101
|
Donaldson J, Powell S, Rickards N, Holmans P, Jones L. What is the Pathogenic CAG Expansion Length in Huntington's Disease? J Huntingtons Dis 2021; 10:175-202. [PMID: 33579866 PMCID: PMC7990448 DOI: 10.3233/jhd-200445] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Huntington's disease (HD) (OMIM 143100) is caused by an expanded CAG repeat tract in the HTT gene. The inherited CAG length is known to expand further in somatic and germline cells in HD subjects. Age at onset of the disease is inversely correlated with the inherited CAG length, but is further modulated by a series of genetic modifiers which are most likely to act on the CAG repeat in HTT that permit it to further expand. Longer repeats are more prone to expansions, and this expansion is age dependent and tissue-specific. Given that the inherited tract expands through life and most subjects develop disease in mid-life, this implies that in cells that degenerate, the CAG length is likely to be longer than the inherited length. These findings suggest two thresholds- the inherited CAG length which permits further expansion, and the intracellular pathogenic threshold, above which cells become dysfunctional and die. This two-step mechanism has been previously proposed and modelled mathematically to give an intracellular pathogenic threshold at a tract length of 115 CAG (95% confidence intervals 70- 165 CAG). Empirically, the intracellular pathogenic threshold is difficult to determine. Clues from studies of people and models of HD, and from other diseases caused by expanded repeat tracts, place this threshold between 60- 100 CAG, most likely towards the upper part of that range. We assess this evidence and discuss how the intracellular pathogenic threshold in manifest disease might be better determined. Knowing the cellular pathogenic threshold would be informative for both understanding the mechanism in HD and deploying treatments.
Collapse
Affiliation(s)
- Jasmine Donaldson
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Sophie Powell
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Nadia Rickards
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Peter Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Lesley Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
102
|
Han F, Su D, Qu C. Spinocerebellar ataxia type 40: A case report and literature review. Transl Neurosci 2021; 12:379-384. [PMID: 34721893 PMCID: PMC8525662 DOI: 10.1515/tnsci-2020-0190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/05/2021] [Accepted: 09/22/2021] [Indexed: 12/22/2022] Open
Abstract
Spinocerebellar ataxias (SCAs) are a group of neurodegenerative diseases with ataxia as the main clinical manifestation. The phenotypes, gene mutations, and involved sites of different subtypes show a high degree of heterogeneity. The incidence of SCA varies greatly among different subtypes and the case of SCA40 is extremely rare. The aim of this study is to report a rare case of SCA40 and systematically review the incidence, gene mutation, and phenotype of SCAs, especially SCA40.
Collapse
Affiliation(s)
- Fengyue Han
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250100, China
| | - Dan Su
- Department of Neurology, Jinan Shizhong District People's Hospital, Jinan, Shandong, 250100, China
| | - Chuanqiang Qu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250100, China
| |
Collapse
|
103
|
Elyoseph Z, Mintz M, Vakil E, Zaltzman R, Gordon CR. Selective Procedural Memory Impairment but Preserved Declarative Memory in Spinocerebellar Ataxia Type 3. THE CEREBELLUM 2020; 19:226-234. [PMID: 31912433 DOI: 10.1007/s12311-019-01101-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease, is an autosomal dominant neurodegenerative disorder that affects mainly the cerebellum and less other brain areas. While the ataxic/motor features of the disease have been well described, the cognitive consequences of the degeneration require additional testing. The aim of this study was to evaluate learning abilities in SCA3. We tested 13 SCA3 patients and 14 age-matched healthy controls, all of Yemenite origin, on a neuropsychological battery of procedural and declarative memory tests. SCA3 patients demonstrated impaired sequence learning on the procedural Serial Reaction Time test (SRTt) but normal learning on the procedural Weather Prediction Probabilistic Classification test (WPPCt). SCA3 patients showed normal learning on the declarative Rey Auditory Verbal Learning test (Rey-AVLt). The correlations between the learning measures of the SRTt, WPPCt, and Rey-AVLt tests in SCA3 and controls separately were not significant. These results imply that the cerebellar degeneration in SCA3 causes selective impairment in procedural sequence learning while the procedural probabilistic learning and declarative memory were mostly preserved. These findings support the assumption that procedural learning is not a homogeneous function and could be dissociated in cerebellar neurodegenerative disease.
Collapse
Affiliation(s)
- Zohar Elyoseph
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Matti Mintz
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Eli Vakil
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel.,Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Roy Zaltzman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Meir Medical Center, Kfar Saba, Israel
| | - Carlos R Gordon
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Department of Neurology, Meir Medical Center, Kfar Saba, Israel.
| |
Collapse
|
104
|
Trejo-Lopez JA, Sorrentino ZA, Riffe CJ, Prokop S, Dickson DW, Yachnis AT, Giasson BI. Generation and Characterization of Novel Monoclonal Antibodies Targeting p62/sequestosome-1 Across Human Neurodegenerative Diseases. J Neuropathol Exp Neurol 2020; 79:407-418. [PMID: 32106300 DOI: 10.1093/jnen/nlaa007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/25/2020] [Indexed: 12/17/2022] Open
Abstract
Human neurodegenerative diseases can be characterized as disorders of protein aggregation. As a key player in cellular autophagy and the ubiquitin proteasome system, p62 may represent an effective immunohistochemical target, as well as mechanistic operator, across neurodegenerative proteinopathies. In this study, 2 novel mouse-derived monoclonal antibodies 5G3 and 2A5 raised against residues 360-380 of human p62/sequestosome-1 were characterized via immunohistochemical application upon human tissues derived from cases of C9orf72-expansion spectrum diseases, Alzheimer disease, progressive supranuclear palsy, Lewy body disease, and multiple system atrophy. 5G3 and 2A5 reliably highlighted neuronal dipeptide repeat, tau, and α-synuclein inclusions in a distribution similar to a polyclonal antibody to p62, phospho-tau antibodies 7F2 and AT8, and phospho-α-synuclein antibody 81A. However, antibodies 5G3 and 2A5 consistently stained less neuropil structures, such as tau neuropil threads and Lewy neurites, while 2A5 marked fewer glial inclusions in progressive supranuclear palsy. Both 5G3 and 2A5 revealed incidental astrocytic tau immunoreactivity in cases of Alzheimer disease and Lewy body disease with resolution superior to 7F2. Through their unique ability to highlight specific types of pathological deposits in neurodegenerative brain tissue, these novel monoclonal p62 antibodies may provide utility in both research and diagnostic efforts.
Collapse
Affiliation(s)
- Jorge A Trejo-Lopez
- Department of Pathology, Immunology, and Laboratory Medicine.,Center for Translational Research in Neurodegenerative Disease
| | - Zachary A Sorrentino
- Center for Translational Research in Neurodegenerative Disease.,Department of Neuroscience
| | - Cara J Riffe
- Center for Translational Research in Neurodegenerative Disease.,Department of Neuroscience
| | - Stefan Prokop
- Department of Pathology, Immunology, and Laboratory Medicine.,Center for Translational Research in Neurodegenerative Disease.,McKnight Brain Institute.,Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| | | | | | - Benoit I Giasson
- Center for Translational Research in Neurodegenerative Disease.,Department of Neuroscience.,McKnight Brain Institute
| |
Collapse
|
105
|
Costa MDC, Radzwion M, McLoughlin HS, Ashraf NS, Fischer S, Shakkottai VG, Maciel P, Paulson HL, Öz G. In Vivo Molecular Signatures of Cerebellar Pathology in Spinocerebellar Ataxia Type 3. Mov Disord 2020; 35:1774-1786. [PMID: 32621646 PMCID: PMC7572607 DOI: 10.1002/mds.28140] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/06/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND No treatment exists for the most common dominantly inherited ataxia Machado-Joseph disease, or spinocerebellar ataxia type 3 (SCA3). Successful evaluation of candidate therapeutics will be facilitated by validated noninvasive biomarkers of disease pathology recapitulated by animal models. OBJECTIVE We sought to identify shared in vivo neurochemical signatures in two mouse models of SCA3 that reflect the human disease pathology. METHODS Cerebellar neurochemical concentrations in homozygous YACMJD84.2 (Q84/Q84) and hemizygous CMVMJD135 (Q135) mice were measured by in vivo magnetic resonance spectroscopy at 9.4 tesla. To validate the neurochemical biomarkers, levels of neurofilament medium (NFL; indicator of neuroaxonal integrity) and myelin basic protein (MBP; indicator of myelination) were measured in cerebellar lysates from a subset of mice and patients with SCA3. Finally, NFL and MBP levels were measured in the cerebellar extracts of Q84/Q84 mice upon silencing of the mutant ATXN3 gene. RESULTS Both Q84/Q84 and Q135 mice displayed lower N-acetylaspartate than wild-type littermates, indicating neuroaxonal loss/dysfunction, and lower myo-inositol and total choline, indicating disturbances in phospholipid membrane metabolism and demyelination. Cerebellar NFL and MBP levels were accordingly lower in both models as well as in the cerebellar cortex of patients with SCA3 than controls. Importantly, N-acetylaspartate and total choline correlated with NFL and MPB, respectively, in Q135 mice. Long-term sustained RNA interference (RNAi)-mediated reduction of ATXN3 levels increased NFL and MBP in Q84/Q84 cerebella. CONCLUSIONS N-acetylaspartate, myo-inositol, and total choline levels in the cerebellum are candidate biomarkers of neuroaxonal and oligodendrocyte pathology in SCA3, aspects of pathology that are reversible by RNAi therapy. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Maria Radzwion
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - Naila S. Ashraf
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Svetlana Fischer
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Vikram G. Shakkottai
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Departments of Molecular & Integrative Physiology and of Medicine, University of Michigan, Ann Arbor, MI
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Portugal
| | - Henry L. Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, Medical School, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
106
|
Du YC, Dong Y, Cheng HL, Li QF, Yang L, Shao YR, Ma Y, Ni W, Gan SR, Wu ZY. Genotype-phenotype correlation in 667 Chinese families with spinocerebellar ataxia type 3. Parkinsonism Relat Disord 2020; 78:116-121. [DOI: 10.1016/j.parkreldis.2020.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 10/23/2022]
|
107
|
Yang CY, Lai RY, Amokrane N, Lin CY, Figueroa KP, Pulst SM, Perlman S, Wilmot G, Gomez CM, Schmahmann JD, Paulson H, Shakkottai VG, Rosenthal LS, Ying SH, Zesiewicz T, Bushara K, Geschwind M, Xia G, Subramony S, Ashizawa T, Troche MS, Kuo SH. Dysphagia in spinocerebellar ataxias type 1, 2, 3 and 6. J Neurol Sci 2020; 415:116878. [PMID: 32454319 PMCID: PMC10150947 DOI: 10.1016/j.jns.2020.116878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Dysphagia is a common symptom and may be a cause of death in patients with spinocerebellar ataxias (SCAs). However, little is known about at which disease stage dysphagia becomes clinically relevant. Therefore, our study aims to investigate the prevalence of dysphagia in different disease stages of SCA 1, 2, 3 and 6. METHODS We studied 237 genetically confirmed patients with SCA 1, 2, 3, 6 from the Clinical Research Consortium for SCAs and investigated the prevalence of self-reported dysphagia and the association between dysphagia and other clinical characteristics. We further stratified ataxia severity and studied the prevalence of dysphagia at each disease stage. RESULTS Dysphagia was present in 59.9% of SCA patients. Patients with dysphagia had a longer disease duration and more severe ataxia than patients without dysphagia (patients with dysphagia vs. without dysphagia, disease duration (years): 14.51 ± 8.91 vs. 11.22 ± 7.82, p = .001, scale for the assessment and rating of ataxia [SARA]: 17.90 ± 7.74 vs. 13.04 ± 7.51, p = .000). Dysphagia was most common in SCA1, followed by SCA3, SCA 6, and SCA 2. Dysphagia in SCA1 and 3 was associated robustly with ataxia severity, whereas this association was less obvious in SCA2 and 6, demonstrating genotype-specific clinical variation. CONCLUSION Dysphagia is a common clinical symptom in SCAs, especially in the severe disease stage. Understanding dysphagia in SCA patients can improve the care of these patients and advance knowledge on the roles of the cerebellum and brainstem control in swallowing.
Collapse
|
108
|
Investigating developmental and disease mechanisms of the cerebellum with pluripotent stem cells. Mol Cell Neurosci 2020; 107:103530. [PMID: 32693017 DOI: 10.1016/j.mcn.2020.103530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/15/2020] [Accepted: 07/15/2020] [Indexed: 01/02/2023] Open
Abstract
The cerebellum is a brain region located in the dorsal part of the anterior hindbrain, composed of a highly stereotyped neural circuit structure with small sets of neurons. The cerebellum is involved in a wide variety of functions such as motor control, learning, cognition and others. Damage to the cerebellum often leads to impairments in motor skills (cerebellar ataxia). Cerebellar ataxia can occur as a result of neurodegenerative diseases such as spinocerebellar ataxia. Recent advances in technologies related to pluripotent stem cells and their neural differentiation has enabled researchers to investigate the mechanisms of development and of disease in the human brain. Here, we review recent applications of leading-edge stem cell technologies to the mechanistic investigation of human cerebellar development and neurological diseases affecting the cerebellum.
Collapse
|
109
|
Robinson KJ, Watchon M, Laird AS. Aberrant Cerebellar Circuitry in the Spinocerebellar Ataxias. Front Neurosci 2020; 14:707. [PMID: 32765211 PMCID: PMC7378801 DOI: 10.3389/fnins.2020.00707] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022] Open
Abstract
The spinocerebellar ataxias (SCAs) are a heterogeneous group of neurodegenerative diseases that share convergent disease features. A common symptom of these diseases is development of ataxia, involving impaired balance and motor coordination, usually stemming from cerebellar dysfunction and neurodegeneration. For most spinocerebellar ataxias, pathology can be attributed to an underlying gene mutation and the impaired function of the encoded protein through loss or gain-of-function effects. Strikingly, despite vast heterogeneity in the structure and function of disease-causing genes across the SCAs and the cellular processes affected, the downstream effects have considerable overlap, including alterations in cerebellar circuitry. Interestingly, aberrant function and degeneration of Purkinje cells, the major output neuronal population present within the cerebellum, precedes abnormalities in other neuronal populations within many SCAs, suggesting that Purkinje cells have increased vulnerability to cellular perturbations. Factors that are known to contribute to perturbed Purkinje cell function in spinocerebellar ataxias include altered gene expression resulting in altered expression or functionality of proteins and channels that modulate membrane potential, downstream impairments in intracellular calcium homeostasis and changes in glutamatergic input received from synapsing climbing or parallel fibers. This review will explore this enhanced vulnerability and the aberrant cerebellar circuitry linked with it in many forms of SCA. It is critical to understand why Purkinje cells are vulnerable to such insults and what overlapping pathogenic mechanisms are occurring across multiple SCAs, despite different underlying genetic mutations. Enhanced understanding of disease mechanisms will facilitate the development of treatments to prevent or slow progression of the underlying neurodegenerative processes, cerebellar atrophy and ataxic symptoms.
Collapse
Affiliation(s)
| | | | - Angela S. Laird
- Centre for Motor Neuron Disease Research, Department of Biomedical Science, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
110
|
Abstract
PURPOSE OF REVIEW Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is a fatal, dominantly inherited, neurodegenerative disease caused by expansion of a CAG repeat in the coding region of the ATXN3 gene. No disease-modifying treatment is yet available for MJD/SCA3. This review discusses recently developed therapeutic strategies that hold promise as future effective treatments for this incurable disease. RECENT FINDINGS As a result of the exploration of multiple therapeutic approaches over the last decade, the MJD/SCA3 field is finally starting to see options for disease-modifying treatments for this disease come into view on the horizon. Recently developed strategies include DNA-targeted and RNA-targeted therapies, and approaches targeting protein quality control pathways and cellular homeostasis. SUMMARY While still in preclinical testing stages, antisense oligonucleotides, short hairpin RNAs and citalopram all show promise to reaching testing in clinical trials for MJD/SCA3. Two pharmacological approaches in early stages of development, the slipped-CAG DNA binding compound naphthyridine-azaquinolone and autophagosome-tethering compounds, also show potential therapeutic capacity for MJD/SCA3. Overall, a handful of therapeutic options are currently showing potential as future successful treatments for fatal MJD/SCA3.
Collapse
Affiliation(s)
- Maria do Carmo Costa
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
111
|
Buckner N, Kemp KC, Scott HL, Shi G, Rivers C, Gialeli A, Wong LF, Cordero-LLana O, Allen N, Wilkins A, Uney JB. Abnormal scaffold attachment factor 1 expression and localization in spinocerebellar ataxias and Huntington's chorea. Brain Pathol 2020; 30:1041-1055. [PMID: 32580238 PMCID: PMC8018166 DOI: 10.1111/bpa.12872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SAFB1 is a DNA and RNA binding protein that is highly expressed in the cerebellum and hippocampus and is involved in the processing of coding and non-coding RNAs, splicing and dendritic function. We analyzed SAFB1 expression in the post-mortem brain tissue of spinocerebellar ataxia (SCA), Huntington's disease (HD), Multiple sclerosis (MS), Parkinson's disease patients and controls. In SCA cases, the expression of SAFB1 in the nucleus was increased and there was abnormal and extensive expression in the cytoplasm where it co-localized with the markers of Purkinje cell injury. Significantly, no SAFB1 expression was found in the cerebellar neurons of the dentate nucleus in control or MS patients; however, in SCA patients, SAFB1 expression was increased significantly in both the nucleus and cytoplasm of dentate neurons. In HD, we found that SAFB1 expression was increased in the nucleus and cytoplasm of striatal neurons; however, there was no SAFB1 staining in the striatal neurons of controls. In PD substantia nigra, we did not see any changes in neuronal SAFB1 expression. iCLIP analysis found that SAFB1 crosslink sites within ATXN1 RNA were adjacent to the start and within the glutamine repeat sequence. Further investigation found increased binding of SAFB1 to pathogenic ATXN1-85Q mRNA. These novel data strongly suggest SAFB1 contributes to the etiology of SCA and Huntington's chorea and that it may be a pathological marker of polyglutamine repeat expansion diseases.
Collapse
Affiliation(s)
- Nicola Buckner
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Kevin C Kemp
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Helen L Scott
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Gongyu Shi
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Caroline Rivers
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Andriana Gialeli
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Liang-Fong Wong
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Oscar Cordero-LLana
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | | | - Alastair Wilkins
- Institute of Clinical Neurosciences, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - James B Uney
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
112
|
Wilke C, Haas E, Reetz K, Faber J, Garcia‐Moreno H, Santana MM, van de Warrenburg B, Hengel H, Lima M, Filla A, Durr A, Melegh B, Masciullo M, Infante J, Giunti P, Neumann M, de Vries J, Pereira de Almeida L, Rakowicz M, Jacobi H, Schüle R, Kaeser SA, Kuhle J, Klockgether T, Schöls L, Barro C, Hübener‐Schmid J, Synofzik M. Neurofilaments in spinocerebellar ataxia type 3: blood biomarkers at the preataxic and ataxic stage in humans and mice. EMBO Mol Med 2020; 12:e11803. [PMID: 32510847 PMCID: PMC7338806 DOI: 10.15252/emmm.201911803] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/05/2020] [Accepted: 05/10/2020] [Indexed: 12/13/2022] Open
Abstract
With molecular treatments coming into reach for spinocerebellar ataxia type 3 (SCA3), easily accessible, cross-species validated biomarkers for human and preclinical trials are warranted, particularly for the preataxic disease stage. We assessed serum levels of neurofilament light (NfL) and phosphorylated neurofilament heavy (pNfH) in ataxic and preataxic subjects of two independent multicentric SCA3 cohorts and in a SCA3 knock-in mouse model. Ataxic SCA3 subjects showed increased levels of both NfL and pNfH. In preataxic subjects, NfL levels increased with proximity to the individual expected onset of ataxia, with significant NfL elevations already 7.5 years before onset. Cross-sectional NfL levels correlated with both disease severity and longitudinal disease progression. Blood NfL and pNfH increases in human SCA3 were each paralleled by similar changes in SCA3 knock-in mice, here also starting already at the presymptomatic stage, closely following ataxin-3 aggregation and preceding Purkinje cell loss in the brain. Blood neurofilaments, particularly NfL, might thus provide easily accessible, cross-species validated biomarkers in both ataxic and preataxic SCA3, associated with earliest neuropathological changes, and serve as progression, proximity-to-onset and, potentially, treatment-response markers in both human and preclinical SCA3 trials.
Collapse
|
113
|
Zhang S, Williamson NA, Duvick L, Lee A, Orr HT, Korlin-Downs A, Yang P, Mok YF, Jans DA, Bogoyevitch MA. The ataxin-1 interactome reveals direct connection with multiple disrupted nuclear transport pathways. Nat Commun 2020; 11:3343. [PMID: 32620905 PMCID: PMC7334205 DOI: 10.1038/s41467-020-17145-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 06/09/2020] [Indexed: 11/21/2022] Open
Abstract
The expanded polyglutamine (polyQ) tract form of ataxin-1 drives disease progression in spinocerebellar ataxia type 1 (SCA1). Although known to form distinctive intranuclear bodies, the cellular pathways and processes that polyQ-ataxin-1 influences remain poorly understood. Here we identify the direct and proximal partners constituting the interactome of ataxin-1[85Q] in Neuro-2a cells, pathways analyses indicating a significant enrichment of essential nuclear transporters, pointing to disruptions in nuclear transport processes in the presence of elevated levels of ataxin-1. Our direct assessments of nuclear transporters and their cargoes confirm these observations, revealing disrupted trafficking often with relocalisation of transporters and/or cargoes to ataxin-1[85Q] nuclear bodies. Analogous changes in importin-β1, nucleoporin 98 and nucleoporin 62 nuclear rim staining are observed in Purkinje cells of ATXN1[82Q] mice. The results highlight a disruption of multiple essential nuclear protein trafficking pathways by polyQ-ataxin-1, a key contribution to furthering understanding of pathogenic mechanisms initiated by polyQ tract proteins.
Collapse
Affiliation(s)
- Sunyuan Zhang
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Nicholas A Williamson
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Lisa Duvick
- Institute of Translational Neuroscience, and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Alexander Lee
- Nuclear Signalling Lab., Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Harry T Orr
- Institute of Translational Neuroscience, and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Austin Korlin-Downs
- Institute of Translational Neuroscience, and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Praseuth Yang
- Institute of Translational Neuroscience, and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yee-Foong Mok
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - David A Jans
- Nuclear Signalling Lab., Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia.
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
114
|
Niewiadomska-Cimicka A, Hache A, Trottier Y. Gene Deregulation and Underlying Mechanisms in Spinocerebellar Ataxias With Polyglutamine Expansion. Front Neurosci 2020; 14:571. [PMID: 32581696 PMCID: PMC7296114 DOI: 10.3389/fnins.2020.00571] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Polyglutamine spinocerebellar ataxias (polyQ SCAs) include SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17 and constitute a group of adult onset neurodegenerative disorders caused by the expansion of a CAG repeat sequence located within the coding region of specific genes, which translates into polyglutamine tract in the corresponding proteins. PolyQ SCAs are characterized by degeneration of the cerebellum and its associated structures and lead to progressive ataxia and other diverse symptoms. In recent years, gene and epigenetic deregulations have been shown to play a critical role in the pathogenesis of polyQ SCAs. Here, we provide an overview of the functions of wild type and pathogenic polyQ SCA proteins in gene regulation, describe the extent and nature of gene expression changes and their pathological consequences in diseases, and discuss potential avenues to further investigate converging and distinct disease pathways and to develop therapeutic strategies.
Collapse
Affiliation(s)
- Anna Niewiadomska-Cimicka
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Antoine Hache
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Yvon Trottier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| |
Collapse
|
115
|
Mesenchymal stem cell-derived exosomes improve motor function and attenuate neuropathology in a mouse model of Machado-Joseph disease. Stem Cell Res Ther 2020; 11:222. [PMID: 32513306 PMCID: PMC7278177 DOI: 10.1186/s13287-020-01727-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 04/19/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
Background Machado-Joseph disease is the most common autosomal dominant hereditary ataxia worldwide without effective treatment. Mesenchymal stem cells (MSCs) could slow the disease progression, but side effects limited their clinical application. Besides, MSC-derived exosomes exerted similar efficacy and have many advantages over MSCs. The aim of this study was to examine the efficacy of MSC-derived exosomes in YACMJD84.2 mice. Methods Rotarod performance was evaluated every 2 weeks after a presymptomatic administration of intravenous MSC-derived exosomes twice in YACMJD84.2 mice. Loss of Purkinje cells, relative expression level of Bcl-2/Bax, cerebellar myelin loss, and neuroinflammation were assessed 8 weeks following treatment. Results MSC-derived exosomes were isolated and purified through anion exchange chromatography. Better coordination in rotarod performance was maintained for 6 weeks in YACMJD84.2 mice with exosomal treatment, compared with those without exosomal treatment. Neuropathological changes including loss of Purkinje cells, cerebellar myelin loss, and neuroinflammation were also attenuated 8 weeks after exosomal treatment. The higher relative ratio of Bcl-2/Bax was consistent with the attenuation of loss of Purkinje cells. Conclusions MSC-derived exosomes could promote rotarod performance and attenuate neuropathology, including loss of Purkinje cells, cerebellar myelin loss, and neuroinflammation. Therefore, MSC-derived exosomes have a great potential in the treatment of Machado-Joseph disease.
Collapse
|
116
|
Park YW, Joers JM, Guo B, Hutter D, Bushara K, Adanyeguh IM, Eberly LE, Öz G, Lenglet C. Assessment of Cerebral and Cerebellar White Matter Microstructure in Spinocerebellar Ataxias 1, 2, 3, and 6 Using Diffusion MRI. Front Neurol 2020; 11:411. [PMID: 32581994 PMCID: PMC7287151 DOI: 10.3389/fneur.2020.00411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Development of imaging biomarkers for rare neurodegenerative diseases such as spinocerebellar ataxia (SCA) is important to non-invasively track progression of disease pathology and monitor response to interventions. Diffusion MRI (dMRI) has been shown to identify cross-sectional degeneration of white matter (WM) microstructure and connectivity between healthy controls and patients with SCAs, using various analysis methods. In this paper, we present dMRI data in SCAs type 1, 2, 3, and 6 and matched controls, including longitudinal acquisitions at 12-24-month intervals in a subset of the cohort, with up to 5 visits. The SCA1 cohort also contained 3 premanifest patients at baseline, with 2 showing ataxia symptoms at the time of the follow-up scans. We focused on two aspects: first, multimodal evaluation of the dMRI data in a cross-sectional approach, and second, longitudinal trends in dMRI data in SCAs. Three different pipelines were used to perform cross-sectional analyses in WM: region of interest (ROI), tract-based spatial statistics (TBSS), and fixel-based analysis (FBA). We further analyzed longitudinal changes in dMRI metrics throughout the brain using ROI-based analysis. Both ROI and TBSS analyses identified higher mean (MD), axial (AD), and radial (RD) diffusivity and lower fractional anisotropy (FA) in the cerebellum for all SCAs compared to controls, as well as some cerebral alterations in SCA1, 2, and 3. FBA showed lower fiber density (FD) and fiber crossing (FC) regions similar to those identified by ROI and TBSS analyses. FBA also highlighted corticospinal tract (CST) abnormalities, which was not detected by the other two pipelines. Longitudinal ROI-based analysis showed significant increase in AD in the middle cerebellar peduncle (MCP) for patients with SCA1, suggesting that the MCP may be a good candidate region to monitor disease progression. The patient who remained symptom-free throughout the study displayed no microstructural abnormalities. On the other hand, the two patients who were at the premanifest stage at baseline, and showed ataxia symptoms in their follow-up visits, displayed AD values in the MCP that were already in the range of symptomatic patients with SCA1 at their baseline visit, demonstrating that microstructural abnormalities are detectable prior to the onset of ataxia.
Collapse
Affiliation(s)
- Young Woo Park
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - James M. Joers
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Bin Guo
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Diane Hutter
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Khalaf Bushara
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Isaac M. Adanyeguh
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Lynn E. Eberly
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Gülin Öz
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Christophe Lenglet
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
117
|
Tazelaar GHP, Boeynaems S, De Decker M, van Vugt JJFA, Kool L, Goedee HS, McLaughlin RL, Sproviero W, Iacoangeli A, Moisse M, Jacquemyn M, Daelemans D, Dekker AM, van der Spek RA, Westeneng HJ, Kenna KP, Assialioui A, Da Silva N, Povedano M, Pardina JSM, Hardiman O, Salachas F, Millecamps S, Vourc'h P, Corcia P, Couratier P, Morrison KE, Shaw PJ, Shaw CE, Pasterkamp RJ, Landers JE, Van Den Bosch L, Robberecht W, Al-Chalabi A, van den Berg LH, Van Damme P, Veldink JH, van Es MA. ATXN1 repeat expansions confer risk for amyotrophic lateral sclerosis and contribute to TDP-43 mislocalization. Brain Commun 2020; 2:fcaa064. [PMID: 32954321 PMCID: PMC7425293 DOI: 10.1093/braincomms/fcaa064] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 02/01/2023] Open
Abstract
Increasingly, repeat expansions are being identified as part of the complex genetic architecture of amyotrophic lateral sclerosis. To date, several repeat expansions have been genetically associated with the disease: intronic repeat expansions in C9orf72, polyglutamine expansions in ATXN2 and polyalanine expansions in NIPA1. Together with previously published data, the identification of an amyotrophic lateral sclerosis patient with a family history of spinocerebellar ataxia type 1, caused by polyglutamine expansions in ATXN1, suggested a similar disease association for the repeat expansion in ATXN1. We, therefore, performed a large-scale international study in 11 700 individuals, in which we showed a significant association between intermediate ATXN1 repeat expansions and amyotrophic lateral sclerosis (P = 3.33 × 10-7). Subsequent functional experiments have shown that ATXN1 reduces the nucleocytoplasmic ratio of TDP-43 and enhances amyotrophic lateral sclerosis phenotypes in Drosophila, further emphasizing the role of polyglutamine repeat expansions in the pathophysiology of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Gijs H P Tazelaar
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center,
Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Steven Boeynaems
- Division of Experimental Neurology, Department of Neurosciences, KU
Leuven—University of Leuven, Leuven 3000, Belgium,Laboratory of Neurobiology, VIB, Center for Brain & Disease
Research, Leuven 3000, Belgium,Department of Genetics, Stanford University School of Medicine,
Stanford, CA 94305-5120, USA
| | - Mathias De Decker
- Division of Experimental Neurology, Department of Neurosciences, KU
Leuven—University of Leuven, Leuven 3000, Belgium,Laboratory of Neurobiology, VIB, Center for Brain & Disease
Research, Leuven 3000, Belgium
| | - Joke J F A van Vugt
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center,
Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Lindy Kool
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center,
Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| | - H Stephan Goedee
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center,
Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Russell L McLaughlin
- Population Genetics Laboratory, Smurfit Institute of Genetics, Trinity College
Dublin, Dublin D02 PN40, Republic of Ireland
| | - William Sproviero
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical
Neuroscience Institute and United Kingdom Dementia Research Institute, King’s College
London, London SE5 9NU, UK
| | - Alfredo Iacoangeli
- Department of Biostatistics & Health Informatics, Institute of Psychiatry,
Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
| | - Matthieu Moisse
- Division of Experimental Neurology, Department of Neurosciences, KU
Leuven—University of Leuven, Leuven 3000, Belgium,Laboratory of Neurobiology, VIB, Center for Brain & Disease
Research, Leuven 3000, Belgium
| | - Maarten Jacquemyn
- KU Leuven Department of Microbiology and Immunology, Laboratory of Virology and
Chemotherapy, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Dirk Daelemans
- KU Leuven Department of Microbiology and Immunology, Laboratory of Virology and
Chemotherapy, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Annelot M Dekker
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center,
Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Rick A van der Spek
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center,
Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Henk-Jan Westeneng
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center,
Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Kevin P Kenna
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center,
Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Abdelilah Assialioui
- Servei de Neurologia, IDIBELL-Hospital de Bellvitge, Hospitalet de
Llobregat, Barcelona 08908, Spain
| | - Nica Da Silva
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical
Neuroscience Institute and United Kingdom Dementia Research Institute, King’s College
London, London SE5 9NU, UK
| | | | - Mónica Povedano
- Servei de Neurologia, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona 08908, Spain
| | | | - Orla Hardiman
- Academic Unit of Neurology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin D02 PN40, Republic of Ireland.,Department of Neurology, Beaumont Hospital, Dublin D02 PN40, Republic of Ireland
| | - François Salachas
- Centre de compétence SLA-Département de Neurologie, Hôpital Pitié-Salpêtrière, Paris 75651, France.,Institut du Cerveau et de la Moelle Epinière, INSERM U1127, CNRS UMR7225, Sorbonne Universités, Paris 75651, France
| | - Stéphanie Millecamps
- Institut du Cerveau et de la Moelle Epinière, INSERM U1127, CNRS UMR7225, Sorbonne Universités, Paris 75651, France
| | - Patrick Vourc'h
- INSERM U930, Université François Rabelais, Tours 92120, France
| | - Philippe Corcia
- Centre de compétence SLA-fédération Tours-Limoges, Tours 92120, France
| | - Philippe Couratier
- Centre de compétence SLA-fédération Tours-Limoges, Limoges 87100, France
| | - Karen E Morrison
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Christopher E Shaw
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute and United Kingdom Dementia Research Institute, King's College London, London SE5 9NU, UK.,Department of Neurology, King's College Hospital, London SE5 9RS, UK
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Utrecht University, 3508 GA, Utrecht, The Netherlands
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Ludo Van Den Bosch
- Division of Experimental Neurology, Department of Neurosciences, KU Leuven-University of Leuven, Leuven 3000, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Wim Robberecht
- Division of Experimental Neurology, Department of Neurosciences, KU Leuven-University of Leuven, Leuven 3000, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven 3000, Belgium
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute and United Kingdom Dementia Research Institute, King's College London, London SE5 9NU, UK.,Department of Neurology, King's College Hospital, London SE5 9RS, UK
| | - Leonard H van den Berg
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center, Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Philip Van Damme
- Division of Experimental Neurology, Department of Neurosciences, KU Leuven-University of Leuven, Leuven 3000, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven 3000, Belgium
| | - Jan H Veldink
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center, Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Michael A van Es
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center, Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| |
Collapse
|
118
|
Protocol for the Characterization of the Cytosine-Adenine-Guanine Tract and Flanking Polymorphisms in Machado-Joseph Disease: Impact on Diagnosis and Development of Gene-Based Therapies. J Mol Diagn 2020; 22:782-793. [PMID: 32205289 DOI: 10.1016/j.jmoldx.2020.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/15/2020] [Accepted: 03/04/2020] [Indexed: 11/23/2022] Open
Abstract
Polyglutamine spinocerebellar ataxias (SCAs) constitute a group of autosomal dominantly inherited neurodegenerative disorders with considerable phenotypic overlap. Definitive diagnoses rely on the detection of a mutation in each associated locus, comprising the abnormal expansion of the trinucleotide cytosine-adenine-guanine (CAG) in coding exons. Assessment of single nucleotide polymorphisms associated with the CAG expansion in the context of SCAs is also relevant for improving molecular diagnosis and for generating novel therapeutic strategies. The current study is focused on Machado-Joseph disease/SCA type 3, with the aim of developing a protocol for the accurate determination of the CAG length in exon 10 of the human ATXN3 gene and to characterize flanking polymorphisms. A single pair of primers was designed and validated, and two complementary PCR-based methods were established. In method I, PCR amplicons were cloned and sequenced, allowing the assessment of three single nucleotide polymorphisms in the vicinity of the CAG repeat (C987GG/G987GG, TAA1118/TAC1118, and C1178/A1178), which can constitute potential targets for personalized gene-based therapies. Method II combines PCR, capillary electrophoresis, and a size correction formula, enabling a time and cost-effective determination of the number of CAGs. The established protocol paves the way to overcome technical difficulties related to the molecular characterization of the CAG motif and intragenic polymorphisms in the context of Machado-Joseph disease/SCA type 3 and may prove useful when applied to other polyglutamine SCAs.
Collapse
|
119
|
Schmidt J, Mayer AK, Bakula D, Freude J, Weber JJ, Weiss A, Riess O, Schmidt T. Vulnerability of frontal brain neurons for the toxicity of expanded ataxin-3. Hum Mol Genet 2020; 28:1463-1473. [PMID: 30576445 DOI: 10.1093/hmg/ddy437] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/16/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is caused by the expansion of CAG repeats in the ATXN3 gene leading to an elongated polyglutamine tract in the ataxin-3 protein. Previously, we demonstrated that symptoms of SCA3 are reversible in the first conditional mouse model for SCA3 directing ataxin-3 predominantly to the hindbrain. Here, we report on the effects of transgenic ataxin-3 expression in forebrain regions. Employing the Tet-off CamKII-promoter mouse line and our previously published SCA3 responder line, we generated double transgenic mice (CamKII/MJD77), which develop a neurological phenotype characterized by impairment in rotarod performance, and deficits in learning new motor tasks as well as hyperactivity. Ataxin-3 and ubiquitin-positive inclusions are detected in brains of double transgenic CamKII/MJD77 mice. After turning off the expression of pathologically expanded ataxin-3, these inclusions disappear. However, the observed phenotype could not be reversed, very likely due to pronounced apoptotic cell death in the frontal brain. Our data demonstrate that cerebellar expression is not required to induce a neurological phenotype using expanded ATXN3 as well as the pronounced sensibility of forebrain neurons for toxic ataxin-3.
Collapse
Affiliation(s)
- Jana Schmidt
- SCA3 research group, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases, University of Tuebingen, Tuebingen, Germany.,NGS Competence Center, University of Tuebingen, Tuebingen, Germany
| | - Anja K Mayer
- SCA3 research group, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases, University of Tuebingen, Tuebingen, Germany.,NGS Competence Center, University of Tuebingen, Tuebingen, Germany
| | - Daniela Bakula
- SCA3 research group, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases, University of Tuebingen, Tuebingen, Germany.,NGS Competence Center, University of Tuebingen, Tuebingen, Germany
| | - Jasmin Freude
- SCA3 research group, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases, University of Tuebingen, Tuebingen, Germany.,NGS Competence Center, University of Tuebingen, Tuebingen, Germany
| | - Jonasz J Weber
- SCA3 research group, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases, University of Tuebingen, Tuebingen, Germany.,NGS Competence Center, University of Tuebingen, Tuebingen, Germany
| | | | - Olaf Riess
- SCA3 research group, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases, University of Tuebingen, Tuebingen, Germany.,NGS Competence Center, University of Tuebingen, Tuebingen, Germany
| | - Thorsten Schmidt
- SCA3 research group, Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases, University of Tuebingen, Tuebingen, Germany.,NGS Competence Center, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
120
|
Fatoba O, Ohtake Y, Itokazu T, Yamashita T. Immunotherapies in Huntington's disease and α-Synucleinopathies. Front Immunol 2020; 11:337. [PMID: 32161599 PMCID: PMC7052383 DOI: 10.3389/fimmu.2020.00337] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Modulation of immune activation using immunotherapy has attracted considerable attention for many years as a potential therapeutic intervention for several inflammation-associated neurodegenerative diseases. However, the efficacy of single-target immunotherapy intervention has shown limited or no efficacy in alleviating disease burden and restoring functional capacity. Marked immune system activation and neuroinflammation are important features and prodromal signs in polyQ repeat disorders and α-synucleinopathies. This review describes the current status and future directions of immunotherapies in proteinopathy-induced neurodegeneration with emphasis on preclinical and clinical efficacies of several anti-inflammatory compounds and antibody-based therapies for the treatment of Huntington's disease and α-synucleinopathies. The review concludes with how disease modification and functional restoration could be achieved by using targeted multimodality therapy to target multiple factors.
Collapse
Affiliation(s)
- Oluwaseun Fatoba
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,WPI -Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Yosuke Ohtake
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takahide Itokazu
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,WPI -Immunology Frontier Research Center, Osaka University, Suita, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
121
|
One‑carbon metabolism factor MTHFR variant is associated with saccade latency in Spinocerebellar Ataxia type 2. J Neurol Sci 2020; 409:116586. [PMID: 31812845 DOI: 10.1016/j.jns.2019.116586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disorder due to a CAG-repeat expansion. This work is intended to identify modifiers of the clinical phenotype in SCA2, following up on recent genome-wide association analyses that demonstrated the prominent role of DNA-damage repair and methylation for the severity and progression of polyglutamine diseases. In particular, we assessed the impact of MTHFR as rate-limiting enzyme in DNA methylation pathways, which modulates cerebellar neurotransmission and motor neuron atrophy. METHODS A sample of 166 Cuban SCA2 patients and of 130 healthy subjects from the same geographical and ethnic background was selected. The ATXN2 CAG repeat length was determined by PCR followed by polyacrylamide gel electrophoresis. Two amino acid substitutions known to decrease the enzyme activity of MTHFR, encoded by C677T and A1298C polymorphisms, were assessed by PCR/RFLP. RESULTS No significant differences were observed for C677T or A1298C alleles or genotype frequencies between cases and controls, confirming that disease risk in SCA2 does not depend on MTHFR activity. However, MTHFR A1298C genotypes showed a significant association with saccade latency. CONCLUSIONS \MTHFR A1298C polymorphism is associated with saccade latency in SCA2 patients, but not with disease risk, age at onset or maximal saccade velocity. These results provide evidence that folate-mediated one‑carbon metabolism might be important in the physiopathology of SCA2.
Collapse
|
122
|
Mascalchi M, Vella A. Neuroimaging Biomarkers in SCA2 Gene Carriers. Int J Mol Sci 2020; 21:ijms21031020. [PMID: 32033120 PMCID: PMC7037189 DOI: 10.3390/ijms21031020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
A variety of Magnetic Resonance (MR) and nuclear medicine (NM) techniques have been used in symptomatic and presymptomatic SCA2 gene carriers to explore, in vivo, the physiopathological biomarkers of the neurological dysfunctions characterizing the associated progressive disease that presents with a cerebellar syndrome, or less frequently, with a levodopa-responsive parkinsonian syndrome. Morphometry performed on T1-weighted images and diffusion MR imaging enable structural and microstructural evaluation of the brain in presymptomatic and symptomatic SCA2 gene carriers, in whom they show the typical pattern of olivopontocerebellar atrophy observed at neuropathological examination. Proton MR spectroscopy reveals, in the pons and cerebellum of SCA2 gene carriers, a more pronounced degree of abnormal neurochemical profile compared to other spinocerebellar ataxias with decreased NAA/Cr and Cho/Cr, increased mi/Cr ratios, and decreased NAA and increased mI concentrations. These neurochemical abnormalities are detectable also in presymtomatic gene carriers. Resting state functional MRI (rsfMRI) demonstrates decreased functional connectivity within the cerebellum and of the cerebellum with fronto-parietal cortices and basal ganglia in symptomatic SCA2 subjects. 18F-fluorodeoxyglucose Positron Emission Tomography (PET) shows a symmetric decrease of the glucose uptake in the cerebellar cortex, the dentate nucleus, the brainstem and the parahippocampal cortex. Single photon emission tomography and PET using several radiotracers have revealed almost symmetric nigrostriatal dopaminergic dysfunction irrespective of clinical signs of parkinsonism which are already present in presymtomatic gene carriers. Longitudinal small size studies have proven that morphometry and diffusion MR imaging can track neurodegeneration in SCA2, and hence serve as progression biomarkers. So far, such a capability has not been reported for proton MR spectroscopy, rsfMRI and NM techniques. A search for the best surrogate marker for future clinical trials represents the current challenge for the neuroimaging community.
Collapse
Affiliation(s)
- Mario Mascalchi
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, 50121 Florence, Italy
- Correspondence: ; Tel.: +39-329-808-1701
| | | |
Collapse
|
123
|
McLoughlin HS, Moore LR, Paulson HL. Pathogenesis of SCA3 and implications for other polyglutamine diseases. Neurobiol Dis 2020; 134:104635. [PMID: 31669734 PMCID: PMC6980715 DOI: 10.1016/j.nbd.2019.104635] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022] Open
Abstract
Tandem repeat diseases include the neurodegenerative disorders known as polyglutamine (polyQ) diseases, caused by CAG repeat expansions in the coding regions of the respective disease genes. The nine known polyQ disease include Huntington's disease (HD), dentatorubral-pallidoluysian atrophy (DRPLA), spinal bulbar muscular atrophy (SBMA), and six spinocerebellar ataxias (SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17). The underlying disease mechanism in the polyQ diseases is thought principally to reflect dominant toxic properties of the disease proteins which, when harboring a polyQ expansion, differentially interact with protein partners and are prone to aggregate. Among the polyQ diseases, SCA3 is the most common SCA, and second to HD in prevalence worldwide. Here we summarize current understanding of SCA3 disease mechanisms within the broader context of the broader polyQ disease field. We emphasize properties of the disease protein, ATXN3, and new discoveries regarding three potential pathogenic mechanisms: 1) altered protein homeostasis; 2) DNA damage and dysfunctional DNA repair; and 3) nonneuronal contributions to disease. We conclude with an overview of the therapeutic implications of recent mechanistic insights.
Collapse
Affiliation(s)
| | - Lauren R Moore
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
124
|
Asher M, Rosa JG, Rainwater O, Duvick L, Bennyworth M, Lai RY, Kuo SH, Cvetanovic M. Cerebellar contribution to the cognitive alterations in SCA1: evidence from mouse models. Hum Mol Genet 2020; 29:117-131. [PMID: 31696233 PMCID: PMC8216071 DOI: 10.1093/hmg/ddz265] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/30/2019] [Accepted: 10/23/2019] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a fatal neurodegenerative disease caused by abnormal expansion of glutamine (Q) encoding CAG repeats in the gene Ataxin-1 (ATXN1). Although motor and balance deficits are the core symptoms of SCA1, cognitive decline is also commonly observed in patients. While mutant ATXN1 is expressed throughout the brain, pathological findings reveal severe atrophy of cerebellar cortex in SCA1 patients. The cerebellum has recently been implicated in diverse cognitive functions, yet to what extent cerebellar neurodegeneration contributes to cognitive alterations in SCA1 remains poorly understood. Much of our understanding of the mechanisms underlying pathogenesis of motor symptoms in SCA1 comes from mouse models. Reasoning that mouse models could similarly offer important insights into the mechanisms of cognitive alterations in SCA1, we tested cognition in several mouse lines using Barnes maze and fear conditioning. We confirmed cognitive deficits in Atxn1154Q/2Q knock-in mice with brain-wide expression of mutant ATXN1 and in ATXN1 null mice. We found that shorter polyQ length and haploinsufficiency of ATXN1 do not cause significant cognitive deficits. Finally, ATXN1[82Q ] transgenic mice-with cerebellum limited expression of mutant ATXN1-demonstrated milder impairment in most aspects of cognition compared to Atxn1154Q/2Q mice, supporting the concept that cognitive deficits in SCA1 arise from a combination of cerebellar and extra-cerebellar dysfunctions.
Collapse
Affiliation(s)
- Melissa Asher
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Juao-Guilherme Rosa
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Orion Rainwater
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lisa Duvick
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Bennyworth
- Mouse Behavior Core, University of Minnesota, Minneapolis, 55455 NY 10032-3784, USA
| | - Ruo-Yah Lai
- Department of Neurology, Columbia University, New York, NY 10032-3784, USA
| | - CRC-SCA
- Clinical Research Consortium for Spinocerebellar Ataxia (CRC-SCA)#
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, NY 10032-3784, USA
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Mouse Behavior Core, University of Minnesota, Minneapolis, 55455 NY 10032-3784, USA
| |
Collapse
|
125
|
Li ST, Zhou Y. Spinocerebellar ataxia type 2 presenting with involuntary movement: a diagnostic dilemma. J Int Med Res 2019; 47:6390-6396. [PMID: 31774014 PMCID: PMC7045683 DOI: 10.1177/0300060519889457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is a rare disease characterized by slowly
progressive ataxia, dysarthria, ophthalmoplegia, and slow saccade. SCA2 can
present with a complex combination of hyperkinetic and hypokinetic movement
disorders. Here, we describe a patient with SCA2 that partly mimicked the
clinical manifestations of Huntington’s disease; similar symptoms had previously
occurred in the patient’s family members. The findings in this report indicate
that, when a patient exhibits choreiform movement (i.e., accompanying cerebellar
ataxia), an SCA2-related mutation could be responsible for the onset of disease.
In addition, this knowledge of the potential for extrapyramidal involvement in
such patients is critical for clinicians.
Collapse
Affiliation(s)
- Shu-Ting Li
- Department of General Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Zhou
- Department of Neurology, Jinhua Hospital, Jinhua, China
| |
Collapse
|
126
|
Sen NE, Arsovic A, Meierhofer D, Brodesser S, Oberschmidt C, Canet-Pons J, Kaya ZE, Halbach MV, Gispert S, Sandhoff K, Auburger G. In Human and Mouse Spino-Cerebellar Tissue, Ataxin-2 Expansion Affects Ceramide-Sphingomyelin Metabolism. Int J Mol Sci 2019; 20:E5854. [PMID: 31766565 PMCID: PMC6928749 DOI: 10.3390/ijms20235854] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
Ataxin-2 (human gene symbol ATXN2) acts during stress responses, modulating mRNA translation and nutrient metabolism. Ataxin-2 knockout mice exhibit progressive obesity, dyslipidemia, and insulin resistance. Conversely, the progressive ATXN2 gain of function due to the fact of polyglutamine (polyQ) expansions leads to a dominantly inherited neurodegenerative process named spinocerebellar ataxia type 2 (SCA2) with early adipose tissue loss and late muscle atrophy. We tried to understand lipid dysregulation in a SCA2 patient brain and in an authentic mouse model. Thin layer chromatography of a patient cerebellum was compared to the lipid metabolome of Atxn2-CAG100-Knockin (KIN) mouse spinocerebellar tissue. The human pathology caused deficits of sulfatide, galactosylceramide, cholesterol, C22/24-sphingomyelin, and gangliosides GM1a/GD1b despite quite normal levels of C18-sphingomyelin. Cerebellum and spinal cord from the KIN mouse showed a consistent decrease of various ceramides with a significant elevation of sphingosine in the more severely affected spinal cord. Deficiency of C24/26-sphingomyelins contrasted with excess C18/20-sphingomyelin. Spinocerebellar expression profiling revealed consistent reductions of CERS protein isoforms, Sptlc2 and Smpd3, but upregulation of Cers2 mRNA, as prominent anomalies in the ceramide-sphingosine metabolism. Reduction of Asah2 mRNA correlated to deficient S1P levels. In addition, downregulations for the elongase Elovl1, Elovl4, Elovl5 mRNAs and ELOVL4 protein explain the deficit of very long-chain sphingomyelin. Reduced ASMase protein levels correlated to the accumulation of long-chain sphingomyelin. Overall, a deficit of myelin lipids was prominent in SCA2 nervous tissue at prefinal stage and not compensated by transcriptional adaptation of several metabolic enzymes. Myelination is controlled by mTORC1 signals; thus, our human and murine observations are in agreement with the known role of ATXN2 yeast, nematode, and mouse orthologs as mTORC1 inhibitors and autophagy promoters.
Collapse
Affiliation(s)
- Nesli-Ece Sen
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
- Faculty of Biosciences, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Aleksandar Arsovic
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany;
| | - Susanne Brodesser
- Membrane Biology and Lipid Biochemistry Unit, Life and Medical Sciences Institute, University of Bonn, 53121 Bonn, Germany;
| | - Carola Oberschmidt
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - Júlia Canet-Pons
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - Zeynep-Ece Kaya
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
- Cerrahpasa School of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Melanie-Vanessa Halbach
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - Suzana Gispert
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - Konrad Sandhoff
- Membrane Biology and Lipid Biochemistry Unit, Life and Medical Sciences Institute, University of Bonn, 53121 Bonn, Germany;
| | - Georg Auburger
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| |
Collapse
|
127
|
Tamuli D, Kaur M, Boligarla A, Jaryal AK, Srivastava AK, Deepak KK. Depressed baroreflex sensitivity from spontaneous oscillations of heart rate and blood pressure in SCA1 and SCA2. Acta Neurol Scand 2019; 140:350-358. [PMID: 31343735 DOI: 10.1111/ane.13151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/20/2019] [Accepted: 07/21/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVES To assess the time and frequency domain measures of cardiac autonomic activity/tone in patients of genetically defined spinocerebellar ataxia (SCA) types 1 and 2, as well as to decipher the probable associations among the cardiovascular autonomic parameters and genetic and clinical characteristics. MATERIALS AND METHODS Simultaneous 5-min recording of RR interval (RRI) and blood pressure (BP) for the calculation of heart rate variability (HRV), blood pressure variability (BPV) and baroreflex sensitivity (BRS) were performed in genotypically confirmed SCA1 (n = 31) and SCA2 (n = 40) patients and healthy controls (n = 40). Additionally, the International Cooperative Ataxia Rating Scale (ICARS) was used for scoring of clinical severity in SCA patients. RESULTS Time and frequency domain parameters of HRV, BPV and BRS were depressed in SCA1 and SCA2 subtypes as compared to controls, although there was no statistically significant difference in autonomic tone between the two SCA subtypes. On correlation analysis, autonomic tone parameters were found to be associated with the clinical and genetic features of the SCA subtypes. Also, ICARS was associated with the genotype (CAG repeat length) in SCA2 patents. CONCLUSIONS Cardiac autonomic tone is depressed in both SCA1 and 2 as compared to healthy controls while the two SCA subtypes do not differ in terms of autonomic tone. Also, a typical association exists between disease characteristics and autonomic indices.
Collapse
Affiliation(s)
- Dibashree Tamuli
- Department of Physiology All India Institute of Medical Sciences New Delhi India
| | - Manpreet Kaur
- Department of Physiology VMMC & Safdarjung Hospital New Delhi India
| | - Anasuya Boligarla
- Department of Physiology All India Institute of Medical Sciences New Delhi India
| | - Ashok K. Jaryal
- Department of Physiology All India Institute of Medical Sciences New Delhi India
| | - Achal K. Srivastava
- Department of Neurology All India Institute of Medical Sciences New Delhi India
| | - Kishore K. Deepak
- Department of Physiology All India Institute of Medical Sciences New Delhi India
| |
Collapse
|
128
|
Da Silva JD, Teixeira-Castro A, Maciel P. From Pathogenesis to Novel Therapeutics for Spinocerebellar Ataxia Type 3: Evading Potholes on the Way to Translation. Neurotherapeutics 2019; 16:1009-1031. [PMID: 31691128 PMCID: PMC6985322 DOI: 10.1007/s13311-019-00798-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is a neurodegenerative disorder caused by a polyglutamine expansion in the ATXN3 gene. In spite of the identification of a clear monogenic cause 25 years ago, the pathological process still puzzles researchers, impairing prospects for an effective therapy. Here, we propose the disruption of protein homeostasis as the hub of SCA3 pathogenesis, being the molecular mechanisms and cellular pathways that are deregulated in SCA3 downstream consequences of the misfolding and aggregation of ATXN3. Moreover, we attempt to provide a realistic perspective on how the translational/clinical research in SCA3 should evolve. This was based on molecular findings, clinical and epidemiological characteristics, studies of proposed treatments in other conditions, and how that information is essential for their (re-)application in SCA3. This review thus aims i) to critically evaluate the current state of research on SCA3, from fundamental to translational and clinical perspectives; ii) to bring up the current key questions that remain unanswered in this disorder; and iii) to provide a frame on how those answers should be pursued.
Collapse
Affiliation(s)
- Jorge Diogo Da Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
129
|
Sen NE, Canet-Pons J, Halbach MV, Arsovic A, Pilatus U, Chae WH, Kaya ZE, Seidel K, Rollmann E, Mittelbronn M, Meierhofer D, De Zeeuw CI, Bosman LWJ, Gispert S, Auburger G. Generation of an Atxn2-CAG100 knock-in mouse reveals N-acetylaspartate production deficit due to early Nat8l dysregulation. Neurobiol Dis 2019; 132:104559. [PMID: 31376479 DOI: 10.1016/j.nbd.2019.104559] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disorder caused by CAG-expansion mutations in the ATXN2 gene, mainly affecting motor neurons in the spinal cord and Purkinje neurons in the cerebellum. While the large expansions were shown to cause SCA2, the intermediate length expansions lead to increased risk for several atrophic processes including amyotrophic lateral sclerosis and Parkinson variants, e.g. progressive supranuclear palsy. Intense efforts to pioneer a neuroprotective therapy for SCA2 require longitudinal monitoring of patients and identification of crucial molecular pathways. The ataxin-2 (ATXN2) protein is mainly involved in RNA translation control and regulation of nutrient metabolism during stress periods. The preferential mRNA targets of ATXN2 are yet to be determined. In order to understand the molecular disease mechanism throughout different prognostic stages, we generated an Atxn2-CAG100-knock-in (KIN) mouse model of SCA2 with intact murine ATXN2 expression regulation. Its characterization revealed somatic mosaicism of the expansion, with shortened lifespan, a progressive spatio-temporal pattern of pathology with subsequent phenotypes, and anomalies of brain metabolites such as N-acetylaspartate (NAA), all of which mirror faithfully the findings in SCA2 patients. Novel molecular analyses from stages before the onset of motor deficits revealed a strong selective effect of ATXN2 on Nat8l mRNA which encodes the enzyme responsible for NAA synthesis. This metabolite is a prominent energy store of the brain and a well-established marker for neuronal health. Overall, we present a novel authentic rodent model of SCA2, where in vivo magnetic resonance imaging was feasible to monitor progression and where the definition of earliest transcriptional abnormalities was possible. We believe that this model will not only reveal crucial insights regarding the pathomechanism of SCA2 and other ATXN2-associated disorders, but will also aid in developing gene-targeted therapies and disease prevention.
Collapse
Affiliation(s)
- Nesli-Ece Sen
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Júlia Canet-Pons
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Melanie V Halbach
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Aleksandar Arsovic
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Ulrich Pilatus
- Institute of Neuroradiology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Woon-Hyung Chae
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany
| | - Zeynep-Ece Kaya
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany; Department of Neurology, Cerrahpasa School of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Kay Seidel
- Department of Anatomy II, Institute of Clinical Neuroanatomy, Goethe University, 60590 Frankfurt am Main, Germany
| | - Ewa Rollmann
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Michel Mittelbronn
- Neurological Institute (Edinger Institute), Goethe University, 60590 Frankfurt am Main, Germany; Luxembourg Centre of Neuropathology (LCNP), Luxembourg; Department of Pathology, Laboratoire National de Santé (LNS), Dudelange, Luxembourg; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg; Department of Oncology, NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), Luxembourg
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Chris I De Zeeuw
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Department of Neuroscience, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Laurens W J Bosman
- Department of Neuroscience, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Suzana Gispert
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
130
|
Corral-Juan M, Serrano-Munuera C, Rábano A, Cota-González D, Segarra-Roca A, Ispierto L, Cano-Orgaz AT, Adarmes AD, Méndez-Del-Barrio C, Jesús S, Mir P, Volpini V, Alvarez-Ramo R, Sánchez I, Matilla-Dueñas A. Clinical, genetic and neuropathological characterization of spinocerebellar ataxia type 37. Brain 2019; 141:1981-1997. [PMID: 29939198 DOI: 10.1093/brain/awy137] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
The autosomal dominant spinocerebellar ataxias (SCAs) consist of a highly heterogeneous group of rare movement disorders characterized by progressive cerebellar ataxia variably associated with ophthalmoplegia, pyramidal and extrapyramidal signs, dementia, pigmentary retinopathy, seizures, lower motor neuron signs, or peripheral neuropathy. Over 41 different SCA subtypes have been described evidencing the high clinical and genetic heterogeneity. We previously reported a novel spinocerebellar ataxia type subtype, SCA37, linked to an 11-Mb genomic region on 1p32, in a large Spanish ataxia pedigree characterized by ataxia and a pure cerebellar syndrome distinctively presenting with early-altered vertical eye movements. Here we demonstrate the segregation of an unstable intronic ATTTC pentanucleotide repeat mutation within the 1p32 5' non-coding regulatory region of the gene encoding the reelin adaptor protein DAB1, implicated in neuronal migration, as the causative genetic defect of the disease in four Spanish SCA37 families. We describe the clinical-genetic correlation and the first SCA37 neuropathological findings caused by dysregulation of cerebellar DAB1 expression. Post-mortem neuropathology of two patients with SCA37 revealed severe loss of Purkinje cells with abundant astrogliosis, empty baskets, occasional axonal spheroids, and hypertrophic fibres by phosphorylated neurofilament immunostaining in the cerebellar cortex. The remaining cerebellar Purkinje neurons showed loss of calbindin immunoreactivity, aberrant dendrite arborization, nuclear pathology including lobulation, irregularity, and hyperchromatism, and multiple ubiquitinated perisomatic granules immunostained for DAB1. A subpopulation of Purkinje cells was found ectopically mispositioned within the cerebellar cortex. No significant neuropathological alterations were identified in other brain regions in agreement with a pure cerebellar syndrome. Importantly, we found that the ATTTC repeat mutation dysregulated DAB1 expression and induced an RNA switch resulting in the upregulation of reelin-DAB1 and PI3K/AKT signalling in the SCA37 cerebellum. This study reveals the unstable ATTTC repeat mutation within the DAB1 gene as the underlying genetic cause and provides evidence of reelin-DAB1 signalling dysregulation in the spinocerebellar ataxia type 37.
Collapse
Affiliation(s)
- Marc Corral-Juan
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP)-Universitat Autònoma de Barcelona, Can Ruti Campus, Badalona, Barcelona, Spain
| | | | | | - Daniel Cota-González
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP)-Universitat Autònoma de Barcelona, Can Ruti Campus, Badalona, Barcelona, Spain
| | - Anna Segarra-Roca
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP)-Universitat Autònoma de Barcelona, Can Ruti Campus, Badalona, Barcelona, Spain
| | - Lourdes Ispierto
- Neurodegeneration Unit, Neurology Service, Department of Neuroscience, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona, Barcelona, Spain
| | | | - Astrid D Adarmes
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - Carlota Méndez-Del-Barrio
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - Silvia Jesús
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain.,CIBERNED, Spain
| | | | - Ramiro Alvarez-Ramo
- Neurodegeneration Unit, Neurology Service, Department of Neuroscience, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona, Barcelona, Spain
| | - Ivelisse Sánchez
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP)-Universitat Autònoma de Barcelona, Can Ruti Campus, Badalona, Barcelona, Spain
| | - Antoni Matilla-Dueñas
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP)-Universitat Autònoma de Barcelona, Can Ruti Campus, Badalona, Barcelona, Spain
| |
Collapse
|
131
|
Antisense oligonucleotide therapy rescues aggresome formation in a novel spinocerebellar ataxia type 3 human embryonic stem cell line. Stem Cell Res 2019; 39:101504. [PMID: 31374463 DOI: 10.1016/j.scr.2019.101504] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 01/01/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a fatal, late-onset neurodegenerative disorder characterized by selective neuropathology in the brainstem, cerebellum, spinal cord, and substantia nigra. Here we report the first NIH-approved human embryonic stem cell (hESC) line derived from an embryo harboring the SCA3 mutation. Referred to as SCA3-hESC, this line is heterozygous for the mutant polyglutamine-encoding CAG repeat expansion in the ATXN3 gene. We observed relevant molecular hallmarks of the human disease at all differentiation stages from stem cells to cortical neurons, including robust ATXN3 aggregation and altered expression of key components of the protein quality control machinery. In addition, SCA3-hESCs exhibit nuclear accumulation of mutant ATXN3 and form p62-positive aggresomes. Finally, antisense oligonucleotide-mediated reduction of ATXN3 markedly suppressed aggresome formation. The SCA3-hESC line offers a unique and highly relevant human disease model that holds strong potential to advance understanding of SCA3 disease mechanisms and facilitate the evaluation of candidate therapies for SCA3.
Collapse
|
132
|
Park JY, Wy SY, Joo K, Woo SJ. Spinocerebellar ataxia type 7 with RP1L1-negative occult macular dystrophy as retinal manifestation. Ophthalmic Genet 2019; 40:282-285. [DOI: 10.1080/13816810.2019.1633548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Jun Young Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seo Young Wy
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
133
|
Lastres-Becker I, Nonis D, Nowock J, Auburger G. New alternative splicing variants of the ATXN2 transcript. Neurol Res Pract 2019; 1:22. [PMID: 33324888 PMCID: PMC7650068 DOI: 10.1186/s42466-019-0025-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
Background Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant disorder with progressive degeneration of cerebellar Purkinje cells and selective loss of neurons in the brainstem. This neurodegenerative disorder is caused by the expansion of a polyglutamine domain in ataxin-2. Ataxin-2 is composed of 1312 amino acids, has a predicted molecular weight of 150-kDa and is widely expressed in neuronal and non-neuronal tissues. To date, the putative functions of ataxin-2 on mRNA translation and endocytosis remain ill-defined. Differential splicing with a lack of exons 10 and 21 was described in humans, and additional splicing of exon 11 in mice. In this study, we observed that the molecular size of transfected full-length wild-type ataxin-2 (22 glutamines) is different from endogenous ataxin-2 and that this variation could not be explained by the previously published splice variants alone. Methods Quantitative immunoblots and qualitative reverse-transcriptase polymerase-chain-reaction (RT-PCR) were used to characterize isoform variants, before sequencing was employed for validation. Results We report the characterization of further splice variants of ataxin-2 in different human cell lines and in mouse and human brain. Using RT-PCR from cell lines HeLa, HEK293 and COS-7 throughout the open reading frame of ataxin-2 together with PCR-sequencing, we found novel splice variants lacking exon 12 and exon 24. These findings were corroborated in murine and human brain. The splice variants were also found in human skin fibroblasts from SCA2 patients and controls, indicating that the polyglutamine expansion does not abolish the splicing. Conclusions Given that Ataxin-2 interacts with crucial splice modulators such as TDP-43 and modulates the risk of Amyotrophic Lateral Sclerosis, its own splice isoforms may become relevant in brain tissue to monitor the RNA processing during disease progression and neuroprotective therapy.
Collapse
Affiliation(s)
- Isabel Lastres-Becker
- Experimental Neurology, Goethe University Medical Faculty, Building 89, 3rd floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.,Present address: Department of Biochemistry, Faculty of Medicine, Universidad Autonoma of Madrid, Madrid, Spain
| | - David Nonis
- Experimental Neurology, Goethe University Medical Faculty, Building 89, 3rd floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Joachim Nowock
- Experimental Neurology, Goethe University Medical Faculty, Building 89, 3rd floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical Faculty, Building 89, 3rd floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
134
|
Yang ZH, Shi CH, Zhou LN, Li YS, Yang J, Liu YT, Mao CY, Luo HY, Xu GW, Xu YM. Metabolic Profiling Reveals Biochemical Pathways and Potential Biomarkers of Spinocerebellar Ataxia 3. Front Mol Neurosci 2019; 12:159. [PMID: 31316347 PMCID: PMC6611058 DOI: 10.3389/fnmol.2019.00159] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxia 3, also known as Machado-Joseph disease (SCA3/MJD), is a rare autosomal-dominant neurodegenerative disease caused by an abnormal expansion of CAG repeats in the ATXN3 gene. In the present study, we performed a global metabolomic analysis to identify pathogenic biochemical pathways and novel biomarkers implicated in SCA3 patients. Metabolic profiling of serum samples from 13 preclinical SCA3 patients, 13 symptomatic SCA3 patients, and 15 healthy controls were mapped using ultra-high-performance liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry techniques. The symptomatic SCA3 patients showed a metabolic profile significantly distinct from those of the preclinical SCA3 patients and healthy controls. The principal differential metabolites were involved in the amino acid (AA) metabolism and fatty acid metabolism pathways. In addition, four candidate serum biomarkers, FFA 16:1 (palmitoleic acid), FFA 18:3 (linolenic acid), L-Proline and L-Tryptophan, were selected to discriminate between symptomatic SCA3 patients and healthy controls by receiver operator curve analysis with an area under the curve of 0.979. Our study demonstrates that symptomatic SCA3 patients present distinct metabolic profiles with perturbed AA metabolism and fatty acid metabolism, and FFA 16:1, FFA 18:3, L-Proline and L-Tryptophan are identified as potential disease biomarkers.
Collapse
Affiliation(s)
- Zhi-Hua Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Chang-He Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Li-Na Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yu-Sheng Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yu-Tao Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Cheng-Yuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Hai-Yang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Guo-Wang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yu-Ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
135
|
Sayan S, Kotan D, Gündoğdu-Eken A, Şahbaz I, Koçoğlu C, Başak AN. Phenotypic and Genotypic Analysis of Hereditary Ataxia Patients in Sakarya City, Turkey. ACTA ACUST UNITED AC 2019; 56:106-109. [PMID: 31223241 DOI: 10.5152/npa.2017.20525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/12/2017] [Indexed: 11/22/2022]
Abstract
Introduction Hereditary ataxias are a group of heterogeneous diseases in regard to their clinical and genetic characteristics. Ataxia that progresses slowly may be accompanied by pyramidal and extrapyramidal findings, articulation disorders, ophthalmic movement disorders, neuropathic complaints, cognitive and behavioral abnormalies, and epilepsy. Definitive diagnosis in hereditary ataxias is based on molecular assays. History, clinical examination, laboratory and neuroimaging assist diagnosis. In our study, thirty-seven patients of suspected hereditary ataxia were examined with their clinical and genetic aspects, and the results compared with literature. Method Our study included 37 patients in 22 families who presented to our center between 2010-2016, and whose familial history and phenotypic features indicated hereditary ataxia. The patients were studied for clinical findings, family tree, neuroimaging, and laboratory findings. Advanced genetic investigations were performed on peripheral venous blood samples for hereditary ataxia. Results Of the 37 patients included in our study, 21 were females and 16 were males. Genetic analyses resulted in spinocerebellar ataxia (SCA) in four families (10 patients), Friedrich ataxia (FA) in three families (eight patients), and recessive ataxia due to point mutation in one family (two patients). SCA subtyping revealed SCA 1, 2, 6 and 8 in our patients. The remaining 16 patients included in our study could not be solved so far and are under investigation. Conclusion Hereditary ataxias are rare neurodegenerative disorders. Large genetic pool, ethnic and local differences complicate diagnosing even further. Our study contributes to the literature by reflecting phenotypic and genotypic characteristics of hereditary SCA patients in our region and reporting rare hereditary ataxia genotypes.
Collapse
Affiliation(s)
- Saadet Sayan
- Department of Neurology, SB Sakarya University Research and Training Hospital, Sakarya, Turkey
| | - Dilcan Kotan
- Department of Neurology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - Aslı Gündoğdu-Eken
- Suna and İnan Kıraç Foundation; Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Turkey
| | - Irmak Şahbaz
- Suna and İnan Kıraç Foundation; Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Turkey
| | - Cemile Koçoğlu
- Suna and İnan Kıraç Foundation; Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Turkey
| | - A Nazlı Başak
- Suna and İnan Kıraç Foundation; Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Turkey
| |
Collapse
|
136
|
Abstract
Spinocerebellar ataxia type 19 (SCA19), allelic with spinocerebellar ataxia type 22 (SCA22), is a rare syndrome caused by mutations in the KCND3 gene which encodes the potassium channel Kv4.3. Only 18 SCA19/22 families and sporadic cases of different ethnic backgrounds have been previously reported. As in other SCAs, the SCA19/22 phenotype is variable and usually consists of adult-onset slowly progressive ataxia and cognitive impairment; myoclonus and seizures; mild Parkinsonism occurs in some cases. Here we describe a Swedish SCA19/22 family spanning five generations and harboring the T377M mutation in KCND3. For the first time for this disease, 18F-fluorodeoxyglucose PET was assessed revealing widespread brain hypometabolism. In addition, we identified white matter abnormalities and found unusual features for SCA19/22 including early age of onset and fast rate of progression in the late course of disease in the oldest patient of this family.
Collapse
|
137
|
Gómez-Ruiz M, Rodríguez-Cueto C, Luna-Piñel E, Hernández-Gálvez M, Fernández-Ruiz J. Endocannabinoid System in Spinocerebellar Ataxia Type-3 and Other Autosomal-Dominant Cerebellar Ataxias: Potential Role in Pathogenesis and Expected Relevance as Neuroprotective Targets. Front Mol Neurosci 2019; 12:94. [PMID: 31068788 PMCID: PMC6491810 DOI: 10.3389/fnmol.2019.00094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/29/2019] [Indexed: 12/31/2022] Open
Abstract
Spinocerebellar ataxias (SCAs) are a group of hereditary and progressive neurological disorders characterized by a loss of balance and motor coordination typically associated with cerebellar atrophy. The most prevalent SCA types are all polyQ disorders like Huntington’s disease, sharing the most relevant events in pathogenesis with this basal ganglia disorder, but with most of the damage concentrated in cerebellar neurons, and in their afferent and efferent connections (e.g., brainstem nuclei). SCAs have no cure and effective symptom-alleviating and disease-modifying therapies are not currently available. However, based on results obtained in studies conducted in murine models and information derived from analyses in post-mortem tissue samples from patients, which show notably higher levels of CB1 receptors found in different cerebellar neuronal subpopulations, the blockade of these receptors has been proposed for acutely modulating motor incoordination in cerebellar ataxias, whereas their chronic activation has been proposed for preserving specific neuronal losses. Additional studies in post-mortem tissues from SCA patients have also demonstrated elevated levels of CB2 receptors in Purkinje neurons as well as in glial elements in the granular layer and in the cerebellar white matter, with a similar profile found for endocannabinoid hydrolyzing enzymes, then suggesting that activating CB2 receptors and/or inhibiting these enzymes may also serve to develop cannabinoid-based neuroprotective therapies. The present review will address both aspects. On one hand, the endocannabinoid system becomes dysregulated in the cerebellum and also in other CNS structures (e.g., brainstem, basal ganglia) in SCAs, which may contribute to the progression of pathogenic events in these diseases. On the other hand, these endocannabinoid alterations may be pharmacologically corrected or enhanced, and this may have therapeutic consequences, either alleviating specific symptoms or eliciting neuroprotective effects, an objective presently under investigation.
Collapse
Affiliation(s)
- María Gómez-Ruiz
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Carmen Rodríguez-Cueto
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Eva Luna-Piñel
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Mariluz Hernández-Gálvez
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| |
Collapse
|
138
|
Velázquez-Pérez L, Rodríguez-Diaz JC, Rodríguez-Labrada R, Medrano-Montero J, Aguilera Cruz AB, Reynaldo-Cejas L, Góngora-Marrero M, Estupiñán-Rodríguez A, Vázquez-Mojena Y, Torres-Vega R. Neurorehabilitation Improves the Motor Features in Prodromal SCA2: A Randomized, Controlled Trial. Mov Disord 2019; 34:1060-1068. [PMID: 30958572 DOI: 10.1002/mds.27676] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The search for early interventions is a novel approach in spinocerebellar ataxias, but there are few studies supporting this notion. This article aimed to assess the efficacy of neurorehabilitation treatment in prodromal spinocerebellar ataxia type 2. METHODS Thirty spinocerebellar ataxia type 2 preclinical carriers were enrolled in a randomized, controlled trial using neurorehabilitation. The intervention in the treated group was 4 hours per day, 5 days per week for 12 weeks, emphasizing static balance, gait, and limb coordination. The control group did not receive rehabilitation. The primary outcome measure was the time for 5-m tandem gait over the floor. Secondary outcomes included other timed tests with increased motor complexity, as well as the scores of the SARA and the Inventory of Non-ataxia Symptoms. RESULTS The times for 5-m tandem gait over the floor and the mattress were significantly reduced only in the rehabilitated group. Moreover, the times upholding the tandem stance over a mattress and the seesaw were notably increased only in this group. Likewise, the finger-nose and the heel-shin tests were improved in the rehabilitated group alone. The SARA score and the count of nonataxia symptoms were unchanged. CONCLUSIONS This rehabilitation program improves the subtle gait, postural and coordinative deficits in prodromal spinocerebellar ataxia type 2, which provided novel hints about the preservation of motor learning and neural plasticity mechanisms in early disease stages, leading chances for other interventional approaches in this and other spinocerebellar ataxias. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Luis Velázquez-Pérez
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba.,Cuban Academy of Sciences, Havana, Cuba
| | | | - Roberto Rodríguez-Labrada
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba.,Cuban Academy of Sciences, Havana, Cuba.,School of Physical Culture and Sport, University of Holguín, Holguín, Cuba
| | - Jacqueline Medrano-Montero
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba.,School of Physical Culture and Sport, University of Holguín, Holguín, Cuba
| | | | | | | | | | - Yaimeé Vázquez-Mojena
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba.,Cuban Academy of Sciences, Havana, Cuba.,School of Physical Culture and Sport, University of Holguín, Holguín, Cuba
| | | |
Collapse
|
139
|
Buijsen RAM, Toonen LJA, Gardiner SL, van Roon-Mom WMC. Genetics, Mechanisms, and Therapeutic Progress in Polyglutamine Spinocerebellar Ataxias. Neurotherapeutics 2019; 16:263-286. [PMID: 30607747 PMCID: PMC6554265 DOI: 10.1007/s13311-018-00696-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autosomal dominant cerebellar ataxias (ADCAs) are a group of neurodegenerative disorders characterized by degeneration of the cerebellum and its connections. All ADCAs have progressive ataxia as their main clinical feature, frequently accompanied by dysarthria and oculomotor deficits. The most common spinocerebellar ataxias (SCAs) are 6 polyglutamine (polyQ) SCAs. These diseases are all caused by a CAG repeat expansion in the coding region of a gene. Currently, no curative treatment is available for any of the polyQ SCAs, but increasing knowledge on the genetics and the pathological mechanisms of these polyQ SCAs has provided promising therapeutic targets to potentially slow disease progression. Potential treatments can be divided into pharmacological and gene therapies that target the toxic downstream effects, gene therapies that target the polyQ SCA genes, and stem cell replacement therapies. Here, we will provide a review on the genetics, mechanisms, and therapeutic progress in polyglutamine spinocerebellar ataxias.
Collapse
Affiliation(s)
- Ronald A M Buijsen
- Department of Human Genetics, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Lodewijk J A Toonen
- Department of Human Genetics, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Sarah L Gardiner
- Department of Human Genetics, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
- Department of Neurology, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | | |
Collapse
|
140
|
Martins Junior CR, Borba FCD, Martinez ARM, Rezende TJRD, Cendes IL, Pedroso JL, Barsottini OGP, França Júnior MC. Twenty-five years since the identification of the first SCA gene: history, clinical features and perspectives for SCA1. ARQUIVOS DE NEURO-PSIQUIATRIA 2019; 76:555-562. [PMID: 30231129 DOI: 10.1590/0004-282x20180080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/04/2018] [Indexed: 11/21/2022]
Abstract
Spinocerebellar ataxias (SCA) are a clinically and genetically heterogeneous group of monogenic diseases that share ataxia and autosomal dominant inheritance as the core features. An important proportion of SCAs are caused by CAG trinucleotide repeat expansions in the coding region of different genes. In addition to genetic heterogeneity, clinical features transcend motor symptoms, including cognitive, electrophysiological and imaging aspects. Despite all the progress in the past 25 years, the mechanisms that determine how neuronal death is mediated by these unstable expansions are still unclear. The aim of this article is to review, from an historical point of view, the first CAG-related ataxia to be genetically described: SCA 1.
Collapse
Affiliation(s)
| | - Fabrício Castro de Borba
- Universidade de Campinas, Faculdade de Ciências Médicas, Departamento de Neurologia, Campinas SP, Brasil
| | | | | | - Iscia Lopes Cendes
- Universidade de Campinas, Faculdade de Ciências Médicas, Departamento de Genética Médica, Campinas SP, Brasil
| | - José Luiz Pedroso
- Universidade Federal de São Paulo, Unidade de Ataxia, Departamento de Neurologia, São Paulo SP, Brasil
| | | | | |
Collapse
|
141
|
Yeh PA, Liu YH, Chu WC, Liu JY, Sun YH. Glial expression of disease-associated poly-glutamine proteins impairs the blood-brain barrier in Drosophila. Hum Mol Genet 2019; 27:2546-2562. [PMID: 29726932 DOI: 10.1093/hmg/ddy160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/25/2018] [Indexed: 12/25/2022] Open
Abstract
Expansion of poly-glutamine (polyQ) stretches in several proteins has been linked to neurodegenerative diseases. The effects of polyQ-expanded proteins on neurons have been extensively studied, but their effects on glia remain unclear. We found that expression of distinct polyQ proteins exclusively in all glia or specifically in the blood-brain barrier (BBB) and blood-retina barrier (BRB) glia caused cell-autonomous impairment of BBB/BRB integrity, suggesting that BBB/BRB glia are most vulnerable to polyQ-expanded proteins. Furthermore, we also found that BBB/BRB leakage in Drosophila is reflected in reversed waveform polarity on the basis of electroretinography (ERG), making ERG a sensitive method to detect BBB/BRB leakage. The polyQ-expanded protein Atxn3-84Q forms aggregates, induces BBB/BRB leakage, restricts Drosophila lifespan and reduces the level of Repo (a pan-glial transcriptional factor required for glial differentiation). Expression of Repo in BBB/BRB glia can rescue BBB/BRB leakage, suggesting that the reduced expression of Repo is important for the effect of polyQ on BBB/BRB impairment. Coexpression of the chaperon HSP40 and HSP70 effectively rescues the effects of Atxn3-84Q, indicating that polyQ protein aggregation in glia is deleterious. Intriguingly, coexpression of wild-type Atxn3-27Q can also rescue BBB/BRB impairment, suggesting that normal polyQ protein may have a protective function.
Collapse
Affiliation(s)
- Po-An Yeh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Department of Bioscience Technology, Chung Yuan Christian University, Chung Li, Taiwan
| | - Ya-Hsin Liu
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Chen Chu
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Chuou-ku, Kobe, Japan
| | - Jia-Yu Liu
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | - Y Henry Sun
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
142
|
Heterotopic Purkinje Cells: a Comparative Postmortem Study of Essential Tremor and Spinocerebellar Ataxias 1, 2, 3, and 6. THE CEREBELLUM 2019; 17:104-110. [PMID: 28791574 DOI: 10.1007/s12311-017-0876-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Essential tremor (ET) is among the most common neurological diseases. Postmortem studies have noted a series of pathological changes in the ET cerebellum. Heterotopic Purkinje cells (PCs) are those whose cell body is mis-localized in the molecular layer. In neurodegenerative settings, these are viewed as a marker of the progression of neuronal degeneration. We (1) quantify heterotopias in ET cases vs. controls, (2) compare ET cases to other cerebellar degenerative conditions (spinocerebellar ataxias (SCAs) 1, 2, 3, and 6), (3) compare these SCAs to one another, and (4) assess heterotopia within the context of associated PC loss in each disease. Heterotopic PCs were quantified using a standard LH&E-stained section of the neocerebellum. Counts were normalized to PC layer length (n-heterotopia count). It is also valuable to consider PC counts when assessing heterotopia, as loss of PCs extends both to normally located as well as heterotopic PCs. Therefore, we divided n-heterotopias by PC counts. There were 96 brains (43 ET, 31 SCA [12 SCA1, 7 SCA2, 7 SCA3, 5 SCA6], and 22 controls). The median number of n-heterotopias in ET cases was two times higher than that of the controls (2.6 vs. 1.2, p < 0.05). The median number of n-heterotopias in the various SCAs formed a spectrum, with counts being highest in SCA3 and SCA1. In analyses that factored in PC counts, ET had a median n-heterotopia/Purkinje cell count that was three times higher than the controls (0.35 vs. 0.13, p < 0.01), and SCA1 and SCA2 had counts that were 5.5 and 11 times higher than the controls (respective p < 0.001). The median n-heterotopia/PC count in ET was between that of the controls and the SCAs. Similarly, the median PC count in ET was between that of the controls and the SCAs; the one exception was SCA3, in which the PC population is well known to be preserved. Heterotopia is a disease-associated feature of ET. In comparison, several of the SCAs evidenced even more marked heterotopia, although a spectrum existed across the SCAs. The median n-heterotopia/PC count and median PC in ET was between that of the controls and the SCAs; hence, in this regard, ET could represent an intermediate state or a less advanced state of spinocerebellar atrophy.
Collapse
|
143
|
Muguruma K. Self-Organized Cerebellar Tissue from Human Pluripotent Stem Cells and Disease Modeling with Patient-Derived iPSCs. THE CEREBELLUM 2019; 17:37-41. [PMID: 29196977 DOI: 10.1007/s12311-017-0905-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent advances in the techniques that differentiate induced pluripotent stem cells (iPSCs) into specific types of cells enabled us to establish in vitro cell-based models as a platform for drug discovery. iPSC-derived disease models are advantageous to generation of a large number of cells required for high-throughput screening. Furthermore, disease-relevant cells differentiated from patient-derived iPSCs are expected to recapitulate the disorder-specific pathogenesis and physiology in vitro. Such disease-relevant cells will be useful for developing effective therapies. We demonstrated that cerebellar tissues are generated from human PSCs (hPSCs) in 3D culture systems that recapitulate the in vivo microenvironments associated with the isthmic organizer. Recently, we have succeeded in generation of spinocerebellar ataxia (SCA) patient-derived Purkinje cells by combining the iPSC technology and the self-organizing stem cell 3D culture technology. We demonstrated that SCA6-derived Purkinje cells exhibit vulnerability to triiodothyronine depletion, which is suppressed by treatment with thyrotropin-releasing hormone and Riluzole. We further discuss applications of patient-specific iPSCs to intractable cerebellar disease.
Collapse
Affiliation(s)
- Keiko Muguruma
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo Kobe, 650-0047, Japan.
| |
Collapse
|
144
|
Li T, Martins S, Peng Y, Wang P, Hou X, Chen Z, Wang C, Tang Z, Qiu R, Chen C, Hu Z, Xia K, Tang B, Sequeiros J, Jiang H. Is the High Frequency of Machado-Joseph Disease in China Due to New Mutational Origins? Front Genet 2019; 9:740. [PMID: 30842792 PMCID: PMC6391318 DOI: 10.3389/fgene.2018.00740] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 12/22/2018] [Indexed: 12/15/2022] Open
Abstract
Machado-Joseph disease (MJD, also known as spinocerebellar ataxia 3 or SCA3) is the most common dominant ataxia worldwide, with an overall average prevalence of 1–5/100,000. To this date, two major ancestral lineages have been found throughout the world. In China, the relative frequency of MJD among the SCAs reaches as high as 63%, however, little is known about its mutational origin in this country. We analyzed 50 families with MJD patients in two or more generations to study the hypothesis that new mutational events have occurred in this population. Haplotypes based on 20 SNPs have shown new genetic backgrounds segregating with MJD mutations in our cohort from China. We found the “Joseph-derived” lineage (Joseph lineage with a G variant in rs56268847) to be very common among Chinese MJD patients. Moreover, we estimated the time for the origin of this MJD SNP background based on STR diversity flanking the (CAG)n of ATXN3. It was surprising to find that the Chinese MJD population originated from 8,000 to 17,000 years ago, far earlier than the previous literature reports, which will be an important evidence to explain the origin, spread and founder effects of MJD.
Collapse
Affiliation(s)
- Tianjiao Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Sandra Martins
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Yun Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Puzhi Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaocan Hou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Chunrong Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoli Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Qiu
- School of Information Science and Engineering, Central South University, Changsha, China
| | - Chao Chen
- Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Zhengmao Hu
- Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Kun Xia
- Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Medical Genetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China.,Collaborative Innovation Center for Brain Science, Shanghai, China.,Collaborative Innovation Center for Genetics and Development, Shanghai, China
| | - Jorge Sequeiros
- IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação em Saúde, ICBAS (Instituto de Ciências Biomédicas Abel Salazar), University of Porto, Porto, Portugal
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Medical Genetics, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
145
|
Amigoni L, Airoldi C, Natalello A, Romeo M, Diomede L, Tortora P, Regonesi ME. Methacycline displays a strong efficacy in reducing toxicity in a SCA3 Caenorhabditis elegans model. Biochim Biophys Acta Gen Subj 2019; 1863:279-290. [DOI: 10.1016/j.bbagen.2018.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 11/28/2022]
|
146
|
Lee PJ, Kerridge CA, Chatterjee D, Koeppen AH, Faust PL, Louis ED. A Quantitative Study of Empty Baskets in Essential Tremor and Other Motor Neurodegenerative Diseases. J Neuropathol Exp Neurol 2019; 78:113-122. [PMID: 30590599 PMCID: PMC6330169 DOI: 10.1093/jnen/nly114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The underlying biology of essential tremor (ET) is poorly understood. Purkinje cell (PC) loss has been observed in some studies, although this finding remains somewhat controversial. Basket cells are interneurons whose axonal collaterals form a plexus around PC soma. When there is PC loss, this basket plexus appears empty. We used dual immunohistochemical staining for calbindin D28k and glutamic acid decarboxylase to quantify "empty baskets" as an indirect and alternative method of detecting PC loss. Microscopic analyses on 127 brains included ET and a spectrum of motor neurodegenerative diseases (50 ET, 27 spinocerebellar ataxias [SCAs], 25 Parkinson disease, 25 controls). The median percentage of empty baskets in ET patients was 1.5 times higher than controls (48.8% vs 33.5%, p < 0.001) but lower in ET than in SCA1 (59.7%, p = 0.011), SCA2 (77.5%, p = 0.003), and SCA6 (87.0%, p < 0.001). PC loss is not a feature of SCA3, and the median percentage of empty baskets (30.1%) was similar to controls (p = 0.303). These data provide support for PC loss in ET and are consistent with the notion that ET could represent a mild form of cerebellar degeneration with an intermediate degree of PC loss.
Collapse
Affiliation(s)
- Paul J Lee
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, Connecticut; New York, New York; Albany, New York
| | - Chloë A Kerridge
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York
| | - Debotri Chatterjee
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York
| | - Arnulf H Koeppen
- Research, Neurology, and Pathology Services, Veterans Affairs Medical Center and Departments of Neurology and Pathology, Albany Medical College, Albany
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York
| | - Elan D Louis
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, Connecticut; New York, New York; Albany, New York
- Department of Neurology, Yale School of Medicine, Yale University, New Haven
- Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, Connecticut
| |
Collapse
|
147
|
Mellesmoen A, Sheeler C, Ferro A, Rainwater O, Cvetanovic M. Brain Derived Neurotrophic Factor (BDNF) Delays Onset of Pathogenesis in Transgenic Mouse Model of Spinocerebellar Ataxia Type 1 (SCA1). Front Cell Neurosci 2019; 12:509. [PMID: 30718999 PMCID: PMC6348256 DOI: 10.3389/fncel.2018.00509] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a fatal neurodegenerative disease caused by an abnormal expansion of CAG repeats in the Ataxin-1 (ATXN1) gene and characterized by motor deficits and cerebellar neurodegeneration. Even though mutant ATXN1 is expressed from an early age, disease onset usually occurs in patient’s mid-thirties, indicating the presence of compensatory factors that limit the toxic effects of mutant ATXN1 early in disease. Brain derived neurotrophic factor (BDNF) is a growth factor known to be important for the survival and function of cerebellar neurons. Using gene expression analysis, we observed altered BDNF expression in the cerebella of Purkinje neuron specific transgenic mouse model of SCA1, ATXN1[82Q] mice, with increased expression during the early stage and decreased expression in the late stage of disease. We therefore investigated the potentially protective role of BDNF in early stage SCA1 through intraventricular delivery of BDNF via ALZET osmotic pumps. Extrinsic BDNF delivery delayed onset of motor deficits and Purkinje neuron pathology in ATXN1[82Q] mice supporting its use as a novel therapeutic for SCA1.
Collapse
Affiliation(s)
- Aaron Mellesmoen
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Carrie Sheeler
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Austin Ferro
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Orion Rainwater
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
148
|
Chen IC, Chang CN, Chen WL, Lin TH, Chao CY, Lin CH, Lin HY, Cheng ML, Chiang MC, Lin JY, Wu YR, Lee-Chen GJ, Chen CM. Targeting Ubiquitin Proteasome Pathway with Traditional Chinese Medicine for Treatment of Spinocerebellar Ataxia Type 3. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:63-95. [PMID: 30612452 DOI: 10.1142/s0192415x19500046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nine autosomal dominant spinocerebellar ataxias (SCAs) are caused by an abnormal expansion of CAG trinucleotide repeats that encodes a polyglutamine (polyQ) tract within different genes. Accumulation of aggregated mutant proteins is a common feature of polyQ diseases, leading to progressive neuronal dysfunction and degeneration. SCA type 3 (SCA3), the most common form of SCA worldwide, is characterized by a CAG triplet expansion in chromosome 14q32.1 ATXN3 gene. As accumulation of the mutated polyQ protein is a possible initial event in the pathogenic cascade, clearance of aggregated protein by ubiquitin proteasome system (UPS) has been proposed to inhibit downstream detrimental events and suppress neuronal cell death. In this study, Chinese herbal medicine (CHM) extracts were studied for their proteasome-activating, polyQ aggregation-inhibitory and neuroprotective effects in GFPu and ATXN3/Q 75 -GFP 293/SH-SY5Y cells. Among the 14 tested extracts, 8 displayed increased proteasome activity, which was confirmed by 20S proteasome activity assay and analysis of ubiquitinated and fused GFP proteins in GFPu cells. All the eight extracts displayed good aggregation-inhibitory potential when tested in ATXN3/Q 75 -GFP 293 cells. Among them, neuroprotective effects of five selected extracts were shown by analyses of polyQ aggregation, neurite outgrowth, caspase 3 and proteasome activities, and ATXN3-GFP, ubiquitin, BCL2 and BAX protein levels in neuronal differentiated ATXN3/Q 75 -GFP SH-SY5Y cells. Finally, enhanced proteasome function, anti-oxidative activity and neuroprotection of catalpol, puerarin and daidzein (active constituents of Rehmannia glutinosa and Pueraria lobata) were demonstrated in GFPu and/or ATXN3/Q 75 -GFP 293/SH-SY5Y cells. This study may have therapeutic implication in polyQ-mediated disorders.
Collapse
Affiliation(s)
- I-Cheng Chen
- * Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Chia-Ning Chang
- † Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Wan-Ling Chen
- * Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Te-Hsien Lin
- † Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chih-Ying Chao
- * Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Chih-Hsin Lin
- * Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Hsuan-Yuan Lin
- † Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Mei-Ling Cheng
- ‡ Department of Biomedical Sciences, College of Medicine, Chang Gung University, TaoYuan 33302, Taiwan
| | | | - Jung-Yaw Lin
- † Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yih-Ru Wu
- * Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Guey-Jen Lee-Chen
- † Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chiung-Mei Chen
- * Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| |
Collapse
|
149
|
Acosta JR, Watchon M, Yuan KC, Fifita JA, Svahn AJ, Don EK, Winnick CG, Blair IP, Nicholson GA, Cole NJ, Goldsbury C, Laird AS. Neuronal cell culture from transgenic zebrafish models of neurodegenerative disease. Biol Open 2018; 7:bio.036475. [PMID: 30190267 PMCID: PMC6215410 DOI: 10.1242/bio.036475] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We describe a protocol for culturing neurons from transgenic zebrafish embryos to investigate the subcellular distribution and protein aggregation status of neurodegenerative disease-causing proteins. The utility of the protocol was demonstrated on cell cultures from zebrafish that transgenically express disease-causing variants of human fused in sarcoma (FUS) and ataxin-3 proteins, in order to study amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia type-3 (SCA3), respectively. A mixture of neuronal subtypes, including motor neurons, exhibited differentiation and neurite outgrowth in the cultures. As reported previously, mutant human FUS was found to be mislocalized from nuclei to the cytosol, mimicking the pathology seen in human ALS and the zebrafish FUS model. In contrast, neurons cultured from zebrafish expressing human ataxin-3 with disease-associated expanded polyQ repeats did not accumulate within nuclei in a manner often reported to occur in SCA3. Despite this, the subcellular localization of the human ataxin-3 protein seen in cell cultures was similar to that found in the SCA3 zebrafish themselves. The finding of similar protein localization and aggregation status in the neuronal cultures and corresponding transgenic zebrafish models confirms that this cell culture model is a useful tool for investigating the cell biology and proteinopathy signatures of mutant proteins for the study of neurodegenerative disease. Summary: This article describes the optimization and validation of a protocol for culturing of neurons from transgenic zebrafish for the study of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jamie R Acosta
- The Brain & Mind Centre, University of Sydney, Sydney, New South Wales 2050, Australia.,The Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia.,Discipline of Anatomy and Histology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Maxinne Watchon
- Discipline of Anatomy and Histology, University of Sydney, Sydney, New South Wales 2006, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia.,Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Kristy C Yuan
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Jennifer A Fifita
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Adam J Svahn
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Emily K Don
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Claire G Winnick
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Ian P Blair
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Garth A Nicholson
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia.,Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia.,ANZAC Research Institute, Concord Repatriation Hospital, Sydney, New South Wales 2139, Australia
| | - Nicholas J Cole
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Claire Goldsbury
- The Brain & Mind Centre, University of Sydney, Sydney, New South Wales 2050, Australia.,The Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia.,Discipline of Anatomy and Histology, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Angela S Laird
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
150
|
Ashraf NS, Duarte-Silva S, Shaw ED, Maciel P, Paulson HL, Teixeira-Castro A, Costa MDC. Citalopram Reduces Aggregation of ATXN3 in a YAC Transgenic Mouse Model of Machado-Joseph Disease. Mol Neurobiol 2018; 56:3690-3701. [PMID: 30187384 DOI: 10.1007/s12035-018-1331-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/22/2018] [Indexed: 01/20/2023]
Abstract
Machado-Joseph disease, also known as spinocerebellar ataxia type 3, is a fatal polyglutamine disease with no disease-modifying treatment. The selective serotonin reuptake inhibitor citalopram was shown in nematode and mouse models to be a compelling repurposing candidate for Machado-Joseph disease therapeutics. We sought to confirm the efficacy of citalopram to decrease ATXN3 aggregation in an unrelated mouse model of Machado-Joseph disease. Four-week-old YACMJD84.2 mice and non-transgenic littermates were given citalopram 8 mg/kg in drinking water or water for 10 weeks. At the end of treatment, brains were collected for biochemical and pathological analyses. Brains of citalopram-treated YACMJD84.2 mice showed an approximate 50% decrease in the percentage of cells containing ATXN3-positive inclusions in the substantia nigra and three examined brainstem nuclei compared to controls. No differences in ATXN3 inclusion load were observed in deep cerebellar nuclei of mice. Citalopram effect on ATXN3 aggregate burden was corroborated by immunoblotting analysis. While lysates from the brainstem and cervical spinal cord of citalopram-treated mice showed a decrease in all soluble forms of ATXN3 and a trend toward reduction of insoluble ATXN3, no differences in ATXN3 levels were found between cerebella of citalopram-treated and vehicle-treated mice. Citalopram treatment altered levels of select components of the cellular protein homeostatic machinery that may be expected to enhance the capacity to refold and/or degrade mutant ATXN3. The results here obtained in a second independent mouse model of Machado-Joseph disease further support citalopram as a potential drug to be repurposed for this fatal disorder.
Collapse
Affiliation(s)
- Naila S Ashraf
- Department of Neurology, Michigan Medicine, University of Michigan, A. Alfred Taubman Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Sara Duarte-Silva
- School of Medicine, University of Minho, Campus de Gualtar, Life and Health Sciences Research Institute (ICVS), Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Emily D Shaw
- Department of Neurology, Michigan Medicine, University of Michigan, A. Alfred Taubman Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Patrícia Maciel
- School of Medicine, University of Minho, Campus de Gualtar, Life and Health Sciences Research Institute (ICVS), Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Henry L Paulson
- Department of Neurology, Michigan Medicine, University of Michigan, A. Alfred Taubman Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Andreia Teixeira-Castro
- School of Medicine, University of Minho, Campus de Gualtar, Life and Health Sciences Research Institute (ICVS), Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal. .,Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
| | - Maria do Carmo Costa
- Department of Neurology, Michigan Medicine, University of Michigan, A. Alfred Taubman Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|