101
|
Ma QL, Shen MO, Han N, Xu HZ, Peng XC, Li QR, Yu TT, Li LG, Xu X, Liu B, Chen X, Wang MF, Li TF. Chlorin e6 mediated photodynamic therapy triggers resistance through ATM-related DNA damage response in lung cancer cells. Photodiagnosis Photodyn Ther 2021; 37:102645. [PMID: 34823034 DOI: 10.1016/j.pdpdt.2021.102645] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/14/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Photodynamic therapy (PDT) has emerged as a promising strategy in the treatment of malignant tumors due to its high selectivity, non-toxicity, and non-invasiveness. However, PDT can also induce DNA damage and subsequent repair response, which may reduce the efficacy of PDT. In the present study, we sought to explore the effect of chlorin e6 (Ce6)-mediated PDT on DNA damage and DNA damage response (DDR) in lung cancer cells. In addition, the effect of PDT combined with ATM inhibitor on molecules of DDR and the possibility of improving the efficacy of PDT were further investigated. MATERIALS AND METHODS In the in vitro study, lewis cells were submitted to Ce6 treatment (2, 4, 8, 16, 32 μg/mL). To determine the concentration of Ce6, uptake and toxicity of Ce6 mediated PDT were detected using flow cytometry (FACS), Confocal microscopy, and CCK-8. In the subsequent research, 8 μg/mL of Ce6 was the treatment condition for inducing PDT. The different post-irradiation placement times were further grouped under this condition (2, 4, 6, 12 h). Cellular reactive oxygen species (ROS), damage of DNA were measured by DCFH-DA probe, comet assay respectively. Then the expression of p-ATM, p53, and γ-H2A.X proteins related to DNA damage response, was detected by WB. The efficacy of Ce6 induced PDT was also demonstrated by Annexin-V/PI staining as well as the expression of PCNA, cleaved-caspase-3. On this basis, ATM inhibitor was applied to treat lewis cells combined with Ce6 (2, 4 h) to investigate whether the efficacy of PDT induced by Ce6 can be improved after the ATM-related DDR was blocked. The cell viability, apoptosis, and expression of associated proteins were assayed. RESULTS At 2-4 h after PDT treatment, ROS was dramatically elevated in lewis cells, DNA double-strand breaks (DDSB) occurred, as well as up-regulation of DDR proteins γ-H2A.X, p-ATM, and p53. At the same time, lewis cells did not undergo significant apoptosis. After ATM inhibition, the DDR was significantly blocked within 2-4 hours after Ce6 induced PDT, along with a pronounced decrease in cell viability followed by a prominent increase of apoptosis. CONCLUSION Ce6-mediated PDT generates ROS in a short period time, thus inducing DNA damage, ATM-related DDR as well as promoting resistance of lung cancer cells to PDT. Combining ATM inhibitor with PDT could effectively inhibit the DDR induced by PDT, thereby enhancing the efficacy. This study reveals a new resistance mechanism of PDT and proposes an intervention strategy.
Collapse
Affiliation(s)
- Qian-Li Ma
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Mai-Ou Shen
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Ning Han
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Hua-Zhen Xu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China
| | - Xing-Chun Peng
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Qi-Rui Li
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Ting-Ting Yu
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Liu-Gen Li
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Xiang Xu
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Bin Liu
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan 430072, China
| | - Mei-Fang Wang
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China.
| | - Tong-Fei Li
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China.
| |
Collapse
|
102
|
Identification of DNA Damage Repair-Associated Prognostic Biomarkers for Prostate Cancer Using Transcriptomic Data Analysis. Int J Mol Sci 2021; 22:ijms222111771. [PMID: 34769200 PMCID: PMC8584064 DOI: 10.3390/ijms222111771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023] Open
Abstract
In the recent decade, the importance of DNA damage repair (DDR) and its clinical application have been firmly recognized in prostate cancer (PC). For example, olaparib was just approved in May 2020 to treat metastatic castration-resistant PC with homologous recombination repair-mutated genes; however, not all patients can benefit from olaparib, and the treatment response depends on patient-specific mutations. This highlights the need to understand the detailed DDR biology further and develop DDR-based biomarkers. In this study, we establish a four-gene panel of which the expression is significantly associated with overall survival (OS) and progression-free survival (PFS) in PC patients from the TCGA-PRAD database. This panel includes DNTT, EXO1, NEIL3, and EME2 genes. Patients with higher expression of the four identified genes have significantly worse OS and PFS. This significance also exists in a multivariate Cox regression model adjusting for age, PSA, TNM stages, and Gleason scores. Moreover, the expression of the four-gene panel is highly correlated with aggressiveness based on well-known PAM50 and PCS subtyping classifiers. Using publicly available databases, we successfully validate the four-gene panel as having the potential to serve as a prognostic and predictive biomarker for PC specifically based on DDR biology.
Collapse
|
103
|
Amirifar P, Mehrmohamadi M, Ranjouri MR, Akrami SM, Rezaei N, Saberi A, Yazdani R, Abolhassani H, Aghamohammadi A. Genetic Risk Variants for Class Switching Recombination Defects in Ataxia-Telangiectasia Patients. J Clin Immunol 2021; 42:72-84. [PMID: 34628594 PMCID: PMC8821084 DOI: 10.1007/s10875-021-01147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/27/2021] [Indexed: 11/04/2022]
Abstract
Background Ataxia-telangiectasia (A-T) is a rare autosomal recessive disorder caused by mutations in the ataxia telangiectasia mutated (ATM) gene. A-T patients manifest considerable variability in clinical and immunological features, suggesting the presence of genetic modifying factors. A striking heterogeneity has been observed in class switching recombination (CSR) in A-T patients which cannot be explained by the severity of ATM mutations. Methods To investigate the cause of variable CSR in A-T patients, we applied whole-exome sequencing (WES) in 20 A-T patients consisting of 10 cases with CSR defect (CSR-D) and 10 controls with normal CSR (CSR-N). Comparative analyses on modifier variants found in the exomes of these two groups of patients were performed. Results For the first time, we identified some variants in the exomes of the CSR-D group that were significantly associated with antigen processing and presentation pathway. Moreover, in this group of patients, the variants in four genes involved in DNA double-strand breaks (DSB) repair signaling, in particular, XRCC3 were observed, suggesting an association with CSR defect. Conclusion Additional impact of certain variants, along with ATM mutations, may explain the heterogeneity in CSR defect phenotype among A-T patients. It can be concluded that genetic modulators play an important role in the course of A-T disease and its clinical severity. Supplementary Information The online version contains supplementary material available at 10.1007/s10875-021-01147-8.
Collapse
Affiliation(s)
- Parisa Amirifar
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Mahya Mehrmohamadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ranjouri
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Seyed Mohammad Akrami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ali Saberi
- Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran. .,Division of Clinical Immunology, Department of Biosciences and Nutrition, NEO, Karolinska Institute, Blickagangen 16, 14157, Stockholm, Sweden. .,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran. .,Children's Medical Center Hospital, 62 Qarib St., Keshavarz Blvd, 14194, Tehran, Iran.
| |
Collapse
|
104
|
Lozinski M, Bowden NA, Graves MC, Fay M, Tooney PA. DNA damage repair in glioblastoma: current perspectives on its role in tumour progression, treatment resistance and PIKKing potential therapeutic targets. Cell Oncol (Dordr) 2021; 44:961-981. [PMID: 34057732 DOI: 10.1007/s13402-021-00613-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/17/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The aggressive, invasive and treatment resistant nature of glioblastoma makes it one of the most lethal cancers in humans. Total surgical resection is difficult, and a combination of radiation and chemotherapy is used to treat the remaining invasive cells beyond the tumour border by inducing DNA damage and activating cell death pathways in glioblastoma cells. Unfortunately, recurrence is common and a major hurdle in treatment, often met with a more aggressive and treatment resistant tumour. A mechanism of resistance is the response of DNA repair pathways upon treatment-induced DNA damage, which enact cell-cycle arrest and repair of DNA damage that would otherwise cause cell death in tumour cells. CONCLUSIONS In this review, we discuss the significance of DNA repair mechanisms in tumour formation, aggression and treatment resistance. We identify an underlying trend in the literature, wherein alterations in DNA repair pathways facilitate glioma progression, while established high-grade gliomas benefit from constitutively active DNA repair pathways in the repair of treatment-induced DNA damage. We also consider the clinical feasibility of inhibiting DNA repair in glioblastoma and current strategies of using DNA repair inhibitors as agents in combination with chemotherapy, radiation or immunotherapy. Finally, the importance of blood-brain barrier penetrance when designing novel small-molecule inhibitors is discussed.
Collapse
Affiliation(s)
- Mathew Lozinski
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Nikola A Bowden
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Moira C Graves
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Michael Fay
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- Genesis Cancer Care, Gateshead, New South Wales, Australia
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia.
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia.
- Hunter Medical Research Institute, Newcastle, NSW, Australia.
| |
Collapse
|
105
|
Molecular basis of human ATM kinase inhibition. Nat Struct Mol Biol 2021; 28:789-798. [PMID: 34556870 DOI: 10.1038/s41594-021-00654-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022]
Abstract
Human checkpoint kinase ataxia telangiectasia-mutated (ATM) plays a key role in initiation of the DNA damage response following DNA double-strand breaks. ATM inhibition is a promising approach in cancer therapy, but, so far, detailed insights into the binding modes of known ATM inhibitors have been hampered due to the lack of high-resolution ATM structures. Using cryo-EM, we have determined the structure of human ATM to an overall resolution sufficient to build a near-complete atomic model and identify two hitherto unknown zinc-binding motifs. We determined the structure of the kinase domain bound to ATPγS and to the ATM inhibitors KU-55933 and M4076 at 2.8 Å, 2.8 Å and 3.0 Å resolution, respectively. The mode of action and selectivity of the ATM inhibitors can be explained by structural comparison and provide a framework for structure-based drug design.
Collapse
|
106
|
Sun Y, Wang J, Ma Y, Li J, Sun X, Zhao X, Shi X, Hu Y, Qu F, Zhang X. Radiation induces NORAD expression to promote ESCC radiotherapy resistance via EEPD1/ATR/Chk1 signalling and by inhibiting pri-miR-199a1 processing and the exosomal transfer of miR-199a-5p. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:306. [PMID: 34587992 PMCID: PMC8479908 DOI: 10.1186/s13046-021-02084-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Radioresistance, a poorly understood phenomenon, results in the failure of radiotherapy and subsequent local recurrence, threatening a large proportion of patients with ESCC. To date, lncRNAs have been reported to be involved in diverse biological processes, including radioresistance. METHODS FISH and qRT-PCR were adopted to examine the expression and localization of lncRNA-NORAD, pri-miR-199a1 and miR-199a-5p. Electron microscopy and nanoparticle tracking analysis (NTA) were conducted to observe and identify exosomes. High-throughput microRNAs sequencing and TMT mass spectrometry were performed to identify the functional miRNA and proteins. A series of in vitro and in vivo experiments were performed to investigate the biological effect of NORAD. ChIP, RIP-qPCR, co-IP and dual-luciferase reporter assays were conducted to explore the interaction of related RNAs and proteins. RESULTS We show here that DNA damage activates the noncoding RNA NORAD, which is critical for ESCC radioresistance. NORAD was expressed at high levels in radioresistant ESCC cells. Radiation treatment promotes NORAD expression by enhancing H3K4me2 enrichment in its sequence. NORAD knockdown cells exhibit significant hypersensitivity to radiation in vivo and in vitro. NORAD is required to initiate the repair and restart of stalled forks, G2 cycle arrest and homologous recombination repair upon radiation treatment. Mechanistically, NORAD inhibits miR-199a-5p expression by competitively binding PUM1 from pri-miR-199a1, inhibiting the processing of pri-miR-199a1. Mature miR-199a-5p in NORAD knockdown cells is packaged into exosomes; miR-199a-5p restores the radiosensitivity of radioresistant cells by targeting EEPD1 and then inhibiting the ATR/Chk1 signalling pathway. Simultaneously, NORAD knockdown inhibits the ubiquitination of PD-L1, leading to a better response to radiation and anti-PD-1 treatment in a mouse model. CONCLUSIONS Based on the findings of this study, lncRNA-NORAD represents a potential treatment target for improving the efficiency of immunotherapy in combination with radiation in ESCC.
Collapse
Affiliation(s)
- Yuchen Sun
- The Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jizhao Wang
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yuan Ma
- The Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jing Li
- The Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xuanzi Sun
- The Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xu Zhao
- The Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xiaobo Shi
- The Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 XiWu Road, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Yunfeng Hu
- The Department of Radiation Oncology, Yanan University Affiliated Hospital, 157 Beida Road, Yanan, Shannxi, 716099, People's Republic of China
| | - Fengyi Qu
- The Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xiaozhi Zhang
- The Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
107
|
Alemi F, Raei Sadigh A, Malakoti F, Elhaei Y, Ghaffari SH, Maleki M, Asemi Z, Yousefi B, Targhazeh N, Majidinia M. Molecular mechanisms involved in DNA repair in human cancers: An overview of PI3k/Akt signaling and PIKKs crosstalk. J Cell Physiol 2021; 237:313-328. [PMID: 34515349 DOI: 10.1002/jcp.30573] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022]
Abstract
The cellular genome is frequently subjected to abundant endogenous and exogenous factors that induce DNA damage. Most of the Phosphatidylinositol 3-kinase-related kinases (PIKKs) family members are activated in response to DNA damage and are the most important DNA damage response (DDR) proteins. The DDR system protects the cells against the wrecking effects of these genotoxicants and repairs the DNA damage caused by them. If the DNA damage is severe, such as when DNA is the goal of chemo-radiotherapy, the DDR drives cells toward cell cycle arrest and apoptosis. Some intracellular pathways, such as PI3K/Akt, which is overactivated in most cancers, could stimulate the DDR process and failure of chemo-radiotherapy with the increasing repair of damaged DNA. This signaling pathway induces DNA repair through the regulation of proteins that are involved in DDR like BRCA1, HMGB1, and P53. In this review, we will focus on the crosstalk of the PI3K/Akt and PIKKs involved in DDR and then discuss current achievements in the sensitization of cancer cells to chemo-radiotherapy by PI3K/Akt inhibitors.
Collapse
Affiliation(s)
- Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aydin Raei Sadigh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yusuf Elhaei
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Hamed Ghaffari
- Department of Orthopedics, Shohada Medical Research & Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masomeh Maleki
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Bahman Yousefi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Targhazeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
108
|
Kok JR, Palminha NM, Dos Santos Souza C, El-Khamisy SF, Ferraiuolo L. DNA damage as a mechanism of neurodegeneration in ALS and a contributor to astrocyte toxicity. Cell Mol Life Sci 2021; 78:5707-5729. [PMID: 34173837 PMCID: PMC8316199 DOI: 10.1007/s00018-021-03872-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/27/2021] [Accepted: 06/05/2021] [Indexed: 12/11/2022]
Abstract
Increasing evidence supports the involvement of DNA damage in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Elevated levels of DNA damage are consistently observed in both sporadic and familial forms of ALS and may also play a role in Western Pacific ALS, which is thought to have an environmental cause. The cause of DNA damage in ALS remains unclear but likely differs between genetic subgroups. Repeat expansion in the C9ORF72 gene is the most common genetic cause of familial ALS and responsible for about 10% of sporadic cases. These genetic mutations are known to cause R-loops, thus increasing genomic instability and DNA damage, and generate dipeptide repeat proteins, which have been shown to lead to DNA damage and impairment of the DNA damage response. Similarly, several genes associated with ALS including TARDBP, FUS, NEK1, SQSTM1 and SETX are known to play a role in DNA repair and the DNA damage response, and thus may contribute to neuronal death via these pathways. Another consistent feature present in both sporadic and familial ALS is the ability of astrocytes to induce motor neuron death, although the factors causing this toxicity remain largely unknown. In this review, we summarise the evidence for DNA damage playing a causative or secondary role in the pathogenesis of ALS as well as discuss the possible mechanisms involved in different genetic subtypes with particular focus on the role of astrocytes initiating or perpetuating DNA damage in neurons.
Collapse
Affiliation(s)
- Jannigje Rachel Kok
- University of Sheffield, Sheffield Institute for Translational Neuroscience (SITraN), Sheffield, UK
| | - Nelma M Palminha
- Department of Molecular Biology and Biotechnology, The Healthy Lifespan Institute, Sheffield, UK
- The Institute of Neuroscience, University of Sheffield, Sheffield, UK
| | - Cleide Dos Santos Souza
- University of Sheffield, Sheffield Institute for Translational Neuroscience (SITraN), Sheffield, UK
| | - Sherif F El-Khamisy
- Department of Molecular Biology and Biotechnology, The Healthy Lifespan Institute, Sheffield, UK.
- The Institute of Neuroscience, University of Sheffield, Sheffield, UK.
- The Institute of Cancer Therapeutics, West Yorkshire, UK.
| | - Laura Ferraiuolo
- University of Sheffield, Sheffield Institute for Translational Neuroscience (SITraN), Sheffield, UK.
- The Institute of Neuroscience, University of Sheffield, Sheffield, UK.
| |
Collapse
|
109
|
Targeting DNA Damage Response and Repair to Enhance Therapeutic Index in Cisplatin-Based Cancer Treatment. Int J Mol Sci 2021; 22:ijms22158199. [PMID: 34360968 PMCID: PMC8347825 DOI: 10.3390/ijms22158199] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Platinum-based chemotherapies, such as cisplatin, play a large role in cancer treatment. The development of resistance and treatment toxicity creates substantial barriers to disease control, yet. To enhance the therapeutic index of cisplatin-based chemotherapy, it is imperative to circumvent resistance and toxicity while optimizing tumor sensitization. One of the primary mechanisms by which cancer cells develop resistance to cisplatin is through upregulation of DNA repair pathways. In this review, we discuss the DNA damage response in the context of cisplatin-induced DNA damage. We describe the proteins involved in the pathways and their roles in resistance development. Common biomarkers for cisplatin resistance and their utilization to improve patient risk stratification and treatment personalization are addressed. Finally, we discuss some of the current treatments and future strategies to circumvent the development of cisplatin resistance.
Collapse
|
110
|
Xie X, Zhang Y, Wang Z, Wang S, Jiang X, Cui H, Zhou T, He Z, Feng H, Guo Q, Song X, Cao L. ATM at the crossroads of reactive oxygen species and autophagy. Int J Biol Sci 2021; 17:3080-3090. [PMID: 34421351 PMCID: PMC8375236 DOI: 10.7150/ijbs.63963] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/16/2021] [Indexed: 01/08/2023] Open
Abstract
Reactive oxygen species (ROS) are generally small, short-lived and highly reactive molecules, initially thought to be a pathological role in the cell. A growing amount of evidence in recent years argues for ROS functioning as a signaling intermediate to facilitate cellular adaptation in response to pathophysiological stress through the regulation of autophagy. Autophagy is an essential cellular process that plays a crucial role in recycling cellular components and damaged organelles to eliminate sources of ROS in response to various stress conditions. A large number of studies have shown that DNA damage response (DDR) transducer ataxia-telangiectasia mutated (ATM) protein can also be activated by ROS, and its downstream signaling pathway is involved in autophagy regulation. This review aims at providing novel insight into the regulatory mechanism of ATM activated by ROS and its molecular basis for inducing autophagy, and revealing a new function that ATM can not only maintain genome homeostasis in the nucleus, but also as a ROS sensor trigger autophagy to maintain cellular homeostasis in the cytoplasm.
Collapse
Affiliation(s)
- Xiaochen Xie
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Ye Zhang
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Zhuo Wang
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Shanshan Wang
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Xiaoyou Jiang
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Hongyan Cui
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Tingting Zhou
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Zheng He
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Hao Feng
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Qiqiang Guo
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Xiaoyu Song
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Liu Cao
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| |
Collapse
|
111
|
Raimundo L, Calheiros J, Saraiva L. Exploiting DNA Damage Repair in Precision Cancer Therapy: BRCA1 as a Prime Therapeutic Target. Cancers (Basel) 2021; 13:cancers13143438. [PMID: 34298653 PMCID: PMC8303227 DOI: 10.3390/cancers13143438] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/21/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Chemical inhibition of central DNA damage repair (DDR) proteins has become a promising approach in precision cancer therapy. In particular, BRCA1 and its DDR-associated proteins constitute important targets for developing DNA repair inhibiting drugs. This review provides relevant insights on DDR biology and pharmacology, aiming to boost the development of more effective DDR targeted therapies. Abstract Precision medicine aims to identify specific molecular alterations, such as driver mutations, allowing tailored and effective anticancer therapies. Poly(ADP)-ribose polymerase inhibitors (PARPi) are the prototypical example of targeted therapy, exploiting the inability of cancer cells to repair DNA damage. Following the concept of synthetic lethality, PARPi have gained great relevance, particularly in BRCA1 dysfunctional cancer cells. In fact, BRCA1 mutations culminate in DNA repair defects that can render cancer cells more vulnerable to therapy. However, the efficacy of these drugs has been greatly affected by the occurrence of resistance due to multi-connected DNA repair pathways that may compensate for each other. Hence, the search for additional effective agents targeting DNA damage repair (DDR) is of crucial importance. In this context, BRCA1 has assumed a central role in developing drugs aimed at inhibiting DNA repair activity. Collectively, this review provides an in-depth understanding of the biology and regulatory mechanisms of DDR pathways, highlighting the potential of DDR-associated molecules, particularly BRCA1 and its interconnected partners, in precision cancer medicine. It also affords an overview about what we have achieved and a reflection on how much remains to be done in this field, further addressing encouraging clues for the advance of DDR targeted therapy.
Collapse
|
112
|
Kim H, Kim ST, Yoo KH, Hong JY, Park YS, Lim HY, Park JO. ATM Expression as a Prognostic Marker in Patients With Advanced Biliary Tract Cancer Treated With First-line Gemcitabine and Platinum Chemotherapy. In Vivo 2021; 35:499-505. [PMID: 33402502 DOI: 10.21873/invivo.12284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Biliary tract cancer (BTC) has a poor prognosis due to its highly invasive and metastatic potential. Ataxia-telangiectasia mutated (ATM) is a key regulator of DNA damage response and an emerging therapeutic target; however, the association between the expression of ATM and the prognosis in advanced BTC is unknown. We aimed to identify the relationship between ATM expression, clinicopathological characteristics, and survival outcomes in patients with advanced BTC. PATIENTS AND METHODS We analyzed 113 patients with advanced BTC who received first-line gemcitabine and platinum. RESULTS The tumor location was intrahepatic cholangiocarcinoma (IH-CCC) in 43 patients, extrahepatic cholangiocarcinoma (EH-CCC) in 49, and gallbladder (GB) cancer in 21 patients. Fifty-four patients (47.8%) exhibited loss of ATM protein expression. The overall response rate (ORR) of ATM loss and intact ATM was 13.3% and 19.6%, respectively. In a subgroup analysis, EH-CCC patients with ATM loss tended to have improved PFS after platinum-based chemotherapy compared to those with intact ATM (7.9 vs. 6.2 months, respectively; p=0.050). CONCLUSION We demonstrated that ATM loss could be a prognostic marker after platinum-based chemotherapy in patients with advanced EH-CCC.
Collapse
Affiliation(s)
- Hyera Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Division of Hematology-Oncology, Department of Internal Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kwai Han Yoo
- Division of Hematology and Oncology, Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Jung Yong Hong
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young Suk Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ho Yeong Lim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Joon Oh Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea;
| |
Collapse
|
113
|
Huang C, Filippone NR, Reiner T, Roberts S. Sensors and Inhibitors for the Detection of Ataxia Telangiectasia Mutated (ATM) Protein Kinase. Mol Pharm 2021; 18:2470-2481. [PMID: 34125542 DOI: 10.1021/acs.molpharmaceut.1c00166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recruitment and activation of the ataxia telangiectasia mutated (ATM) kinase regulate multiple cell-cycle checkpoints relevant to complex biological events like DNA damage repair and apoptosis. Molecularly specific readouts of ATM using protein assays, fluorescence, or radiolabeling have advanced significantly over the past few years. This Review covers the molecular imaging techniques that enable the visualization of ATM-from traditional quantitative protein assays to the potential use of ATM inhibitors to generate new imaging agents to interrogate ATM. We are confident that molecular imaging coupled with advanced technologies will play a pivotal role in visualizing and understanding the biology of ATM and accelerate its applications in the diagnosis and monitoring of disease, including radiation therapy and patient stratification.
Collapse
Affiliation(s)
- Cien Huang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States.,City University of New York Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Nina R Filippone
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States.,State University of New York Binghamton University, 4400 Vestal Parkway, East Binghamton, New York 13902, United States
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States.,Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States.,Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, United States
| | - Sheryl Roberts
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| |
Collapse
|
114
|
Cai H, Dai X, Guo X, Zhang L, Cao K, Yan F, Ji B, Liu Y. Ataxia telangiectasia mutated inhibitor-loaded copper sulfide nanoparticles for low-temperature photothermal therapy of hepatocellular carcinoma. Acta Biomater 2021; 127:276-286. [PMID: 33812073 DOI: 10.1016/j.actbio.2021.03.051] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/28/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer, and is ranked the sixth most common neoplasm and the third leading cause of cancer-related deaths. Photothermal therapy (PTT) for thermal ablation of local tumors has recently emerged as a therapeutic strategy. However, the relatively high temperature of over 50 °C may lead to unexpected heat-related damage to tumor-adjacent normal tissues. Herein, we designed and synthesized ataxia telangiectasia mutated (ATM) inhibitor loaded hollow-structured CuS NPs with surface modification with anti-TGF-β antibody (CuS-ATMi@TGF-β NPs). CuS-ATMi@TGF-β NPs are highly photo-stable, can release encapsulated drugs, and increase the temperature to an effective level in a near-infrared (NIR)-responsive manner. Moreover, CuS-ATMi@TGF-β NPs specifically target tumors and thereby significantly inhibit tumor growth on contribution to synergistic low-temperature PTT and chemotherapy. This system not only achieved low-temperature PTT but also resulted in reduced damage to normal tissues. Modification with anti-TGF-β antibody enhanced target specificity and immune activation. The combination of PTT and ATM inhibitor showed synergistic effects and significantly attenuated the growth of the HCC via down regulation of heat shock protein (HSP). CuS-ATMi@TGF-β NPs are a highly promising platform for targeted tumor ablation via hyperthermia-mediated tumor death with minimal damage to normal tissues at a low temperature. STATEMENT OF SIGNIFICANCE: We constructed ataxia telangiectasia mutated (ATM) inhibitor-loaded hollow-structured CuS NPs with surface modification with anti-TGF-β antibody (CuS-ATMi@TGF-β NPs). CuS-ATMi@TGF-β NPs not only achieved low-temperature photothermal therapy (PTT) but also resulted in reduced damage to normal tissues and sufficient biocompatibility. The modification with anti-TGF-β antibody enhanced targeted specificity, cell endocytosis, and immune activation. In addition, the combination of PTT and ATM inhibitor synergistically attenuated the growth of the HCC via downregulation of heat shock protein (HSP). This study provided proof-of-concept for the ATM inhibitor that mediated low-temperature PTT with a potential for future clinical applications.
Collapse
Affiliation(s)
- Hongqiao Cai
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital, Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Xinlun Dai
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital, Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Xingren Guo
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital, Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Lingxiao Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, 2699 Qianjin street, Changchun 130012, China
| | - Kunxia Cao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, 2699 Qianjin street, Changchun 130012, China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, 2699 Qianjin street, Changchun 130012, China
| | - Bai Ji
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital, Jilin University, 71 Xinmin Street, Changchun 130021, China.
| | - Yahui Liu
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital, Jilin University, 71 Xinmin Street, Changchun 130021, China.
| |
Collapse
|
115
|
Jucaite A, Stenkrona P, Cselényi Z, De Vita S, Buil-Bruna N, Varnäs K, Savage A, Varrone A, Johnström P, Schou M, Davison C, Sykes A, Pilla Reddy V, Hoch M, Vazquez-Romero A, Moein MM, Halldin C, Merchant MS, Pass M, Farde L. Brain exposure of the ATM inhibitor AZD1390 in humans-a positron emission tomography study. Neuro Oncol 2021; 23:687-696. [PMID: 33123736 DOI: 10.1093/neuonc/noaa238] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The protein kinase ataxia telangiectasia mutated (ATM) mediates cellular response to DNA damage induced by radiation. ATM inhibition decreases DNA damage repair in tumor cells and affects tumor growth. AZD1390 is a novel, highly potent, selective ATM inhibitor designed to cross the blood-brain barrier (BBB) and currently evaluated with radiotherapy in a phase I study in patients with brain malignancies. In the present study, PET was used to measure brain exposure of 11C-labeled AZD1390 after intravenous (i.v.) bolus administration in healthy subjects with an intact BBB. METHODS AZD1390 was radiolabeled with carbon-11 and a microdose (mean injected mass 1.21 µg) was injected in 8 male subjects (21-65 y). The radioactivity concentration of [11C]AZD1390 in brain was measured using a high-resolution PET system. Radioactivity in arterial blood was measured to obtain a metabolite corrected arterial input function for quantitative image analysis. Participants were monitored by laboratory examinations, vital signs, electrocardiogram, adverse events. RESULTS The brain radioactivity concentration of [11C]AZD1390 was 0.64 SUV (standard uptake value) and reached maximum 1.00% of injected dose at Tmax[brain] of 21 min (time of maximum brain radioactivity concentration) after i.v. injection. The whole brain total distribution volume was 5.20 mL*cm-3. No adverse events related to [11C]AZD1390 were reported. CONCLUSIONS This study demonstrates that [11C]AZD1390 crosses the intact BBB and supports development of AZD1390 for the treatment of glioblastoma multiforme or other brain malignancies. Moreover, it illustrates the potential of PET microdosing in predicting and guiding dose range and schedule for subsequent clinical studies.
Collapse
Affiliation(s)
- Aurelija Jucaite
- PET Science Centre, Precision Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Per Stenkrona
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Zsolt Cselényi
- PET Science Centre, Precision Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | | | - Nuria Buil-Bruna
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Katarina Varnäs
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | | | - Andrea Varrone
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Peter Johnström
- PET Science Centre, Precision Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Magnus Schou
- PET Science Centre, Precision Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | | | - Andy Sykes
- Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Matthias Hoch
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Ana Vazquez-Romero
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Mohammad Mahdi Moein
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | | | | | - Lars Farde
- PET Science Centre, Precision Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
116
|
Liu L, Liu J, Lin Q. Histone demethylase KDM2A: Biological functions and clinical values (Review). Exp Ther Med 2021; 22:723. [PMID: 34007332 DOI: 10.3892/etm.2021.10155] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
Histone lysine demethylation modification is a critical epigenetic modification. Lysine demethylase 2A (KDM2A), a Jumonji C domain-containing demethylase, demethylates the dimethylated H3 lysine 36 (H3K36) residue and exerts little or no activity on monomethylated and trimethylated H3K36 residues. KDM2A expression is regulated by several factors, such as microRNAs, and the phosphorylation of KDM2A also plays a vital role in its function. KDM2A mainly recognizes the unmethylated region of CpG islands and subsequently demethylates histone H3K36 residues. In addition, KDM2A recognizes and binds to phosphorylated proteins, and promotes their ubiquitination and degradation. KDM2A plays an important role in chromosome remodeling and gene transcription, and is involved in cell proliferation and differentiation, cell metabolism, heterochromosomal homeostasis and gene stability. Notably, KDM2A is crucial for tumorigenesis and progression. In the present review, the documented biological functions of KDM2A in physiological and pathological processes are comprehensively summarized.
Collapse
Affiliation(s)
- Lisheng Liu
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, P.R. China.,Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Jiangnan Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Qinghai Lin
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
117
|
Tian X, Wang X, Cui Z, Liu J, Huang X, Shi C, Zhang M, Liu T, Du X, Li R, Huang L, Gong D, Tian R, Cao C, Jin P, Zeng Z, Pan G, Xia M, Zhang H, Luo B, Xie Y, Li X, Li T, Wu J, Zhang Q, Chen G, Hu Z. A Fifteen-Gene Classifier to Predict Neoadjuvant Chemotherapy Responses in Patients with Stage IB to IIB Squamous Cervical Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001978. [PMID: 34026427 PMCID: PMC8132153 DOI: 10.1002/advs.202001978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 02/01/2021] [Indexed: 05/09/2023]
Abstract
Neoadjuvant chemotherapy (NACT) remains an attractive alternative for controlling locally advanced cervical cancer. However, approximately 15-34% of women do not respond to induction therapy. To develop a risk stratification tool, 56 patients with stage IB-IIB cervical cancer are included in 2 research centers from the discovery cohort. Patient-specific somatic mutations led to NACT non-responsiveness are identified by whole-exome sequencing. Next, CRISPR/Cas9-based library screenings are performed based on these genes to confirm their biological contribution to drug resistance. A 15-gene classifier is developed by generalized linear regression analysis combined with the logistic regression model. In an independent validation cohort of 102 patients, the classifier showed good predictive ability with an area under the curve of 0.80 (95% confidence interval (CI), 0.69-0.91). Furthermore, the 15-gene classifier is significantly associated with patient responsiveness to NACT in both univariate (odds ratio, 10.8; 95% CI, 3.55-32.86; p = 2.8 × 10-5) and multivariate analysis (odds ratio, 17.34; 95% CI, 4.04-74.40; p = 1.23 × 10-4) in the validation set. In conclusion, the 15-gene classifier can accurately predict the clinical response to NACT before treatment, representing a promising approach for guiding the selection of appropriate treatment strategies for locally advanced cervical cancer.
Collapse
Affiliation(s)
- Xun Tian
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Xin Wang
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Zifeng Cui
- Department of Gynecological and OncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityZhongshan 2nd Road, YuexiuGuangzhouGuangdong510080China
| | - Jia Liu
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Xiaoyuan Huang
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Caixia Shi
- Department of Gynecological and OncologyHunan Cancer HospitalThe Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityJiefang Avenue 1095#WuhanHubei430030China
| | - Min Zhang
- NGS Research CenterNovogene Co, LtdBuilding 301, Zone A10 JiuxianqiaoBeijing100015China
| | - Ting Liu
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Xiaofang Du
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Rui Li
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Lei Huang
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Danni Gong
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Rui Tian
- Department of Gynecological and OncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityZhongshan 2nd Road, YuexiuGuangzhouGuangdong510080China
| | - Chen Cao
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Ping Jin
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Zhen Zeng
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Guangxin Pan
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Meng Xia
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Hongfeng Zhang
- Department of PathologyThe Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyShengli Street 26#, Jiang'an DistrictWuhanHubei430030China
| | - Bo Luo
- Department of PathologyThe Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyShengli Street 26#, Jiang'an DistrictWuhanHubei430030China
| | - Yonghui Xie
- Department of PathologyThe Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyShengli Street 26#, Jiang'an DistrictWuhanHubei430030China
| | - Xiaoming Li
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Tianye Li
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Jun Wu
- NGS Research CenterNovogene Co, LtdBuilding 301, Zone A10 JiuxianqiaoBeijing100015China
| | - Qinghua Zhang
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Gang Chen
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
| | - Zheng Hu
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
- Department of Obstetrics and GynecologyAcademician expert workstation, The Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue 1095#WuhanHubei430030China
- Department of Gynecological and OncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityZhongshan 2nd Road, YuexiuGuangzhouGuangdong510080China
| |
Collapse
|
118
|
Chen Y, Cui J, Gong Y, Wei S, Wei Y, Yi L. MicroRNA: a novel implication for damage and protection against ionizing radiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15584-15596. [PMID: 33533004 PMCID: PMC7854028 DOI: 10.1007/s11356-021-12509-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/12/2021] [Indexed: 04/16/2023]
Abstract
Ionizing radiation (IR) is a form of high energy. It poses a serious threat to organisms, but radiotherapy is a key therapeutic strategy for various cancers. It is significant to reduce radiation injury but maximize the effect of radiotherapy. MicroRNAs (miRNAs) are posttranscriptionally regulatory factors involved in cellular radioresponse. In this review, we show how miRNAs regulate important genes on cellular response to IR-induced damage and how miRNAs participate in IR-induced carcinogenesis. Additionally, we summarize the experimental and clinical evidence for miRNA involvement in radiotherapy and discuss their potential for improvement of radiotherapy. Finally, we highlight the role that miRNAs play in accident exposure to IR or radiotherapy as predictive biomarker. miRNA therapeutics have shown great perspective in radiobiology; miRNA may become a novel strategy for damage and protection against IR.
Collapse
Affiliation(s)
- Yonglin Chen
- Hengyang Medical College, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Jian Cui
- Hengyang Medical College, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Yaqi Gong
- Hengyang Medical College, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Shuang Wei
- Hengyang Medical College, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Yuanyun Wei
- Hengyang Medical College, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Lan Yi
- Hengyang Medical College, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China.
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, Hunan Province, People's Republic of China.
| |
Collapse
|
119
|
Effect of Reducing Ataxia-Telangiectasia Mutated (ATM) in Experimental Autosomal Dominant Polycystic Kidney Disease. Cells 2021; 10:cells10030532. [PMID: 33802342 PMCID: PMC8000896 DOI: 10.3390/cells10030532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/15/2021] [Accepted: 02/25/2021] [Indexed: 12/20/2022] Open
Abstract
The DNA damage response (DDR) pathway is upregulated in autosomal dominant polycystic kidney disease (ADPKD) but its functional role is not known. The ataxia-telangiectasia mutated (ATM) and AT and Rad3-related (ATR) protein kinases are key proximal transducers of the DDR. This study hypothesized that reducing either ATM or ATR attenuates kidney cyst formation and growth in experimental ADPKD. In vitro, pharmacological ATM inhibition by AZD0156 reduced three-dimensional cyst growth in MDCK and human ADPKD cells by up to 4.4- and 4.1-fold, respectively. In contrast, the ATR inhibitor, VE-821, reduced in vitro MDCK cyst growth but caused dysplastic changes. In vivo, treatment with AZD0156 by oral gavage for 10 days reduced renal cell proliferation and increased p53 expression in Pkd1RC/RC mice (a murine genetic ortholog of ADPKD). However, the progression of cystic kidney disease in Pkd1RC/RC mice was not altered by genetic ablation of ATM from birth, in either heterozygous (Pkd1RC/RC/Atm+/−) or homozygous (Pkd1RC/RC/Atm−/−) mutant mice at 3 months. In conclusion, despite short-term effects on reducing renal cell proliferation, chronic progression was not altered by reducing ATM in vivo, suggesting that this DDR kinase is dispensable for kidney cyst formation in ADPKD.
Collapse
|
120
|
Brown DG, Wobst HJ. A Decade of FDA-Approved Drugs (2010-2019): Trends and Future Directions. J Med Chem 2021; 64:2312-2338. [PMID: 33617254 DOI: 10.1021/acs.jmedchem.0c01516] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A total of 378 novel drugs and 27 biosimilars approved by the U.S. Food and Drug Administration (FDA) between 2010 and 2019 were evaluated according to approval numbers by year, therapeutic areas, modalities, route of administration, first-in-class designation, approval times, and expedited review categories. From this review, oncology remains the top therapy area (25%), followed by infection (15%) and central nervous system disorders (11%). Regulatory incentives have been effective as evidenced by an increase in orphan drugs as well as antibacterial drugs approved under the GAIN act. Clinical development times may be increasing, perhaps as a result of the increase in orphan drug indications. Small molecules continue to mostly adhere to "Rule of 5" (Ro5) parameters, but innovation in new modalities is rapidly progressing with approvals for antisense oligonucleotides (ASO), small-interfering RNA (siRNAs), and antibody-directed conjugates (ADCs). Finally, novel targets and scientific breakthroughs that address areas of unmet clinical need are discussed in detail.
Collapse
Affiliation(s)
- Dean G Brown
- Jnana Therapeutics, 6 Tide St., Boston, Massachusetts 02210, United States
| | - Heike J Wobst
- Jnana Therapeutics, 6 Tide St., Boston, Massachusetts 02210, United States
| |
Collapse
|
121
|
Gorecki L, Andrs M, Korabecny J. Clinical Candidates Targeting the ATR-CHK1-WEE1 Axis in Cancer. Cancers (Basel) 2021; 13:795. [PMID: 33672884 PMCID: PMC7918546 DOI: 10.3390/cancers13040795] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Selective killing of cancer cells while sparing healthy ones is the principle of the perfect cancer treatment and the primary aim of many oncologists, molecular biologists, and medicinal chemists. To achieve this goal, it is crucial to understand the molecular mechanisms that distinguish cancer cells from healthy ones. Accordingly, several clinical candidates that use particular mutations in cell-cycle progressions have been developed to kill cancer cells. As the majority of cancer cells have defects in G1 control, targeting the subsequent intra‑S or G2/M checkpoints has also been extensively pursued. This review focuses on clinical candidates that target the kinases involved in intra‑S and G2/M checkpoints, namely, ATR, CHK1, and WEE1 inhibitors. It provides insight into their current status and future perspectives for anticancer treatment. Overall, even though CHK1 inhibitors are still far from clinical establishment, promising accomplishments with ATR and WEE1 inhibitors in phase II trials present a positive outlook for patient survival.
Collapse
Affiliation(s)
- Lukas Gorecki
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (L.G.); (M.A.)
| | - Martin Andrs
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (L.G.); (M.A.)
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (L.G.); (M.A.)
| |
Collapse
|
122
|
Li LY, Guan YD, Chen XS, Yang JM, Cheng Y. DNA Repair Pathways in Cancer Therapy and Resistance. Front Pharmacol 2021; 11:629266. [PMID: 33628188 PMCID: PMC7898236 DOI: 10.3389/fphar.2020.629266] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/31/2020] [Indexed: 12/21/2022] Open
Abstract
DNA repair pathways are triggered to maintain genetic stability and integrity when mammalian cells are exposed to endogenous or exogenous DNA-damaging agents. The deregulation of DNA repair pathways is associated with the initiation and progression of cancer. As the primary anti-cancer therapies, ionizing radiation and chemotherapeutic agents induce cell death by directly or indirectly causing DNA damage, dysregulation of the DNA damage response may contribute to hypersensitivity or resistance of cancer cells to genotoxic agents and targeting DNA repair pathway can increase the tumor sensitivity to cancer therapies. Therefore, targeting DNA repair pathways may be a potential therapeutic approach for cancer treatment. A better understanding of the biology and the regulatory mechanisms of DNA repair pathways has the potential to facilitate the development of inhibitors of nuclear and mitochondria DNA repair pathways for enhancing anticancer effect of DNA damage-based therapy.
Collapse
Affiliation(s)
- Lan-Ya Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yi-di Guan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xi-Sha Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jin-Ming Yang
- Department of Cancer Biology and Toxicology, Department of Pharmacology, College of Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Yan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
123
|
Rizzo A, Brandi G. Biochemical predictors of response to immune checkpoint inhibitors in unresectable hepatocellular carcinoma. Cancer Treat Res Commun 2021; 27:100328. [PMID: 33549983 DOI: 10.1016/j.ctarc.2021.100328] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/28/2020] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) represents the most commonly diagnosed liver cancer worldwide, and the overall survival of patients with unresectable disease is poor. In the last five years, immune checkpoint inhibitors (ICIs) have revolutionized the treatment scenario of several hematological and solid tumors, and these agents have been actively explored in unresectable HCC. Firstly, promising findings of phase I and II clinical studies reporting durable responses and a tolerable safety profile have led to the assessment of ICIs as single agents in phase III clinical studies; however, the latter have provided controversial results, and the activity of ICI monotherapy seems limited to a small subgroup of patients. Conversely, the IMbrave150 trial recently showed that, among patients with previously untreated unresectable HCC, treatment with atezolizumab plus bevacizumab resulted in significantly longer overall survival and progression-free survival compared to sorafenib monotherapy. In addition, the activity of several other ICIs is under investigation, as combination immunotherapy as well as combinations of immunotherapy with antiangiogenic agents. Nonetheless, there are currently no validated predictive biomarkers able to guide treatment choice in this setting, where the identification of specific predictors of response to ICIs represents a major challenge. In this review, we aim to provide a critical overview of recent evidence on biochemical predictors of response to ICIs in patients with unresectable HCC, especially focusing on PD-L1, TMB, MSI, and other emerging biomarkers.
Collapse
Affiliation(s)
- Alessandro Rizzo
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, Bologna, Italy; Oncologia Medica, Azienda Ospedaliero-Universitaria di Bologna, via Albertoni, 15 Bologna, Italy.
| | - Giovanni Brandi
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, Bologna, Italy; Oncologia Medica, Azienda Ospedaliero-Universitaria di Bologna, via Albertoni, 15 Bologna, Italy
| |
Collapse
|
124
|
Lozano R, Castro E, Aragón IM, Cendón Y, Cattrini C, López-Casas PP, Olmos D. Genetic aberrations in DNA repair pathways: a cornerstone of precision oncology in prostate cancer. Br J Cancer 2021; 124:552-563. [PMID: 33106584 PMCID: PMC7851123 DOI: 10.1038/s41416-020-01114-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/03/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
Over the past years, several studies have demonstrated that defects in DNA damage response and repair (DDR) genes are present in a significant proportion of patients with prostate cancer. These alterations, particularly mutations in BRCA2, are known to be associated with an increased risk of developing prostate cancer and more aggressive forms of the disease. There is growing evidence that certain DDR gene aberrations confer sensitivity to poly-(ADP ribose) polymerase inhibitors and/or platinum chemotherapy, while other defects might identify cases that are more likely to benefit from immune checkpoint inhibition. The potential prognostic impact and relevance for treatment selection together with the decreasing costs and broader accessibility to next-generation sequencing have already resulted in the increased frequency of genetic profiling of prostate tumours. Remarkably, almost half of all DDR genetic defects can occur in the germline, and prostate cancer patients identified as mutation carriers, as well as their families, will require appropriate genetic counselling. In this review, we summarise the current knowledge regarding the biology and clinical implications of DDR defects in prostate cancer, and outline how this evidence is prompting a change in the treatment landscape of the disease.
Collapse
Affiliation(s)
- Rebeca Lozano
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Genitourinary Cancer Translational Research Group, The Institute of Biomedical Research in Málaga (IBIMA), Málaga, Spain
| | - Elena Castro
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Genitourinary Cancer Translational Research Group, The Institute of Biomedical Research in Málaga (IBIMA), Málaga, Spain
- UGCI Oncología Médica, Hospitales Universitarios Virgen de la Victoria y Regional de Málaga, Málaga, Spain
| | - Isabel M Aragón
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Genitourinary Cancer Translational Research Group, The Institute of Biomedical Research in Málaga (IBIMA), Málaga, Spain
| | - Ylenia Cendón
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Carlo Cattrini
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Academic Unit of Medical Oncology, IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Pedro P López-Casas
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Genitourinary Cancer Translational Research Group, The Institute of Biomedical Research in Málaga (IBIMA), Málaga, Spain
| | - David Olmos
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- Genitourinary Cancer Translational Research Group, The Institute of Biomedical Research in Málaga (IBIMA), Málaga, Spain.
| |
Collapse
|
125
|
The Interactions of DNA Repair, Telomere Homeostasis, and p53 Mutational Status in Solid Cancers: Risk, Prognosis, and Prediction. Cancers (Basel) 2021; 13:cancers13030479. [PMID: 33513745 PMCID: PMC7865496 DOI: 10.3390/cancers13030479] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 12/12/2022] Open
Abstract
The disruption of genomic integrity due to the accumulation of various kinds of DNA damage, deficient DNA repair capacity, and telomere shortening constitute the hallmarks of malignant diseases. DNA damage response (DDR) is a signaling network to process DNA damage with importance for both cancer development and chemotherapy outcome. DDR represents the complex events that detect DNA lesions and activate signaling networks (cell cycle checkpoint induction, DNA repair, and induction of cell death). TP53, the guardian of the genome, governs the cell response, resulting in cell cycle arrest, DNA damage repair, apoptosis, and senescence. The mutational status of TP53 has an impact on DDR, and somatic mutations in this gene represent one of the critical events in human carcinogenesis. Telomere dysfunction in cells that lack p53-mediated surveillance of genomic integrity along with the involvement of DNA repair in telomeric DNA regions leads to genomic instability. While the role of individual players (DDR, telomere homeostasis, and TP53) in human cancers has attracted attention for some time, there is insufficient understanding of the interactions between these pathways. Since solid cancer is a complex and multifactorial disease with considerable inter- and intra-tumor heterogeneity, we mainly dedicated this review to the interactions of DNA repair, telomere homeostasis, and TP53 mutational status, in relation to (a) cancer risk, (b) cancer progression, and (c) cancer therapy.
Collapse
|
126
|
Qiu S, Huang J. MRN complex is an essential effector of DNA damage repair. J Zhejiang Univ Sci B 2021; 22:31-37. [PMID: 33448185 PMCID: PMC7818010 DOI: 10.1631/jzus.b2000289] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/16/2020] [Indexed: 01/01/2023]
Abstract
Genome stability can be threatened by both endogenous and exogenous agents. Organisms have evolved numerous mechanisms to repair DNA damage, including homologous recombination (HR) and non-homologous end joining (NHEJ). Among the factors associated with DNA repair, the MRE11-RAD50-NBS1 (MRN) complex (MRE11-RAD50-XRS2 in Saccharomyces cerevisiae) plays important roles not only in DNA damage recognition and signaling but also in subsequent HR or NHEJ repair. Upon detecting DNA damage, the MRN complex activates signaling molecules, such as the protein kinase ataxia-telangiectasia mutated (ATM), to trigger a broad DNA damage response, including cell cycle arrest. The nuclease activity of the MRN complex is responsible for DNA end resection, which guides DNA repair to HR in the presence of sister chromatids. The MRN complex is also involved in NHEJ, and has a species-specific role in hairpin repair. This review focuses on the structure of the MRN complex and its function in DNA damage repair.
Collapse
Affiliation(s)
- Shan Qiu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining 314400, China
| | - Jun Huang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
127
|
Benedetti F, Curreli S, Gallo RC, Zella D. Tampering of Viruses and Bacteria with Host DNA Repair: Implications for Cellular Transformation. Cancers (Basel) 2021; 13:E241. [PMID: 33440726 PMCID: PMC7826954 DOI: 10.3390/cancers13020241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
A reduced ability to properly repair DNA is linked to a variety of human diseases, which in almost all cases is associated with an increased probability of the development of cellular transformation and cancer. DNA damage, that ultimately can lead to mutations and genomic instability, is due to many factors, such as oxidative stress, metabolic disorders, viral and microbial pathogens, excess cellular proliferation and chemical factors. In this review, we examine the evidence connecting DNA damage and the mechanisms that viruses and bacteria have evolved to hamper the pathways dedicated to maintaining the integrity of genetic information, thus affecting the ability of their hosts to repair the damage(s). Uncovering new links between these important aspects of cancer biology might lead to the development of new targeted therapies in DNA-repair deficient cancers and improving the efficacy of existing therapies. Here we provide a comprehensive summary detailing the major mechanisms that viruses and bacteria associated with cancer employ to interfere with mechanisms of DNA repair. Comparing these mechanisms could ultimately help provide a common framework to better understand how certain microorganisms are involved in cellular transformation.
Collapse
Affiliation(s)
- Francesca Benedetti
- Institute of Human Virology and Global Virus Network Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Sabrina Curreli
- Institute of Human Virology and Global Virus Network Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.C.); (R.C.G.)
| | - Robert C. Gallo
- Institute of Human Virology and Global Virus Network Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.C.); (R.C.G.)
| | - Davide Zella
- Institute of Human Virology and Global Virus Network Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| |
Collapse
|
128
|
The cross-talk between signaling pathways, noncoding RNAs and DNA damage response: Emerging players in cancer progression. DNA Repair (Amst) 2021; 98:103036. [PMID: 33429260 DOI: 10.1016/j.dnarep.2020.103036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
The DNA damage response (DDR) pathway's primary purpose is to maintain the genome structure's integrity and stability. A great deal of effort has done to understand the exact molecular mechanisms of non-coding RNAs, such as lncRNA, miRNAs, and circRNAs, in distinct cellular and genomic processes and cancer progression. In this regard, the ncRNAs possible regulatory role in DDR via modulation of key components expression and controlling repair signaling pathway activation is validated. Therefore, in this article, we will discuss the latest developments of ncRNAs contribution in different aspects of DNA repair through regulation of ATM-ATR, P53, and other regulatory signaling pathways.
Collapse
|
129
|
Mal A, Bukhari AB, Singh RK, Kapoor A, Barai A, Deshpande I, Wadasadawala T, Ray P, Sen S, De A. EpCAM-Mediated Cellular Plasticity Promotes Radiation Resistance and Metastasis in Breast Cancer. Front Cell Dev Biol 2021; 8:597673. [PMID: 33490064 PMCID: PMC7815650 DOI: 10.3389/fcell.2020.597673] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Substantial number of breast cancer (BC) patients undergoing radiation therapy (RT) develop local recurrence over time. During RT therapy, cells can gradually acquire resistance implying adaptive radioresistance. Here we probe the mechanisms underlying this acquired resistance by first establishing radioresistant lines using ZR-75-1 and MCF-7 BC cells through repeated exposure to sub-lethal fractionated dose of 2Gy up to 15 fractions. Radioresistance was found to be associated with increased cancer stem cells (CSCs), and elevated EpCAM expression in the cell population. A retrospective analysis of TCGA dataset indicated positive correlation of high EpCAM expression with poor response to RT. Intriguingly, elevated EpCAM expression in the radioresistant CSCs raise the bigger question of how this biomarker expression contributes during radiation treatment in BC. Thereafter, we establish EpCAM overexpressing ZR-75-1 cells (ZR-75-1EpCAM), which conferred radioresistance, increased stemness through enhanced AKT activation and induced a hybrid epithelial/mesenchymal phenotype with enhanced contractility and invasiveness. In line with these observations, orthotopic implantation of ZR-75-1EpCAM cells exhibited faster growth, lesser sensitivity to radiation therapy and increased lung metastasis than baseline ZR-75-1 cells in mice. In summary, this study shows that similar to radioresistant BC cells, EpCAM overexpressing cells show high degree of plasticity and heterogeneity which ultimately induces radioresistant and metastatic behavior of cancer cells, thus aggravating the disease condition.
Collapse
Affiliation(s)
- Arijit Mal
- Molecular Functional Imaging Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Life Science, Homi Bhabha National Institute, Mumbai, India
| | - Amirali B Bukhari
- Molecular Functional Imaging Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Ram K Singh
- Imaging Cell Signaling & Therapeutics Lab, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Aastha Kapoor
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Amlan Barai
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Ishan Deshpande
- Molecular Functional Imaging Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | | | - Pritha Ray
- Life Science, Homi Bhabha National Institute, Mumbai, India.,Imaging Cell Signaling & Therapeutics Lab, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Shamik Sen
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Abhijit De
- Molecular Functional Imaging Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Life Science, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
130
|
Konstantinopoulos PA, Lheureux S, Moore KN. PARP Inhibitors for Ovarian Cancer: Current Indications, Future Combinations, and Novel Assets in Development to Target DNA Damage Repair. Am Soc Clin Oncol Educ Book 2021; 40:1-16. [PMID: 32364757 DOI: 10.1200/edbk_288015] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PARP inhibitors (PARPIs) have revolutionized the treatment of epithelial ovarian cancer, first for BRCA-associated cancer, and, recently, for all epithelial cancers of serous or high-grade endometrioid subtypes in the front line. Although there is hope that PARPIs will help prevent recurrences when used following frontline maintenance, cancer will still recur in most women, and the need for active combination strategies as well as continued development of novel assets, either as monotherapy or in combination, will be urgently needed. This review article discusses the current indications for PARPIs in both frontline and recurrent settings, current research in combination approaches, and finally, ongoing research on novel methods to target DNA damage response in an effort to exploit the common susceptibility to DNA damage repair in epithelial ovarian cancer and improve outcomes for patients.
Collapse
Affiliation(s)
| | | | - Kathleen N Moore
- Stephenson Cancer Center at the University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
131
|
Zhang X, Zhu Y, Yang M, Wang L, Jin J, Yu W. Mutational analysis in different foci revealing the clonal evolution of blastic plasmacytoid dendritic cell neoplasm. Leuk Lymphoma 2020; 62:988-991. [PMID: 33174506 DOI: 10.1080/10428194.2020.1845338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Xiang Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, China
| | - Yanan Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, China
| | - Min Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, China
| | - Lei Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, China
| | - Wenjuan Yu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, China
| |
Collapse
|
132
|
Investigating the Benefit of Combined Androgen Modulation and Hypofractionation in Prostate Cancer. Int J Mol Sci 2020; 21:ijms21228447. [PMID: 33182844 PMCID: PMC7698244 DOI: 10.3390/ijms21228447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/24/2022] Open
Abstract
Hypofractionation is currently considered a valid alternative to conventional radiotherapy for the treatment of patients with organ-confined prostate cancer. Recent data have demonstrated that extreme hypofractionation, which involves the use of a high radiation dose per delivered fraction and concomitant reduction of sessions, is a safe and effective treatment, even though its radiobiological rationale is still lacking. The present work aims to investigate the biological basis sustaining this approach and to evaluate the potential of a hypofractionated regimen in combination with androgen deprivation therapy, one of the major standards of care for prostate cancer. Findings show that androgen receptor (AR) modulation, by use of androgens and antiandrogens, has a significant impact on cell survival, especially in hypoxic conditions (4% O2). Subsequent experiments have revealed that AR activity as a transcription factor is involved in the onset of malignant senescence-associated secretory phenotype (SASP) and activation of DNA repair cascade. In particular, we found that AR stimulation in hypoxic conditions promotes the enhanced transcription of ATM gene, the cornerstone kinase of the DNA damage repair genes. Together, these data provide new potential insights to justify the use of androgen deprivation therapy, in particular with second-generation anti-androgens such as enzalutamide, in combination with radiotherapy.
Collapse
|
133
|
Wengner AM, Scholz A, Haendler B. Targeting DNA Damage Response in Prostate and Breast Cancer. Int J Mol Sci 2020; 21:E8273. [PMID: 33158305 PMCID: PMC7663807 DOI: 10.3390/ijms21218273] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Steroid hormone signaling induces vast gene expression programs which necessitate the local formation of transcription factories at regulatory regions and large-scale alterations of the genome architecture to allow communication among distantly related cis-acting regions. This involves major stress at the genomic DNA level. Transcriptionally active regions are generally instable and prone to breakage due to the torsional stress and local depletion of nucleosomes that make DNA more accessible to damaging agents. A dedicated DNA damage response (DDR) is therefore essential to maintain genome integrity at these exposed regions. The DDR is a complex network involving DNA damage sensor proteins, such as the poly(ADP-ribose) polymerase 1 (PARP-1), the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), the ataxia-telangiectasia-mutated (ATM) kinase and the ATM and Rad3-related (ATR) kinase, as central regulators. The tight interplay between the DDR and steroid hormone receptors has been unraveled recently. Several DNA repair factors interact with the androgen and estrogen receptors and support their transcriptional functions. Conversely, both receptors directly control the expression of agents involved in the DDR. Impaired DDR is also exploited by tumors to acquire advantageous mutations. Cancer cells often harbor germline or somatic alterations in DDR genes, and their association with disease outcome and treatment response led to intensive efforts towards identifying selective inhibitors targeting the major players in this process. The PARP-1 inhibitors are now approved for ovarian, breast, and prostate cancer with specific genomic alterations. Additional DDR-targeting agents are being evaluated in clinical studies either as single agents or in combination with treatments eliciting DNA damage (e.g., radiation therapy, including targeted radiotherapy, and chemotherapy) or addressing targets involved in maintenance of genome integrity. Recent preclinical and clinical findings made in addressing DNA repair dysfunction in hormone-dependent and -independent prostate and breast tumors are presented. Importantly, the combination of anti-hormonal therapy with DDR inhibition or with radiation has the potential to enhance efficacy but still needs further investigation.
Collapse
Affiliation(s)
| | | | - Bernard Haendler
- Preclinical Research, Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany; (A.M.W.); (A.S.)
| |
Collapse
|
134
|
Abstract
Cancer cells die when their decimated DNA damage response (DDR) unsuccessfully handles DNA damage. This notion has been successfully exploited when targeting PARP (poly ADP-ribose polymerase) in homologous recombination-deficient cells. With the greater understanding of DDR achieved in the last decade, new cancer therapy targets within the DDR network have been identified. Intriguingly, many of the molecules that have advanced into clinical trials are inhibitors of DDR kinases. This special issue is devoted to discussing the mechanism of cell killing and the level of success that such inhibitors have reached in pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Vanesa Gottifredi
- Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires. Consejo de Investigaciones Científicas y Técnicas. Avenida Patricias Argentinas 435, C1405BWE, Buenos Aires, Argentina.
| |
Collapse
|
135
|
Bachiller M, Battram AM, Perez-Amill L, Martín-Antonio B. Natural Killer Cells in Immunotherapy: Are We Nearly There? Cancers (Basel) 2020; 12:E3139. [PMID: 33120910 PMCID: PMC7694052 DOI: 10.3390/cancers12113139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells are potent anti-tumor and anti-microbial cells of our innate immune system. They are equipped with a vast array of receptors that recognize tumor cells and other pathogens. The innate immune activity of NK cells develops faster than the adaptive one performed by T cells, and studies suggest an important immunoregulatory role for each population against the other. The association, observed in acute myeloid leukemia patients receiving haploidentical killer-immunoglobulin-like-receptor-mismatched NK cells, with induction of complete remission was the determinant to begin an increasing number of clinical studies administering NK cells for the treatment of cancer patients. Unfortunately, even though transfused NK cells demonstrated safety, their observed efficacy was poor. In recent years, novel studies have emerged, combining NK cells with other immunotherapeutic agents, such as monoclonal antibodies, which might improve clinical efficacy. Moreover, genetically-modified NK cells aimed at arming NK cells with better efficacy and persistence have appeared as another option. Here, we review novel pre-clinical and clinical studies published in the last five years administering NK cells as a monotherapy and combined with other agents, and we also review chimeric antigen receptor-modified NK cells for the treatment of cancer patients. We then describe studies regarding the role of NK cells as anti-microbial effectors, as lessons that we could learn and apply in immunotherapy applications of NK cells; these studies highlight an important immunoregulatory role performed between T cells and NK cells that should be considered when designing immunotherapeutic strategies. Lastly, we highlight novel strategies that could be combined with NK cell immunotherapy to improve their targeting, activity, and persistence.
Collapse
Affiliation(s)
| | | | | | - Beatriz Martín-Antonio
- Department of Hematology, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain; (M.B.); (A.M.B.); (L.P.-A.)
| |
Collapse
|
136
|
Li S, Shi B, Liu X, An HX. Acetylation and Deacetylation of DNA Repair Proteins in Cancers. Front Oncol 2020; 10:573502. [PMID: 33194676 PMCID: PMC7642810 DOI: 10.3389/fonc.2020.573502] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Hundreds of DNA repair proteins coordinate together to remove the diverse damages for ensuring the genomic integrity and stability. The repair system is an extensive network mainly encompassing cell cycle arrest, chromatin remodeling, various repair pathways, and new DNA fragment synthesis. Acetylation on DNA repair proteins is a dynamic epigenetic modification orchestrated by lysine acetyltransferases (HATs) and lysine deacetylases (HDACs), which dramatically affects the protein functions through multiple mechanisms, such as regulation of DNA binding ability, protein activity, post-translational modification (PTM) crosstalk, and protein–protein interaction. Accumulating evidence has indicated that the aberrant acetylation of DNA repair proteins contributes to the dysfunction of DNA repair ability, the pathogenesis and progress of cancer, as well as the chemosensitivity of cancer cells. In the present scenario, targeting epigenetic therapy is being considered as a promising method at par with the conventional cancer therapeutic strategies. This present article provides an overview of the recent progress in the functions and mechanisms of acetylation on DNA repair proteins involved in five major repair pathways, which warrants the possibility of regulating acetylation on repair proteins as a therapeutic target in cancers.
Collapse
Affiliation(s)
- Shiqin Li
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Bingbing Shi
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Xinli Liu
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Han-Xiang An
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
137
|
Bandeira G, Rocha K, Lazar M, Ezquina S, Yamamoto G, Varela M, Takahashi V, Aguena M, Gollop T, Zatz M, Passos-Bueno MR, Krepischi A, Okamoto OK. Germline variants of Brazilian women with breast cancer and detection of a novel pathogenic ATM deletion in early-onset breast cancer. Breast Cancer 2020; 28:346-354. [PMID: 32986223 DOI: 10.1007/s12282-020-01165-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/16/2020] [Indexed: 04/07/2023]
Abstract
BACKGROUND It is estimated that 5-10% of breast cancer cases are hereditary. The identification of pathogenic germline variants allows individualized preventive health care, improvement of clinical management and genetic counseling. Studies in ethnically admixed Latin American populations have identified regions with increased frequency of deleterious variants in breast cancer predisposing genes. In this context, the Brazilian population exhibits great genetic heterogeneity, and is not well represented in international databases, which makes it difficult to interpret the clinical relevance of germline variants. METHODS We evaluated the frequency of pathogenic/likely pathogenic (P/LP) germline variants in up to 37 breast cancer predisposing genes, in a cohort of 105 breast and/or ovarian cancer Brazilian women referred to two research centers between 2014 and 2019. RESULTS A total of 22 patients (21%) were found to carry P/LP variants, and 16 VUS were detected in 15 patients (14.3%). Additionally, a novel pathogenic ATM intragenic deletion was identified in an early-onset breast cancer. We also detected a BRCA1 pathogenic variant (c.5074+2T>C) in higher frequency (10×) than in other studies with similar cohorts. CONCLUSIONS Our findings contribute to the characterization of the genetic background of breast cancer predisposition in the Brazilian population as a useful resource to discriminate between deleterious variants and VUS, thus enabling improvement in the preventive health care and clinical management of carriers.
Collapse
Affiliation(s)
- Gabriel Bandeira
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco, Universidade de São Paulo, Cidade Universitária, Rua do Matão 277, São Paulo, SP, CEP: 05508-090, Brazil
| | - Katia Rocha
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco, Universidade de São Paulo, Cidade Universitária, Rua do Matão 277, São Paulo, SP, CEP: 05508-090, Brazil
| | - Monize Lazar
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco, Universidade de São Paulo, Cidade Universitária, Rua do Matão 277, São Paulo, SP, CEP: 05508-090, Brazil
| | - Suzana Ezquina
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco, Universidade de São Paulo, Cidade Universitária, Rua do Matão 277, São Paulo, SP, CEP: 05508-090, Brazil
| | - Guilherme Yamamoto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco, Universidade de São Paulo, Cidade Universitária, Rua do Matão 277, São Paulo, SP, CEP: 05508-090, Brazil.,Genetics Unit, Faculty of Medicine, Children's Institute, Clinics Hospital, University of Sao Paulo, São Paulo, Brazil
| | - Monica Varela
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco, Universidade de São Paulo, Cidade Universitária, Rua do Matão 277, São Paulo, SP, CEP: 05508-090, Brazil
| | - Vanessa Takahashi
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco, Universidade de São Paulo, Cidade Universitária, Rua do Matão 277, São Paulo, SP, CEP: 05508-090, Brazil
| | - Meire Aguena
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco, Universidade de São Paulo, Cidade Universitária, Rua do Matão 277, São Paulo, SP, CEP: 05508-090, Brazil
| | - Thomaz Gollop
- Department of Gynecology and Obstetrics, Faculty of Medicine of Jundiai, São Paulo, Brazil
| | - Mayana Zatz
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco, Universidade de São Paulo, Cidade Universitária, Rua do Matão 277, São Paulo, SP, CEP: 05508-090, Brazil
| | - Maria Rita Passos-Bueno
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco, Universidade de São Paulo, Cidade Universitária, Rua do Matão 277, São Paulo, SP, CEP: 05508-090, Brazil
| | - Ana Krepischi
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco, Universidade de São Paulo, Cidade Universitária, Rua do Matão 277, São Paulo, SP, CEP: 05508-090, Brazil
| | - Oswaldo Keith Okamoto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Centro de Pesquisa Sobre o Genoma Humano e Células-Tronco, Universidade de São Paulo, Cidade Universitária, Rua do Matão 277, São Paulo, SP, CEP: 05508-090, Brazil.
| |
Collapse
|
138
|
Sarcoma stratification by combined pH2AX and MAP17 (PDZK1IP1) levels for a better outcome on doxorubicin plus olaparib treatment. Signal Transduct Target Ther 2020; 5:195. [PMID: 32963243 PMCID: PMC7508862 DOI: 10.1038/s41392-020-00246-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/15/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Sarcomas constitute a rare heterogeneous group of tumors, including a wide variety of histological subtypes. Despite advances in our understanding of the pathophysiology of the disease, first-line sarcoma treatment options are still limited and new treatment approaches are needed. Histone H2AX phosphorylation is a sensitive marker for double strand breaks and has recently emerged as biomarker of DNA damage for new drug development. In this study, we explored the role of H2AX phosphorylation at Ser139 alone or in combination with MAP17 protein, an inducer of DNA damage through ROS increase, as prognostic biomarkers in sarcoma tumors. Next, we proposed doxorubicin and olaparib combination as potential therapeutic strategies against sarcomas displaying high level of both markers. We evaluate retrospectively the levels of pH2AX (Ser139) and MAP17 in a cohort of 69 patients with different sarcoma types and its relationship with clinical and pathological features. We found that the levels of pH2AX and MAP17 were related to clinical features and poor survival. Next, we pursued PARP1 inhibition with olaparib to potentiate the antitumor effect of DNA damaging effect of the DNA damaging agent doxorubicin to achieve an optimal synergy in sarcoma. We demonstrated that the combination of olaparib and doxorubicin was synergistic in vitro, inhibiting cell proliferation and enhancing pH2AX intranuclear accumulation, as a result of DNA damage. The synergism was corroborated in patient-derived xenografts (PDX) where the combination was effective in tumors with high levels of pH2AX and MAP17, suggesting that both biomarkers might potentially identify patients who better benefit from this combined therapy.
Collapse
|
139
|
Yang Y, Luo J, Chen X, Yang Z, Mei X, Ma J, Zhang Z, Guo X, Yu X. CDK4/6 inhibitors: a novel strategy for tumor radiosensitization. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:188. [PMID: 32933570 PMCID: PMC7490904 DOI: 10.1186/s13046-020-01693-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/28/2020] [Indexed: 01/10/2023]
Abstract
Recently, the focus of enhancing tumor radiosensitivity has shifted from chemotherapeutics to targeted therapies. Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors are a novel class of selective cell cycle therapeutics that target the cyclin D-CDK4/6 complex and induce G1 phase arrest. These agents have demonstrated favorable effects when used as monotherapy or combined with endocrine therapy and targeted inhibitors, stimulating further explorations of other combination strategies. Multiple preclinical studies have indicated that CDK4/6 inhibitors exhibit a synergistic effect with radiotherapy both in vitro and in vivo. The principal mechanisms of radiosensitization effects include inhibition of DNA damage repair, enhancement of apoptosis, and blockade of cell cycle progression, which provide the rationale for clinical use. CDK4/6 inhibitors also induce cellular senescence and promote anti-tumor immunity, which might represent potential mechanisms for radiosensitization. Several small sample clinical studies have preliminarily indicated that the combination of CDK4/6 inhibitors and radiotherapy exhibited well-tolerated toxicity and promising efficacy. However, most clinical trials in combined therapy remain in the recruitment stage. Further work is required to seek optimal radiotherapy-drug combinations. In this review, we describe the effects and underlying mechanisms of CDK4/6 inhibitors as a radiosensitizer and discuss previous clinical studies to evaluate the prospects and challenges of this combination.
Collapse
Affiliation(s)
- Yilan Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jurui Luo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xingxing Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhaozhi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xin Mei
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jinli Ma
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaomao Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Xiaoli Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
140
|
Lodovichi S, Cervelli T, Pellicioli A, Galli A. Inhibition of DNA Repair in Cancer Therapy: Toward a Multi-Target Approach. Int J Mol Sci 2020; 21:E6684. [PMID: 32932697 PMCID: PMC7554826 DOI: 10.3390/ijms21186684] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
Alterations in DNA repair pathways are one of the main drivers of cancer insurgence. Nevertheless, cancer cells are more susceptible to DNA damage than normal cells and they rely on specific functional repair pathways to survive. Thanks to advances in genome sequencing, we now have a better idea of which genes are mutated in specific cancers and this prompted the development of inhibitors targeting DNA repair players involved in pathways essential for cancer cells survival. Currently, the pivotal concept is that combining the inhibition of mechanisms on which cancer cells viability depends is the most promising way to treat tumorigenesis. Numerous inhibitors have been developed and for many of them, efficacy has been demonstrated either alone or in combination with chemo or radiotherapy. In this review, we will analyze the principal pathways involved in cell cycle checkpoint and DNA repair focusing on how their alterations could predispose to cancer, then we will explore the inhibitors developed or in development specifically targeting different proteins involved in each pathway, underscoring the rationale behind their usage and how their combination and/or exploitation as adjuvants to classic therapies could help in patients clinical outcome.
Collapse
Affiliation(s)
- Samuele Lodovichi
- Bioscience Department, University of Milan, Via Celoria 26, 20131 Milan, Italy;
| | - Tiziana Cervelli
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Via Moruzzi 1, 56125 Pisa, Italy;
| | - Achille Pellicioli
- Bioscience Department, University of Milan, Via Celoria 26, 20131 Milan, Italy;
| | - Alvaro Galli
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Via Moruzzi 1, 56125 Pisa, Italy;
| |
Collapse
|
141
|
Lin W, Lin A, Li Z, Zhou C, Chen C, Chen B, Lyu Q, Zhang J, Luo P. Potential predictive value of SCN4A mutation status for immune checkpoint inhibitors in melanoma. Biomed Pharmacother 2020; 131:110633. [PMID: 32892029 DOI: 10.1016/j.biopha.2020.110633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/17/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
Melanoma refers to a pigmented nevus with malignant changes. The preferred treatment for primary melanoma is surgical excision and postoperative radiotherapy, but the prognosis is poor. Immune checkpoint inhibitors (ICIs) have been remarkably successful in different types of cancers, but not all cancer patients can benefit from it. Therefore, it is essential to find predictable biomarkers and improve the accuracy of treatment. In this study, we used survival analysis, gene panorama analysis, immune cell enrichment analysis, TMB analysis, and GSEA to demonstrate that SCN4A gene mutations may be used as one of the indicators to predict the prognosis of melanoma patients undergoing ICI treatment. The research further indicates that SCN4A gene mutations improve the prognosis of ICI treatment. It is hoped that the effect of SCN4A on immunogenicity and tumor immunity can be demonstrated to further suggest the effect of this gene on the efficacy of ICIs.
Collapse
Affiliation(s)
- Weiyin Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zhefu Li
- Central Sterile Supply Department, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Chaozheng Zhou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Chufeng Chen
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Boliang Chen
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Qingwen Lyu
- Department of Information, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China; Guangdong Fusion Application Engineering Center of Medical Big Data, Guangzhou, Guangdong, People's Republic of China.
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
142
|
Chen CW, Buj R, Dahl ES, Leon KE, Aird KM. ATM inhibition synergizes with fenofibrate in high grade serous ovarian cancer cells. Heliyon 2020; 6:e05097. [PMID: 33024871 PMCID: PMC7527645 DOI: 10.1016/j.heliyon.2020.e05097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/04/2020] [Accepted: 09/24/2020] [Indexed: 11/09/2022] Open
Abstract
While therapies targeting deficiencies in the homologous recombination (HR) pathway are emerging as the standard treatment for high grade serous ovarian cancer (HGSOC) patients, this strategy is limited to the ~50% of patients with a deficiency in this pathway. Therefore, patients with HR-proficient tumors are likely to be resistant to these therapies and require alternative strategies. We found that the HR gene Ataxia Telangiectasia Mutated (ATM) is wildtype and its activity is upregulated in HGSOC compared to normal fallopian tube tissue. Interestingly, multiple pathways related to metabolism are inversely correlated with ATM expression in HGSOC specimens, suggesting that combining ATM inhibition with metabolic drugs would be effective. Analysis of FDA-approved drugs from the Dependency Map demonstrated that ATM-low cells are more sensitive to fenofibrate, a PPARα agonist that affects multiple cellular metabolic pathways. Consistently, PPARα signaling is associated with ATM expression. We validated that combined inhibition of ATM and treatment with fenofibrate is synergistic in multiple HGSOC cell lines by inducing senescence. Together, our results suggest that metabolic changes induced by ATM inhibitors are a potential target for the treatment of HGSOC.
Collapse
|
143
|
Aydin AM, Chahoud J, Adashek JJ, Azizi M, Magliocco A, Ross JS, Necchi A, Spiess PE. Understanding genomics and the immune environment of penile cancer to improve therapy. Nat Rev Urol 2020; 17:555-570. [DOI: 10.1038/s41585-020-0359-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
|
144
|
Yi R, Lin A, Cao M, Xu A, Luo P, Zhang J. ATM Mutations Benefit Bladder Cancer Patients Treated With Immune Checkpoint Inhibitors by Acting on the Tumor Immune Microenvironment. Front Genet 2020; 11:933. [PMID: 32922441 PMCID: PMC7456912 DOI: 10.3389/fgene.2020.00933] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/27/2020] [Indexed: 01/10/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have shown promising results in bladder cancer (BC). However, only some patients respond to ICIs. DNA repair defects (DDR) play an important role in the therapeutic response of bladder cancer. Therefore, we aimed to elucidate the association between ICIs in bladder cancer and ataxia telangiectasia mutated (ATM), a core component of the DNA repair system. From a collected immunotherapy cohort (n = 210) and The Cancer Genome Atlas (TCGA)-Bladder cancer cohort, which were both retrieved from publicly available resources, we performed a series of analyses to evaluate the prognostic value and potential mechanism of ATM in bladder cancer immunotherapy. We found that ATM-mutant (ATM-MT) bladder cancer patients derived greater benefit from ICIs [overall survival (OS), hazard ratio (HR) = 0.28, [95% confidence interval (CI), 0.16 to 0.51], P = 0.007] and showed a higher mutation load (P < 0.05) and immunogenicity (P < 0.05) than ATM-wild-type (ATM-WT) patients. The immune inflammatory response to antigenic stimulation, the regulation of the IFN pathway and the macrophage activation pathway were significantly enriched in the ATM-MT group (NES > 1, P < 0.05), while insulin-like growth factor receptor signaling pathways and vasculogenesis were significantly downregulated (NES < −1, P < 0.05). ATM mutation significantly upregulated the number of DNA damage repair pathway gene mutations (P < 0.05). ATM mutations resulted in increased bladder cancer sensitivity to 29 drugs (P < 0.05), including cisplatin and BMS-536924, an IGF-1R inhibitor. Our results demonstrate the importance of ATM as a prognostic signature in bladder cancer and reveal that ATM may impact the effects of ICIs by acting on the tumor immune microenvironment.
Collapse
Affiliation(s)
- Ruibin Yi
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Manming Cao
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Abai Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
145
|
Zhang J, Jing L, Tan S, Zeng EM, Lin Y, He L, Hu Z, Liu J, Guo Z. Inhibition of miR-1193 leads to synthetic lethality in glioblastoma multiforme cells deficient of DNA-PKcs. Cell Death Dis 2020; 11:602. [PMID: 32732911 PMCID: PMC7393494 DOI: 10.1038/s41419-020-02812-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
Abstract
Glioblastoma multiforme (GBM) is the most malignant primary brain tumor and has the highest mortality rate among cancers and high resistance to radiation and cytotoxic chemotherapy. Although some targeted therapies can partially inhibit oncogenic mutation-driven proliferation of GBM cells, therapies harnessing synthetic lethality are ‘coincidental’ treatments with high effectiveness in cancers with gene mutations, such as GBM, which frequently exhibits DNA-PKcs mutation. By implementing a highly efficient high-throughput screening (HTS) platform using an in-house-constructed genome-wide human microRNA inhibitor library, we demonstrated that miR-1193 inhibition sensitized GBM tumor cells with DNA-PKcs deficiency. Furthermore, we found that miR-1193 directly targets YY1AP1, leading to subsequent inhibition of FEN1, an important factor in DNA damage repair. Inhibition of miR-1193 resulted in accumulation of DNA double-strand breaks and thus increased genomic instability. RPA-coated ssDNA structures enhanced ATR checkpoint kinase activity, subsequently activating the CHK1/p53/apoptosis axis. These data provide a preclinical theory for the application of miR-1193 inhibition as a potential synthetic lethal approach targeting GBM cancer cells with DNA-PKcs deficiency.
Collapse
Affiliation(s)
- Jing Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 210097, Nanjing, Jiangsu, P.R. China.
| | - Li Jing
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 210097, Nanjing, Jiangsu, P.R. China
| | - Subee Tan
- Key Laboratory for Molecular Biotechnology, College of Life Sciences, Nanjing University, 210093, Nanjing, Jiangsu, P.R. China
| | - Er-Ming Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, R.P. China
| | - Yingbo Lin
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, 17176, Sweden
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 210097, Nanjing, Jiangsu, P.R. China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 210097, Nanjing, Jiangsu, P.R. China
| | - Jianping Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 210097, Nanjing, Jiangsu, P.R. China.
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 210097, Nanjing, Jiangsu, P.R. China.
| |
Collapse
|
146
|
Nam AR, Jin MH, Bang JH, Oh KS, Seo HR, Oh DY, Bang YJ. Inhibition of ATR Increases the Sensitivity to WEE1 Inhibitor in Biliary Tract Cancer. Cancer Res Treat 2020; 52:945-956. [PMID: 32311864 PMCID: PMC7373879 DOI: 10.4143/crt.2020.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Currently, the DNA damage response (DDR) pathway represents a key target for new cancer drug development. Advanced biliary tract cancer (BTC) has a poor prognosis because of the lack of efficacious treatment options. Although DNA repair pathway alterations have been reported in many patients with BTC, little is known regarding the effects of DDR-targeted agents against BTC. MATERIALS AND METHODS In this study, nine BTC cell lines were exposed to the WEE1 inhibitor (AZD1775). In vitro, MTT assay, colony-forming assay, cell cycle analysis, phospho-histone H3 staining assay, Transwell migration assay, and western blot were performed. Then, to enhance the antitumor effect of AZD1775, the combination treatment of WEE1 inhibitor and ataxia telangiectasia mutated and Rad3 related (ATR) inhibitor (AZD6738) was conducted using MTT assay and comet assay. Finally, HuCCT-1 and SNU2670 xenograft models were established to confirm the anti-tumor effect of AZD1775 alone. Furthermore, the combination treatment was also evaluated in SNU2670 xenograft models. RESULTS AZD1775 blocked the phosphorylation of CDC2 and CDC25C in all cell lines, but significantly increased apoptosis and S phase arrest in sensitive cells. However, increased p-ATR and phosphorylated ataxia telangiectasia mutated levels were observed in less sensitive cells. In addition, in vitro and in vivo data illustrated that AZD1775 combined with AZD6738 exerted more potent anti-tumor effects than either drug alone. Although WEE1 inhibition has promising anti-tumor effects in some BTC cells, the addition of ATR inhibitors could enhance its efficacy. CONCLUSION Taken together, this study supports further clinical development of DDR-targeted strategies as monotherapy or combination regimens for BTC.
Collapse
Affiliation(s)
- Ah-Rong Nam
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Mei-Hua Jin
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ju-Hee Bang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Kyoung-Seok Oh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hye-Rim Seo
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Do-Youn Oh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Yung-Jue Bang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
147
|
Huang X, Yang C, Wang J, Sun T, Xiong H. Integrative analysis of DNA methylation and gene expression reveals distinct hepatocellular carcinoma subtypes with therapeutic implications. Aging (Albany NY) 2020; 12:4970-4995. [PMID: 32201399 PMCID: PMC7138576 DOI: 10.18632/aging.102923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/02/2020] [Indexed: 12/15/2022]
Abstract
We aimed to develop an HCC classification model based on the integrated gene expression and methylation data of methylation-driven genes. Genome, methylome, transcriptome, proteomics and clinical data of 369 HCC patients from The Cancer Genome Atlas Network were retrieved and analyzed. Consensus clustering of the integrated gene expression and methylation data from methylation-driven genes identified 4 HCC subclasses with significant prognosis difference. HS1 was well differentiated with a favorable prognosis. HS2 had high serum α-fetoprotein level that was correlated with its poor outcome. High percentage of CTNNB1 mutations corresponded with its activation in WNT signaling pathway. HS3 was well differentiated with low serum α-fetoprotein level and enriched in metabolism signatures, but was barely involved in immune signatures. HS3 also had high percentage of CTNNB1 mutations and therefore enriched in WNT activation signature. HS4 was poorly differentiated with the worst prognosis and enriched in immune-related signatures, but was barely involved in metabolism signatures. Subsequently, a prediction model was developed. The prediction model had high sensitivity and specificity in distributing potential HCC samples into groups identical with the training cohort. In conclusion, this work sheds light on HCC patient prognostication and prediction of response to targeted therapy.
Collapse
Affiliation(s)
- Xiaowen Huang
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Chen Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jilin Wang
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Tiantian Sun
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Hua Xiong
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
148
|
Lavin MF, Yeo AJ. Clinical potential of ATM inhibitors. Mutat Res 2020; 821:111695. [PMID: 32304909 DOI: 10.1016/j.mrfmmm.2020.111695] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 01/04/2023]
Abstract
The protein defective in the human genetic disorder ataxia-telangiectasia, ATM, plays a central role in responding to DNA double strand breaks and other lesions to protect the genome against DNA damage and in this way minimize the risk of mutations that can lead to abnormal cellular behaviour. Its function in normal cells is to protect the cell against genotoxic stress but inadvertently it can assist cancer cells by providing resistance against chemotherapeutic agents and thus favouring tumour growth and survival. However, it is now evident that ATM also functions in a DNA damage-independent fashion to protect the cell against other forms of stress such as oxidative and nutrient stress and this non-canonical mechanism may also be relevant to cancer susceptibility in individuals who lack a functional ATM gene. Thus the use of ATM inhibitors to combat resistance in tumours may extend beyond a role for this protein in the DNA damage response. Here, we provide some background on ATM and its activation and investigate the efficacy of ATM inhibitors in treating cancer.
Collapse
Affiliation(s)
- Martin F Lavin
- University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Australia.
| | - Abrey J Yeo
- University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Australia
| |
Collapse
|
149
|
Contributions of DNA Damage to Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21051666. [PMID: 32121304 PMCID: PMC7084447 DOI: 10.3390/ijms21051666] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of neurodegenerative disease. Its typical pathology consists of extracellular amyloid-β (Aβ) plaques and intracellular tau neurofibrillary tangles. Mutations in the APP, PSEN1, and PSEN2 genes increase Aβ production and aggregation, and thus cause early onset or familial AD. Even with this strong genetic evidence, recent studies support AD to result from complex etiological alterations. Among them, aging is the strongest risk factor for the vast majority of AD cases: Sporadic late onset AD (LOAD). Accumulation of DNA damage is a well-established aging factor. In this regard, a large amount of evidence reveals DNA damage as a critical pathological cause of AD. Clinically, DNA damage is accumulated in brains of AD patients. Genetically, defects in DNA damage repair resulted from mutations in the BRAC1 and other DNA damage repair genes occur in AD brain and facilitate the pathogenesis. Abnormalities in DNA damage repair can be used as diagnostic biomarkers for AD. In this review, we discuss the association, the causative potential, and the biomarker values of DNA damage in AD pathogenesis.
Collapse
|
150
|
Li L, Mei H, Commey ANA. Application of RNA-sequencing to identify transcriptome modification by DCLK1 in colorectal cancer cells. Cancer Gene Ther 2019; 27:691-701. [PMID: 31636360 PMCID: PMC7170768 DOI: 10.1038/s41417-019-0144-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/02/2022]
Abstract
Doublecortin like kinase 1 (DCLK1) is a cancer stem cell marker for the colorectal cancer (CRC). It plays critical roles in the oncogenesis, progression and metastasis of CRC. DCLK1 can be an intriguing therapeutic target for CRC treatment. However, the molecular mechanism of how DCLK1 functions is unclear currently. In our research, we aim to apply RNA-Sequencing (RNA Seq) technology, a high throughput massively Next Generation Sequencing approach, to monitor transcriptome changes due to DCLK1 over-expression in the CRC cells. In order to achieve our goal, RNA from quadruplicate samples from two clones of isogenic DCLK1 stable over-expression cells and the parental wild type HCT116 cells was sent for RNA Seq on the Illumina NextSeq500 platform. Differentially expressed (DE) genes were evaluated by t-test (P <0.05 and fold-change ±1.5 or greater) using two methods: (1) FWER; and (2) Benjamani and Hochberg FDR (false discovery rate) which corrects for multiple comparisons. Gene networks and functional analysis were evaluated using Ingenuity Pathways Analysis (IPA). We identified 1463 DE genes common for both DCLK1 overexpression clone A and clone B cells. IPA results indicated that 72 canonical pathways were significantly modified by DCLK1 over-expression (P<0.05), among which 9 out of the top 10 pathways are involved in the cell cycle regulation, indicating that DCLK1 might play its tumorigenesis role via activation of pathways facilitating cell proliferation, repression of pathways inhibiting cells proliferation and function against pathways facilitating cell apoptosis. Cell cycle analysis results confirmed the IPA findings, which demonstrated that DCLK1 over-expression cells had much less G0/G1 cells but much more S and G2/M cells (P<0.05). In conclusion, DCLK1 over-expression significantly modified transcriptome profile of CRC cancer cells. Control of the cell cycle regulation might be one of the critical mechanism for DCLK1 function. Our findings provide more direct evidence for the development of DCLK1 as a therapeutic target for CRC treatment, and will be of great benefit for the discovery of novel therapeutic target within the DCLK1 molecular network for the treatment of colorectal cancer patients.
Collapse
Affiliation(s)
- Lianna Li
- Biology Department, Tougaloo College, 500 West County Line Road, Tougaloo, MS, 39174, USA.
| | - Hao Mei
- Department of Data Science, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
| | | |
Collapse
|