101
|
Di Sotto A, Mancinelli R, Gullì M, Eufemi M, Mammola CL, Mazzanti G, Di Giacomo S. Chemopreventive Potential of Caryophyllane Sesquiterpenes: An Overview of Preliminary Evidence. Cancers (Basel) 2020; 12:E3034. [PMID: 33081075 PMCID: PMC7603190 DOI: 10.3390/cancers12103034] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Chemoprevention is referred to as a strategy to inhibit, suppress, or reverse tumor development and progression in healthy people along with high-risk subjects and oncologic patients through using pharmacological or natural substances. Numerous phytochemicals have been widely described in the literature to possess chemopreventive properties, although their clinical usefulness remains to be defined. Among them, caryophyllane sesquiterpenes are natural compounds widely occurring in nature kingdoms, especially in plants, fungi, and marine environments. Several structures, characterized by a common caryophyllane skeleton with further rearrangements, have been identified, but those isolated from plant essential oils, including β-caryophyllene, β-caryophyllene oxide, α-humulene, and isocaryophyllene, have attracted the greatest pharmacological attention. Emerging evidence has outlined a complex polypharmacological profile of caryophyllane sesquiterpenes characterized by blocking, suppressing, chemosensitizing, and cytoprotective properties, which suggests a possible usefulness of these natural substances in cancer chemoprevention for both preventive and adjuvant purposes. In the present review, the scientific knowledge about the chemopreventive properties of caryophyllane sesquiterpenes and the mechanisms involved have been collected and discussed; moreover, possible structure-activity relationships have been highlighted. Although further high-quality studies are required, the promising preclinical findings and the safe pharmacological profile encourage further studies to define a clinical usefulness of caryophyllane sesquiterpenes in primary, secondary, or tertiary chemoprevention.
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (M.G.); (S.D.G.)
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (R.M.); (C.L.M.)
| | - Marco Gullì
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (M.G.); (S.D.G.)
| | - Margherita Eufemi
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy;
| | - Caterina Loredana Mammola
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (R.M.); (C.L.M.)
| | - Gabriela Mazzanti
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (M.G.); (S.D.G.)
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (M.G.); (S.D.G.)
| |
Collapse
|
102
|
Machado KDC, Paz MFCJ, Oliveira Santos JVD, da Silva FCC, Tchekalarova JD, Salehi B, Islam MT, Setzer WN, Sharifi-Rad J, de Castro e Sousa JM, Cavalcante AADCM. Anxiety Therapeutic Interventions of β-Caryophyllene: A Laboratory-Based Study. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20962229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The bicyclic sesquiterpene β-caryophyllene (BCP) has diverse biological activities, including antioxidant, anti-inflammatory, antidiabetic, and analgesic effects. This study evaluates anxiolytic, toxicity, and antioxidant effects of BCP using in vitro and in vivo test models. The anxiolytic effects were tested in Swiss albino mice ( Mus musculus) by applying the elevated plus-maze, rota-rod, light and dark, and hiding sphere models, while the toxicity was evaluated by brine shrimp ( Artemia salina) lethality bioassay. Additionally, the antioxidant capacity was tested by using 2,2-diphenyl-1-picrylhydrazyl radical, 2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid hydroxyl radical scavenging, and the Saccharomyces cerevisiae test model. The results suggest that BCP exerted a dose-dependent anxiolytic-like effect on the experimental animals. It did not show toxicity in A. salina at 24 hours. BCP showed a concentration-dependent free-radical-scavenging capacity, similar to the standard antioxidant Trolox. It also showed protective and repair capacities against hydrogen peroxide-induced damaging effects in isogenic and wild-type S. cerevisiae strains. Taken together, BCP exerted antioxidant and protective effects, which can be targeted to treat neurological diseases and disorders such as anxiety.
Collapse
Affiliation(s)
- Keylla da Conceição Machado
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, USA
| | | | - José Victor de Oliveira Santos
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, USA
| | | | | | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Muhammad Torequl Islam
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, USA
- Aromatic Plant Research Center, Lehi, UT, USA
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - João Marcelo de Castro e Sousa
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, USA
| | - Ana Amélia de Carvalho Melo Cavalcante
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, Brazil
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, USA
| |
Collapse
|
103
|
Potential application of endocannabinoid system agents in neuropsychiatric and neurodegenerative diseases-focusing on FAAH/MAGL inhibitors. Acta Pharmacol Sin 2020; 41:1263-1271. [PMID: 32203086 PMCID: PMC7608191 DOI: 10.1038/s41401-020-0385-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 01/01/2023]
Abstract
The endocannabinoid system (ECS) has received extensive attention for its neuroprotective effect on the brain. This system comprises endocannabinoids, endocannabinoid receptors, and the corresponding ligands and proteins. The molecular players involved in their regulation and metabolism are potential therapeutic targets for neuropsychiatric diseases including anxiety, depression and neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). The inhibitors of two endocannabinoid hydrolases, i.e., fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), have the capacity to increase the level of endocannabinoids indirectly, causing fewer side effects than those associated with direct supplementation of cannabinoids. Their antidepressant and anxiolytic mechanisms are considered to modulate the hypothalamic-pituitary-adrenal axis and regulate synaptic and neural plasticity. In terms of AD/PD, treatment with FAAH/MAGL inhibitors leads to reduction in amyloid β-protein deposition and inhibition of the death of dopamine neurons, which are commonly accepted to underlie the pathogenesis of AD and PD, respectively. Inflammation as the cause of depression/anxiety and PD/AD is also the target of FAAH/MAGL inhibitors. In this review, we summarize the application and involvement of FAAH/MAGL inhibitors in related neurological diseases. Focus on the latest research progress using FAAH/MAGL inhibitors is expected to facilitate the development of novel approaches with therapeutic potential.
Collapse
|
104
|
Hashiesh HM, Meeran MN, Sharma C, Sadek B, Kaabi JA, Ojha SK. Therapeutic Potential of β-Caryophyllene: A Dietary Cannabinoid in Diabetes and Associated Complications. Nutrients 2020; 12:nu12102963. [PMID: 32998300 PMCID: PMC7599522 DOI: 10.3390/nu12102963] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/14/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM), a metabolic disorder is one of the most prevalent chronic diseases worldwide across developed as well as developing nations. Hyperglycemia is the core feature of the type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), following insulin deficiency and impaired insulin secretion or sensitivity leads insulin resistance (IR), respectively. Genetic and environmental factors attributed to the pathogenesis of DM and various therapeutic strategies are available for the prevention and treatment of T2DM. Among the numerous therapeutic approaches, the health effects of dietary/nutraceutical approach due to the presence of bioactive constituents, popularly termed phytochemicals are receiving special interest for pharmacological effects and therapeutic benefits. The phytochemicals classes, in particular sesquiterpenes received attention because of potent antioxidant, anti-inflammatory, and antihyperglycemic effects and health benefits mediating modulation of enzymes, receptors, and signaling pathways deranged in DM and its complications. One of the terpene compounds, β-caryophyllene (BCP), received enormous attention because of its abundant occurrence, non-psychoactive nature, and dietary availability through consumption of edible plants including spices. BCP exhibit selective full agonism on cannabinoid receptor type 2 (CB2R), an important component of endocannabinoid system, and plays a role in glucose and lipid metabolism and represents the newest drug target for chronic inflammatory diseases. BCP also showed agonist action on peroxisome proliferated activated receptor subtypes, PPAR-α and PPAR-γ, the main target of currently used fibrates and imidazolidinones for dyslipidemia and IR, respectively. Many studies demonstrated its antioxidant, anti-inflammatory, organoprotective, and antihyperglycemic properties. In the present review, the plausible therapeutic potential of BCP in diabetes and associated complications has been comprehensively elaborated based on experimental and a few clinical studies available. Further, the pharmacological and molecular mechanisms of BCP in diabetes and its complications have been represented using synoptic tables and schemes. Given the safe status, abundant natural occurrence, oral bioavailability, dietary use and pleiotropic properties modulating receptors and enzymes, BCP appears as a promising molecule for diabetes and its complications.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE; (H.M.H.); (M.F.N.M.); (B.S.)
| | - M.F. Nagoor Meeran
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE; (H.M.H.); (M.F.N.M.); (B.S.)
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE; (C.S.); (J.A.K.)
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE; (H.M.H.); (M.F.N.M.); (B.S.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
| | - Juma Al Kaabi
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE; (C.S.); (J.A.K.)
| | - Shreesh K. Ojha
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE; (H.M.H.); (M.F.N.M.); (B.S.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
- Correspondence: ; Tel.: +971-3-713-7524; Fax: +971-3-767-2033
| |
Collapse
|
105
|
Butler K, Le Foll B. Novel therapeutic and drug development strategies for tobacco use disorder: endocannabinoid modulation. Expert Opin Drug Discov 2020; 15:1065-1080. [DOI: 10.1080/17460441.2020.1767581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Kevin Butler
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
- Acute Care Program, Centre for Addiction and Mental Health, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
106
|
Kim M, Chhoeun TB, Kim T, Sowndhararajan K, Kim S. The gender variation on the electroencephalographic activity in response to the exposure of black pepper essential oil from Kampong Cham, Cambodia. FLAVOUR FRAG J 2020. [DOI: 10.1002/ffj.3560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Minju Kim
- School of Natural Resources and Environmental Science Kangwon National University Chuncheon Korea
| | - Tith Bun Chhoeun
- Department of Agronomy Kampong Cham National School of Agriculture Kampong Cham Cambodia
| | - Taehee Kim
- Gangwondo Agricultural Research and Extension Services Agro‐Food Research Institute Chuncheon Korea
| | | | - Songmun Kim
- School of Natural Resources and Environmental Science Kangwon National University Chuncheon Korea
| |
Collapse
|
107
|
Corcoran L, Mattimoe D, Roche M, Finn DP. Attenuation of fear-conditioned analgesia in rats by monoacylglycerol lipase inhibition in the anterior cingulate cortex: Potential role for CB 2 receptors. Br J Pharmacol 2020; 177:2240-2255. [PMID: 31967664 PMCID: PMC7174879 DOI: 10.1111/bph.14976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 12/01/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Improved understanding of brain mechanisms regulating endogenous analgesia is important from a fundamental physiological perspective and for identification of novel therapeutic strategies for pain. The endocannabinoid system plays a key role in stress-induced analgesia, including fear-conditioned analgesia (FCA), a potent form of endogenous analgesia. Here, we studied the role of the endocannabinoid 2-arachidonoyl glycerol (2-AG) within the anterior cingulate cortex (ACC; a brain region implicated in the affective component of pain) in FCA in rats. EXPERIMENTAL APPROACH FCA was modelled in male Lister-hooded rats by assessing formalin-evoked nociceptive behaviour in an arena previously paired with footshock. The effects of intra-ACC administration of MJN110 (inhibitor of monoacylglycerol lipase [MGL], the primary enzyme catabolizing 2-AG), AM630 (CB2 receptor antagonist), AM251 (CB1 receptor antagonist) or MJN110 + AM630 on FCA were assessed. KEY RESULTS MJN110 attenuated FCA when microinjected into the ACC, an effect associated with increased levels of 2-AG in the ACC. This effect of MJN110 on FCA was unaltered by co-administration of AM251 but was blocked by AM630, which alone reduced nociceptive behaviour in non-fear-conditioned rats. RT-qPCR confirmed that mRNA encoding CB1 and CB2 receptors was detectable in the ACC of formalin-injected rats and unchanged in those expressing FCA. CONCLUSION AND IMPLICATIONS These results suggest that an MGL substrate in the ACC, likely 2-AG, modulates FCA and that within the ACC, 2-AG-CB2 receptor signalling may suppress this form of endogenous analgesia. These results may facilitate increased understanding and improved treatment of pain- and fear-related disorders and their co-morbidity.
Collapse
Affiliation(s)
- Louise Corcoran
- Pharmacology and Therapeutics, School of MedicineNational University of Ireland GalwayGalwayIreland
- Galway Neuroscience Centre and Centre for Pain ResearchNational University of Ireland GalwayGalwayIreland
| | - Darragh Mattimoe
- Pharmacology and Therapeutics, School of MedicineNational University of Ireland GalwayGalwayIreland
- Galway Neuroscience Centre and Centre for Pain ResearchNational University of Ireland GalwayGalwayIreland
| | - Michelle Roche
- Physiology, School of MedicineNational University of Ireland GalwayGalwayIreland
- Galway Neuroscience Centre and Centre for Pain ResearchNational University of Ireland GalwayGalwayIreland
| | - David P. Finn
- Pharmacology and Therapeutics, School of MedicineNational University of Ireland GalwayGalwayIreland
- Galway Neuroscience Centre and Centre for Pain ResearchNational University of Ireland GalwayGalwayIreland
| |
Collapse
|
108
|
Muthusamy S, Vetukuri RR, Lundgren A, Ganji S, Zhu LH, Brodelius PE, Kanagarajan S. Transient expression and purification of β-caryophyllene synthase in Nicotiana benthamiana to produce β-caryophyllene in vitro. PeerJ 2020; 8:e8904. [PMID: 32377446 PMCID: PMC7194099 DOI: 10.7717/peerj.8904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/12/2020] [Indexed: 12/19/2022] Open
Abstract
The sesquiterpene β-caryophyllene is an ubiquitous component in many plants that has commercially been used as an aroma in cosmetics and perfumes. Recent studies have shown its potential use as a therapeutic agent and biofuel. Currently, β-caryophyllene is isolated from large amounts of plant material. Molecular farming based on the Nicotiana benthamiana transient expression system may be used for a more sustainable production of β-caryophyllene. In this study, a full-length cDNA of a new duplicated β-caryophyllene synthase from Artemisia annua (AaCPS1) was isolated and functionally characterized. In order to produce β-caryophyllene in vitro, the AaCPS1 was cloned into a plant viral-based vector pEAQ-HT. Subsequently, the plasmid was transferred into the Agrobacterium and agroinfiltrated into N. benthamiana leaves. The AaCPS1 expression was analyzed by quantitative PCR at different time points after agroinfiltration. The highest level of transcripts was observed at 9 days post infiltration (dpi). The AaCPS1 protein was extracted from the leaves at 9 dpi and purified by cobalt–nitrilotriacetate (Co-NTA) affinity chromatography using histidine tag with a yield of 89 mg kg−1 fresh weight of leaves. The protein expression of AaCPS1 was also confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analyses. AaCPS1 protein uses farnesyl diphosphate (FPP) as a substrate to produce β-caryophyllene. Product identification and determination of the activity of purified AaCPS1 were done by gas chromatography–mass spectrometry (GC–MS). GC–MS results revealed that the AaCPS1 produced maximum 26.5 ± 1 mg of β-caryophyllene per kilogram fresh weight of leaves after assaying with FPP for 6 h. Using AaCPS1 as a proof of concept, we demonstrate that N. benthamiana can be considered as an expression system for production of plant proteins that catalyze the formation of valuable chemicals for industrial applications.
Collapse
Affiliation(s)
- Saraladevi Muthusamy
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Ramesh R Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Anneli Lundgren
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Suresh Ganji
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Li-Hua Zhu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Peter E Brodelius
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Selvaraju Kanagarajan
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.,Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
109
|
Effect of β-caryophyllene from Cloves Extract on Helicobacter pylori Eradication in Mouse Model. Nutrients 2020; 12:nu12041000. [PMID: 32260414 PMCID: PMC7230661 DOI: 10.3390/nu12041000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
New antibacterial treatments against Helicobacter pylori are needed as H. pylori is acquiring antibiotic resistance. β-caryophyllene is a natural bicyclic sesquiterpene, with anti-inflammatory and antimicrobial effects. This study investigates the effects of H-002119-00-001 from β-caryophyllene on the eradication of H. pylori in a mouse model, and its effects on the inflammation of the gastric mucosa. To evaluate the anti-H.pylori efficacy of β-caryophyllene, a total of 160 mice were divided into eight groups (n = 10 each) and were administered different treatments for 2 and 4 weeks. H. pylori eradication was assessed using a Campylobacter-like organism (CLO) test and H. pylori qPCR of the gastric mucosa. The levels of inflammation of gastric mucosa were assessed using histology and immunostaining. H-002119-00-001 decreased bacterial burden in vitro. When H-002119-00-001 was administered to mice once daily for 2 weeks, cure rates shown by the CLO test were 40.0%, 60.0%, and 70.0% in groups 6, 7, and 8, respectively. H. pylori levels in gastric mucosa decreased dose-dependently after H-002119-00-001 treatment. H-002119-00-001 also reduced levels of inflammation in gastric mucosa. H-002119-00-001 improved inflammation and decreased bacterial burden in H. pylori-infected mouse models. H-002119-00-001 is a promising and effective therapeutic agent for the treatment of H. pylori infection.
Collapse
|
110
|
Di Sotto A, Di Giacomo S, Rubini E, Macone A, Gulli M, Mammola CL, Eufemi M, Mancinelli R, Mazzanti G. Modulation of STAT3 Signaling, Cell Redox Defenses and Cell Cycle Checkpoints by β-Caryophyllene in Cholangiocarcinoma Cells: Possible Mechanisms Accounting for Doxorubicin Chemosensitization and Chemoprevention. Cells 2020; 9:E858. [PMID: 32252311 PMCID: PMC7226839 DOI: 10.3390/cells9040858] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive group of biliary tract cancers, characterized by late diagnosis, low effective chemotherapies, multidrug resistance, and poor outcomes. In the attempt to identify new therapeutic strategies for CCA, we studied the antiproliferative activity of a combination between doxorubicin and the natural sesquiterpene β-caryophyllene in cholangiocarcinoma Mz-ChA-1 cells and nonmalignant H69 cholangiocytes, under both long-term and metronomic schedules. The modulation of STAT3 signaling, oxidative stress, DNA damage response, cell cycle progression and apoptosis was investigated as possible mechanisms of action. β-caryophyllene was able to synergize the cytotoxicity of low dose doxorubicin in Mz-ChA-1 cells, while producing cytoprotective effects in H69 cholangiocytes, mainly after a long-term exposure of 24 h. The mechanistic analysis highlighted that the sesquiterpene induced a cell cycle arrest in G2/M phase along with the doxorubicin-induced accumulation in S phase, reduced the γH2AX and GSH levels without affecting GSSG. ROS amount was partly lowered by the combination in Mz-ChA-1 cells, while increased in H69 cells. A lowered expression of doxorubicin-induced STAT3 activation was found in the presence of β-caryophyllene in both cancer and normal cholangiocytes. These networking effects resulted in an increased apoptosis rate in Mz-ChA-1 cells, despite a lowering in H69 cholangiocytes. This evidence highlighted a possible role of STAT3 as a final effector of a complex network regulated by β-caryophyllene, which leads to an enhanced doxorubicin-sensitivity of cholangiocarcinoma cells and a lowered chemotherapy toxicity in nonmalignant cholangiocytes, thus strengthening the interest for this natural sesquiterpene as a dual-acting chemosensitizing and chemopreventive agent.
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.D.G.); (M.G.); (G.M.)
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.D.G.); (M.G.); (G.M.)
| | - Elisabetta Rubini
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (A.M.); (M.E.)
| | - Alberto Macone
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (A.M.); (M.E.)
| | - Marco Gulli
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.D.G.); (M.G.); (G.M.)
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (A.M.); (M.E.)
| | - Caterina Loredana Mammola
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (C.L.M.); (R.M.)
| | - Margherita Eufemi
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (A.M.); (M.E.)
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (C.L.M.); (R.M.)
| | - Gabriela Mazzanti
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.D.G.); (M.G.); (G.M.)
| |
Collapse
|
111
|
Shim HI, Song DJ, Shin CM, Yoon H, Park YS, Kim N, Lee DH. [Inhibitory Effects of β-caryophyllene on Helicobacter pylori Infection: A Randomized Double-blind, Placebo-controlled Study]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2020; 74:199-204. [PMID: 31650795 DOI: 10.4166/kjg.2019.74.4.199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/07/2019] [Accepted: 07/31/2019] [Indexed: 12/23/2022]
Abstract
Background/Aims Helicobacter pylori (H. pylori) infections, which cause a variety of gastrointestinal symptoms, are common in South Korea. Recent reports have shown a decline in the H. pylori eradication rates. β-caryophyllene is a natural bicyclic sesquiterpene that occurs in a wide range of plant species, such as cloves, basil, and cinnamon. β-caryophyllene has been reported to have anti-inflammatory and anti-bacterial effects. This study investigated the inhibitory effects of β-caryophyllene on H. pylori and its potential role as an alternative gastrointestinal drug. Methods This 8-week, randomized double-blind, placebo-controlled trial categorized subjects into a β-caryophyllene group (33 patients who received 126 mg/day of β-caryophyllene) and a placebo group (33 patients who received a placebo preparation). The inflammation level of H. pylori infiltration and the eradication rates were evaluated endoscopically and with the urea breath test (UBT) in both groups before and after administering the medication. The serum cytokine levels (tumor necrosis factor-α, and interleukin [IL]-1β and IL-6) were compared in both groups before and after administering the medication. Results Complete eradication was not observed in either group. Moreover, there was no significant change in the UBT and updated Sydney score. On the other hand, the β-caryophyllene group showed significant improvement in nausea (p=0.025) and epigastric pain (p=0.018), as well as a decrease in the serum IL-1β levels (p=0.038). Conclusions β-caryophyllene improves dyspepsia symptoms and can be considered a useful supplementary treatment for gastrointestinal disease.
Collapse
Affiliation(s)
- Hyun Ik Shim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Dong Jin Song
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hyuk Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Young Soo Park
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
112
|
Dąbrowski M, Wyrębek P, Trzybiński D, Woźniak K, Grela K. In a Quest for Selectivity Paired with Activity: A Ruthenium Olefin Metathesis Catalyst Bearing an Unsymmetrical Phenanthrene‐Based N‐Heterocyclic Carbene. Chemistry 2020; 26:3782-3794. [DOI: 10.1002/chem.201904549] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/02/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Michał Dąbrowski
- Laboratory of Organometallic SynthesisBiological and Chemical Research CentreFaculty of ChemistryUniversity of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Przemysław Wyrębek
- Laboratory of Organometallic SynthesisBiological and Chemical Research CentreFaculty of ChemistryUniversity of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Damian Trzybiński
- Laboratory of CrystallochemistryBiological and Chemical Research CentreFaculty of ChemistryUniversity of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Krzysztof Woźniak
- Laboratory of CrystallochemistryBiological and Chemical Research CentreFaculty of ChemistryUniversity of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Karol Grela
- Laboratory of Organometallic SynthesisBiological and Chemical Research CentreFaculty of ChemistryUniversity of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| |
Collapse
|
113
|
Maayah ZH, Takahara S, Ferdaoussi M, Dyck JRB. The molecular mechanisms that underpin the biological benefits of full-spectrum cannabis extract in the treatment of neuropathic pain and inflammation. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165771. [PMID: 32201189 DOI: 10.1016/j.bbadis.2020.165771] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
Abstract
Cannabis has been shown to be beneficial in the treatment of pain and inflammatory diseases. The biological effect of cannabis is mainly attributed to two major cannabinoids, tetrahydrocannabinol and cannabidiol. In the majority of studies to-date, a purified tetrahydrocannabinol and cannabidiol alone or in combination have been extensively examined in many studies for the treatment of numerous disorders including pain and inflammation. However, few studies have investigated the biological benefits of full-spectrum cannabis plant extract. Given that cannabis is known to generate a large number of cannabinoids along with numerous other biologically relevant products including terpenes, studies involving purified tetrahydrocannabinol and/or cannabidiol do not consider the potential biological benefits of the full-spectrum cannabis extracts. This may be especially true in the case of cannabis as a potential treatment of pain and inflammation. Herein, we review the pre-clinical physiological and molecular mechanisms in biological systems that are affected by cannabis.
Collapse
Affiliation(s)
- Zaid H Maayah
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shingo Takahara
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mourad Ferdaoussi
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
114
|
Bahi A, Dreyer JL. Environmental enrichment decreases chronic psychosocial stress-impaired extinction and reinstatement of ethanol conditioned place preference in C57BL/6 male mice. Psychopharmacology (Berl) 2020; 237:707-721. [PMID: 31786650 DOI: 10.1007/s00213-019-05408-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/18/2019] [Indexed: 12/27/2022]
Abstract
RATIONALE During the last few decades, alcohol use disorders (AUD) have reached an epidemic prevalence, yet social influences on alcoholism have not been fully addressed. Several factors can modulate alcohol intake. On one hand, stress can reinforce ethanol-induced behaviors and be an important component in AUD and alcoholism. On the other hand, environmental enrichment (EE) has a neuroprotective role and prevents the development of excessive ethanol intake in rodents. However, studies showing the role of EE in chronic psychosocial stress-impaired ethanol-conditioned rewards are nonexistent. AIM The purpose of the current study is to explore the potential protective role of EE on extinction and reinstatement of ethanol-conditioned place preference (EtOH-CPP) following chronic psychosocial stress. METHODS In the first experiment and after the EtOH-CPP test, the mice were subjected to 15 days of chronic stress, then housed in a standard (SE) or enriched environment (EE) while EtOH-CPP extinction was achieved by repeated exposure to the CPP chambers without ethanol injection. In the second experiment and after the EtOH-CPP test, extinction was achieved as described above. Mice were then exposed to chronic stress for 2 weeks before being housed in a SE or EE. EtOH-CPP reinstatement was induced by a single exposure to the conditioning chambers. RESULTS As expected, stress exposure increased anxiety-like behavior and reduced weight gain. More importantly, we found that EE significantly shortened chronic stress-delayed extinction and decreased the reinstatement of EtOH-CPP. CONCLUSION These results support the hypothesis that EE reduces the impact of alcohol-associated environmental stimuli, and hence it may be a general intervention for reducing cue-elicited craving and relapse in humans.
Collapse
Affiliation(s)
- Amine Bahi
- College of Medicine, Ajman University, Ajman, UAE. .,Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE.
| | - Jean-Luc Dreyer
- Division of Biochemistry, Department of Medicine, University of Fribourg, 1700, Fribourg, Switzerland
| |
Collapse
|
115
|
He Y, Galaj E, Bi GH, Wang XF, Gardner E, Xi ZX. β-Caryophyllene, a dietary terpenoid, inhibits nicotine taking and nicotine seeking in rodents. Br J Pharmacol 2020; 177:2058-2072. [PMID: 31883107 DOI: 10.1111/bph.14969] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE β-Caryophyllene (BCP) is a plant-derived terpenoid used as a food additive for many decades. Recent studies indicate that BCP is a cannabinoid CB2 receptor agonist with medical benefits for a number of human diseases. However, little is known about its therapeutic potential for drug abuse and addiction. EXPERIMENT APPROACH We used pharmacological, transgenic, and optogenetic approaches to systematically evaluate the effects of BCP on nicotine-taking and nicotine-seeking behaviour in animal models of drug self-administration, electrical, and optical brain-stimulation reward. KEY RESULTS Systemic administration of BCP dose-dependently inhibited nicotine self-administration and motivation for nicotine seeking in rats and mice. The reduction in nicotine self-administration was blocked by AM630, a selective CB2 receptor antagonist, but not by AM251, a selective CB1 receptor antagonist, suggesting involvement of a CB2 receptor mechanism. Genetic deletion of CB2 receptors in mice blocked the reduction in nicotine self-administration produced only by low doses, but not by high doses, of BCP, suggesting involvement of both CB2 and non-CB2 receptor mechanisms. Furthermore, in the intracranial self-stimulation paradigm, BCP attenuated electrical brain-stimulation reward and nicotine-enhanced brain-stimulation reward in rats. Lastly, BCP also attenuated brain-stimulation reward maintained by optogenetic stimulation of dopaminergic neurons in the ventral tegmental area in DAT-cre mice, suggesting the involvement of a dopamine-dependent mechanism in BCP's action. CONCLUSIONS AND IMPLICATIONS The present findings suggest that BCP has significant anti-nicotine effects via both CB2 and non-CB2 receptor mechanisms and, therefore, deserves further study as a potential new pharmacotherapy for cigarette smoking cessation.
Collapse
Affiliation(s)
- Yi He
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - Ewa Galaj
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - Guo-Hua Bi
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - Xiao-Fei Wang
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - Eliot Gardner
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| |
Collapse
|
116
|
Ligands of the CB2 cannabinoid receptors augment activity of the conventional antidepressant drugs in the behavioural tests in mice. Behav Brain Res 2020; 378:112297. [DOI: 10.1016/j.bbr.2019.112297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 11/19/2022]
|
117
|
Navarrete F, García-Gutiérrez MS, Jurado-Barba R, Rubio G, Gasparyan A, Austrich-Olivares A, Manzanares J. Endocannabinoid System Components as Potential Biomarkers in Psychiatry. Front Psychiatry 2020; 11:315. [PMID: 32395111 PMCID: PMC7197485 DOI: 10.3389/fpsyt.2020.00315] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
The high heterogeneity of psychiatric disorders leads to a lack of diagnostic precision. Therefore, the search of biomarkers is a fundamental aspect in psychiatry to reach a more personalized medicine. The endocannabinoid system (ECS) has gained increasing interest due to its involvement in many different functional processes in the brain, including the regulation of emotions, motivation, and cognition. This article reviews the role of the main components of the ECS as biomarkers in certain psychiatric disorders. Studies carried out in rodents evaluating the effects of pharmacological and genetic manipulation of cannabinoid receptors or endocannabinoids (eCBs) degrading enzymes were included. Likewise, the ECS-related alterations occurring at the molecular level in animal models reproducing some behavioral and/or neuropathological aspects of psychiatric disorders were reviewed. Furthermore, clinical studies evaluating gene or protein alterations in post-mortem brain tissue or in vivo blood, plasma, and cerebrospinal fluid (CSF) samples were analyzed. Also, the results from neuroimaging studies using positron emission tomography (PET) or functional magnetic resonance (fMRI) were included. This review shows the close involvement of cannabinoid receptor 1 (CB1r) in stress regulation and the development of mood disorders [anxiety, depression, bipolar disorder (BD)], in post-traumatic stress disorder (PTSD), as well as in the etiopathogenesis of schizophrenia, attention deficit hyperactivity disorder (ADHD), or eating disorders (i.e. anorexia and bulimia nervosa). On the other hand, recent results reveal the potential therapeutic action of the endocannabinoid tone manipulation by inhibition of eCBs degrading enzymes, as well as by the modulation of cannabinoid receptor 2 (CB2r) activity on anxiolytic, antidepressive, or antipsychotic associated effects. Further clinical research studies are needed; however, current evidence suggests that the components of the ECS may become promising biomarkers in psychiatry to improve, at least in part, the diagnosis and pharmacological treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Rosa Jurado-Barba
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Psicología, Facultad de Educación y Salud, Universidad Camilo José Cela, Madrid, Spain
| | - Gabriel Rubio
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.,Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Psychiatry, Complutense University of Madrid, Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | | | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
118
|
Ferber SG, Namdar D, Hen-Shoval D, Eger G, Koltai H, Shoval G, Shbiro L, Weller A. The "Entourage Effect": Terpenes Coupled with Cannabinoids for the Treatment of Mood Disorders and Anxiety Disorders. Curr Neuropharmacol 2020; 18:87-96. [PMID: 31481004 PMCID: PMC7324885 DOI: 10.2174/1570159x17666190903103923] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022] Open
Abstract
Mood disorders are the most prevalent mental conditions encountered in psychiatric practice. Numerous patients suffering from mood disorders present with treatment-resistant forms of depression, co-morbid anxiety, other psychiatric disorders and bipolar disorders. Standardized essential oils (such as that of Lavender officinalis) have been shown to exert clinical efficacy in treating anxiety disorders. As endocannabinoids are suggested to play an important role in major depression, generalized anxiety and bipolar disorders, Cannabis sativa was suggested for their treatment. The endocannabinoid system is widely distributed throughout the body including the brain, modulating many functions. It is involved in mood and related disorders, and its activity may be modified by exogenous cannabinoids. CB1 and CB2 receptors primarily serve as the binding sites for endocannabinoids as well as for phytocannabinoids, produced by cannabis inflorescences. However, 'cannabis' is not a single compound product but is known for its complicated molecular profile, producing a plethora of phytocannabinoids alongside a vast array of terpenes. Thus, the "entourage effect" is the suggested positive contribution derived from the addition of terpenes to cannabinoids. Here, we review the literature on the effects of cannabinoids and discuss the possibility of enhancing cannabinoid activity on psychiatric symptoms by the addition of terpenes and terpenoids. Possible underlying mechanisms for the anti-depressant and anxiolytic effects are reviewed. These natural products may be an important potential source for new medications for the treatment of mood and anxiety disorders.
Collapse
Affiliation(s)
- Sari Goldstein Ferber
- Psychology Department, Bar-Ilan University, Ramat Gan, Israel
- Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Dvora Namdar
- ARO, Volcani Center, Rishon LeZion 7505101, Israel
| | - Danielle Hen-Shoval
- Psychology Department, Bar-Ilan University, Ramat Gan, Israel
- Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Gilad Eger
- Geha Mental Health Center, Petah Tiqva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Gal Shoval
- Geha Mental Health Center, Petah Tiqva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liat Shbiro
- Geha Mental Health Center, Petah Tiqva, Israel
| | - Aron Weller
- Psychology Department, Bar-Ilan University, Ramat Gan, Israel
- Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
119
|
Murkar A, Cayer C, James J, Durst T, Arnason JT, Sanchez-Vindas PE, Otarola Rojas M, Merali Z. Extract and Active Principal of the Neotropical Vine Souroubea sympetala Gilg. Block Fear Memory Reconsolidation. Front Pharmacol 2019; 10:1496. [PMID: 31956309 PMCID: PMC6951415 DOI: 10.3389/fphar.2019.01496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/19/2019] [Indexed: 01/24/2023] Open
Abstract
Background:Souroubea sympetala Gilg. is a neotropical vine native to Central America, investigated as part of a targeted study of the plant family Marcgraviaceae. Our previous research showed that extract of S. sympetala leaf and small branch extract had anxiolytic effects in animals and acts as an agonist for the GABAA receptor at the benzodiazepine binding site. To date, the potential effects of S. sympetala and its constituents on reconsolidation have not been assessed. Reconsolidation, the process by which formed memories are rendered labile and susceptible to change, may offer a window of opportunity for pharmacological manipulation of learned fear. Here, we assessed the effects of S. sympetala crude extract and isolated phytochemicals (orally administered) on the reconsolidation of conditioned fear. In addition, we explored whether betulin (BE), a closely related molecule to betulinic acid (BA, an active principal component of S. sympetala), has effects on reconsolidation of learned fear and whether BE may synergize with BA to enhance attenuation of learned fear. Method: Male Sprague–Dawley rats received six 1.0-mA continuous foot shocks (contextual training). Twenty-four hours later, rats were re-exposed to the context (but in the absence of foot shocks). Immediately following memory retrieval (recall), rats received oral administration of S. sympetala extract at various doses (8–75 mg/kg) or diazepam (1 mg/kg). In separate experiments, we compared the effects of BA (2 mg/kg), BE (2 mg/kg), and BA + BE (2 mg/kg BA + 2 mg/kg BE). The freezing response was assessed either 24 h later (day 3) or 5 days later (day 7). Effects of phytochemicals on fear expression were also explored using the elevated plus maze paradigm. Results:S. sympetala leaf extract significantly attenuated the reconsolidation of contextual fear at the 25- and 75-mg/kg doses, but not at the 8-mg/kg dose. Furthermore, BA + BE, but not BA or BE alone, attenuated the reconsolidation of learned fear and exerted an anxiolytic-like effect on fear expression.
Collapse
Affiliation(s)
- Anthony Murkar
- The Royal's Institute of Mental Health Research affiliated with the University of Ottawa , Ottawa, ON, Canada.,School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Christian Cayer
- The Royal's Institute of Mental Health Research affiliated with the University of Ottawa , Ottawa, ON, Canada.,School of Psychology, University of Ottawa, Ottawa, ON, Canada.,Centre for Advanced Research in Environmental Genomics, Ottawa-Carleton Institute of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Jon James
- The Royal's Institute of Mental Health Research affiliated with the University of Ottawa , Ottawa, ON, Canada
| | - Tony Durst
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - John T Arnason
- Centre for Advanced Research in Environmental Genomics, Ottawa-Carleton Institute of Biology, University of Ottawa, Ottawa, ON, Canada
| | | | - M Otarola Rojas
- Herbario Juvenal Valerio Rodriguez, Universidad Nacional, Heredia, Costa Rica
| | - Zul Merali
- The Royal's Institute of Mental Health Research affiliated with the University of Ottawa , Ottawa, ON, Canada.,School of Psychology, University of Ottawa, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
120
|
Antidepressant-like effects of β-caryophyllene on restraint plus stress-induced depression. Behav Brain Res 2019; 380:112439. [PMID: 31862467 DOI: 10.1016/j.bbr.2019.112439] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/15/2019] [Accepted: 12/15/2019] [Indexed: 01/02/2023]
Abstract
Chronic stress is depressogenic by altering neurotrophic and neuroinflammatory environments of the organism. The endocannabinoid system controls cognitive and emotional responses related with stress through the interaction with endocannabinoid receptors. β-Caryophyllene (BCP) is a CB2 agonist that exhibited anti-inflammatory, analgesic effects but minimal psychoactive effects. To test if BCP exhibits antidepressant-like action, animals were chronically restrained with additional stressors for 28 days, and BCP (25, 50, 100 mg/kg) was intraperitoneally injected once a day during the stress inflicting period. Then despair related behaviors and hippocampal expression of neurotrophic, inflammatory and cannabinoid receptor levels were measured. To test the effect of BCP on long-term depression, field potentials were measured during the application of lipopolysaccharide and low frequency stimulation. In the tail suspension test and forced swim test, chronic stress-induced despair behaviors were reduced by BCP. Also BCP improved the stress-related changes in the hippocampal expression of COX-2, BDNF, and CB2 receptor expression. In organotypic hippocampal slices, BCP reduced the lipopolysaccharide-induced intensification of the long-term depression. In conclusion, BCP improved chronic stress related behavioral and biochemical changes. These results suggest that BCP may be effective in treating depression and stress related mental illnesses.
Collapse
|
121
|
β-Caryophyllene: A Sesquiterpene with Countless Biological Properties. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9245420] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
β-Caryophyllene (BCP), a natural bicyclic sesquiterpene, is a selective phytocannabinoid agonist of type 2 receptors (CB2-R). It isn’t psychogenic due to the absence of an affinity to cannabinoid receptor type 1 (CB1). Among the various biological activities, BCP exerts anti-inflammatory action via inhibiting the main inflammatory mediators, such as inducible nitric oxide synthase (iNOS), Interleukin 1 beta (IL-1β), Interleukin-6 (IL-6), tumor necrosis factor-alfa (TNF-α), nuclear factor kapp a-light-chain-enhancer of activated B cells (NF-κB), cyclooxygenase 1 (COX-1), cyclooxygenase 2 (COX-2). Peroxisome proliferator-activated receptors alpha (PPAR-α) effects are also mediated by the activation of PPAR-α and PPAR-γ receptors. In detail, many studies, in vitro and in vivo, suggest that the treatment with β-caryophyllene improves the phenotype of animals used to model various inflammatory pathologies, such as nervous system diseases (Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, amyotrophic lateral sclerosis, stroke), atherosclerosis, and tumours (colon, breast, pancreas, lymphoma, melanoma and glioma cancer). Furthermore, pre-clinical data have highlighted that BCP is potentially useful in Streptococcus infections, osteoporosis, steatohepatitis, and exerts anticonvulsant, analgesic, myorelaxing, sedative, and antidepressive effects. BCP is non-toxic in rodents, with a Lethal dose, 50% (LD50) greater than 5000 mg/kg. Nevertheless, it inhibits various cytochrome P450 isoforms (above all, CYP3A4), which metabolise xenobiotics, leading to adverse effects, due to drug levels over therapeutic window. All the reported data have highlighted that both pharmacological and toxicological aspects need to be further investigated with clinical trials.
Collapse
|
122
|
The molecular and cellular mechanisms of depression: a focus on reward circuitry. Mol Psychiatry 2019; 24:1798-1815. [PMID: 30967681 PMCID: PMC6785351 DOI: 10.1038/s41380-019-0415-3] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/18/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Abstract
Depression is a complex disorder that takes an enormous toll on individual health. As affected individuals display a wide variation in their clinical symptoms, the precise neural mechanisms underlying the development of depression remain elusive. Although it is impossible to phenocopy every symptom of human depression in rodents, the preclinical field has had great success in modeling some of the core affective and neurovegetative depressive symptoms, including social withdrawal, anhedonia, and weight loss. Adaptations in select cell populations may underlie these individual depressive symptoms and new tools have expanded our ability to monitor and manipulate specific cell types. This review outlines some of the most recent preclinical discoveries on the molecular and neurophysiological mechanisms in reward circuitry that underlie the expression of behavioral constructs relevant to depressive symptoms.
Collapse
|
123
|
Kfoury N, Scott ER, Orians CM, Ahmed S, Cash SB, Griffin T, Matyas C, Stepp JR, Han W, Xue D, Long C, Robbat A. Plant-Climate Interaction Effects: Changes in the Relative Distribution and Concentration of the Volatile Tea Leaf Metabolome in 2014-2016. FRONTIERS IN PLANT SCIENCE 2019; 10:1518. [PMID: 31824541 PMCID: PMC6882950 DOI: 10.3389/fpls.2019.01518] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/31/2019] [Indexed: 06/08/2023]
Abstract
Climatic conditions affect the chemical composition of edible crops, which can impact flavor, nutrition and overall consumer preferences. To understand these effects, we sampled tea (Camellia sinensis (L.) Kuntze) grown in different environmental conditions. Using a target/nontarget data analysis approach, we detected 564 metabolites from tea grown at two elevations in spring and summer over 3 years in two major tea-producing areas of China. Principal component analysis and partial least squares-discriminant analysis show seasonal, elevational, and yearly differences in tea from Yunnan and Fujian provinces. Independent of location, higher concentrations of compounds with aromas characteristic of farmers' perceptions of high-quality tea were found in spring and high elevation teas. Yunnan teas were distinct from Fujian teas, but the effects of elevation and season were different for the two locations. Elevation was the largest source of metabolite variation in Yunnan yet had no effect in Fujian. In contrast seasonal differences were strong in both locations. Importantly, the year-to-year variation in chemistry at both locations emphasizes the importance of doing multi-year studies, and further highlights the challenge farmers face when trying to produce teas with specific flavor/health (metabolite) profiles.
Collapse
Affiliation(s)
- Nicole Kfoury
- Department of Chemistry, Tufts University, Medford, MA, United States
- Sensory and Science Center, Medford, MA, United States
| | - Eric R. Scott
- Department of Biology, Tufts University, Medford, MA, United States
| | - Colin M. Orians
- Sensory and Science Center, Medford, MA, United States
- Department of Biology, Tufts University, Medford, MA, United States
| | - Selena Ahmed
- Department of Health and Human Development, Montana State University, Bozeman, MT, United States
| | - Sean B. Cash
- Sensory and Science Center, Medford, MA, United States
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - Timothy Griffin
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - Corene Matyas
- Department of Geography, University of Florida, Gainesville, FL, United States
| | - John Richard Stepp
- Department of Anthropology, University of Florida, Gainesville, FL, United States
| | - Wenyan Han
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Dayuan Xue
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Chunlin Long
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Albert Robbat
- Department of Chemistry, Tufts University, Medford, MA, United States
- Sensory and Science Center, Medford, MA, United States
| |
Collapse
|
124
|
Abstract
Terpenes, also known as terpenoids are the largest and most diverse group of naturally occurring compounds. Based on the number of isoprene units they have, they are classified as mono, di, tri, tetra, and sesquiterpenes. They are mostly found in plants and form the major constituent of essential oils from plants. Among the natural products that provide medical benefits for an organism, terpenes play a major and variety of roles. The common plant sources of terpenes are tea, thyme, cannabis, Spanish sage, and citrus fruits (e.g., lemon, orange, mandarin). Terpenes have a wide range of medicinal uses among which antiplasmodial activity is notable as its mechanism of action is similar to the popular antimalarial drug in use—chloroquine. Monoterpenes specifically are widely studied for their antiviral property. With growing incidents of cancer and diabetes in modern world, terpenes also have the potential to serve as anticancer and antidiabetic reagents. Along with these properties, terpenes also allow for flexibility in route of administration and suppression of side effects. Certain terpenes were widely used in natural folk medicine. One such terpene is curcumin which holds anti-inflammatory, antioxidant, anticancer, antiseptic, antiplasmodial, astringent, digestive, diuretic, and many other properties. Curcumin has also become a recent trend in healthy foods and open doors for several medical researches. This chapter summarizes the various terpenes, their sources, medicinal properties, mechanism of action, and the recent studies that are underway for designing terpenes as a lead molecule in the modern medicine.
Collapse
Affiliation(s)
- Nirmal Joshee
- Agricultural Research Station, Fort Valley State University, Fort Valley, GA USA
| | - Sadanand A. Dhekney
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD USA
| | - Prahlad Parajuli
- Department of Neurosurgery, Wayne State University, Detroit, MI USA
| |
Collapse
|
125
|
Lazary J, Eszlari N, Juhasz G, Bagdy G. A functional variant of CB2 receptor gene interacts with childhood trauma and FAAH gene on anxious and depressive phenotypes. J Affect Disord 2019; 257:716-722. [PMID: 31382124 DOI: 10.1016/j.jad.2019.07.083] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 07/10/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Accumulating data suggest that CB2 receptor plays a crucial role in development of anxiety via regulatory function of stress response and neuroimmune crosstalk. Although animal experiments confirm this relationship, relevant human genetic studies on CB2 receptor gene (CNR2) in association with affective phenotype are absent. METHODS CNR2 R63Q and FAAH C385A functional polymorphisms were genotyped of 921 volunteers from the general population. Phenotypic variables were measured by the Zung Self-related Depression Scale (ZSDS), The State-Trait Anxiety Inventory (Trait subscale, STAI-T) and the depressive and anxious subscales of the Brief Symptom Inventory (BSI-DEP and BSI-ANX). Early life trauma was assesssed by the Childhood Trauma Questionnaire (CHQ). Using general linear models we tested possible associations between phenotypic variance and genotype distribution. RESULTS There was a significant main effect of RR genotype of R63Q on ZSDS score (p = 0.007) and a remarkble interacting effect of CHQ and R63Q on scores of ZSDS, STAI-T and BSI-ANX scales (p = 0.009; p = 0.003; p = 0.001; respectively). R allele of R63Q and A allele of FAAH C385A were associated with significantly higher ZSDS, STAI-T and BSI-ANX scores compared to non-risk allele carriers (p = 0.009; p = 0.007; p = 0.007, respectively). The highest phenotypic scores were observed in GxGxE model (pZSDS = 0.04; pBSI-DEP = 0.006; pSTAI-T = 0.001; pBSI-ANX = 3.8 × 10-5). CONCLUSIONS In this first human genetic study on CNR2 and childhood trauma we revealed that dysfunctional CB2 receptor and FAAH can contribute to greater sensitivity for childhood trauma possibly via weaker inhibiton of inflammatory and overactivated HPA axis.
Collapse
Affiliation(s)
- Judit Lazary
- Nyírő Gyula National Institute of Psychiatry and Addictions, Budapest, Hungary; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Science, Semmelweis University, Budapest, Hungary.
| | - Nora Eszlari
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Budapest, Hungary
| | - Gabriella Juhasz
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Science, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Budapest, Hungary; SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Budapest, Hungary; Neuroscience and Psychiatry Unit, Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Gyorgy Bagdy
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Science, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Budapest, Hungary
| |
Collapse
|
126
|
VanDolah HJ, Bauer BA, Mauck KF. Clinicians' Guide to Cannabidiol and Hemp Oils. Mayo Clin Proc 2019; 94:1840-1851. [PMID: 31447137 DOI: 10.1016/j.mayocp.2019.01.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/03/2018] [Accepted: 01/04/2019] [Indexed: 01/05/2023]
Abstract
Cannabidiol (CBD) oils are low tetrahydrocannabinol products derived from Cannabis sativa that have become very popular over the past few years. Patients report relief for a variety of conditions, particularly pain, without the intoxicating adverse effects of medical marijuana. In June 2018, the first CBD-based drug, Epidiolex, was approved by the US Food and Drug Administration for treatment of rare, severe epilepsy, further putting the spotlight on CBD and hemp oils. There is a growing body of preclinical and clinical evidence to support use of CBD oils for many conditions, suggesting its potential role as another option for treating challenging chronic pain or opioid addiction. Care must be taken when directing patients toward CBD products because there is little regulation, and studies have found inaccurate labeling of CBD and tetrahydrocannabinol quantities. This article provides an overview of the scientific work on cannabinoids, CBD, and hemp oil and the distinction between marijuana, hemp, and the different components of CBD and hemp oil products. We summarize the current legal status of CBD and hemp oils in the United States and provide a guide to identifying higher-quality products so that clinicians can advise their patients on the safest and most evidence-based formulations. This review is based on a PubMed search using the terms CBD, cannabidiol, hemp oil, and medical marijuana. Articles were screened for relevance, and those with the most up-to-date information were selected for inclusion.
Collapse
Affiliation(s)
| | - Brent A Bauer
- Section of Integrative Medicine and Health, Mayo Clinic, Rochester, MN
| | - Karen F Mauck
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
127
|
Dougnon G, Ito M. Sedative effects of the essential oil from the leaves of Lantana camara occurring in the Republic of Benin via inhalation in mice. J Nat Med 2019; 74:159-169. [PMID: 31446559 DOI: 10.1007/s11418-019-01358-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/16/2019] [Indexed: 11/29/2022]
Abstract
Lantana camara Linn. (Verbenaceae) is used traditionally for its numerous medicinal properties such as antimalarial, antibacterial, anticancer and anti-inflammatory. In the present study, we investigated the chemical composition of essential oil from the leaves of L. camara (LCEO) occurring in the Republic of Benin (West Africa) in comparison with LCEOs from other regions; evaluated its sedative effects in mice via inhalation administration; and identified the compounds responsible for activity. LCEO was extracted by hydrodistillation and chemical analyses of the oil were performed by GC and GC/MS. The oil was dominated by monoterpene hydrocarbons (60.58%) and oxygenated monoterpenes (33.39%), among which sabinene (38.81%) and 1,8-cineole (28.90%) were the most abundant. LCEO administered via inhalation to mice significantly decreased locomotor activity in a dose-dependent manner, mainly at the doses of 0.0004 and 0.04 mg per 400 μL of triethyl citrate (TEC). The oil was fractionated to give two fractions, which were further investigated, and revealed that both sabinene and 1,8-cineole were the principal active compounds. The results of the present study indicated that via inhalation administration, LCEO and its main constituents could be considered as promising candidates for the management of dementia, insomnia, attention deficit hyperactivity disorder and other central nervous system-associated diseases.
Collapse
Affiliation(s)
- Godfried Dougnon
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Michiho Ito
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
128
|
Zhang J, He Y, Jiang X, Jiang H, Shen J. Nature brings new avenues to the therapy of central nervous system diseases—An overview of possible treatments derived from natural products. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1332-1367. [DOI: 10.1007/s11427-019-9587-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
|
129
|
Murkar A, Kent P, Cayer C, James J, Durst T, Merali Z. Cannabidiol and the Remainder of the Plant Extract Modulate the Effects of Δ9-Tetrahydrocannabinol on Fear Memory Reconsolidation. Front Behav Neurosci 2019; 13:174. [PMID: 31417379 PMCID: PMC6686031 DOI: 10.3389/fnbeh.2019.00174] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 07/15/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Δ9-Tetrahydrocannabinol (THC, a CB1 receptor agonist) and Cannabidiol (CBD, a non-competitive antagonist of endogenous CB1 and CB2 ligands) are two primary components of Cannabis species, and may modulate fear learning in mammals. The CB1 receptor is widely distributed throughout the cortex and some limbic regions typically associated with fear learning. Humans with posttraumatic disorder (PTSD) have widespread upregulation of CB1 receptor density and reduced availability of endogenous cannabinoid anandamide, suggesting a role for the endocannabinoid system in PTSD. Pharmacological blockade of memory reconsolidation following recall of a conditioned response modulates the expression of learned fear and may represent a viable target for the development of new treatments for PTSD. In this study, we focused on assessing the impact of the key compounds of the marijuana plant both singly and, more importantly, in concert on attenuation of learned fear. Specifically, we assessed the impact of THC, CBD, and/or the remaining plant materials (post-extraction; background material), on reconsolidation of learned fear. Method: Male Sprague-Dawley rats received six 1.0 mA continuous foot shocks (contextual training). Twenty-four hours later, rats were re-exposed to the context. Immediately following memory retrieval (recall) rats received oral administration of low dose THC, high dose THC, CBD, CBD + low THC, CBD + high THC [as isolated phytochemicals and, in separate experiments, in combination with plant background material (BM)]. Rodents were tested for freezing response context re-exposure at 24 h and 7 days following training. Results: CBD alone, but not THC alone, significantly attenuated fear memory reconsolidation when administered immediately after recall. The effect persisted for at least 7 days. A combination of CBD and THC also attenuated the fear response. Plant BM also significantly attenuated reconsolidation of learned fear both on its own and in combination with THC and CBD. Finally, THC attenuated reconsolidation of learned fear only when co-administered with CBD or plant BM. Conclusion: CBD may provide a novel treatment strategy for targeting fear-memories. Furthermore, plant BM also significantly attenuated the fear response. However, whereas THC alone had no significant effects, its effects were modulated by the addition of other compounds. Future research should investigate some of the other components present in the plant BM (such as terpenes) for their effects alone, or in combination with isolated pure cannabinoids, on fear learning.
Collapse
Affiliation(s)
- Anthony Murkar
- The Royal's Institute of Mental Health Research affiliated with the University of Ottawa, Ottawa, ON, Canada
| | - Pam Kent
- The Royal's Institute of Mental Health Research affiliated with the University of Ottawa, Ottawa, ON, Canada
| | - Christian Cayer
- The Royal's Institute of Mental Health Research affiliated with the University of Ottawa, Ottawa, ON, Canada.,Centre for Advanced Research in Environmental Genomics, Ottawa-Carleton Institute of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Jon James
- The Royal's Institute of Mental Health Research affiliated with the University of Ottawa, Ottawa, ON, Canada
| | - Tony Durst
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Zul Merali
- The Royal's Institute of Mental Health Research affiliated with the University of Ottawa, Ottawa, ON, Canada.,Department of Neuroscience, Faculty of Science, Carleton University, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, School of Psychology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
130
|
Baron EP. Medicinal Properties of Cannabinoids, Terpenes, and Flavonoids in Cannabis, and Benefits in Migraine, Headache, and Pain: An Update on Current Evidence and Cannabis Science. Headache 2019; 58:1139-1186. [PMID: 30152161 DOI: 10.1111/head.13345] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Comprehensive literature reviews of historical perspectives and evidence supporting cannabis/cannabinoids in the treatment of pain, including migraine and headache, with associated neurobiological mechanisms of pain modulation have been well described. Most of the existing literature reports on the cannabinoids Δ9 -tetrahydrocannabinol (THC) and cannabidiol (CBD), or cannabis in general. There are many cannabis strains that vary widely in the composition of cannabinoids, terpenes, flavonoids, and other compounds. These components work synergistically to produce wide variations in benefits, side effects, and strain characteristics. Knowledge of the individual medicinal properties of the cannabinoids, terpenes, and flavonoids is necessary to cross-breed strains to obtain optimal standardized synergistic compositions. This will enable targeting individual symptoms and/or diseases, including migraine, headache, and pain. OBJECTIVE Review the medical literature for the use of cannabis/cannabinoids in the treatment of migraine, headache, facial pain, and other chronic pain syndromes, and for supporting evidence of a potential role in combatting the opioid epidemic. Review the medical literature involving major and minor cannabinoids, primary and secondary terpenes, and flavonoids that underlie the synergistic entourage effects of cannabis. Summarize the individual medicinal benefits of these substances, including analgesic and anti-inflammatory properties. CONCLUSION There is accumulating evidence for various therapeutic benefits of cannabis/cannabinoids, especially in the treatment of pain, which may also apply to the treatment of migraine and headache. There is also supporting evidence that cannabis may assist in opioid detoxification and weaning, thus making it a potential weapon in battling the opioid epidemic. Cannabis science is a rapidly evolving medical sector and industry with increasingly regulated production standards. Further research is anticipated to optimize breeding of strain-specific synergistic ratios of cannabinoids, terpenes, and other phytochemicals for predictable user effects, characteristics, and improved symptom and disease-targeted therapies.
Collapse
Affiliation(s)
- Eric P Baron
- Department of Neurology, Center for Neurological Restoration - Headache and Chronic Pain Medicine, Cleveland Clinic Neurological Institute, Cleveland, OH, 44195, USA
| |
Collapse
|
131
|
Bittencourt GM, Firmiano DM, Fachini RP, Lacaz-Ruiz R, Fernandes AM, Oliveira AL. Application of Green Technology for the Acquisition of Extracts of Araçá (Psidium grandifolium Mart. ex DC.) Using Supercritical CO 2 and Pressurized Ethanol: Characterization and Analysis of Activity. J Food Sci 2019; 84:1297-1307. [PMID: 31116886 DOI: 10.1111/1750-3841.14584] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/01/2019] [Accepted: 02/28/2019] [Indexed: 12/20/2022]
Abstract
Brazil is home to a wide variety of flora, including several lesser known species, such as araçá that were processed in this study using two green technologies consecutively: supercritical fluid extraction (SFE) for nonpolar fraction and pressurized liquid extraction. For polar fraction, the experiments followed a central composite design involving ethanol as solvent, with temperature and static time in each bath as independent variables. Both extracts were analyzed for antioxidant and antimicrobial activities. Total phenolics content (TPC) was determined for all ethanol extracts. In the araçá essential oil (AEO) obtained by SFE, the extraction yield was 2.33%. The three major compounds of AEO were α-pinene (20.75%), p-cymene (20.50%), and o-cymene (20.05%). In ethanol extracts, the high yield (14.49%) was obtained at 74 °C/6 min and the major TPC (136.95 mg GAE/100 g) at 60 °C/9 min. Ethanol extracts presented good antioxidant activity (EC50 = 6.37 mg/mL) at 74 °C/6 min. AEO was unable to reduce DPPH• concentration by 50%. Both extract types presented an inhibitory effect against Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus cereus, while only the ethanol extracts presented effect against Listeria monocytogenes. This work had the aim to present the innovation of the use of a whole typical Brazilian fruit that gives rise to extracts with excellent properties for employment in both the pharmaceutical and food industries.
Collapse
Affiliation(s)
- G M Bittencourt
- Laboratory of High Pressure Technology and Natural Products, Dept. of Food Engineering, Faculty of Animal Science and Food Engineering, Univ. of São Paulo (LTAPPN/ZEA/FZEA/USP), Avenida Duque de Caxias Norte, 225, Mailbox 23, Pirassununga, SP, CEP: 13635-900, Brazil
| | - D M Firmiano
- Laboratory of High Pressure Technology and Natural Products, Dept. of Food Engineering, Faculty of Animal Science and Food Engineering, Univ. of São Paulo (LTAPPN/ZEA/FZEA/USP), Avenida Duque de Caxias Norte, 225, Mailbox 23, Pirassununga, SP, CEP: 13635-900, Brazil
| | - R P Fachini
- Laboratory of High Pressure Technology and Natural Products, Dept. of Food Engineering, Faculty of Animal Science and Food Engineering, Univ. of São Paulo (LTAPPN/ZEA/FZEA/USP), Avenida Duque de Caxias Norte, 225, Mailbox 23, Pirassununga, SP, CEP: 13635-900, Brazil
| | - R Lacaz-Ruiz
- Dept. of Basic Sciences, Faculty of Animal Science and Food Engineering, Univ. of São Paulo (ZAB/FZEA/USP), Avenida Duque de Caxias Norte, 225, Mailbox 23, Pirassununga, SP, CEP: 13635-900, Brazil
| | - A M Fernandes
- Dept. of Veterinary Medicine, Faculty of Animal Science and Food Engineering, Univ. of São Paulo (ZMV/FZEA/USP), Avenida Duque de Caxias Norte, 225, Mailbox 23, Pirassununga, SP, CEP: 13635-900, Brazil
| | - A L Oliveira
- Laboratory of High Pressure Technology and Natural Products, Dept. of Food Engineering, Faculty of Animal Science and Food Engineering, Univ. of São Paulo (LTAPPN/ZEA/FZEA/USP), Avenida Duque de Caxias Norte, 225, Mailbox 23, Pirassununga, SP, CEP: 13635-900, Brazil
| |
Collapse
|
132
|
Arain A, Hussain Sherazi ST, Mahesar SA, Sirajuddin. Essential Oil From Psidium guajava Leaves: An Excellent Source of β-Caryophyllene. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19843007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The purpose of this study was to investigate the chemical composition of the essential oil extracted from Psidium guajava leaves and to explore the medicinal value of β-caryophyllene in pharmaceutical science. The essential oils of P. guajava leaves were extracted by the hydrodistillation method, using a Clevenger-type apparatus and the chemical composition of essential oils was investigated by gas chromatography–mass spectrometry. The yield of extracted essential oils was 0.6% (w/w) dry weight. The main compounds found in the leaves were β-caryophyllene (20.34%), globulol (8.20%), trans-nerolidol (7.72%), aromadendrene (4.34%), cis-α-bisabolene (3.82%), tetracosane (3.68%), octadecane (3.66%), Z, Z, Z-1,5,9,9-tetramethyl-1,4,7-cycloundecatriene (3.44%), β-bisabolene (3.41%), limonene (3.09%), octacosane (2.88%), δ-cadinene (2.52%), and 1,4-cadadiene (2.04%). The main chemical class of the essential oil was terpenoids, which represent 71.65%, followed by hydrocarbons (26.31%). A total of 50 components were identified, among these β-caryophyllene was found to be dominant, which has great medicinal value, and some other compounds were also identified for the first time in the essential oil of P. guajava leaves.
Collapse
Affiliation(s)
- Anam Arain
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | | | - Sarfaraz Ahmed Mahesar
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Sirajuddin
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| |
Collapse
|
133
|
Aguilar-Ávila DS, Flores-Soto ME, Tapia-Vázquez C, Pastor-Zarandona OA, López-Roa RI, Viveros-Paredes JM. β-Caryophyllene, a Natural Sesquiterpene, Attenuates Neuropathic Pain and Depressive-Like Behavior in Experimental Diabetic Mice. J Med Food 2019; 22:460-468. [DOI: 10.1089/jmf.2018.0157] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
| | - Mario Eduardo Flores-Soto
- Laboratory of Cellular and Molecular Neurobiology, Mexican Social Security Institute (IMSS), Guadalajara, Mexico
| | - Carolina Tapia-Vázquez
- Laboratory of Research and Pharmaceutical Development, University of Guadalajara, Guadalajara, Mexico
| | | | - Rocío Ivette López-Roa
- Laboratory of Research and Pharmaceutical Development, University of Guadalajara, Guadalajara, Mexico
| | | |
Collapse
|
134
|
Barbosa Méndez S, Salazar-Juárez A. Mirtazapine attenuates anxiety- and depression-like behaviors in rats during cocaine withdrawal. J Psychopharmacol 2019; 33:589-605. [PMID: 31012359 DOI: 10.1177/0269881119840521] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Anxiety and depression, key symptoms of the cocaine withdrawal syndrome in human addicts, are considered the main factors that precipitate relapse in chronic cocaine addiction. Preclinical studies have found that rodents exposed to different withdrawal periods show an increase in anxiety and depressive-like behavior. Mirtazapine - a tetracyclic medication - is used primarily to treat depression and, sometimes, anxiety. It has also successfully improved withdrawal symptoms in drug-dependent patients. AIM This study sought to determine whether chronic dosing of mirtazapine during cocaine withdrawal reduced depression- and anxiety-like behaviors that characterize cocaine withdrawal in animals. METHODS Cocaine pre-treated Wistar rats were subjected to a 60-day cocaine withdrawal period during which depression- and anxiety-like behaviors were evaluated in open field tests (OFT), the elevated plus-maze (EPM), the light-dark box test (LDT), the forced swimming test (FST) and spontaneous locomotor activity (SLA). RESULTS We found that chronic dosing with different doses of mirtazapine (30 and 60 mg/kg) decreased depression- and anxiety-like behaviors induced by different doses of cocaine (10, 20 and 40 mg/kg) during the 60-day cocaine withdrawal. INTERPRETATION Our results suggest that the pharmacological effect of mirtazapine on its target sites of action (α2-adrenergic and 5-HT2A and 5-HT3 receptors) within the brain may improve depression- and anxiety-like behaviors for long periods. CONCLUSION Therefore, the findings support the use of mirtazapine as a potentially effective therapy to reduce anxiety and depressive-like behavior during cocaine withdrawal.
Collapse
Affiliation(s)
- Susana Barbosa Méndez
- Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, cuidad de México, Mexico
| | - Alberto Salazar-Juárez
- Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, cuidad de México, Mexico
| |
Collapse
|
135
|
Rodrigues RS, Lourenço DM, Paulo SL, Mateus JM, Ferreira MF, Mouro FM, Moreira JB, Ribeiro FF, Sebastião AM, Xapelli S. Cannabinoid Actions on Neural Stem Cells: Implications for Pathophysiology. Molecules 2019; 24:E1350. [PMID: 30959794 PMCID: PMC6480122 DOI: 10.3390/molecules24071350] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
With the increase of life expectancy, neurodegenerative disorders are becoming not only a health but also a social burden worldwide. However, due to the multitude of pathophysiological disease states, current treatments fail to meet the desired outcomes. Therefore, there is a need for new therapeutic strategies focusing on more integrated, personalized and effective approaches. The prospect of using neural stem cells (NSC) as regenerative therapies is very promising, however several issues still need to be addressed. In particular, the potential actions of pharmacological agents used to modulate NSC activity are highly relevant. With the ongoing discussion of cannabinoid usage for medical purposes and reports drawing attention to the effects of cannabinoids on NSC regulation, there is an enormous, and yet, uncovered potential for cannabinoids as treatment options for several neurological disorders, specifically when combined with stem cell therapy. In this manuscript, we review in detail how cannabinoids act as potent regulators of NSC biology and their potential to modulate several neurogenic features in the context of pathophysiology.
Collapse
Affiliation(s)
- Rui S Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Diogo M Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Sara L Paulo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Joana M Mateus
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Miguel F Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Francisco M Mouro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - João B Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Filipa F Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| |
Collapse
|
136
|
Hodges EL, Ashpole NM. Aging circadian rhythms and cannabinoids. Neurobiol Aging 2019; 79:110-118. [PMID: 31035036 DOI: 10.1016/j.neurobiolaging.2019.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/11/2019] [Accepted: 03/17/2019] [Indexed: 01/04/2023]
Abstract
Numerous aspects of mammalian physiology exhibit cyclic daily patterns known as circadian rhythms. However, studies in aged humans and animals indicate that these physiological rhythms are not consistent throughout the life span. The simultaneous development of disrupted circadian rhythms and age-related impairments suggests a shared mechanism, which may be amenable to therapeutic intervention. Recently, the endocannabinoid system has emerged as a complex signaling network, which regulates numerous aspects of circadian physiology relevant to the neurobiology of aging. Agonists of cannabinoid receptor-1 (CB1) have consistently been shown to decrease neuronal activity, core body temperature, locomotion, and cognitive function. Paradoxically, several lines of evidence now suggest that very low doses of cannabinoids are beneficial in advanced age. One potential explanation for this phenomenon is that these drugs exhibit hormesis-a biphasic dose-response wherein low doses produce the opposite effects of higher doses. Therefore, it is important to determine the dose-, age-, and time-dependent effects of these substances on the regulation of circadian rhythms and other processes dysregulated in aging. This review highlights 3 fields-biological aging, circadian rhythms, and endocannabinoid signaling-to critically assess the therapeutic potential of endocannabinoid modulation in aged individuals. If the hormetic properties of exogenous cannabinoids are confirmed, we conclude that precise administration of these compounds may bidirectionally entrain central and peripheral circadian clocks and benefit multiple aspects of aging physiology.
Collapse
Affiliation(s)
- Erik L Hodges
- Pharmacology Division, Department of BioMolecular Sciences, University of Mississippi School of Pharmacy, Oxford, MS, USA
| | - Nicole M Ashpole
- Pharmacology Division, Department of BioMolecular Sciences, University of Mississippi School of Pharmacy, Oxford, MS, USA.
| |
Collapse
|
137
|
Borgonetti V, Governa P, Montopoli M, Biagi M. Cannabis sativa L. Constituents and Their Role in Neuroinflammation. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1573407214666180703130525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The interest in Cannabis sativa L. phytocomplex as a medicinal tool is a recently-emerging topic. Neurodegenerative diseases represent a promising field of application for cannabis and its preparations, as most of this pathologic conditions relies on an inflammatory etiology. Several cannabis constituents display anti-inflammatory effects targeting multiple pathways. In this review, a comprehensive overview of the available literature on C. sativa constituents activities in neuroinflammation is given. On the basis that the anti-inflammatory activity of cannabis is not attributable to only a single constituent, we discuss the possible advantages of administering the whole phytocomplex in order to fully exploit the “entourage effect” in neuroinflammatory-related conditions.
Collapse
Affiliation(s)
| | | | | | - Marco Biagi
- SIFITLab, Via Laterina 8, 53100 Siena, Italy
| |
Collapse
|
138
|
Khakpai F, Ebrahimi-Ghiri M, Alijanpour S, Zarrindast MR. Ketamine-induced antidepressant like effects in mice: A possible involvement of cannabinoid system. Biomed Pharmacother 2019; 112:108717. [PMID: 30970516 DOI: 10.1016/j.biopha.2019.108717] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023] Open
Abstract
The purpose of this study was to explore the possible interaction between ketamine and cannabinoid system in the modulation of depression-related responses using the forced swimming test (FST), tail suspension test (TST) and open-field test (OFT) in mice. Our results revealed that intra-peritoneal (i.p.) injection of ketamine (5 and 10 mg/kg), a non-competitive NMDA antagonist, dose-dependently produced antidepressant-like effect in the FST. Moreover, i.p. administration of both CB1 and CB2 receptor drugs: ACPA (1 mg/kg; CB1 receptor agonist), AM251 (1 mg/kg; CB1 receptor antagonist), GP1a (2 mg/kg; CB2 receptor agonist) and AM630 (0.5 mg/kg; CB2 receptor antagonist) exhibited antidepressant action. Interestingly, the concomitant administration of ineffective doses of ketamine and cannabinoid receptor antagonists provoked the antidepressant-like effects as compared to control group. It should be considered, all above mentioned doses of drugs could not change locomotor activity in the OFT. It seems that possible interaction between ketamine and cannabinoid system may modulate depression-related behavior.
Collapse
Affiliation(s)
- Fatemeh Khakpai
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
139
|
Youssef DA, El-Fayoumi HM, Mahmoud MF. Beta-caryophyllene alleviates diet-induced neurobehavioral changes in rats: The role of CB2 and PPAR-γ receptors. Biomed Pharmacother 2019; 110:145-154. [DOI: 10.1016/j.biopha.2018.11.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/30/2018] [Accepted: 11/10/2018] [Indexed: 11/16/2022] Open
|
140
|
Bahi A, Dreyer JL. Lentiviral-mediated let-7d microRNA overexpression induced anxiolytic- and anti-depressant-like behaviors and impaired dopamine D3 receptor expression. Eur Neuropsychopharmacol 2018; 28:1394-1404. [PMID: 30244920 DOI: 10.1016/j.euroneuro.2018.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/24/2018] [Accepted: 09/05/2018] [Indexed: 12/18/2022]
Abstract
Generalized anxiety and major depression disorders (MDD) are severe debilitating mood disorders whose etiology are not fully understood, but growing evidence indicates that microRNAs (miRNAs) might play a key role in their neuropathophysiological mechanisms. In the current study, we investigate the role of Lethal-7 (let-7d) miRNA, and its direct target dopamine D3 receptor (D3R) gain-of-function, in the hippocampus, in preclinical models of anxiety and depression in mice. For this purpose, we have constructed a lentiviral vector carrying let-7d miRNA and its anxiolytic effect was investigated by employing the open-field (OF) and the elevated plus maze (EPM) tests. The anti-depressant activity was evaluated using the tail suspension and the forced-swim tests (TST & FST). Our results show that let-7d overexpression significantly improved the measures of anxiety in the OF and EPM tests. In addition, let-7d increased the mobility time in the TST and FST. Interestingly, gene expression interaction analysis shows that the D3R mRNA negatively correlates with let-7d expression. In a different set of experiments, we used a tetracycline-inducible (tet-off) lentiviral vector to overexpress D3R to assess its gain-of-function in the hippocampus on anxiety- and depression-like behaviors. In line, we found that in the absence of doxycycline, D3R produced a significant anxiogenic and depressant-like response. Most importantly, these effects were abrogated when mice were fed doxycycline in drinking water. Our results provide the first evidence for an anxiolytic and anti-depressant-like action of let-7d through a potential D3R target-mediated mechanism which might open new avenues for anxiolytic and anti-depressant therapies.
Collapse
Affiliation(s)
- Amine Bahi
- Department of Anatomy, Tawam Medical Campus, United Arab Emirates University, Al Ain, UAE.
| | - Jean-Luc Dreyer
- Division of Biochemistry, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
141
|
Tai S, Vasiljevik T, Sherwood AM, Eddington S, Wilson CD, Prisinzano TE, Fantegrossi WE. Assessment of rimonabant-like adverse effects of purported CB1R neutral antagonist / CB2R agonist aminoalkylindole derivatives in mice. Drug Alcohol Depend 2018; 192:285-293. [PMID: 30300803 PMCID: PMC6475911 DOI: 10.1016/j.drugalcdep.2018.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 01/30/2023]
Abstract
BACKGROUND Cannabinoids may be useful in the treatment of CNS disorders including drug abuse and addiction, where both CB1R antagonists / inverse agonists and CB2R agonists have shown preclinical efficacy. TV-5-249 and TV-6-41, two novel aminoalkylindoles with dual action as neutral CB1R antagonists and CB2R agonists, previously attenuated abuse-related effects of ethanol in mice. PURPOSE To further characterize these drugs, TV-5-249 and TV-6-41 were compared with the CB1R antagonist / inverse agonist rimonabant in assays relevant to adverse effects and cannabinoid withdrawal. PROCEDURES AND FINDINGS The cannabinoid tetrad confirmed that TV-5-249 and TV-6-41 were devoid of CB1R agonist effects at behaviorally-relevant doses, and neither of the novel drugs induced rimonabant-like scratching. Generalized aversive effects were assessed, and rimonabant and TV-5-249 induced taste aversion, but TV-6-41 did not. Schedule-controlled responding and observation of somatic signs were used to assess withdrawal-like effects precipitated by rimonabant or TV-6-41 in mice previously treated with the high-efficacy CB1R agonist JWH-018 or vehicle. Rimonabant and TV-6-41 dose-dependently suppressed response rates in all subjects, but TV-6-41 did so more potently in JWH-018-treated mice than in vehicle-treated mice, while rimonabant equally suppressed responding in both groups. Importantly, rimonabant elicited dramatic withdrawal signs, but TV-6-41 did not. CONCLUSIONS These findings suggest differences in both direct adverse effects and withdrawal-related effects elicited by rimonabant, TV-5-249, and TV-6-41, which could relate to neutral CB1R antagonism, CB2R agonism, or a combination of both. Both mechanisms should be explored and exploited in future drug design efforts to develop pharmacotherapies for drug dependence.
Collapse
Affiliation(s)
- Sherrica Tai
- Department of Pharmacology and Edward F Domino Research Center, University of Michigan Medical School, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Tamara Vasiljevik
- Department of Medicinal Chemistry, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Dr., Lawrence, KS 66045, USA
| | - Alexander M Sherwood
- Department of Medicinal Chemistry, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Dr., Lawrence, KS 66045, USA
| | - Sarah Eddington
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham St., Little Rock, AR 72205, USA
| | - Catheryn D Wilson
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham St., Little Rock, AR 72205, USA
| | - Thomas E Prisinzano
- Department of Medicinal Chemistry, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Dr., Lawrence, KS 66045, USA
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham St., Little Rock, AR 72205, USA.
| |
Collapse
|
142
|
Bahi A, Dreyer JL. Dopamine transporter (DAT) knockdown in the nucleus accumbens improves anxiety- and depression-related behaviors in adult mice. Behav Brain Res 2018; 359:104-115. [PMID: 30367968 DOI: 10.1016/j.bbr.2018.10.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/18/2018] [Accepted: 10/20/2018] [Indexed: 12/11/2022]
Abstract
Many epidemiological and clinical studies have demonstrated a strong comorbidity between anxiety and depression, and a number of experimental studies indicates that the dopamine transporter (DAT) is involved in the pathophysiology of anxiety and depression. However, studies using laboratory animals have yielded inconclusive results. The aim of the present study was to examine the effects of DAT manipulation on anxiety- and depression-like behaviors in mice. For this purpose, animals were stereotaxically injected with DAT siRNA-expressing lentiviral vectors (siDAT) in the caudate putamen (CPu) or in the nucleus accumbens (Nacc) and the behavioral outcomes were assessed using the open-field (OF), elevated-plus maze (EPM), light-dark box (LDB), sucrose preference (SPT), novelty suppressed feeding (NSF), and forced-swim (FST) tests. The results showed that in the Nacc, but not in the CPu, siDAT increased the time spent at the center of the arena and decreased the number of fecal boli in the OF test. In the EPM and LDB tests, Nacc siDAT injection increased the entries and time spent on open arms, and increased the time spent in the light side of the box, respectively, suggesting an anxiolytic-like activity. In addition, siDAT, in the Nacc, induced significant antidepressant-like effects, evidenced by increased sucrose preference, shorter latency to feed in the NSF test, and decreased immobility time in the FST. Most importantly, Pearson's test clearly showed significant correlations between DAT mRNA in the Nacc with anxiety and depression parameters. Overall, these results suggest that low DAT levels, in the Nacc, might act as protective factors against anxiety and depression. Therefore, targeting DAT activity might be a very attractive approach to tackle affective disorders.
Collapse
Affiliation(s)
- Amine Bahi
- Department of Anatomy, Tawam Medical Campus, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Jean-Luc Dreyer
- Division of Biochemistry, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
143
|
Kamal BS, Kamal F, Lantela DE. Cannabis and the Anxiety of Fragmentation-A Systems Approach for Finding an Anxiolytic Cannabis Chemotype. Front Neurosci 2018; 12:730. [PMID: 30405331 PMCID: PMC6204402 DOI: 10.3389/fnins.2018.00730] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/21/2018] [Indexed: 01/08/2023] Open
Abstract
Cannabis sativa is a medicinal herb with a diverse range of chemotypes that can exert both anxiolytic and anxiogenic effects on humans. Medical cannabis patients receiving organically grown cannabis from a single source were surveyed about the effectiveness of cannabis for treating anxiety. Patients rated cannabis as highly effective overall for treating anxiety with an average score of 8.03 on a Likert scale of 0 to 10 (0 = not effective, 10 = extremely effective). Patients also identified which strains they found the most or least effective for relieving their symptoms of anxiety. To find correlations between anxiolytic activity and chemotype, the top four strains voted most and least effective were analyzed by HPLC-MS/MS to quantify cannabinoids and GC-MS to quantify terpenes. Tetrahydrocannabinol (THC) and trans-nerolidol have statistically significant correlations with increased anxiolytic activity. Guiaol, eucalyptol, γ-terpinene, α-phellandrene, 3-carene, and sabinene hydrate all have significant correlations with decreased anxiolytic activity. Further studies are needed to better elucidate the entourage effects that contribute to the anxiolytic properties of cannabis varieties.
Collapse
Affiliation(s)
- Brishna S Kamal
- Whistler Therapeutics, Whistler, BC, Canada.,Whistler Medical Marijuana, Whistler, BC, Canada
| | | | - Daniel E Lantela
- Whistler Therapeutics, Whistler, BC, Canada.,Whistler Medical Marijuana, Whistler, BC, Canada
| |
Collapse
|
144
|
Abukawsar MM, Saleh‐e‐In MM, Ahsan MA, Rahim MM, Bhuiyan MNH, Roy SK, Ghosh A, Naher S. Chemical, pharmacological and nutritional quality assessment of black pepper (Piper nigrumL.) seed cultivars. J Food Biochem 2018. [DOI: 10.1111/jfbc.12590] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Md. Moshfekus Saleh‐e‐In
- Institute of National Analytical Research and Services (INARS), BCSIR Laboratories, Bangladesh Council of Scientific and Industrial Research Dhaka Bangladesh
- Research Centre for Plant Growth and Development, School of Life SciencesUniversity of KwaZulu‐Natal Pietermaritzburg South Africa
- Food Toxicology Research SectionIFSTBangladesh Council of Scientific and Industrial Research Dhaka Bangladesh
| | - Md. Aminul Ahsan
- Institute of National Analytical Research and Services (INARS), BCSIR Laboratories, Bangladesh Council of Scientific and Industrial Research Dhaka Bangladesh
| | - Md. Matiur Rahim
- Research Centre for Plant Growth and Development, School of Life SciencesUniversity of KwaZulu‐Natal Pietermaritzburg South Africa
- Food Toxicology Research SectionIFSTBangladesh Council of Scientific and Industrial Research Dhaka Bangladesh
| | - Md. Nurul Huda Bhuiyan
- Research Centre for Plant Growth and Development, School of Life SciencesUniversity of KwaZulu‐Natal Pietermaritzburg South Africa
- Food Toxicology Research SectionIFSTBangladesh Council of Scientific and Industrial Research Dhaka Bangladesh
| | - Sudhangshu Kumar Roy
- Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka Bangladesh
| | - Apu Ghosh
- Department of ChemistryJagannath University Dhaka Bangladesh
| | - Shamsun Naher
- Department of ChemistryJagannath University Dhaka Bangladesh
| |
Collapse
|
145
|
Machado KDC, Islam MT, Ali ES, Rouf R, Uddin SJ, Dev S, Shilpi JA, Shill MC, Reza HM, Das AK, Shaw S, Mubarak MS, Mishra SK, Melo-Cavalcante AADC. A systematic review on the neuroprotective perspectives of beta-caryophyllene. Phytother Res 2018; 32:2376-2388. [DOI: 10.1002/ptr.6199] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/25/2018] [Accepted: 08/25/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Keylla da Conceição Machado
- Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Pharmaceutical Sciences; Federal University of Piauí; Teresina Brazil
| | - Muhammad Torequl Islam
- Department for Management of Science and Technology Development; Ton Duc Thang University; Ho Chi Minh City Vietnam
- Faculty of Pharmacy; Ton Duc Thang University; Ho Chi Minh City Vietnam
| | - Eunüs S. Ali
- Department of Product Development; Gaco Pharmaceuticals Limited; Dhaka Bangladesh
- Flinders University College of Medicine and Public Health; Bedford Park 5042 Adelaide Australia
| | - Razina Rouf
- Department of Pharmacy, Life Science Faculty; Bangabandhu Sheikh Mujibur Rahman Science and Technology University; Gopalganj Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School; Khulna University; Khulna Bangladesh
| | - Shrabanti Dev
- Pharmacy Discipline, Life Science School; Khulna University; Khulna Bangladesh
| | - Jamil A. Shilpi
- Pharmacy Discipline, Life Science School; Khulna University; Khulna Bangladesh
| | - Manik Chandra Shill
- Department of Pharmaceutical Sciences; North South University; Dhaka Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences; North South University; Dhaka Bangladesh
| | - Asish Kumar Das
- Pharmacy Discipline, Life Science School; Khulna University; Khulna Bangladesh
| | - Subrata Shaw
- Broad Institute of MIT and Harvard; 415 Main Street Cambridge MA 02142 USA
| | | | - Siddhartha Kumar Mishra
- Cancer Biology Laboratory, School of Biological Sciences (Zoology); Dr. Harisingh Gour Central University; Sagar India
| | | |
Collapse
|
146
|
Nuutinen T. Medicinal properties of terpenes found in Cannabis sativa and Humulus lupulus. Eur J Med Chem 2018; 157:198-228. [PMID: 30096653 DOI: 10.1016/j.ejmech.2018.07.076] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022]
Abstract
Cannabaceae plants Cannabis sativa L. and Humulus lupulus L. are rich in terpenes - both are typically comprised of terpenes as up to 3-5% of the dry-mass of the female inflorescence. Terpenes of cannabis and hops are typically simple mono- and sesquiterpenes derived from two and three isoprene units, respectively. Some terpenes are relatively well known for their potential in biomedicine and have been used in traditional medicine for centuries, while others are yet to be studied in detail. The current, comprehensive review presents terpenes found in cannabis and hops. Terpenes' medicinal properties are supported by numerous in vitro, animal and clinical trials and show anti-inflammatory, antioxidant, analgesic, anticonvulsive, antidepressant, anxiolytic, anticancer, antitumor, neuroprotective, anti-mutagenic, anti-allergic, antibiotic and anti-diabetic attributes, among others. Because of the very low toxicity, these terpenes are already widely used as food additives and in cosmetic products. Thus, they have been proven safe and well-tolerated.
Collapse
Affiliation(s)
- Tarmo Nuutinen
- Department of Environmental and Biological Sciences, Univerisity of Eastern Finland (UEF), Finland; Department of Physics and Mathematics, UEF, Finland.
| |
Collapse
|
147
|
Chemical Composition and Antioxidant Activity of the Essential Oil from Salvia kiangsiensis. Chem Nat Compd 2018. [DOI: 10.1007/s10600-018-2418-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
148
|
Baron EP, Lucas P, Eades J, Hogue O. Patterns of medicinal cannabis use, strain analysis, and substitution effect among patients with migraine, headache, arthritis, and chronic pain in a medicinal cannabis cohort. J Headache Pain 2018; 19:37. [PMID: 29797104 PMCID: PMC5968020 DOI: 10.1186/s10194-018-0862-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/04/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Medicinal cannabis registries typically report pain as the most common reason for use. It would be clinically useful to identify patterns of cannabis treatment in migraine and headache, as compared to arthritis and chronic pain, and to analyze preferred cannabis strains, biochemical profiles, and prescription medication substitutions with cannabis. METHODS Via electronic survey in medicinal cannabis patients with headache, arthritis, and chronic pain, demographics and patterns of cannabis use including methods, frequency, quantity, preferred strains, cannabinoid and terpene profiles, and prescription substitutions were recorded. Cannabis use for migraine among headache patients was assessed via the ID Migraine™ questionnaire, a validated screen used to predict the probability of migraine. RESULTS Of 2032 patients, 21 illnesses were treated with cannabis. Pain syndromes accounted for 42.4% (n = 861) overall; chronic pain 29.4% (n = 598;), arthritis 9.3% (n = 188), and headache 3.7% (n = 75;). Across all 21 illnesses, headache was a symptom treated with cannabis in 24.9% (n = 505). These patients were given the ID Migraine™ questionnaire, with 68% (n = 343) giving 3 "Yes" responses, 20% (n = 102) giving 2 "Yes" responses (97% and 93% probability of migraine, respectively). Therefore, 88% (n = 445) of headache patients were treating probable migraine with cannabis. Hybrid strains were most preferred across all pain subtypes, with "OG Shark" the most preferred strain in the ID Migraine™ and headache groups. Many pain patients substituted prescription medications with cannabis (41.2-59.5%), most commonly opiates/opioids (40.5-72.8%). Prescription substitution in headache patients included opiates/opioids (43.4%), anti-depressant/anti-anxiety (39%), NSAIDs (21%), triptans (8.1%), anti-convulsants (7.7%), muscle relaxers (7%), ergots (0.4%). CONCLUSIONS Chronic pain was the most common reason for cannabis use, consistent with most registries. The majority of headache patients treating with cannabis were positive for migraine. Hybrid strains were preferred in ID Migraine™, headache, and most pain groups, with "OG Shark", a high THC (Δ9-tetrahydrocannabinol)/THCA (tetrahydrocannabinolic acid), low CBD (cannabidiol)/CBDA (cannabidiolic acid), strain with predominant terpenes β-caryophyllene and β-myrcene, most preferred in the headache and ID Migraine™ groups. This could reflect the potent analgesic, anti-inflammatory, and anti-emetic properties of THC, with anti-inflammatory and analgesic properties of β-caryophyllene and β-myrcene. Opiates/opioids were most commonly substituted with cannabis. Prospective studies are needed, but results may provide early insight into optimizing crossbred cannabis strains, synergistic biochemical profiles, dosing, and patterns of use in the treatment of headache, migraine, and chronic pain syndromes.
Collapse
Affiliation(s)
- Eric P. Baron
- Center for Neurological Restoration - Headache and Chronic Pain Medicine, Department of Neurology, Cleveland Clinic Neurological Institute, 10524 Euclid Avenue, C21, Cleveland, OH 44195 USA
| | - Philippe Lucas
- Tilray, 1100 Maughan Rd, Nanaimo, BC V9X 1J2 Canada
- Social Dimensions of Health, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2 Canada
- Canadian Institute for Substance Use Research, 2300 McKenzie Ave, Victoria, BC V8N 5M8 Canada
| | - Joshua Eades
- Tilray, 1100 Maughan Rd, Nanaimo, BC V9X 1J2 Canada
| | - Olivia Hogue
- Section of Biostatistics, Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, JJN3, Cleveland, OH 44195 USA
| |
Collapse
|
149
|
Kfoury N, Morimoto J, Kern A, Scott ER, Orians CM, Ahmed S, Griffin T, Cash SB, Stepp JR, Xue D, Long C, Robbat A. Striking changes in tea metabolites due to elevational effects. Food Chem 2018; 264:334-341. [PMID: 29853384 DOI: 10.1016/j.foodchem.2018.05.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/30/2018] [Accepted: 05/06/2018] [Indexed: 10/17/2022]
Abstract
Climate effects on crop quality at the molecular level are not well-understood. Gas and liquid chromatography-mass spectrometry were used to measure changes of hundreds of compounds in tea at different elevations in Yunnan Province, China. Some increased in concentration while others decreased by 100's of percent. Orthogonal projection to latent structures-discriminant analysis revealed compounds exhibiting analgesic, antianxiety, antibacterial, anticancer, antidepressant, antifungal, anti-inflammatory, antioxidant, anti-stress, and cardioprotective properties statistically (p = 0.003) differentiated high from low elevation tea. Also, sweet, floral, honey-like notes were higher in concentration in the former while the latter displayed grassy, hay-like aroma. In addition, multivariate analysis of variance showed low elevation tea had statistically (p = 0.0062) higher concentrations of caffeine, epicatechin gallate, gallocatechin, and catechin; all bitter compounds. Although volatiles represent a small fraction of the total mass, this is the first comprehensive report illustrating how normal variations in temperature, 5 °C, due to elevational effects impact tea quality.
Collapse
Affiliation(s)
- Nicole Kfoury
- Department of Chemistry, Tufts University, Medford, MA 02155, USA; Tufts University Sensory and Science Center, Medford, MA 02155, USA
| | - Joshua Morimoto
- Department of Chemistry, Tufts University, Medford, MA 02155, USA
| | - Amanda Kern
- Tufts University Sensory and Science Center, Medford, MA 02155, USA
| | - Eric R Scott
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Colin M Orians
- Tufts University Sensory and Science Center, Medford, MA 02155, USA; Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Selena Ahmed
- Department of Health and Human Development, Montana State University, Bozeman, MT 59717, USA
| | - Timothy Griffin
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| | - Sean B Cash
- Tufts University Sensory and Science Center, Medford, MA 02155, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| | - John Richard Stepp
- Department of Anthropology, University of Florida, Gainesville, FL 32611, USA
| | - Dayuan Xue
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Chunlin Long
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Albert Robbat
- Department of Chemistry, Tufts University, Medford, MA 02155, USA; Tufts University Sensory and Science Center, Medford, MA 02155, USA.
| |
Collapse
|
150
|
Tchekalarova J, da Conceição Machado K, Gomes Júnior AL, de Carvalho Melo Cavalcante AA, Momchilova A, Tzoneva R. Pharmacological characterization of the cannabinoid receptor 2 agonist, β-caryophyllene on seizure models in mice. Seizure 2018; 57:22-26. [PMID: 29547827 DOI: 10.1016/j.seizure.2018.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/19/2018] [Accepted: 03/09/2018] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Activation of CB1 receptors, produces anticonvulsant effect accompanied by memory disturbance both in animal seizure tests and in patients with epilepsy. Few reports considered the role of CB2 receptor on seizure susceptibility and cognitive functions. The aim of the present study was to explore the effect of a selective CB2 receptor agonist β-caryophyllene (BCP) in models of seizures and cognition in mice. METHODS Dose-dependent effects of BCP was studied in maximal electroshock seizure (MES) test, subcutaneous pentylenetetrazole (scPTZ) test and Morris water maze test. Phenytoin and diazepam were used as reference drugs in seizure tests. The effect of sub-chronic treatment with BCP for 7 days (50 and 100 mg kg-1) was assessed on status epilepticus (SE) induced by kainic acid (KA) model and oxidative stress through measurement of malondialdehyde (MDA) level in the hippocampus. The acute neurotoxicity was determined by a rotarod test. RESULTS The BCP exerted a protection in the MES test at the lowest dose of 30 mg kg-1 at the 4-h interval tested comparable to that of the referent drug phenytoin. The CB2 agonist was ineffective in the scPTZ test. The BCP displayed no neurotoxicity in the rotarod test. The BCP decreased the seizure scores in the KA-induced SE, which effect correlated with a diminished lipid peroxidation. The CB2 agonist exerted a dose-dependent decrease of latency to cross the target area during the three days of testing in the Morris water maze test. CONCLUSION Our results suggest that the CB2 receptor agonists might be clinically useful as an adjunct treatment against seizure spread and status epilepticus and concomitant oxidative stress, neurotoxicity and cognitive impairments.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, Sofia, 1113, Bulgaria.
| | - Keylla da Conceição Machado
- Laboratory of Research in Experimental Neurochemistry of the Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil; Laboratory of Research in Toxicological Genetics of the Post-Graduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Antonio Luiz Gomes Júnior
- Laboratory of Research in Experimental Neurochemistry of the Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil; Laboratory of Research in Toxicological Genetics of the Post-Graduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | | | - Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, BAS, Sofia, Bulgaria
| | - Rumyana Tzoneva
- Institute of Biophysics and Biomedical Engineering, BAS, Sofia, Bulgaria
| |
Collapse
|