthermore, we summarize strategies for reprogramming the tumor immune microenvironment by targeting macrophages and stromal cell factors in pancreatic cancer. The development of systemic therapies is essential for improving the outcomes of pancreatic cancer patients, and cancer immunotherapy would improve effectiveness of other established therapeutic options, which might together improve the prognosis of pancreatic tumors.
Collapse
|
113
|
Mu W, Wang Z, Zöller M. Ping-Pong-Tumor and Host in Pancreatic Cancer Progression. Front Oncol 2019; 9:1359. [PMID: 31921628 PMCID: PMC6927459 DOI: 10.3389/fonc.2019.01359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the main cause of high pancreatic cancer (PaCa) mortality and trials dampening PaCa mortality rates are not satisfying. Tumor progression is driven by the crosstalk between tumor cells, predominantly cancer-initiating cells (CIC), and surrounding cells and tissues as well as distant organs, where tumor-derived extracellular vesicles (TEX) are of major importance. A strong stroma reaction, recruitment of immunosuppressive leukocytes, perineural invasion, and early spread toward the peritoneal cavity, liver, and lung are shared with several epithelial cell-derived cancer, but are most prominent in PaCa. Here, we report on the state of knowledge on the PaCIC markers Tspan8, alpha6beta4, CD44v6, CXCR4, LRP5/6, LRG5, claudin7, EpCAM, and CD133, which all, but at different steps, are engaged in the metastatic cascade, frequently via PaCIC-TEX. This includes the contribution of PaCIC markers to TEX biogenesis, targeting, and uptake. We then discuss PaCa-selective features, where feedback loops between stromal elements and tumor cells, including distorted transcription, signal transduction, and metabolic shifts, establish vicious circles. For the latter particularly pancreatic stellate cells (PSC) are responsible, furnishing PaCa to cope with poor angiogenesis-promoted hypoxia by metabolic shifts and direct nutrient transfer via vesicles. Furthermore, nerves including Schwann cells deliver a large range of tumor cell attracting factors and Schwann cells additionally support PaCa cell survival by signaling receptor binding. PSC, tumor-associated macrophages, and components of the dysplastic stroma contribute to perineural invasion with signaling pathway activation including the cholinergic system. Last, PaCa aggressiveness is strongly assisted by the immune system. Although rich in immune cells, only immunosuppressive cells and factors are recovered in proximity to tumor cells and hamper effector immune cells entering the tumor stroma. Besides a paucity of immunostimulatory factors and receptors, immunosuppressive cytokines, myeloid-derived suppressor cells, regulatory T-cells, and M2 macrophages as well as PSC actively inhibit effector cell activation. This accounts for NK cells of the non-adaptive and cytotoxic T-cells of the adaptive immune system. We anticipate further deciphering the molecular background of these recently unraveled intermingled phenomena may turn most lethal PaCa into a curatively treatable disease.
Collapse
Affiliation(s)
- Wei Mu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Wei Mu
| | - Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| | - Margot Zöller
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| |
Collapse
|
114
|
Chemotherapy and Inflammatory Cytokine Signalling in Cancer Cells and the Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:173-215. [PMID: 31456184 DOI: 10.1007/978-3-030-20301-6_9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer is the result of a cell's acquisition of a variety of biological capabilities or 'hallmarks' as outlined by Hanahan and Weinberg. These include sustained proliferative signalling, the ability to evade growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and the ability to invade other tissue and metastasize. More recently, the ability to escape immune destruction has been recognized as another important hallmark of tumours. It is suggested that genome instability and inflammation accelerates the acquisition of a variety of the above hallmarks. Inflammation, is a product of the body's response to tissue damage or pathogen invasion. It is required for tissue repair and host defense, but prolonged inflammation can often be the cause for disease. In a cancer patient, it is often unclear whether inflammation plays a protective or deleterious role in disease progression. Chemotherapy drugs can suppress tumour growth but also induce pathways in tumour cells that have been shown experimentally to support tumour progression or, in other cases, encourage an anti-tumour immune response. Thus, with the goal of better understanding the context under which each of these possible outcomes occurs, recent progress exploring chemotherapy-induced inflammatory cytokine production and the effects of cytokines on drug efficacy in the tumour microenvironment will be reviewed. The implications of chemotherapy on host and tumour cytokine pathways and their effect on the treatment of cancer patients will also be discussed.
Collapse
|
115
|
Bernard V, Semaan A, Huang J, San Lucas FA, Mulu FC, Stephens BM, Guerrero PA, Huang Y, Zhao J, Kamyabi N, Sen S, Scheet PA, Taniguchi CM, Kim MP, Tzeng CW, Katz MH, Singhi AD, Maitra A, Alvarez HA. Single-Cell Transcriptomics of Pancreatic Cancer Precursors Demonstrates Epithelial and Microenvironmental Heterogeneity as an Early Event in Neoplastic Progression. Clin Cancer Res 2018; 25:2194-2205. [PMID: 30385653 DOI: 10.1158/1078-0432.ccr-18-1955] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/18/2018] [Accepted: 10/29/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Early detection of pancreatic ductal adenocarcinoma (PDAC) remains elusive. Precursor lesions of PDAC, specifically intraductal papillary mucinous neoplasms (IPMNs), represent a bona fide pathway to invasive neoplasia, although the molecular correlates of progression remain to be fully elucidated. Single-cell transcriptomics provides a unique avenue for dissecting both the epithelial and microenvironmental heterogeneities that accompany multistep progression from noninvasive IPMNs to PDAC. EXPERIMENTAL DESIGN Single-cell RNA sequencing was performed through droplet-based sequencing on 5,403 cells from 2 low-grade IPMNs (LGD-IPMNs), 2 high-grade IPMNs (HGD-IPMN), and 2 PDACs (all surgically resected). RESULTS Analysis of single-cell transcriptomes revealed heterogeneous alterations within the epithelium and the tumor microenvironment during the progression of noninvasive dysplasia to invasive cancer. Although HGD-IPMNs expressed many core signaling pathways described in PDAC, LGD-IPMNs harbored subsets of single cells with a transcriptomic profile that overlapped with invasive cancer. Notably, a proinflammatory immune component was readily seen in low-grade IPMNs, composed of cytotoxic T cells, activated T-helper cells, and dendritic cells, which was progressively depleted during neoplastic progression, accompanied by infiltration of myeloid-derived suppressor cells. Finally, stromal myofibroblast populations were heterogeneous and acquired a previously described tumor-promoting and immune-evading phenotype during invasive carcinogenesis. CONCLUSIONS This study demonstrates the ability to perform high-resolution profiling of the transcriptomic changes that occur during multistep progression of cystic PDAC precursors to cancer. Notably, single-cell analysis provides an unparalleled insight into both the epithelial and microenvironmental heterogeneities that accompany early cancer pathogenesis and might be a useful substrate to identify targets for cancer interception.See related commentary by Hernandez-Barco et al., p. 2027.
Collapse
Affiliation(s)
- Vincent Bernard
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexander Semaan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jonathan Huang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - F Anthony San Lucas
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Feven C Mulu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bret M Stephens
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paola A Guerrero
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yanqing Huang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jun Zhao
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nabiollah Kamyabi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Subrata Sen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul A Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cullen M Taniguchi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael P Kim
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ching-Wei Tzeng
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Matthew H Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hector A Alvarez
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
116
|
Wei L, Ye H, Li G, Lu Y, Zhou Q, Zheng S, Lin Q, Liu Y, Li Z, Chen R. Cancer-associated fibroblasts promote progression and gemcitabine resistance via the SDF-1/SATB-1 pathway in pancreatic cancer. Cell Death Dis 2018; 9:1065. [PMID: 30337520 PMCID: PMC6194073 DOI: 10.1038/s41419-018-1104-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 02/08/2023]
Abstract
Cancer-associated fibroblasts (CAFs), a dominant component of the pancreatic tumor microenvironment, are mainly considered as promotors of malignant progression, but the underlying molecular mechanism remains unclear. Here, we show that SDF-1 secreted by CAFs stimulates malignant progression and gemcitabine resistance in pancreatic cancer, partially owing to paracrine induction of SATB-1 in pancreatic cancer cells. CAF-secreted SDF-1 upregulated the expression of SATB-1 in pancreatic cancer cells, which contributed to the maintenance of CAF properties, forming a reciprocal feedback loop. SATB-1 was verified to be overexpressed in human pancreatic cancer tissues and cell lines by quantitative real-time PCR, western blot, and immunohistochemical staining, which correlated with tumor progression and clinical prognosis in pancreatic cancer patients. We found that SATB-1 knockdown inhibited proliferation, migration, and invasion in SW1990 and PANC-1 cells in vitro, whereas overexpression of SATB-1 in Capan-2 and BxPC-3 cells had the opposite effect. Immunofluorescence staining showed that conditioned medium from SW1990 cells expressing SATB-1 maintained the local supportive function of CAFs. Furthermore, downregulation of SATB-1 inhibited tumor growth in mouse xenograft models. In addition, we found that overexpression of SATB-1 in pancreatic cancer cells participated in the process of gemcitabine resistance. Finally, we investigated the clinical correlations between SDF-1 and SATB-1 in human pancreatic cancer specimens. In summary, these findings demonstrated that the SDF-1/CXCR4/SATB-1 axis may be a potential new target of clinical interventions for pancreatic cancer patients.
Collapse
Affiliation(s)
- Lusheng Wei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Huilin Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Guolin Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuanting Lu
- Department of Radiology, Guangzhou women and children's medical center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Quanbo Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shangyou Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Qing Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yimin Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhihua Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China. .,Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| | - Rufu Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China. .,Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
117
|
Lee NH, Nikfarjam M, He H. Functions of the CXC ligand family in the pancreatic tumor microenvironment. Pancreatology 2018; 18:705-716. [PMID: 30078614 DOI: 10.1016/j.pan.2018.07.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/06/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023]
Abstract
Therapeutic resistance is the major contributor to the poor prognosis of and low survival from pancreatic cancer (PC). Cancer progression is a complex process reliant on interactions between the tumor and the tumor microenvironment (TME). Members of the CXCL family of chemokines are present in the pancreatic TME and seem to play a vital role in regulating PC progression. As pancreatic tumors interact with the TME and with PC stem cells (CSCs), determining the roles of specific members of the CXCL family is vital to the development of improved therapies. This review highlights the roles of selected CXCLs in the interactions between pancreatic tumor and its stroma, and in CSC phenotypes, which can be used to identify potential treatment targets.
Collapse
Affiliation(s)
- Nien-Hung Lee
- Department of Surgery, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Mehrdad Nikfarjam
- Department of Surgery, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Hong He
- Department of Surgery, University of Melbourne, Austin Health, Melbourne, Victoria, Australia.
| |
Collapse
|
118
|
Wu P, Luo X, Wu H, Yu F, Wang K, Sun M, Oupicky D. Cholesterol Modification Enhances Antimetastatic Activity and siRNA Delivery Efficacy of Poly(ethylenimine)‐Based CXCR4 Antagonists. Macromol Biosci 2018; 18:e1800234. [DOI: 10.1002/mabi.201800234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/01/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Pengkai Wu
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical University Nanjing 210009 China
| | - Xingping Luo
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical University Nanjing 210009 China
| | - Hui Wu
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical University Nanjing 210009 China
| | - Fei Yu
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| | - Kaikai Wang
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical University Nanjing 210009 China
| | - Minjie Sun
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical University Nanjing 210009 China
| | - David Oupicky
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical University Nanjing 210009 China
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical Center Omaha NE 68198 USA
| |
Collapse
|
119
|
Colombo M, Mirandola L, Chiriva-Internati M, Basile A, Locati M, Lesma E, Chiaramonte R, Platonova N. Cancer Cells Exploit Notch Signaling to Redefine a Supportive Cytokine Milieu. Front Immunol 2018; 9:1823. [PMID: 30154786 PMCID: PMC6102368 DOI: 10.3389/fimmu.2018.01823] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/24/2018] [Indexed: 12/19/2022] Open
Abstract
Notch signaling is a well-known key player in the communication between adjacent cells during organ development, when it controls several processes involved in cell differentiation. Notch-mediated communication may occur through the interaction of Notch receptors with ligands on adjacent cells or by a paracrine/endocrine fashion, through soluble molecules that can mediate the communication between cells at distant sites. Dysregulation of Notch pathway causes a number of disorders, including cancer. Notch hyperactivation may be caused by mutations of Notch-related genes, dysregulated upstream pathways, or microenvironment signals. Cancer cells may exploit this aberrant signaling to "educate" the surrounding microenvironment cells toward a pro-tumoral behavior. This may occur because of key cytokines secreted by tumor cells or it may involve the microenvironment through the activation of Notch signaling in stromal cells, an event mediated by a direct cell-to-cell contact and resulting in the increased secretion of several pro-tumorigenic cytokines. Up to now, review articles were mainly focused on Notch contribution in a specific tumor context or immune cell populations. Here, we provide a comprehensive overview on the outcomes of Notch-mediated pathological interactions in different tumor settings and on the molecular and cellular mediators involved in this process. We describe how Notch dysregulation in cancer may alter the cytokine network and its outcomes on tumor progression and antitumor immune response.
Collapse
Affiliation(s)
- Michela Colombo
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | | | - Maurizio Chiriva-Internati
- Kiromic Biopharma Inc., Houston, TX, United States.,Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Andrea Basile
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Massimo Locati
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milano, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Elena Lesma
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | | | - Natalia Platonova
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
120
|
Xie Y, Wang Y, Li J, Hang Y, Jaramillo L, Wehrkamp CJ, Phillippi MA, Mohr AM, Chen Y, Talmon GA, Mott JL, Oupický D. Cholangiocarcinoma therapy with nanoparticles that combine downregulation of MicroRNA-210 with inhibition of cancer cell invasiveness. Am J Cancer Res 2018; 8:4305-4320. [PMID: 30214622 PMCID: PMC6134930 DOI: 10.7150/thno.26506] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/04/2018] [Indexed: 12/19/2022] Open
Abstract
Cholangiocarcinoma (CCA) is the second most common primary liver malignancy with extremely poor therapeutic outcome due to high drug resistance, widespread metastasis and lack of effective treatment options. CCA progression and metastasis are regulated by multiple biological factors including multiple miRNAs and chemokine receptor CXCR4. The goal of this study was to test if nanotherapeutic blockade of CXCR4 by polymeric CXCR4 antagonist (PCX) combined with inhibition of hypoxia-inducible miR-210 cooperatively enhances therapeutic efficacy in CCA through reducing invasiveness, inducing cell killing, and reversing drug resistance. Methods: We first tested the activity of PCX to inhibit migration of CCA cells. We then prepared PCX/anti-miRNA nanoparticles and analyzed their miRNA delivery efficacy and anticancer activity in vitro. Finally, in vivo biodistribution assay and anticancer activity study were performed in CCA tumor-bearing mice. Results: Our results show that PCX had a broad inhibitory effect on cell migration, effectively delivered anti-miR-210, and downregulated miR-210 expression in CCA cells. Combination PCX/anti-miR-210 nanoparticles showed cytotoxic activity towards CCA cells and reduced the number of cancer stem-like cells. The nanoparticles reversed hypoxia-induced drug resistance and sensitized CCA cells to standard gemcitabine and cisplatin combination treatment. Systemic intravenous treatment with the nanoparticles in a CCA xenograft model resulted in prominent combined antitumor activity. Conclusion: Our findings support PCX-based nanoparticles as a promising delivery platform of therapeutic miRNA in combination CCA therapies.
Collapse
|
121
|
Wang J, Huang Y, Zhang J, Xing B, Xuan W, Wang H, Huang H, Yang J, Tang J. High co-expression of the SDF1/CXCR4 axis in hepatocarcinoma cells is regulated by AnnexinA7 in vitro and in vivo. Cell Commun Signal 2018; 16:22. [PMID: 29783989 PMCID: PMC5963093 DOI: 10.1186/s12964-018-0234-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/15/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND SDF1/CXCR4 and AnnexinA7 play important roles in many physiological and pathological conditions, but the molecular association between them in cancer cells has not been studied thus far. METHODS The expression changes of SDF1/CXCR4 were detected by gene transcriptome sequencing, qRT-PCR, Western blotting, cytoimmunofluorescence and immunohistochemistry in mouse hepatocarcinoma F/P cells, AnnexinA7 downregulated expression F (FA7DOWN) cells, AnnexinA7 overexpression P (PA7UP) cells, AnnexinA7 unrelated sequence F (FSHUS) cells, empty vector P (PNCEV) cells and normal liver cells in vitro and in vivo. RESULTS SDF1 and CXCR4 were co-expressed in hepatocarcinoma cells. SDF1 was localized mainly in the cytoplasm of cells, while CXCR4 was mainly localized in the cell membrane. Both in vitro and in vivo, expression levels of SDF1/CXCR4 in F and P cells were higher than in normal liver cells, and expression levels of SDF1/CXCR4 in F cells with high lymphatic metastatic potential were higher than those in P cells with low lymphatic metastatic potential. Expression of SDF1 was higher than that of CXCR4 in P cells and normal liver cells, while expression of CXCR4 was higher than that of SDF1 in F cells. Expression levels of SDF1/CXCR4 were completely consistent with AnnexinA7 regulation. After the AnnexinA7 gene was downregulated or upregulated, expression levels of SDF1/CXCR4 in FA7DOWN/PA7UP cells were lower or higher than those in FSHUS/PNCEV cells. Furthermore, CXCR4 was more sensitively modulated by AnnexinA7 regulation than SDF1. CONCLUSIONS High co-expression of SDF1/CXCR4 is a molecular characteristic of hepatocarcinoma cells, especially those with high lymphatic metastatic potential. AnnexinA7 positively regulates expression levels of SDF1/CXCR4, in particular CXCR4, and AnnexinA7 is a functional regulator of SDF1/CXCR4.
Collapse
Affiliation(s)
- Jingwen Wang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, 116044, Liaoning, China
| | - Yuhong Huang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, 116044, Liaoning, China
| | - Jun Zhang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, 116044, Liaoning, China
| | - Boyi Xing
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, 116044, Liaoning, China
| | - Wei Xuan
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, 116044, Liaoning, China
| | - Honghai Wang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, 116044, Liaoning, China
| | - He Huang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, 116044, Liaoning, China
| | | | - Jianwu Tang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian, 116044, Liaoning, China.
| |
Collapse
|
122
|
Clinicopathologic Significance of CXCL12 and CXCR4 Expressions in Patients with Colorectal Cancer. Gastroenterol Res Pract 2018; 2018:9613185. [PMID: 29887884 PMCID: PMC5977022 DOI: 10.1155/2018/9613185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/29/2018] [Accepted: 04/22/2018] [Indexed: 12/15/2022] Open
Abstract
Background Colorectal cancer (CRC) is both a global and national burden, being the third most common malignancy in men and the second in women, worldwide. The prognosis of CRC is affected by various factors like the histological grade, angiolymphatic invasion, and distant metastases. Metastasis is an intricate process; one of the possible mechanisms is through the interaction of the chemokines CXCL12 and CXCR4. This study aims to reveal the expression patterns of CXCL12 and CXCR4 in CRC. Methods The quantitative expressions of CXCL12 and CXCR4 messenger RNA (mRNA) were evaluated in 32 patients with adenocarcinoma-type CRC. Real-time polymerase chain reaction (qRT-PCR) was performed on formalin-fixed tissues. CXCL12 and CXCR4's expressions, clinicopathologic features, and the treatment response to the CRC were analysed. Results All tumour tissues showed higher levels of both chemokines compared to normal colonic tissue. The expression of CXCL12 mRNA was higher in rectal location (p = 0.04) with a tendency to be higher in later stages (p = 0.15), while the expression of CXCR4 was lower in tumours with a lymphatic invasion (p = 0.02), compared to their counterparts. There was no difference in the expression of CXCL12 and CXCR4 according to the patients' ages, gender, tumour differentiation, or response to chemotherapy. Conclusion Our study demonstrated that the mRNA expression of CXCL12 was significantly correlated with rectal location. CXCR4 mRNA expression was inversely correlated in tumours with a lymphatic invasion.
Collapse
|
123
|
Xie Y, Wang Y, Li J, Hang Y, Oupický D. Promise of chemokine network-targeted nanoparticles in combination nucleic acid therapies of metastatic cancer. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 11:e1528. [PMID: 29700990 DOI: 10.1002/wnan.1528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/28/2018] [Accepted: 04/01/2018] [Indexed: 01/10/2023]
Abstract
Chemokines and chemokine receptors play key roles in cancer progression and metastasis. Although multiple chemokines and chemokine receptors have been investigated, inhibition of CXCR4 emerged as one of the most promising approaches in combination cancer therapy, especially when focused on the metastatic disease. Small RNA molecules, such as small interfering RNA (siRNA) and microRNA (miRNA), represent new class of therapeutics for cancer treatment through RNA interference-mediated gene silencing. However, the clinical applicability of siRNA and miRNA is severely limited by the lack of effective delivery systems. There is a significant therapeutic potential for CXCR4-targeted nanomedicines in combination with the delivery of siRNA and miRNA in cancer. Recently developed CXCR4-targeted polymeric drugs and nanomedicines, including cyclam- and chloroquine-based polymeric CXCR4 antagonists are introduced here and their ability to deliver functional siRNA and miRNA is discussed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Ying Xie
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yazhe Wang
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jing Li
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yu Hang
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - David Oupický
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
124
|
Fu Y, Liu S, Zeng S, Shen H. The critical roles of activated stellate cells-mediated paracrine signaling, metabolism and onco-immunology in pancreatic ductal adenocarcinoma. Mol Cancer 2018; 17:62. [PMID: 29458370 PMCID: PMC5817854 DOI: 10.1186/s12943-018-0815-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/12/2018] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignant diseases worldwide. It is refractory to conventional treatments, and consequently has a documented 5-year survival rate as low as 7%. Increasing evidence indicates that activated pancreatic stellate cells (PSCs), one of the stromal components in tumor microenvironment (TME), play a crucial part in the desmoplasia, carcinogenesis, aggressiveness, metastasis associated with PDAC. Despite the current understanding of PSCs as a "partner in crime" to PDAC, detailed regulatory roles of PSCs and related microenvironment remain obscure. In addition to multiple paracrine signaling pathways, recent research has confirmed that PSCs-mediated tumor microenvironment may influence behaviors of PDAC via diverse mechanisms, such as rewiring metabolic networks, suppressing immune responses. These new activities are closely linked with treatment and prognosis of PDAC. In this review, we discuss the recent advances regarding new functions of activated PSCs, including PSCs-cancer cells interaction, mechanisms involved in immunosuppressive regulation, and metabolic reprogramming. It's clear that these updated experimental or clinical studies of PSCs may provide a promising approach for PDAC treatment in the near future.
Collapse
Affiliation(s)
- Yaojie Fu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shanshan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
125
|
Rosenberg A, Mahalingam D. Immunotherapy in pancreatic adenocarcinoma-overcoming barriers to response. J Gastrointest Oncol 2018; 9:143-159. [PMID: 29564181 PMCID: PMC5848027 DOI: 10.21037/jgo.2018.01.13] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/28/2017] [Indexed: 12/12/2022] Open
Abstract
Pancreatic adenocarcinoma (PAC) remains one of the leading causes of cancer-related death. Despite multiple advances in targeted and immune therapies, the 5-year survival in advanced PAC remains poor. In this review, we discuss some of the unique aspects of the tumor microenvironment (TME) in PAC that may contribute to its resistance to immune therapies, as well as opportunities to potentially overcome some of these inherent barriers. Furthermore, we discuss strategies to enable immune therapies in PAC such as cytotoxic chemotherapy and radiation therapy, cancer vaccines, cytokine based therapy, oncolytic viruses, and adoptive T-cell therapy. Finally, we address a variety of targeted therapies as a strategy to further amplify immune responses in PAC.
Collapse
Affiliation(s)
- Ari Rosenberg
- Department of Medicine, Northwestern University, Chicago, IL, USA
| | | |
Collapse
|
126
|
Chen Y, Li J, Oupický D. Conjugate Polyplexes with Anti-Invasive Properties and Improved siRNA Delivery In Vivo. Bioconjug Chem 2018; 29:296-305. [PMID: 29338191 DOI: 10.1021/acs.bioconjchem.7b00622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study reports on a simple method to prepare siRNA-polycation conjugate polyplexes by in situ thiol-disulfide exchange reaction. The conjugate polyplexes are prepared using thiol-terminated siRNA and a bioreducible branched polycationic inhibitor of the CXCR4 chemokine receptor (rPAMD). The rPAMD-SS-siRNA conjugate polyplexes exhibit improved colloidal stability and resistance against disassembly with heparin, serum, and physiological salt concentrations when compared with control conventional rPAMD/siRNA polyplexes. Coating the polyplexes with human serum albumin masks the positive surface charge and contributes to the enhanced in vitro gene silencing and improved safety in vivo. The conjugate polyplexes display improved in vivo reporter gene silencing following intravenous injection in tumor-bearing mice. Because the conjugate polyplexes retained the ability of rPAMD to inhibit CXCR4 and restrict cancer cell invasion, the developed systems show promise for future combination anti-metastatic siRNA therapies of cancer.
Collapse
Affiliation(s)
- Yi Chen
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Jing Li
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| |
Collapse
|