101
|
Tang N, Li X, Gao X, Liu X, Xing W. The adsorption of arsenic on micro- and nano-plastics intensifies the toxic effect on submerged macrophytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119896. [PMID: 35981641 DOI: 10.1016/j.envpol.2022.119896] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Currently little is known about the adsorption behaviors of metalloids on microplastics (MPs) and their complex toxic effects on aquatic plants. Herein, we investigated the adsorption behaviors of arsenic (As(III) and As(V)) on three types of MPs (polystyrene, polyvinyl chloride, and polyethylene) with four different particle sizes (100, 10, 1, and 0.1 μm). Compared with the short-term exposure experiment, co-toxicity of polystyrene nanoplastics (PS-NPs) and As on two submerged macrophytes (Vallisneria denseserrulata and Potamogeton crispus) were explored through two relatively longer 14-day-cultivation experiments in summer and spring, respectively. The adsorption results showed that As entered the internal surface adsorption site of MPs at 24 h and fully combined to reach equilibrium. The adsorption capacity also enhanced with the increase of MPs concentrations, which generated more adsorption sites for binding with MPs. The presence of PS-NPs increased the absorption of As on macrophytes by 36.2-47.2%. More serious damage of leaf structure by combined PS-NPs and As was observed by transmission electron microscope. The larger harms by the co-toxicity of MPs and As were also reflected by the changes in physiochemical characteristics (e.g. photosynthesis) and the enhancement of oxidative damage of macrophytes. This work provides a clear theoretical basis for the behavior of PS-NPs as carrier with other contaminants on submerged macrophytes, and clearly evaluates the co-toxicity of NPs and metalloids in complex aquatic environments.
Collapse
Affiliation(s)
- Na Tang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaowei Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueyuan Gao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoning Liu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China; Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan, 430072, China
| | - Wei Xing
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan, 430074, China.
| |
Collapse
|
102
|
You Y, Ju C, Wang L, Wang X, Ma F, Wang G, Wang Y. The mechanism of arbuscular mycorrhizal enhancing cadmium uptake in Phragmites australis depends on the phosphorus concentration. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129800. [PMID: 36027745 DOI: 10.1016/j.jhazmat.2022.129800] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/31/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) is a vital strategy to enhance the phytoremediation of cadmium (Cd) pollution. However, the function of AMF was influenced by phosphorus (P) concentration. To reveal the effect of AMF on the Cd accumulation of host plants under different P concentrations and how the AMF and P interact, this study comparatively analyzed the regulatory effects of AMF on the Cd response, extraction, and transportation processes of Phragmites australis (P. australis) under different P levels, and explored its physiological, biochemical and molecular biological mechanisms. The study showed that AMF could induce different growth allocation strategies in response to Cd stress. Moreover, AMF promoted plant Cd tolerance and detoxification by enhancing P uptake, Cd passivation, Cd retention in the cell wall, and functional group modulation. Under P starvation treatments, AMF promoted Cd uptake by inducing Cd to enter the iron pathway, increased the transport coefficient by 493.39%, and retained Cd in stems. However, these effects disappeared following the addition of P. Additionally, AMF up-regulated the expression of ZIP, ZIP, and NRAMP genes to promote cadmium uptake at low, medium, and high phosphorus levels, respectively. Thus, the Cd response mechanism of the AMF-P. australis symbiotic system was P dose-dependent.
Collapse
Affiliation(s)
- Yongqiang You
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Chang Ju
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Li Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - Xin Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Fang Ma
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Gen Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Yujiao Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, PR China
| |
Collapse
|
103
|
Narayanan M, Pugazhendhi A, Ma Y. Assessment of PGP traits of Bacillus cereus NDRMN001 and its influence on Cajanus cajan (L.) Millsp. phytoremediation potential on metal-polluted soil under controlled conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:1017043. [PMID: 36311057 PMCID: PMC9606752 DOI: 10.3389/fpls.2022.1017043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The current study looked at the plant growth-promoting (PGP) traits of the pre-isolated and metal-tolerant Bacillus cereus NDRMN001 as well as their stimulatory effect on the physiology, biomolecule content, and phytoremediation potential of Cajanus cajan (L.) Millsp. on metal-polluted soil. The bauxite mine, which is surrounded by farmland (1 km away), has been severely polluted by metals such as Cd (31.24 ± 1.68), Zn (769.57 ± 3.46), Pb (326.85 ± 3.43), Mn (2519.6 ± 5.71), and Cr (302.34 ± 1.62 mg kg-1) that exceeded Indian standards. The metal-tolerant B. cereus NDRMN001 had excellent PGP activities such as synthesis of hydrogen cyanide (HCN), siderophore, indole acetic acid (IAA), N2 fixation, and P solubilization. Furthermore, the optimal growth conditions (temperature of 30°C, pH 6.5, 6% glucose, 9% tryptophan, and 1.5% tricalcium phosphate) for effective synthesis and expression of PGP traits in B. cereus NDRMN001 were determined. Such metal-tolerant B. cereus NDRMN001 traits can significantly reduce metals in polluted soil, and their PGP traits significantly improve plant growth in polluted soil. Hence, this strain (B. cereus NDRMN001) significantly improved the growth and phytoremediation potential of C. cajan (L.) Millsp on metal-polluted soil without [study I: 2 kg of sieved and autoclaved metal-polluted soil seeded with bacterium-free C. cajan (L.) Millsp. seeds] and with [study II: 2 kg of sieved and autoclaved metal-polluted soil seeded with B. cereus NDRMN001-coated C. cajan (L.) Millsp. seeds] B. cereus NDRMN001 amalgamation. Fertile soil was used as control. The physiological parameters, biomolecule contents, and the phytoremediation (Cr: 7.74, Cd: 12.15, Zn: 16.72, Pb: 11.47, and Mn: 14.52 mg g-1) potential of C. cajan (L.) Millsp. were significantly effective in study II due to the metal-solubilizing and PGP traits of B. cereus NDRMN001. These results conclude that the test bacteria B. cereus NDRMN001 considerably improved the phytoremediation competence of C. cajan (L.) Millsp. on metal-polluted soil in a greenhouse study.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- Division of Research and Innovations, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Tamil Nadu, India
| | | | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
104
|
Kong EDH, Chau JHF, Lai CW, Khe CS, Sharma G, Kumar A, Siengchin S, Sanjay MR. GO/TiO 2-Related Nanocomposites as Photocatalysts for Pollutant Removal in Wastewater Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193536. [PMID: 36234665 PMCID: PMC9565631 DOI: 10.3390/nano12193536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 05/14/2023]
Abstract
Water pollution has been a prevalent issue globally for some time. Some pollutants are released into the water system without treatment, making the water not suitable for consumption. This problem may lead to more grave problems in the future including the destruction of the ecosystem along with the organisms inhabiting it, and illness and diseases endangering human health. Conventional methods have been implemented to remove hazardous pollutants such as dyes, heavy metals, and oil but are incapable of doing so due to economic restraints and the inability to degrade the pollutants, leading to secondary pollution. Photocatalysis is a more recently applied concept and is proven to be able to completely remove and degrade pollutants into simpler organic compounds. Titanium dioxide (TiO2) is a fine example of a photocatalyst owing to its cost-effectiveness and superb efficiency. However, issues such as the high recombination rate of photogenerated electrons along with positive holes while being only limited to UV irradiation need to be addressed. Carbonaceous materials such as graphene oxide (GO) can overcome such issues by reducing the recombination rate and providing a platform for adsorption accompanied by photocatalytic degradation of TiO2. The history and development of the synthesis of GO will be discussed, followed by the methods used for GO/TiO2 synthesis. The hybrid of GO/TiO2 as a photocatalyst has received some attention in the application of wastewater treatment due to its efficiency and it being environmentally benign. This review paper thereby aims to identify the origins of different pollutants followed by the sickness they may potentially inflict. Recent findings, including that GO/TiO2-related nanocomposites can remove pollutants from the water system, and on the photodegradation mechanism for pollutants including aromatic dyes, heavy metal and crude oil, will be briefly discussed in this review. Moreover, several crucial factors that affect the performance of photocatalysis in pollutant removal will be discussed as well. Therefore, this paper presents a critical review of recent achievements in the use of GO/TiO2-related nanocomposites and photocatalysis for removing various pollutants in wastewater treatment.
Collapse
Affiliation(s)
- Ethan Dern Huang Kong
- Nanotechnology and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya, Kuala Lumpur 50603, Malaysia
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Malaysia
- Correspondence: (E.D.H.K.); (C.W.L.)
| | - Jenny Hui Foong Chau
- Nanotechnology and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chin Wei Lai
- Nanotechnology and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (E.D.H.K.); (C.W.L.)
| | - Cheng Seong Khe
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Malaysia
| | - Gaurav Sharma
- Nanshan District Key Lab for Biopolymer and Safety Evaluation, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China
- International Research Center of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173229, India
- School of Science and Technology, Global University, Saharanpur 247001, India
| | - Amit Kumar
- International Research Center of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173229, India
- School of Science and Technology, Global University, Saharanpur 247001, India
| | - Suchart Siengchin
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand
| | - Mavinkere Rangappa Sanjay
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand
| |
Collapse
|
105
|
Fan W, Deng J, Shao L, Jiang S, Xiao T, Sun W, Xiao E. The rhizosphere microbiome improves the adaptive capabilities of plants under high soil cadmium conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:914103. [PMID: 36275594 PMCID: PMC9583395 DOI: 10.3389/fpls.2022.914103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) contamination of agricultural soils poses a potential public health issue for humans. Phytoremediation-based accumulating plants are an effective and sustainable technology for Cadmium remediation of contaminated agricultural soil. The rhizosphere microbiome can promote the growth and Cadmium accumulation in hyperaccumulators, but its taxonomic and functional traits remain elusive. The present study used two ecotypes of Sedum alfredii, an accumulating ecotype (AE) and a non-accumulating ecotype (NAE), as model plants to investigate the rhizosphere microbiome assemblages and influence on plant growth under high cadmium conditions. Our results showed that distinct root microbiomes assembled in association with both ecotypes of S. alfredii and that the assemblages were based largely on the lifestyles of the two ecotypes. In addition, we demonstrated that the functions of the microbes inhabiting the rhizosphere soils were closely associated with root-microbe interactions in both ecotypes of S. alfredii. Importantly, our results also demonstrated that the rhizosphere microbiome assembled in the AE rhizosphere soils contributed to plant growth and cadmium uptake under high cadmium conditions through functions such as nitrogen fixation, phosphorus solubilization, indole acetic acid (IAA) synthesis, and siderophore metabolism. However, this phenomenon was not clearly observed in the NAE. Our results suggest that the rhizosphere microbiome plays important roles in biogeochemical nutrient and metal cycling that can contribute to host plant fitness.
Collapse
Affiliation(s)
- Wenjun Fan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jinmei Deng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Li Shao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Shiming Jiang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China
- School of Environment, Henan Normal University, Xinxiang, China
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, China
| | - Enzong Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| |
Collapse
|
106
|
Gao J, Liu X, Ren P, Gao J, Chen Y, Chen Z. Removal behavior and mechanism of amino/carboxylate-functionalized Fe@SiO 2 for Cr(VI) and Cd(II) from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:72058-72073. [PMID: 35610446 DOI: 10.1007/s11356-022-20048-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
The novel iron-based reductive particles, functionalized with amino and carboxylic functional groups, were synthesized to remove Cr(VI) and Cd(II) ions from aqueous solutions. The morphological structure and surface functional groups of new composites were characterized with SEM, XRD, FTIR, BET, and other techniques. The influence of pH, initial concentration, adsorbent dosing, and temperature on removal efficiencies were explored by batch experiments. The adsorption capacity of Cr(VI) and Cd(II) increased by 159.95% and 76.60%, respectively, compared with Fe0, reaching 47.638 and 62.047 mg/g. EDS and XPS analysis showed most of Cr(VI) was reduced to Cr(III) and precipitated as ferrochrome oxide, and Cd(II) was mainly precipitated as hydroxide. Reduction-precipitation and complexation may predominate in the removal process of Cr(VI), which fitted well with Langmuir and Freundlich models and pseudo-second-order kinetics. While hydrolysis and complexation may prevail for Cd(II), which was suited with Langmuir model and pseudo-second-order kinetics. Having good magnetic properties, the A/C-Fe@SiO2 particles exhibited excellent reusable stability after four times regeneration experiments, promising a prospect for in-situ remediations of groundwater contaminated by Cr(VI) and Cd(II).
Collapse
Affiliation(s)
- Jingqing Gao
- School of Ecology and Environment, ZhengZhou University, Zhengzhou, 450001, People's Republic of China.
| | - Xiaobang Liu
- School of Ecology and Environment, ZhengZhou University, Zhengzhou, 450001, People's Republic of China
| | - Peng Ren
- School of Ecology and Environment, ZhengZhou University, Zhengzhou, 450001, People's Republic of China
| | - Jianlei Gao
- School of Ecology and Environment, ZhengZhou University, Zhengzhou, 450001, People's Republic of China
| | - Yong Chen
- Department of Resources and Environmental Engineering, Henan University of Engineering, Zhengzhou, 451191, People's Republic of China
| | - Zhijun Chen
- School of Chemical Engineering and Material Science, Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450002, People's Republic of China
| |
Collapse
|
107
|
The mechanism of the cadmium-induced toxicity and cellular response in the liver. Toxicology 2022; 480:153339. [PMID: 36167199 DOI: 10.1016/j.tox.2022.153339] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 01/22/2023]
Abstract
Cadmium is a toxic element to which man can be exposed at work or in the environment. Cd's most salient toxicological property is its exceptionally long half-life in the human body. Once absorbed, Cd accumulates in the human body, particularly in the liver. The cellular actions of Cd are extensively documented, but the molecular mechanisms underlying these actions are still not resolved. The liver manages the cadmium to eliminate it by a diverse mechanism of action. Still, many cellular and physiological responses are executed in the task, leading to worse liver damage, ranging from steatosis, steatohepatitis, and eventually hepatocellular carcinoma. The progression of cadmium-induced liver damage is complex, and it is well-known the cellular response that depends on the time in which the metal is present, ranging from oxidative stress, apoptosis, adipogenesis, and failures in autophagy. In the present work, we aim to present a review of the current knowledge of cadmium toxicity and the cellular response in the liver.
Collapse
|
108
|
Capture Mechanism of Cadmium in Agricultural Soil Via Iron-Modified Graphene. INORGANICS 2022. [DOI: 10.3390/inorganics10100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cadmium (Cd) contamination in agricultural soils has caused extensive concern to researchers. Biochar with iron-compound modifications could give rise to the synergistic effect for Cd restriction. However, the related capture mechanism based on physicochemical properties is unclear. In this study, first principles calculations are proposed to explore the adsorption ability and potential mechanism of the ferric hydroxide modified graphene (Fe@G) for capturing CdCl2. The simulation results show that the adsorption energy to CdCl2 could enhance to −1.60 eV when Fe(OH)3 is introduced on graphene. Subsequently, analyses of electronic properties demonstrated a significant electron transfer between Cd s-orbital and O p-orbital, thereby leading to strong adsorption energy. This theoretical study not only identifies a powerful adsorption material for Cd reduction in agricultural soils and reveals the capture mechanism of Fe@G for Cd but also provides a foundation and strategy for Cd reduction in agricultural soils.
Collapse
|
109
|
Kumar S, Shah SH, Vimala Y, Jatav HS, Ahmad P, Chen Y, Siddique KHM. Abscisic acid: Metabolism, transport, crosstalk with other plant growth regulators, and its role in heavy metal stress mitigation. FRONTIERS IN PLANT SCIENCE 2022; 13:972856. [PMID: 36186053 PMCID: PMC9515544 DOI: 10.3389/fpls.2022.972856] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/17/2022] [Indexed: 05/06/2023]
Abstract
Heavy metal (HM) stress is threatening agricultural crops, ecological systems, and human health worldwide. HM toxicity adversely affects plant growth, physiological processes, and crop productivity by disturbing cellular ionic balance, metabolic balance, cell membrane integrity, and protein and enzyme activities. Plants under HM stress intrinsically develop mechanisms to counter the adversities of HM but not prevent them. However, the exogenous application of abscisic acid (ABA) is a strategy for boosting the tolerance capacity of plants against HM toxicity by improving osmolyte accumulation and antioxidant machinery. ABA is an essential plant growth regulator that modulates various plant growth and metabolic processes, including seed development and germination, vegetative growth, stomatal regulation, flowering, and leaf senescence under diverse environmental conditions. This review summarizes ABA biosynthesis, signaling, transport, and catabolism in plant tissues and the adverse effects of HM stress on crop plants. Moreover, we describe the role of ABA in mitigating HM stress and elucidating the interplay of ABA with other plant growth regulators.
Collapse
Affiliation(s)
- Sandeep Kumar
- Plant Physiology and Tissue Culture Laboratory, Department of Botany, Chaudhary Charan Singh University, Meerut, India
| | - Sajad Hussain Shah
- Plant Physiology and Tissue Culture Laboratory, Department of Botany, Chaudhary Charan Singh University, Meerut, India
| | - Yerramilli Vimala
- Plant Physiology and Tissue Culture Laboratory, Department of Botany, Chaudhary Charan Singh University, Meerut, India
| | - Hanuman Singh Jatav
- Soil Science and Agricultural Chemistry, Sri Karan Narendra Agriculture University Jobner, Jaipur, India
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, Jammu and Kashmir, India
| | - Yinglong Chen
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
110
|
Liu A, Wang W, Zheng X, Chen X, Fu W, Wang G, Ji J, Jin C, Guan C. Improvement of the Cd and Zn phytoremediation efficiency of rice (Oryza sativa) through the inoculation of a metal-resistant PGPR strain. CHEMOSPHERE 2022; 302:134900. [PMID: 35568210 DOI: 10.1016/j.chemosphere.2022.134900] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) and zinc (Zn) in contaminated soil inhibit rice yield and produce toxic effects on human body through rice accumulation. Plant growth promoting rhizobacteria (PGPR) assisted phytoremediation is an effective ecological measure to improve the remediation efficiency of heavy metal contaminated soil. The purpose of this study was to investigate the efficiency of the combination of rice and Cd/Zn-tolerant PGPR strain Bacillus sp. ZC3-2-1 for the remediation of Cd-Zn contaminated soil. Moreover, the effects of inoculations on rhizosphere bacterial communities and ion homeostasis of rice under Cd-Zn exposure will also be explored. The results showed that compared with the treatment without inoculation, ZC3-2-1 decreased the bioavailable Cd and Zn concentrations in soil by 39.3% and 32.0%, respectively, and increase the phytoextraction of Cd2+ and Zn2+ by rice to 48.2% and 8.0%, respectively. This inoculation process significantly increased the rice biomass, resulting that the contents of Cd2+ and Zn2+ per biomass unit of rice didn't change significantly. This fact meant that ZC3-2-1 could improve the phytoremediation efficiency of Cd-Zn contaminated soil by promoting the phytoextraction and immobilization of the metal, while might not affect the crop food safety. Besides, through regulation of the Na+ and Mg2+ concentration in rice, ZC3-2-1 played a positive role in maintaining ion homeostasis which was disrupted by Zn or Cd. Moreover, ZC3-2-1 could modulate the beneficial bacterial communities in rice rhizosphere soil, and then enhanced Cd-Zn immobilization and enzyme activities in soil, leading to the enhancement of rice growth and phytoremediation efficiency. Above all, this study provided novel insights into developing an efficient phytoremediation system and safe production of rice in Cd-Zn contaminated soil with the application of Bacillus sp. ZC3-2-1, as well as advance our understanding of the principles of rhizosphere bacterial community assemble and maintaining ion homeostasis in rice during this phytoremediation process.
Collapse
Affiliation(s)
- Anran Liu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wenjing Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xiaoyan Zheng
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xiancao Chen
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wenting Fu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Chao Jin
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
111
|
Dou X, Dai H, Skuza L, Wei S. Cadmium removal potential of hyperaccumulator Solanum nigrum L. under two planting modes in three years continuous phytoremediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119493. [PMID: 35597484 DOI: 10.1016/j.envpol.2022.119493] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/02/2022] [Accepted: 05/14/2022] [Indexed: 05/22/2023]
Abstract
Solanum nigrum L. is a Cd hyperaccumulator, but the potential for continuous remediation, or different planting methods have not been fully characterized. The potential for continuous phytoremediation of Cd-contaminated farmland soil (2.08 mg kg-1 Cd) by 2 planting methods (flowering harvest twice a year and maturity harvest once a year) was studied in a 3-year pot experiment. The total Cd accumulation (ug plant-1) of the 3-year flowering stage treatments was 26.3% higher than that of the maturity stage treatments, which was mainly due to that flowering harvest twice a year caused 65.5% increase of shoot biomass. Similarly, the Cd decreased concentration in soil and Cd removal rate in the flowering stage treatments were 29.2% and 27.9% higher than that in the maturity stage treatments, respectively. After 3 years of phytoremediation, the extractable Cd concentration in soil was reduced by 36.4% in the flowering stage treatments and by 27.6% in the maturity stage treatments, which also led to the same decreasing trend of Cd accumulation of S. nigrum. In conclusion, the study results have demonstrated that the planting mode of two harvests a year at the flowering stage seems to be a viable option to apply for continuous phytoremediation of Cd-contaminated farmland soil.
Collapse
Affiliation(s)
- Xuekai Dou
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, 723001, China.
| | - Lidia Skuza
- Institute of Biology, The Centre for Molecular Biology and Biotechnology, University of Szczecin, Szczecin, 71-415, Poland
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
112
|
Wu X, Gao B, Lyu X, Zeng X, Wu J, Sun Y. Insight into the mechanism of phosphate and cadmium co-transport in natural soils. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129095. [PMID: 35650735 DOI: 10.1016/j.jhazmat.2022.129095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Phosphate is ubiquitous in the environment and can affect the transport of heavy metals in the subsurface systems. In this study, column experiments were conducted to systematically evaluate the effects of phosphate on the transport of Cd in natural soils (RS, BS) under different ionic strength (IS) conditions. The presence of phosphate significantly retarded the transport of Cd in the soils. The extent of retardation was closely associated with phosphate concentrations, IS and soil properties. Increasing phosphate adsorption induced more negative surface charges on soils, thereby contributing to greater retention of Cd through electrostatic attraction. In contrast, higher IS not only promoted mobility of Cd, but also reduced the retardation effect of phosphate on Cd transport in soils. Moreover, higher Fe/Al oxides contents in RS exhibited a more pronounced effect of phosphate on Cd retardation. Our results indicated that electrostatic interaction was the predominant mechanism controlling co-transport of Cd with phosphate, but no ternary surface complexes was observed in the Cd LIII-edge XANES spectra. Our findings highlight the critical role of phosphate in retarding Cd transport in natural soils, which should be considered in assessing environmental risks of heavy metals in the subsurface.
Collapse
Affiliation(s)
- Xiaoli Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Xueyan Lyu
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xiankui Zeng
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Jichun Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Yuanyuan Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
113
|
Li B, Zhang T, Zhang Q, Zhu QH, Huang DY, Zhu HH, Xu C, Su SM, Zeng XB. Influence of straw-derived humic acid-like substance on the availability of Cd/As in paddy soil and their accumulation in rice grain. CHEMOSPHERE 2022; 300:134368. [PMID: 35390414 DOI: 10.1016/j.chemosphere.2022.134368] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Humic acid amendments have been widely advocated for the remediation of heavy metal-contaminated soil. However, the impacts of straw-derived humic acid-like substances on the remediation of cadmium (Cd) and arsenic (As) co-contaminated paddy soil remain unclear and the potential mechanism required clarification. In this study, we employed a pot experiment and chose a straw-derived humic acid-like substance (BFA) as the amendment with four doses to investigate how BFA affects the availability of Cd and As in soil and their accumulation in rice. The results showed that grain Cd decreased by 25.65-36.03%, while there was no significant change in total As (TAs) with the addition of BFA. The contents of DCB-Fe, DCB-As and DCB-Cd on the root surface decreased by 6.07-40.54% during the whole growth stage. The addition of BFA significantly decreased the pe + pH and enhanced the transformation of crystalline iron oxides (Fed) into amorphous forms (Feo) in the soil. The CaCl2-extractable Cd decreased and the KH2PO4-extractable As increased with the decrease in pe + pH and Fed and the relative increase in Feo. The correlation analysis showed that the decrease in availability of Cd and translocation factor of Cd effectively decreased the grain Cd and the decrease in DCB-Cd may also contribute to decreasing the uptake of Cd by rice. However, the increase in As of roots and shoots might play key roles in restricting the transport of As to rice grains. Consequently, the addition of BFA could effectively reduce the Cd accumulation in rice under flooding conditions, while no risk of As accumulation in rice grain was observed. The present work provides a new perspective for the application of straw-derived humic acid-like substances as amendments on Cd-As co-contaminated soils, which should be advocated as an eco-friendly, economical and effective soil amendment in the future.
Collapse
Affiliation(s)
- Bo Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-environment, Ministry of Agriculture, Beijing, 100081, China; Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Tuo Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-environment, Ministry of Agriculture, Beijing, 100081, China
| | - Quan Zhang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qi-Hong Zhu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Dao-You Huang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Han-Hua Zhu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Chao Xu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Shi-Ming Su
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-environment, Ministry of Agriculture, Beijing, 100081, China
| | - Xi-Bai Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-environment, Ministry of Agriculture, Beijing, 100081, China.
| |
Collapse
|
114
|
Khatun J, Intekhab A, Dhak D. Effect of uncontrolled fertilization and heavy metal toxicity associated with arsenic(As), lead(Pb) and cadmium (Cd), and possible remediation. Toxicology 2022; 477:153274. [PMID: 35905945 DOI: 10.1016/j.tox.2022.153274] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/10/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
In this growing age of population,agriculture plays a significant role by providing food and employment to millions of people. But to meet the growing need of food day by day the demand of fast and quality plant production becomes a must. Fertilization is one of such activities which are people accustomed to do for this purpose from a very long time. But the excessive uses of chemical fertilizers are showing negative influence on the environmental and public health. The paper mainly focuses on how the excessive use of chemical fertilizers are affecting the soil health as well as the water bodies by accumulating heavy metals (HMs) and other chemical elements present in them and the possible remediation measures.In adequate levels, all heavy metals are hazardous. However, some of them e.g., arsenic (As), lead (Pb) and Cadmium (Cd) are of particular relevance due to their environmental concentrations. The paper also provides a comprehensive discussion of the sources, uses, toxicity, and remediation of these particular HMs.
Collapse
Affiliation(s)
- Julekha Khatun
- Nanomaterials Research Lab, Department of Chemistry, Sidho-Kanho-Birsha University, Purulia -723104, India
| | - Ashad Intekhab
- Department of Civil Engineering, Swami Vivekananda University, Kolkata -700121, India
| | - Debasis Dhak
- Nanomaterials Research Lab, Department of Chemistry, Sidho-Kanho-Birsha University, Purulia -723104, India.
| |
Collapse
|
115
|
Advances in Genes-Encoding Transporters for Cadmium Uptake, Translocation, and Accumulation in Plants. TOXICS 2022; 10:toxics10080411. [PMID: 35893843 PMCID: PMC9332107 DOI: 10.3390/toxics10080411] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/12/2022]
Abstract
Cadmium (Cd) is a heavy metal that is highly toxic for plants, animals, and human beings. A better understanding of the mechanisms involved in Cd accumulation in plants is beneficial for developing strategies for either the remediation of Cd-polluted soils using hyperaccumulator plants or preventing excess Cd accumulation in the edible parts of crops and vegetables. As a ubiquitous heavy metal, the transport of Cd in plant cells is suggested to be mediated by transporters for essential elements such as Ca, Zn, K, and Mn. Identification of the genes encoding Cd transporters is important for understanding the mechanisms underlying Cd uptake, translocation, and accumulation in either crop or hyperaccumulator plants. Recent studies have shown that the transporters that mediate the uptake, transport, and accumulation of Cd in plants mainly include members of the natural resistance-associated macrophage protein (Nramp), heavy metal-transporting ATPase (HMA), zinc and iron regulated transporter protein (ZIP), ATP-binding cassette (ABC), and yellow stripe-like (YSL) families. Here, we review the latest advances in the research of these Cd transporters and lay the foundation for a systematic understanding underlying the molecular mechanisms of Cd uptake, transport, and accumulation in plants.
Collapse
|
116
|
Liu J, Li Y, Li D, Wang Y, Wei S. The burden of coronary heart disease and stroke attributable to dietary cadmium exposure in Chinese adults, 2017. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153997. [PMID: 35202702 DOI: 10.1016/j.scitotenv.2022.153997] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is a metal with a long biological half-life that could cause health issues, such as coronary heart disease (CHD), stroke, and other cardiovascular diseases (CVD). Recent studies showed an ascending trend in the dietary Cd intake in the Chinese population. The contribution of dietary Cd intake to CHD and stroke burden, on the other hand, remains to be established. To calculate the disease burden for CHD and stroke attributable to dietary Cd, we estimated dietary Cd intake by associating the Cd concentration in food with consumption frequency. The toxicokinetic (TK) model and dietary Cd consumption were used to simulate urinary cadmium (U-Cd) concentrations. The population attributable fraction (PAF) can be derived for the computation of the attributable disease burden expressed as Disability-Adjusted Life Years (DALYs) in provinces, genders, and age groups by combining the relative risk (RR) with the population distribution of U-Cd. The mean of dietary Cd consumption and the geometric mean of U-Cd in the Chinese adult population are 0.684 μg/kg bw/day and 0.88 μg/g creatinine. The CHD burden attributable to dietary Cd was 3.26 million DALYs, with a 9.69% proportion of the total CHD burden. The DALYs for stroke attributable to Cd in food was approximately 3.64 million, accounting for 8.22% of the overall stroke burden. Furthermore, the attributable disease burden of CHD and stroke are higher in the south, women, and middle-aged and older adults. Our study suggested that foodborne Cd exposure contributes a considerable proportion of the CHD and stroke burden. More attention is needed to control Cd in food in order to reduce the burden of CHD and stroke in the Chinese population.
Collapse
Affiliation(s)
- Jialin Liu
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yiling Li
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Dong Li
- Center for Statistical Science, Department of Industrial Engineering, Tsinghua University, Beijing 100084, PR China
| | - Yibaina Wang
- National Food Safety Risk Assessment Center, Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 10022, PR China
| | - Sheng Wei
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
117
|
Li MW, Lam HM. Genomic Studies of Plant-Environment Interactions. Int J Mol Sci 2022; 23:ijms23115871. [PMID: 35682550 PMCID: PMC9180848 DOI: 10.3390/ijms23115871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/21/2022] [Indexed: 12/10/2022] Open
|
118
|
Shi J, Du P, Luo H, Wu H, Zhang Y, Chen J, Wu M, Xu G, Gao H. Soil contamination with cadmium and potential risk around various mines in China during 2000-2020. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114509. [PMID: 35219202 DOI: 10.1016/j.jenvman.2022.114509] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) pollution in mining areas is the most important challenge for soil environment management in China. Assessing the actual Cd pollution risk in various mining areas and identifying the core areas requiring supervision can provide a basis for government departments and industries to carry out detailed further investigations in key areas. In this study, we collated published data on metal mine circumjacent soil contaminated by Cd in China from 2002 to 2020 to conduct a comprehensive study on soil cadmium pollution and ecological and health risks in mining areas. The temporal and spatial variations of Cd concentrations and the pollution source were investigated. Results indicated that the Cd concentration in soil was strongly associated with the types of mining area. The Cd pollution in the circumjacent soil of lead-zinc and tungsten mines with high heavy metal pollution discharging coefficient was more serious than the soil around other mines. Identification of temporal and spatial variations for soil Cd in China indicated that the high Cd concentrations were found in the central, southern, and southwestern regions of China, and the distribution of mining activities in these regions are relatively concentrated. Meanwhile, a temporal turning point in the mean soil Cd concentration occurred in these regions in 2012, which indicated that the heavy metal control management policy implemented by the government was effective. The ecological risk of soil Cd pollution around mining areas was moderate to high. Health risk assessment showed that some regions adjacent mining areas had a high non-carcinogenic risk, notably, lead-zinc and tungsten mining areas were more serious. Supervision should focus on reducing ecological risks and protecting the safety of agricultural products rather than concentrating on health risks. The research results provide a reference for the priority management of contaminated soil in mining areas.
Collapse
Affiliation(s)
- Jing Shi
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Ping Du
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China.
| | - Huilong Luo
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China; College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Hao Wu
- Academy of Environmental Protection Sciences, Guangxi, China
| | - Yunhui Zhang
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Juan Chen
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Minghong Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Hefeng Gao
- Academy of Environmental Protection Sciences, Guangxi, China
| |
Collapse
|
119
|
Gupta PK, Singh A, Vaish B, Singh P, Kothari R, Singh RP. A comprehensive study on aquatic chemistry, health risk and remediation techniques of cadmium in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151784. [PMID: 34808189 DOI: 10.1016/j.scitotenv.2021.151784] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/01/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd), a non-essential trace element, it's intrusion in groundwater has ubiquitous implications on the environment and human health. This review is an approach to comprehensively emphasize on i) chemistry and occurrence of Cd in groundwater and its concomitant response on human health ii) sustainable Cd remediation techniques, iii) and associated costs. Current study is depending on meta-analysis of Cd contaminations in groundwater and discusses its distributions around the globe. Literature review primarily comprises from the last three decades online electronic published database, which mainly includes i) research literatures, ii) government reports. On the basis of meta-data, it was concluded that Cd mobility depends on multiple factors: such as pH, redox state, and ionic strength, dissolved organic (DOC) and inorganic carbon (DIC). A substantially high Cd concentration has been reported in Lagos, Nigeria (0.130 mg/L). In India, groundwater is continuing to be contaminated by Cd in the proximity of industrial, agricultural areas, high concentrations (>8.20 mg/L) were reported in Tamil Nadu and Maharashtra. Depending on chemical behavior and ionic radius cadmium disseminate into the food chain and ultimately cause health hazard that can be measured by various index-based assessment tools. Instead of chemical adsorbents, nanoparticles, phytoextraction, and bioremediation techniques can be very useful in the remediation and management of Cd polluted groundwater at a low-cost. For Cd pollution, the development of a comprehensive framework that links the hydro-geological, bio-geochemical processes to public health is important and need to be further studied.
Collapse
Affiliation(s)
- Pankaj Kumar Gupta
- Faculty of Environment, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Anita Singh
- Department of Botany, Banaras Hindu University, Varanasi 221005, India
| | - Barkha Vaish
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, India
| | - Pooja Singh
- Department of Science, Society for Higher Education & Practical Applications (SHEPA), Varanasi, India
| | - Richa Kothari
- Department of Environmental Science, Central University of Jammu, Rahya Suchani (Bagla) Samba, Jammu, Jammu and Kashmir 181143, India
| | - Rajeev Pratap Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
120
|
Peng JY, Zhang S, Han Y, Bate B, Ke H, Chen Y. Soil heavy metal pollution of industrial legacies in China and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151632. [PMID: 34780826 DOI: 10.1016/j.scitotenv.2021.151632] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/16/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Rapid urbanization in China has brought about large-scale factory relocation. Severe environmental ecological and human health risks are caused by a large number of contaminated legacies left in the city. To comprehensively review the pollution and assess the health risk of industrial legacies in China, a total of 625 polluted industrial legacies were compiled by document retrieval. Legacies are mainly located in the southwest of China, the North China Plain, Yangtze River Basin, Yangtze River Delta, and Pearl River Delta with a mean operation time of 35 years, and legacies of chemical manufacturing take the biggest proportion of all sites. Health risk assessments considering the uncertainty of exposure and toxic factors reveal that the soil heavy metal pollution in China is serious, with Pb, Cd, Zn, Ni, and As as dominant pollutants. Legacies of chemical manufacturing, ferrous metal processing, non-ferrous metal processing, and mines should be priority controlled for their large number and serious risks. Children are the most vulnerable people with more serious non-carcinogenic and carcinogenic risks, while males are slightly surpassed by females. Insights for better risk management of legacies are provided based on the comprehensive assessment of pollution and human health risk in this study.
Collapse
Affiliation(s)
- Jing-Yu Peng
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shuai Zhang
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Yingyu Han
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Bate Bate
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Han Ke
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yunmin Chen
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
121
|
Zuo TT, Luo FY, He HZ, Jin HY, Sun L, Xing SX, Li B, Gao F, Ma SC, He LC. Novel bioavailability-based risk assessment of Cd in earthworms and leeches utilizing in vitro digestion/Caco-2 and MDCK cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26513-26523. [PMID: 34859344 DOI: 10.1007/s11356-021-16678-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/19/2021] [Indexed: 05/27/2023]
Abstract
In the present study, the oral bioavailability of cadmium (Cd) in earthworms and leeches was investigated through in vitro physiologically based extraction test (PBET) digestion/Caco2 and MDKC cell models. We are the first to create an innovative assessment strategy which has capacity to offer a more precise evaluation of Cd-associated health risks in traditional animal medicines (TAMs), by combinational usage of bioavailable Cd levels, the duration and frequency of the exposure to TAMs obtained by questionnaire data, as well as safety factor of TAMs. Our data showed that the percentage of bioavailability for Caco-2 cells in earthworms and leeches ranged from 3.29 to 14.17% and 4.32 to 12.61%, respectively. The percentage of bioavailability of MDCK cells in earthworms and leeches ranged from 4.83 to 15.74% and 6.53 to 15.04%, respectively. After adjusting by the bioavailability of Cd to target hazard quotient (THQ), excitingly, our findings manifested that the health risks induced by the ingestion of earthworms and leeches were acceptable in the clinic. Our key findings suggest that bioavailability characterization cannot be ruled out and health risks should be assessed on the basis of the bioavailable Cd levels rather than total levels. Our novel strategy provides insight into the bio-accumulation of Cd in organisms as well as a more realistic and accurate assessment of Cd-associated health risks in TAMs, with the main purpose of improving public health by scientifically using TAMs.
Collapse
Affiliation(s)
- Tian-Tian Zuo
- School of Pharmacy, Xi' an Jiaotong University, Xi'an, 710061, China
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 100050, China
| | - Fei-Ya Luo
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 100050, China
| | - Huai-Zhen He
- School of Pharmacy, Xi' an Jiaotong University, Xi'an, 710061, China
| | - Hong-Yu Jin
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 100050, China
| | - Lei Sun
- School of Pharmacy, Xi' an Jiaotong University, Xi'an, 710061, China
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 100050, China
| | - Shu-Xia Xing
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 100050, China
| | - Bo Li
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 100050, China
| | - Fei Gao
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 100050, China
| | - Shuang-Cheng Ma
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 100050, China.
| | - Lang-Chong He
- School of Pharmacy, Xi' an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
122
|
Ibiwoye MO, Snyder EA, Lyons J, Vasauskas AA, Hernandez MJ, Summerlin AR, Foster JD. The Effect of Short-Term Exposure to Cadmium on the Expression of Vascular Endothelial Barrier Antigen in the Developing Rat Forebrain and Cerebellum: A Computerized Quantitative Immunofluorescent Study. Cureus 2022; 14:e23848. [PMID: 35402117 PMCID: PMC8986507 DOI: 10.7759/cureus.23848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/05/2022] [Indexed: 11/05/2022] Open
Abstract
Clinical and laboratory studies have shown that environmental exposure to cadmium produces damage to several organs, including bones, lungs, and kidneys. The involvement of cadmium in central nervous system (CNS) disorders has also been widely reported, but the precise pathophysiological mechanism is not yet fully understood. Children who were exposed to cadmium during pregnancy are known to suffer from developmental delays, learning difficulties, attention deficit hyperactivity disorder (ADHD), and other cognitive and neurobehavioral deficits. Results from numerous studies suggest that dysfunction of the blood-brain barrier (BBB) structures is an important step in the neurotoxicity of cadmium. A rat-specific BBB marker protein, the endothelial barrier antigen (EBA), has been previously isolated and classified by Sternberger and others. The mouse IgG1 clone, anti-endothelial barrier antigen (anti-EBA), detects a protein triplet (23.5kDa, 25 kDa, and 30kDa) localized to the luminal surface of central and peripheral nervous system (CNS and PNS) vascular endothelial cells with selective permeability barrier functions. This marker has been widely used for characterizing BBB alterations under demyelinating, inflammatory, and other CNS pathologies. Many studies have been published using the rat model system for studying the neurotoxic effect of acute and chronic exposure to cadmium. We applied the indirect immunofluorescent techniques using the anti-EBA antibody in conjunction with the Olympus cellSens computerized image analysis to detect and quantify the surface areas of BBB-competent microvessel profiles in paraformaldehyde-fixed, paraffin-embedded brains of term-delivered young rats after intraperitoneal injection of a single dose of cadmium chloride. We detected a statistically significant reduction in EBA-positive microvessel surface areas in the forebrain (t = 5.86, df = 1789, p-value < 0.001) and cerebellum (t=73.40, df=1337, p < 0.001) of cadmium-treated rats compared to the normal controls. Thus, this study supports the hypothesis that the EBA is a sensitive and measurable indicator for quantitative assessment of the impact of cadmium exposure in the developing rat brain.
Collapse
Affiliation(s)
- Michael O Ibiwoye
- Anatomy and Molecular Medicine, Alabama College of Osteopathic Medicine, Dothan, USA
| | - Emily A Snyder
- Research, Alabama College of Osteopathic Medicine, Dothan, USA
| | - James Lyons
- Department Clinical Sciences, Alabama College of Osteopathic Medicine, Dothan, USA
| | - Audrey A Vasauskas
- Institutional Effectiveness, Alabama College of Osteopathic Medicine, Dothan, USA
| | - Mark J Hernandez
- Anatomy and Molecular Medicine, Alabama College of Osteopathic Medicine, Dothan, USA
| | | | - James D Foster
- Anatomy and Molecular Medicine, Alabama College of Osteopathic Medicine, Dothan, USA
| |
Collapse
|
123
|
Olive Oil Traceability Studies Using Inorganic and Isotopic Signatures: A Review. Molecules 2022; 27:molecules27062014. [PMID: 35335378 PMCID: PMC8949907 DOI: 10.3390/molecules27062014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 01/18/2023] Open
Abstract
The olive oil industry is subject to significant fraudulent practices that can lead to serious economic implications and even affect consumer health. Therefore, many analytical strategies have been developed for olive oil’s geographic authentication, including multi-elemental and isotopic analyses. In the first part of this review, the range of multi-elemental concentrations recorded in olive oil from the main olive oil-producing countries is discussed. The compiled data from the literature indicates that the concentrations of elements are in comparable ranges overall. They can be classified into three categories, with (1) Rb and Pb well below 1 µg kg−1; (2) elements such as As, B, Mn, Ni, and Sr ranging on average between 10 and 100 µg kg−1; and (3) elements including Cr, Fe, and Ca ranging between 100 to 10,000 µg kg−1. Various sample preparations, detection techniques, and statistical data treatments were reviewed and discussed. Results obtained through the selected analytical approaches have demonstrated a strong correlation between the multi-elemental composition of the oil and that of the soil in which the plant grew. The review next focused on the limits of olive oil authentication using the multi-elemental composition method. Finally, different methods based on isotopic signatures were compiled and critically assessed. Stable isotopes of light elements have provided acceptable segregation of oils from different origins for years already. More recently, the determination of stable isotopes of strontium has proven to be a reliable tool in determining the geographical origin of food products. The ratio 87Sr/86Sr is stable over time and directly related to soil geology; it merits further study and is likely to become part of the standard tool kit for olive oil origin determination, along with a combination of different isotopic approaches and multi-elemental composition.
Collapse
|
124
|
Zhang L, Zou D, Zeng N, Li L, Xiao Z. Slaked lime improves growth, antioxidant capacity and reduces Cd accumulation of peanut (Arachis hypogaea L.) under Cd stress. Sci Rep 2022; 12:4388. [PMID: 35288602 PMCID: PMC8921238 DOI: 10.1038/s41598-022-08339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/07/2022] [Indexed: 11/25/2022] Open
Abstract
Slaked lime has been used to remediate contaminated agricultural soils as an in situ chemical immobilization amendment for a long time. However, the effects of slaked lime on peanut and soil cadmium (Cd) levels remain poorly understood with respect to remediating Cd-contaminated soil. In this study, six rates of slaked lime (e.g., 0, 300, 600, 900, 1200 and 1500 kg ha-1) were applied to evaluate the effects of slaked lime treatments on soil pH and the growth, Cd accumulation and physiology characteristics of peanut, which were in Cd-contaminated soil, and 0 kg ha-1 was taken as the control. The results indicated that slaked lime application significantly increased soil pH and reduced total Cd contents in peanut tissues at all growth stages. As the rates of slaked lime were increased, kernel biomass increased in the maturity stage, which increased peanut yields. The irregular variations in catalase, peroxidase, and superoxide dismutase activities and chlorophyll and malondialdehyde contents that were observed at all growth stages may be due to the interactions among soil pH, Ca nutrients and Cd, etc. In summary, slaked lime is suitable as an in situ chemical immobilization amendment to increase Cd immobilization and peanut yields in Cd-contaminated soil.
Collapse
Affiliation(s)
- Liqing Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China
| | - Dongsheng Zou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China
| | - Ningbo Zeng
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China
| | - Lin Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China.
| | - Zhihua Xiao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China.
| |
Collapse
|
125
|
Zulfiqar U, Jiang W, Xiukang W, Hussain S, Ahmad M, Maqsood MF, Ali N, Ishfaq M, Kaleem M, Haider FU, Farooq N, Naveed M, Kucerik J, Brtnicky M, Mustafa A. Cadmium Phytotoxicity, Tolerance, and Advanced Remediation Approaches in Agricultural Soils; A Comprehensive Review. FRONTIERS IN PLANT SCIENCE 2022; 13:773815. [PMID: 35371142 PMCID: PMC8965506 DOI: 10.3389/fpls.2022.773815] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/02/2022] [Indexed: 05/03/2023]
Abstract
Cadmium (Cd) is a major environmental contaminant due to its widespread industrial use. Cd contamination of soil and water is rather classical but has emerged as a recent problem. Cd toxicity causes a range of damages to plants ranging from germination to yield suppression. Plant physiological functions, i.e., water interactions, essential mineral uptake, and photosynthesis, are also harmed by Cd. Plants have also shown metabolic changes because of Cd exposure either as direct impact on enzymes or other metabolites, or because of its propensity to produce reactive oxygen species, which can induce oxidative stress. In recent years, there has been increased interest in the potential of plants with ability to accumulate or stabilize Cd compounds for bioremediation of Cd pollution. Here, we critically review the chemistry of Cd and its dynamics in soil and the rhizosphere, toxic effects on plant growth, and yield formation. To conserve the environment and resources, chemical/biological remediation processes for Cd and their efficacy have been summarized in this review. Modulation of plant growth regulators such as cytokinins, ethylene, gibberellins, auxins, abscisic acid, polyamines, jasmonic acid, brassinosteroids, and nitric oxide has been highlighted. Development of plant genotypes with restricted Cd uptake and reduced accumulation in edible portions by conventional and marker-assisted breeding are also presented. In this regard, use of molecular techniques including identification of QTLs, CRISPR/Cas9, and functional genomics to enhance the adverse impacts of Cd in plants may be quite helpful. The review's results should aid in the development of novel and suitable solutions for limiting Cd bioavailability and toxicity, as well as the long-term management of Cd-polluted soils, therefore reducing environmental and human health hazards.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Wenting Jiang
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Wang Xiukang
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Nauman Ali
- Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Kaleem
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Naila Farooq
- Department of Soil and Environmental Science, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Jiri Kucerik
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
| | - Martin Brtnicky
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Adnan Mustafa
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Prague, Czechia
| |
Collapse
|
126
|
Wu B, Li J, Peng D, Wang Z, Xu H. Cadmium Exposure Alters Rhizospheric Microbial Community and Transcriptional Expression of Vetiver Grass. FRONTIERS IN PLANT SCIENCE 2022; 13:808844. [PMID: 35283903 PMCID: PMC8914199 DOI: 10.3389/fpls.2022.808844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/31/2022] [Indexed: 05/03/2023]
Abstract
Vetiver grass (Chrysopogon zizanioides L.) has been used to remediate cadmium (Cd)-contaminated soil, while there have been few studies on the influence of Cd exposure on the rhizospheric microbial community and transcriptional expression of C. zizanioides. In this study, we investigated the response of the rhizospheric microbial community and transcriptional expression of C. zizanioides in 20 mg/kg Cd-contaminated soil. The results showed that Cd levels in the roots and shoots of C. zizanioides reached 250.80 and 73.40 mg/kg, respectively. The Cd exposure changed the rhizospheric bacterial community, resulting in the significant enrichment of Sphingomonas, Lysobacter, and Gemmatimonadetes in Cd-contaminated soil. In addition, 880 and 3,419 differentially expressed genes were identified in the plant roots and shoots, respectively, in response to Cd stress. Among these, the overexpressed genes associated with redox homeostasis, glutathione (GSH) metabolism, cell wall biosynthesis, and transmembrane transport pathways were found to participate in Cd detoxification in C. zizanioides. These findings could be useful for understanding the selective variation of the rhizospheric microbial community and the detoxification mechanisms of C. zizanioides in Cd phytoremediation.
Collapse
Affiliation(s)
- Bin Wu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China
| | - Jia Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, China
| | - Dinghua Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ziru Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
127
|
Sahito ZA, Zehra A, Chen S, Yu S, Tang L, Ali Z, Hamza S, Irfan M, Abbas T, He Z, Yang X. Rhizobium rhizogenes-mediated root proliferation in Cd/Zn hyperaccumulator Sedum alfredii and its effects on plant growth promotion, root exudates and metal uptake efficiency. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127442. [PMID: 34673390 DOI: 10.1016/j.jhazmat.2021.127442] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
In this study, Rhizobium rhizogenes-mediated root proliferation system in Sedum alfredii has been established. Twenty strains of R. rhizogenes were screened for root proliferation. A significant difference (P < 0.01) was observed in plant morphological characters under influence of different bacterial strains. The highest root fresh weight (3.236 g/plant) was observed with strain AS12556. Furthermore, significant difference (P < 0.05) was observed in the chemical composition of organic acids, Tartaric acid (TA), Succinic acid (SA), Malic acid (MA), Citric acid (CA) and Oxalic acid (OA), pH, Total Nitrogen (TN), Total Organic Carbon (TOC) and soluble sugars in root exudates with different R. rhizogenes mediated roots. Furthermore, a series of hydroponics experiments were conducted with varying concentrations of Cd (25, 50 and 75 µM) and Zn (100, 200 and 500 µM) to assess the phytoextraction efficiency of proliferated roots with Rhizobium. Several plants with proliferated roots showed enhanced growth and improved metal extraction efficiency. Five strains (LBA 9402, K599, AS12556, MSU440 and C58C1) were identified as potential strains for root proliferation in Sedum alfredii. R. rhizogenes strain AS12556 improved Cd/Zn phytoextraction by exogenous production of phytochemicals to promote root proliferation, improved shoot biomass, lowered oxidative damage and enhanced phytoextraction efficiency in S. alfredii. Therefore, it has been selected as a potential microbial partner of S. alfredii to develop extensive rooting system for better growth and enhanced phytoremediation potential. Results suggest that R. rhizogenes mediated root proliferation system can be used for optimizing metal extraction from contaminated soils.
Collapse
Affiliation(s)
- Zulfiqar Ali Sahito
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China; Department of Earth and Environmental Sciences, Bahria University Karachi Campus, Karachi 75300, Pakistan
| | - Afsheen Zehra
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China; Department of Botany, Federal Urdu University of Arts, Science and Technology, Karachi 75300, Pakistan
| | - Shaoning Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Song Yu
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Lin Tang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Zarina Ali
- Department of Botany, Federal Urdu University of Arts, Science and Technology, Karachi 75300, Pakistan
| | - Salma Hamza
- Department of Earth and Environmental Sciences, Bahria University Karachi Campus, Karachi 75300, Pakistan
| | - Muhammad Irfan
- Department of Earth and Environmental Sciences, Bahria University Karachi Campus, Karachi 75300, Pakistan
| | - Tanveer Abbas
- Department of Microbiology, University of Karachi, Karachi 75250, Pakistan
| | - Zhenli He
- University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, FL 34945, United States
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
128
|
Tang D, Zhang Q, Duan H, Ye X, Liu J, Peng W, Wu C. Polydatin: A Critical Promising Natural Agent for Liver Protection via Antioxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9218738. [PMID: 35186191 PMCID: PMC8853764 DOI: 10.1155/2022/9218738] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022]
Abstract
Polydatin, one of the natural active small molecules, was commonly applied in protecting and treating liver disorders in preclinical studies. Oxidative stress plays vital roles in liver injury caused by various factors, such as alcohol, viral infections, dietary components, drugs, and other chemical reagents. It is reported that oxidative stress might be one of the main reasons in the progressive development of alcohol liver diseases (ALDs), nonalcoholic liver diseases (NAFLDs), liver injury, fibrosis, hepatic failure (HF), and hepatocellular carcinoma (HCC). In this paper, we comprehensively summarized the pharmacological effects and potential molecular mechanisms of polydatin for protecting and treating liver disorders via regulation of oxidative stress. According to the previous studies, polydatin is a versatile natural compound and exerts significantly protective and curative effects on oxidative stress-associated liver diseases via various molecular mechanisms, including amelioration of liver function and insulin resistance, inhibition of proinflammatory cytokines, lipid accumulation, endoplasmic reticulum stress and autophagy, regulation of PI3K/Akt/mTOR, and activation of hepatic stellate cells (HSCs), as well as increase of antioxidant enzymes (such as catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH), superoxide dismutase (SOD), glutathione reductase (GR), and heme oxygenase-1 (HO-1)). In addition, polydatin acts as a free radical scavenger against reactive oxygen species (ROS) by its phenolic and ethylenic bond structure. However, further clinical investigations are still needed to explore the comprehensive molecular mechanisms and confirm the clinical treatment effect of polydatin in liver diseases related to regulation of oxidative stress.
Collapse
Affiliation(s)
- Dandan Tang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Huxinyue Duan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Xun Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu 611137, China
| |
Collapse
|
129
|
Xu J, Hu C, Wang M, Zhao Z, Zhao X, Cao L, Lu Y, Cai X. Changeable effects of coexisting heavy metals on transfer of cadmium from soils to wheat grains. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127182. [PMID: 34537640 DOI: 10.1016/j.jhazmat.2021.127182] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) and other heavy metals usually coexist in soils. Effects of coexisting heavy metals on the accumulation and transfer of Cd in field soils by wheat remain poorly understood. Here we revealed changeable effects of coexisting Pb, Zn and Cu on the Cd transfer from soils to wheat grains. Soil burdens of Cd were found to exhibit positive correlations (r = 0.459-0.946) with those of coexisting Pb, Zn and Cu (particularly Pb). Effects of three coexisting metals on to the uptake of Cd by wheat varied in the directions and/or extents with types of metals and transfer processes of Cd. Coexisting Zn inhibited the uptake of Cd by wheat grains to higher extent than Pb and Cu. Soil Zn, along with soil Cd, soil pH and soil Ca, was used to construct the predictive model of grain Cd (R2 = 0.868). External verifications of the model on 572 datasets of large representation performed well. The predictive accuracy was about 54%, 73% and 89% for a factor of 1, 2 and 5 above and below the ideal fit, respectively. This finding has practical interest in risk assessments and remediation measures of Cd-contaminated soil sites in regional scales.
Collapse
Affiliation(s)
- Jiahui Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Canyang Hu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Maolin Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zongsheng Zhao
- Key Laboratory of Heavy-metal Pollution Monitoring and Remediation of Henan Province, Jiyuan 459000, China
| | - Xiaoxue Zhao
- Key Laboratory of Heavy-metal Pollution Monitoring and Remediation of Henan Province, Jiyuan 459000, China
| | - Liu Cao
- Key Laboratory of Heavy-metal Pollution Monitoring and Remediation of Henan Province, Jiyuan 459000, China
| | - Yifu Lu
- Key Laboratory of Heavy-metal Pollution Monitoring and Remediation of Henan Province, Jiyuan 459000, China
| | - Xiyun Cai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
130
|
She J, Liu J, He H, Zhang Q, Lin Y, Wang J, Yin M, Wang L, Wei X, Huang Y, Chen C, Lin W, Chen N, Xiao T. Microbial response and adaption to thallium contamination in soil profiles. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127080. [PMID: 34523503 DOI: 10.1016/j.jhazmat.2021.127080] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/09/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Thallium (Tl) is a trace metal with high toxicity. Comprehensive investigation of spatial distribution of Tl and microorganism is still limited in soils from mining area. In this study, 16S rRNA sequencing and network analysis were used for deciphering the co-occurrence patterns of bacterial communities in two different types of soil profiles around a typical Tl-bearing pyrite mine. The results showed that geochemical parameters (such as pH, S, Tl, Fe and TOM) were the driving forces for shaping the vertical distribution of microbial community. According to network analysis, a wide diversity of microbial modules were present in both soil profiles and affected by depth, significantly associated with variations in Tl geochemical fractionation. Phylogenetic information further unveiled that the microbial modules were mainly dominated by Fe reducing bacteria (FeRB), Fe oxidizing bacteria (FeOB), S oxidizing bacteria and Mn reducing bacteria. The results of metagenome indicated that Fe, Mn and S cycle in soil are closely involved in the biogeochemical cycle of Tl. The findings of co-occurrence patterns in the bacterial network and correlation between microorganisms and different geochemical fractions of Tl may benefit the strategy of bioremediation of Tl-contaminated soils with indigenous microbes.
Collapse
Affiliation(s)
- Jingye She
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China; Key Laboratory of Mineralogy and Metallogeny, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Guangzhou 510640, China
| | - Hongping He
- Key Laboratory of Mineralogy and Metallogeny, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Guangzhou 510640, China
| | - Qiong Zhang
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - Yuyang Lin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
| | - Meiling Yin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Lulu Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Xudong Wei
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yeliang Huang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Changzhi Chen
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Wenli Lin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Nan Chen
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Tangfu Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China
| |
Collapse
|
131
|
Alburaidi BS, Alsenaidy AM, Al Hasan M, Siddiqi NJ, Alrokayan SH, Odeibat HA, Abdulnasir AJ, Khan HA. Comparative evaluation of cadmium-induced oxidative stress in camel and bovine erythrocytes. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:101772. [DOI: 10.1016/j.jksus.2021.101772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
132
|
Quadros IPS, Madeira NN, Loriato VAP, Saia TFF, Silva JC, Soares FAF, Carvalho JR, Reis PAB, Fontes EPB, Clarindo WR, Fontes RLF. Cadmium-mediated toxicity in plant cells is associated with the DCD/NRP-mediated cell death response. PLANT, CELL & ENVIRONMENT 2022; 45:556-571. [PMID: 34719793 DOI: 10.1111/pce.14218] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 05/13/2023]
Abstract
Cadmium (Cd2+ ) is highly harmful to plant growth. Although Cd2+ induces programmed cell death (PCD) in plant cells, Cd2+ stress in whole plants during later developmental stages and the mechanism underlying Cd2+ -mediated toxicity are poorly understood. Here, we showed that Cd2+ limits plant growth, causes intense redness in leaf vein, leaf yellowing, and chlorosis during the R1 reproductive stage of soybean (Glycine max). These symptoms were associated with Cd2+ -induced PCD, as Cd2+ -stressed soybean leaves displayed decreased number of nuclei, enhanced cell death, DNA damage, and caspase 1 activity compared to unstressed leaves. Accordingly, Cd2+ -induced NRPs, GmNAC81, GmNAC30 and VPE, the DCD/NRP-mediated cell death signalling components, which execute PCD via caspase 1-like VPE activity. Furthermore, overexpression of the positive regulator of this cell death signalling GmNAC81 enhanced sensitivity to Cd2+ stress and intensified the hallmarks of Cd2+ -mediated PCD. GmNAC81 overexpression enhanced Cd2+ -induced H2 O2 production, cell death, DNA damage, and caspase-1-like VPE expression. Conversely, BiP overexpression negatively regulated the NRPs/GmNACs/VPE signalling module, conferred tolerance to Cd2+ stress and reduced Cd2+ -mediated cell death. Collectively, our data indicate that Cd2+ induces PCD in plants via activation of the NRP/GmNAC/VPE regulatory circuit that links developmentally and stress-induced cell death.
Collapse
Affiliation(s)
- Iana Pedro Silva Quadros
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Virgílio Adriano Pereira Loriato
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
- Biochemistry and Molecular Biology Department/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Thaina Fernanda Fillietaz Saia
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Jéssica Coutinho Silva
- Cytogenetics and Cytometry Laboratory, Department of General Biology, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | | | - Pedro Augusto Braga Reis
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
- Biochemistry and Molecular Biology Department/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Elizabeth P B Fontes
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
- Biochemistry and Molecular Biology Department/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Wellington Ronildo Clarindo
- Cytogenetics and Cytometry Laboratory, Department of General Biology, Universidade Federal de Viçosa, Viçosa, Brazil
| | | |
Collapse
|
133
|
Wang Y, Liang H, Li S, Zhang Z, Liao Y, Lu Y, Zhou G, Gao S, Nie J, Cao W. Co-utilizing milk vetch, rice straw, and lime reduces the Cd accumulation of rice grain in two paddy soils in south China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150622. [PMID: 34597553 DOI: 10.1016/j.scitotenv.2021.150622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The danger posed by cadmium (Cd) pollution to rice production is continuously increasing. Co-utilizing milk vetch (Astragalus sinicus L.) and rice straw is a good practice for rice yield and soil fertility in south China. However, its effects on Cd availability in soil-rice systems remain unclear. A micro-plot trial of two typical paddy soils (alluvial sandy soil and reddish clayey soil) in south China was conducted to investigate the effects of milk vetch, rice straw, lime, and their combined application on Cd availability and the related mechanisms. Soil chemical properties, CaCl2-extractable Cd (CaCl2-Cd), total content of Cd (Total-Cd), Cd fractionation (BCR sequential-extraction method), and Cd accumulation in rice were measured. Results showed that the co-utilization of milk vetch, rice straw, and lime (GRFL) decreased the Cd content in rice grain by 91.43% and 15.63% in early rice of two soils, respectively. Cd was not detected in late rice grains. CaCl2-Cd decreased by 0.025 mg kg-1 in late rice of alluvial sandy soil, 0.057 and 0.044 mg kg-1 decreased in early and late rice of reddish clayey soil, and Total-Cd decreased by 19.4% and 9.1% for early rice of two soils, respectively. Co-utilizing milk vetch, rice straw, and lime changed the distribution of different chemical forms of Cd, decreased the content of bioavailable Cd in soil by reducing the Aci-Cd and RedCd, and benefited the formation of more stable residual fraction (ResCd). Redundancy analysis showed that the improvement in soil pH, dissolved organic matter (DOM), and other soil properties was the main cause of the transformation of Cd form. Among the soil properties, pH and DOM had the greatest impacts on Cd availability. In conclusion, co-utilizing milk vetch and rice straw can alleviate the danger of soil Cd in rice production, and this effect could be strengthened by applying lime.
Collapse
Affiliation(s)
- Yun Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Hai Liang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Shun Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Zihan Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yulin Liao
- Soil and Fertilizer Institute of Hunan Province, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, China
| | - Yanhong Lu
- Soil and Fertilizer Institute of Hunan Province, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, China
| | - Guopeng Zhou
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Songjuan Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Jun Nie
- Soil and Fertilizer Institute of Hunan Province, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, China.
| | - Weidong Cao
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
134
|
Li D, Zheng X, Lin L, An Q, Jiao Y, Li Q, Li Z, Hong Y, Zhang K, Xie C, Yin J, Zhang H, Wang B, Hu Y, Zhu Z. Remediation of soils co-contaminated with cadmium and dichlorodiphenyltrichloroethanes by king grass associated with Piriformospora indica: Insights into the regulation of root excretion and reshaping of rhizosphere microbial community structure. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126936. [PMID: 34463272 DOI: 10.1016/j.jhazmat.2021.126936] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) and dichlorodiphenyltrichloroethane (DDT) are frequently detected in agricultural soils, which poses a threat to public health. This study investigated the effects of inoculation of king grass with Piriformospora indica on the remediation of soils co-contaminated with Cd and DDTs. After treatment for 90 days, the dry shoot and root biomass of king grass inoculated with P. indica markedly increased by 13.0-15.8% and 24.1-46.4%, respectively, compared with those of uninoculated plants. Inoculation with P. indica also increased the uptake of Cd and DDTs by shoots and roots of king grass. The removal efficiency of Cd and DDTs from soils reached 4.88-17.4% and 48.4-51.0%, respectively, in the presence of king grass inoculated with P. indica. Under three Cd-DDTs contamination conditions, root secretion of organic acids, alcohol, and polyamines was distinctively stimulated by P. indica inoculation of king grass compared with planting king grass alone. After phytoremediation, changes in soil bacterial and fungal community composition occurred at different contamination levels. Overall, the results showed that king grass associated with P. indica can be adopted for phytoextraction of Cd and DDTs from moderately contaminated soils by regulating root excretion and reshaping rhizosphere microbial community structure.
Collapse
Affiliation(s)
- Dong Li
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Xiaoxiao Zheng
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Li Lin
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 53007, China
| | - Qianli An
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Yangqiu Jiao
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Qiuli Li
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Zhidong Li
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yi Hong
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Kailu Zhang
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Can Xie
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jing Yin
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Haixiang Zhang
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Baijie Wang
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yueming Hu
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Zhiqiang Zhu
- College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
135
|
Sun T, Hu Y, Wang Z, Xia W, Lv Q, Wang Y, Fang P, Xu P. A tissue atlas of cadmium accumulation and the correlation with thiol-containing chelates in zucchini provide insights into cadmium partitioning and food safety. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126756. [PMID: 34352523 DOI: 10.1016/j.jhazmat.2021.126756] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/15/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Widespread heavy metal pollution in soils has posed serious threat to vegetable production and food security, yet little is still known about heavy metal accumulation and distribution in the majority of vegetable crops. Here, we report the generation of a tissue atlas of cadmium accumulation in zucchini (Cucurbita pepo var. Giromontial), a globally important cucurbit crop, based on two-season experiment with six genotypes grown under cadmium contaminated soils. Plant growth and development as manifested by biomass, flowering time and plant architecture were unaffected by 10 mg/kg cadmium treatment, but high level of cadmium enrichment was detected in all genotypes. Roots accumulated the largest amount of cadmium, whereas the cadmium concentrations in fruits was also considerable. The exocarps of fruits possessed nearly half of the total cadmium in fruits, rendering it a "hotspot" of safety risk. Measurement of the thiol-containing chelates revealed that concentration of GSH but not PCs was correlated with the cadmium concentration in subdivided fruit tissues, suggesting a mechanism of phloem-specific transportation of cadmium in the form of Cd-GSH. Based on the collective data, a tentative model describing the relationship between long-distance phloem transport and cadmium distribution in sink organs is proposed. The implications for food safety are discussed.
Collapse
Affiliation(s)
- Ting Sun
- College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China
| | - Yannan Hu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China
| | - Zhuoyi Wang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China
| | - Wenjun Xia
- College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China
| | - Qiaoqiao Lv
- College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China
| | - Yonggang Wang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China
| | - Pingping Fang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China
| | - Pei Xu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China.
| |
Collapse
|
136
|
Phytoremediation of Cadmium Polluted Soils: Current Status and Approaches for Enhancing. SOIL SYSTEMS 2022. [DOI: 10.3390/soilsystems6010003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cadmium (Cd) is a heavy metal present in atmosphere, rocks, sediments, and soils without a known role in plants. It is relatively mobile and can easily enter from soil into groundwater and contaminate the food chain. Its presence in food in excess amounts may cause severe conditions in humans, therefore prevention of cadmium entering the food chain and its removal from contaminated soils are important steps in preserving public health. In the last several years, several approaches for Cd remediation have been proposed, such as the use of soil amendments or biological systems for reduction of Cd contamination. One of the approaches is phytoremediation, which involves the use of plants for soil clean-up. In this review we summarized current data on the use of different plants in phytoremediation of Cd as well as information about different approaches which have been used to enhance phytoremediation. This includes data on the increasing metal bioavailability in the soil, plant biomass, and plant accumulation capacity as well as seed priming as a promising novel approach for phytoremediation enhancing.
Collapse
|
137
|
Su H, Hu Y, Wang L, Yu H, Li B, Liu J. Source Apportionment and Geographic Distribution of Heavy Metals and as in Soils and Vegetables Using Kriging Interpolation and Positive Matrix Factorization Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19010485. [PMID: 35010745 PMCID: PMC8744921 DOI: 10.3390/ijerph19010485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022]
Abstract
Food security and cultivated land utilization can be seriously affected by heavy metal (HM) pollution of the soil. Therefore, identifying the pollution sources of farmland is the way to control soil pollution and enhance soil quality effectively. In this research, 95 surface soil samples, 34 vegetable samples, 27 irrigation water samples, and 20 fertilizer samples were collected from the Wuqing District of Tianjin City, China and was used to determine their HMs accumulation and potential ecological risks. Then, kriging interpolation and positive matrix factorization (PMF) were utilized to identify the sources of soil HMs. The results indicated that soil HMs in the study area were contaminated at a medium level, but that the pollution of Cd was more severe, and the Cd content in vegetables was slightly higher than the permissible threshold (0.02 mg·kg−1). Furthermore, a non-homogeneous distribution was observed, with higher concentrations of HM contaminants concentrated in the southwest of the study area, where many metal manufacturing industries are located. Our results suggest that the Cd originated from industrial activity; As and Pb from agricultural practices; Ni, Cu, Cr, and As mainly from natural sources; Zn and Cu from organic fertilizer; Pb and Cd mainly from traffic discharge; and Cr, Ni, and Pb from sewage irrigation. Obviously, the accumulation of soil HMs in the study area could be mainly attributed to industrial activities, implying the need for implementation of government strategies to reduce industrial point-source pollution.
Collapse
Affiliation(s)
- Huiyue Su
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (H.S.); (Y.H.)
- Guangdong Province Key Laboratory for Land Use and Consolidation, Guangzhou 510642, China
- Guangdong Province Engineering Research Center for Land Information Technology, Guangzhou 510642, China
| | - Yueming Hu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (H.S.); (Y.H.)
- Guangdong Province Key Laboratory for Land Use and Consolidation, Guangzhou 510642, China
- Guangdong Province Engineering Research Center for Land Information Technology, Guangzhou 510642, China
| | - Lu Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (H.S.); (Y.H.)
- Guangdong Province Key Laboratory for Land Use and Consolidation, Guangzhou 510642, China
- Guangdong Province Engineering Research Center for Land Information Technology, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-020-852-88307
| | - Huan Yu
- College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China;
| | - Bo Li
- South China Academy of Natural Resources Science and Technology, Guangzhou 510642, China; (B.L.); (J.L.)
| | - Jiangchuan Liu
- South China Academy of Natural Resources Science and Technology, Guangzhou 510642, China; (B.L.); (J.L.)
| |
Collapse
|
138
|
The preferential accumulation of cadmium ions among various tissues in mice. Toxicol Rep 2022; 9:111-119. [PMID: 35059304 PMCID: PMC8760390 DOI: 10.1016/j.toxrep.2022.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/08/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
Cadmium (Cd) is hazardous to human health because of its toxicity and long half-life of clearance. Many studies have explored the relationship between chronic Cd exposure and different human diseases. However, most of the studies limited the study targets of Cd toxicity to two or three organ systems. The goal of this study was to establish a mouse model of Cd accumulation in most organ systems and to particularly investigate the potential toxic effects of Cd to the cardiovascular system. Mice were divided into three groups: the control group, Cd-100 group, and Cd-200 group. In the control group, Cd was detected in the kidney, lung, liver, heart and urine but was undetectable in the aorta, intestine, thigh bone, spinal bone and serum. Upon chronic exposure in the Cd-100 and Cd-200 groups, Cd accumulated in all tissues, with a dramatic increase in concentration. We confirmed that Cd could accumulate significantly in the heart and aorta upon chronic exposure. This finding might help to explain the potential toxic effects of Cd on these organs. In addition, the calcium concentration in the bones and kidney declined when the exposure to Cd increased. This finding aligned with the negative effects of Cd on bony mineralization and the potential direct toxic effects of Cd on bones. The impacts of Cd on the cardiovascular system were explored. Histologically, chronic Cd exposure led to myocytes hypertrophy and myocardial architecture disarray in the Cd-100 group compared to those in the control group. Our research confirms that Cd can accumulate in all of the organs studied upon chronic exposure, and suggests that the toxicity of Cd accumulation may play important roles in mediating the pathophysiologic effects in these target organs, especially the bone and heart.
Collapse
|
139
|
Hao X, Bai L, Liu X, Zhu P, Liu H, Xiao Y, Geng J, Liu Q, Huang L, Jiang H. Cadmium Speciation Distribution Responses to Soil Properties and Soil Microbes of Plow Layer and Plow Pan Soils in Cadmium-Contaminated Paddy Fields. Front Microbiol 2021; 12:774301. [PMID: 34925280 PMCID: PMC8679784 DOI: 10.3389/fmicb.2021.774301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Cadmium (Cd) speciation ratio in arable land determines the Cd exposure risk and Cd uptake in crops. However, the driving mechanisms of Cd speciation change on the vertical scale of paddy fields remain poorly understood. In this study, the effects of plow layer and plow pan on Cd speciation distribution were investigated in a long-term Cd-contaminated rice ecosystem. The Cd accumulative effect within rice grain was enhanced with high levels of activated Cd speciation ratios in soils. Activated Cd speciation ratios were higher in plow layer soils, while stabilized Cd speciation ratios were elevated in plow pan soils. Soil physicochemical properties and soil microbes synergistically affected the Cd speciation changes in different ways between the two soil layers. Soil pH and organic elements in plow layer environment directly hindered the transformation of stabilized Cd speciation, while in plow pan environment, soil pH and organic elements indirectly decreased activated Cd speciation ratios and resulted in the accumulation of stabilized Cd speciation via regulating the predominant bacterial taxa. This study will improve our understanding of how soil environments regulate Cd speciation distributions in rice ecosystems and help to seek effective remediation methods of Cd-contaminated paddy fields to reduce the Cd accumulation in rice.
Collapse
Affiliation(s)
- Xiaodong Hao
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, China.,Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Lianyang Bai
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Xueduan Liu
- Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Ping Zhu
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, China.,Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Hongwei Liu
- Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jibiao Geng
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, China
| | - Qianjin Liu
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, China
| | - Lihua Huang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, China
| | - Huidan Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| |
Collapse
|
140
|
Deckers J, Hendrix S, Prinsen E, Vangronsveld J, Cuypers A. Glutathione Is Required for the Early Alert Response and Subsequent Acclimation in Cadmium-Exposed Arabidopsis thaliana Plants. Antioxidants (Basel) 2021; 11:6. [PMID: 35052510 PMCID: PMC8773091 DOI: 10.3390/antiox11010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Pollution by cadmium (Cd) is a worldwide problem, posing risks to human health and impacting crop yield and quality. Cadmium-induced phytotoxicity arises from an imbalance between antioxidants and pro-oxidants in favour of the latter. The Cd-induced depletion of the major antioxidant glutathione (GSH) strongly contributes to this imbalance. Rather than being merely an adverse effect of Cd exposure, the rapid depletion of root GSH levels was proposed to serve as an alert response. This alarm phase is crucial for an optimal stress response, which defines acclimation later on. To obtain a better understanding on the importance of GSH in the course of these responses and how these are defined by the rapid GSH depletion, analyses were performed in the GSH-deficient cadmium-sensitive 2-1 (cad2-1) mutant. Cadmium-induced root and leaf responses related to oxidative challenge, hydrogen peroxide (H2O2), GSH, ethylene, and 1-aminocyclopropane-1-carboxylic acid (ACC) were compared between wild-type (WT) and mutant Arabidopsis thaliana plants. Although the cad2-1 mutant has significantly lower GSH levels, root GSH depletion still occurred, suggesting that the chelating capacity of GSH is prioritised over its antioxidative function. We demonstrated that responses related to GSH metabolism and ACC production were accelerated in mutant roots and that stress persisted due to suboptimal acclimation. In general, the redox imbalance in cad2-1 mutant plants and the lack of proper transient ethylene signalling contributed to this suboptimal acclimation, resulting in a more pronounced Cd effect.
Collapse
Affiliation(s)
- Jana Deckers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; (J.D.); (S.H.); (J.V.)
| | - Sophie Hendrix
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; (J.D.); (S.H.); (J.V.)
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany
| | - Els Prinsen
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium;
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; (J.D.); (S.H.); (J.V.)
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; (J.D.); (S.H.); (J.V.)
| |
Collapse
|
141
|
Sá C, Matos D, Pires A, Cardoso P, Figueira E. Effects of volatile sulfur compounds on growth and oxidative stress of Rhizobium leguminosarum E20-8 exposed to cadmium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149478. [PMID: 34391142 DOI: 10.1016/j.scitotenv.2021.149478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/20/2021] [Accepted: 08/01/2021] [Indexed: 05/27/2023]
Abstract
Volatile sulfur compounds (VSCs) have been reported to be produced by many bacterial species. Depending on the compound, they can negatively influence some organisms (fungi, nematodes and insects) or promote plant growth. Some of these compounds have also been hypothesized to play a role in bacterial response to cadmium (Cd) induced stress. This study aimed to assess the potential effects of four VSCs (dimethyl sulfide - DMS, dimethyl disulfide - DMDS, dimethyl trisulfide - DMTS and methyl thioacetate - MTA) on the growth and oxidative status of Rhizobium sp. strain E20-8 via airborne exposure, in order to test the hypothesis that these volatile compounds can influence growth and tolerance to cadmium. Our results show that, overall, the tested compounds triggered similar antioxidant mechanisms in Rhizobium in the presence of Cd. The protective effect at the membrane level by DMDS and DMTS particularly demonstrates the antioxidant effect of these volatiles, with reductions of up to 50% (DMS) and 80% (DMTS) in lipid peroxidation levels. Due to the volatile nature of these compounds, the low concentrations tested (1 nM to 100 mM), and considering that they are released by bacteria and other organisms such as plants, it is possible that these effects also occur in the soil ecosystem.
Collapse
Affiliation(s)
- Carina Sá
- CESAM, Center for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Diana Matos
- CESAM, Center for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Adília Pires
- CESAM, Center for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Paulo Cardoso
- CESAM, Center for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Etelvina Figueira
- CESAM, Center for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
142
|
Qi M, Liu Y, Li Y, Wang M, Liu N, Kleawsampanjai P, Zhou F, Zhai H, Wang M, Dinh QT, Ren R, Liang D. Detoxification difference of cadmium between the application of selenate and selenite in native cadmium-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64475-64487. [PMID: 34312758 DOI: 10.1007/s11356-021-15564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) has strong mobility and could cause toxicity to plants, and selenium (Se) can effectively detoxify Cd stress. However, differences in the detoxification effects of different species and dosages of exogenous Se on Cd and its mechanism are still unclear. In this study, a pot experiment was conducted to determine the effects of different rates of selenite and selenate application on radish growth, the uptake and translocation of Cd, and the fractions of Cd transformation in native Cd-contaminated soil. Results indicated that the decrease in radish biomass in selenate treatment was significantly greater than that in selenite treatment at a high Se application rate (2.5 mg·kg-1) (p < 0.05). In contrast to selenite treatments, the application of selenate significantly increased the translocation of Cd from radish roots to shoots (p < 0.05). Cadmium concentration and its bioaccumulation factor in radish decreased gradually with increasing selenite application rates, while these values decreased at low Se rate (1 mg·kg-1) and increased at high Se rate for selenate treatment. Different Se application rates resulted in Cd fractions distributions to change in soil. Therefore, the application of selenite treatment had a greater detoxification effect on Cd in soil than that in selenate treatment, and the double toxic effect was observed between Se and Cd in high selenate treatment (2.5 mg·kg-1). Combined with human health risk asseeement, the application of 2.5 mg·kg-1 selenite could be a good approach for detoxification in native Cd-contaminated soil used in this study.
Collapse
Affiliation(s)
- Mingxing Qi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yang Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanan Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Min Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Nana Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Pornpimol Kleawsampanjai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hui Zhai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengke Wang
- Guangdong Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Quang Toan Dinh
- Center for Monitoring and Environmental Protection Thanh Hoa-Department of Natural Resources and Environment of Thanh Hoa, Thanh Hoa, Vietnam
| | - Rui Ren
- Shaanxi Hydrogeolog Engineering Geology and Environment Geology Survey Center, Shaanxi, China
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
143
|
Pastorino P, Bertoli M, Brizio P, Abete MC, Dalla Nora V, Prearo M, Pizzul E. First Insights Into Trace Element Accumulation by Philoscia affinis (Crustacea, Isopoda): a Novel Tracer to Assess Soil Contamination in Lowland Plains? Biol Trace Elem Res 2021; 199:4782-4791. [PMID: 33423135 DOI: 10.1007/s12011-021-02573-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/03/2021] [Indexed: 12/07/2022]
Abstract
Isopods are terrestrial invertebrates that accumulate trace elements in large quantities, thus providing information on levels of soil contamination. However, the accumulation pattern seems to be species dependent. For this study, specimens of Philoscia affinis (Isopoda, Oniscidea) and soil samples were collected from both a protected area (site 1) and urban roadside (site 2) in the low plain of Friuli-Venezia Giulia (northeast Italy) to determine whether P. affinis could serve as a potential candidate for monitoring soil contamination. To do this, the following objectives were achieved: a) the level of trace elements (Al, Cd, Cu, Fe, Hg, Mn, Pb, Zn) were detected in soils and isopods; 2) the difference in trace elements accumulation was compared in the two sampling sites; 3) the bioaccumulation factor (BAF) was calculated for each element. With some exceptions, trace element concentrations were higher in both isopods and soil samples from the urban roadside compared to the protected area. Furthermore, except for Cd, Cu, and Zn, trace element levels were higher in the soil than in the isopod samples. The higher mean BAF values were recorded for Cd (6.169 and 6.974 for site 1 and 2, respectively), Cu (10.324 and 11.452 for site 1 and 2, respectively), and Zn (1.836 and 2: 1.943 for site 1 and 2, respectively), whereas BAF values <1 were recorded for the other elements. Philoscia affinis was found to be a potential candidate to monitor soil contamination as a macro-concentrator of Cu and Cd and a micro-concentrator of Zn.
Collapse
Affiliation(s)
- Paolo Pastorino
- The Veterinary Medical Research Institute for Piemonte, and Valle d'Aosta, via Bologna 148, 10154, Torino, Liguria, Italy.
| | - Marco Bertoli
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127, Trieste, Italy
| | - Paola Brizio
- The Veterinary Medical Research Institute for Piemonte, and Valle d'Aosta, via Bologna 148, 10154, Torino, Liguria, Italy
| | - Maria Cesarina Abete
- The Veterinary Medical Research Institute for Piemonte, and Valle d'Aosta, via Bologna 148, 10154, Torino, Liguria, Italy
| | - Vittoria Dalla Nora
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127, Trieste, Italy
| | - Marino Prearo
- The Veterinary Medical Research Institute for Piemonte, and Valle d'Aosta, via Bologna 148, 10154, Torino, Liguria, Italy
| | - Elisabetta Pizzul
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127, Trieste, Italy
| |
Collapse
|
144
|
Sui F, Kang Y, Wu H, Li H, Wang J, Joseph S, Munroe P, Li L, Pan G. Effects of iron-modified biochar with S-rich and Si-rich feedstocks on Cd immobilization in the soil-rice system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112764. [PMID: 34544024 DOI: 10.1016/j.ecoenv.2021.112764] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 07/08/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Fe-modified biochar has been shown to have high sorption ability for cadmium (Cd), while Cd immobilization effects of Fe-modified biochars with Si-rich and S-rich feedstocks have been rarely addressed. To explore the effects of Fe-modified Si-rich and S-rich biochars on Cd translocation in the soil-rice system, a pot experiment was carried out with an acidic Cd-contaminated sandy loam paddy from central South China and a late season rice cultivate during July to November 2018. Rice straw and rice husk were chosen as Si-rich feedstocks, and rape straw was applied as S-rich feedstock, these feedstocks were further collected and pyrolyzed at 450 °C. Pristine and Fe-impregnated rice straw (BRS/BRS-Fe), rice husk (BRH/BRH-Fe) and rape straw (BRE/BRE-Fe) biochars were applied at 0 and 10 t/ha, respectively. The reductions in Cd concentrations in rice grains were 23.8%, 22.3% and 46.1% with treatments of BRE, BRS and BRH, respectively, compared to the control. Compared to other pristine biochars, BRH is more effective in Cd remediation in paddy soil. For Fe-modified biochars, BRE-Fe achieved the highest reductions in Cd concentrations in rice grains with 46.7% and 30.1%, compared with the control and BRE, respectively. BRE-Fe decreased Cd remobilization from leaves to grains. Only BRE-Fe enhanced the formation and Cd sorption capacity of iron plaque. BRS-Fe and BRH-Fe enhanced Fe content in rice plants, which might induce the reduction in iron plaque formation. Fe and S-contained complexes contents increased in the contaminated pristine biochar particles, but reduced in the contaminated BRE-Fe particles. Therefore, Fe modification could not enhance Cd immobilization effect of Si-rich biochar, while Fe modified S-rich biochar has promising potential for Cd remediation with enhancement in iron plaque formation and Cd fixation in rice leaves.
Collapse
Affiliation(s)
- Fengfeng Sui
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China; School of Environmental Science and Engineering, Yancheng Institute of Technology, No. 211 Jianjun East Road, Yancheng 224051, China
| | - Yaxin Kang
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Hao Wu
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Hao Li
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Jingbo Wang
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Stephen Joseph
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Paul Munroe
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lianqing Li
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China.
| | - Genxing Pan
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| |
Collapse
|
145
|
Abd-Elhakim YM, Hashem MM, Abo-EL-Sooud K, Hassan BA, Elbohi KM, Al-Sagheer AA. Effects of Co-Exposure of Nanoparticles and Metals on Different Organisms: A Review. TOXICS 2021; 9:284. [PMID: 34822675 PMCID: PMC8623643 DOI: 10.3390/toxics9110284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 11/24/2022]
Abstract
Wide nanotechnology applications and the commercialization of consumer products containing engineered nanomaterials (ENMs) have increased the release of nanoparticles (NPs) to the environment. Titanium dioxide, aluminum oxide, zinc oxide, and silica NPs are widely implicated NPs in industrial, medicinal, and food products. Different types of pollutants usually co-exist in the environment. Heavy metals (HMs) are widely distributed pollutants that could potentially co-occur with NPs in the environment. Similar to what occurs with NPs, HMs accumulation in the environment results from anthropogenic activities, in addition to some natural sources. These pollutants remain in the environment for long periods and have an impact on several organisms through different routes of exposure in soil, water, and air. The impact on complex systems results from the interactions between NPs and HMs and the organisms. This review describes the outcomes of simultaneous exposure to the most commonly found ENMs and HMs, particularly on soil and aquatic organisms.
Collapse
Affiliation(s)
- Yasmina M. Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Mohamed M. Hashem
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; (M.M.H.); (K.A.-E.-S.)
| | - Khaled Abo-EL-Sooud
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; (M.M.H.); (K.A.-E.-S.)
| | - Bayan A. Hassan
- Pharmacology Department, Faculty of Pharmacy, Future University, Cairo 41639, Egypt;
| | - Khlood M. Elbohi
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Adham A. Al-Sagheer
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
146
|
Wang JF, Li WL, Ahmad I, He BY, Wang LL, He T, Wang FP, Xu ZM, Li QS. Biomineralization of Cd 2+ and inhibition on rhizobacterial Cd mobilization function by Bacillus Cereus to improve safety of maize grains. CHEMOSPHERE 2021; 283:131095. [PMID: 34144288 DOI: 10.1016/j.chemosphere.2021.131095] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Reducing cadmium (Cd) bioavailability and rhizobacterial Cd mobilization functions in the rhizosphere via the inoculation of screened microbial inoculum is an environmental-friendly strategy to improve safety of crop grains. In this study, Bacillus Cereus, a model Cd resistant strain, was selected to explore its effects on Cd bioavailability and uptake, bacterial metabolic functions related to Cd mobilization. Results indicated that inoculation of Bacillus Cereus in maize roots of sand pot with water-soluble Cd (0.06-0.15 mg/kg) and soil pot with high Cd-contaminated soil (total Cd: 2.33 mg/kg; Cd extracted by NH4NO3: 38.6 μg/kg) could decrease water-soluble Cd ion concentration by 7.7-30.1% and Cd extracted with NH4NO3 solution by 7.8-22.5%, inducing Cd concentrations in maize grains reduced by 10.6-39.9% and 17.4-38.6%, respectively. Even for a single inoculation in soil, Cd concentration in maize grains still satisfy food safety requirements (Cd content: 0.1 mg/kg dry weight) due to its successful colonization on root surface of maize. Bacillus Cereus could enrich more plant growth promotion bacteria (PGPB) and down-regulate the expression of genes related to bacterial motility, membrane transports, carbon and nitrogen metabolism in the rhizosphere soil, decreasing Cd bioavailability in soil. Approximately 80% Cd2+ in media was transferred into intracellular, meanwhile Cd salts (sulfide and/or phosphate) were produced in Bacillus Cereus through biomineralization process. Overall, this study could provide a feasible method for improving safety of maize grains via the inoculation of Bacillus Cereus under Cd pollution.
Collapse
Affiliation(s)
- Jun-Feng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Wan-Li Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Bao-Yan He
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Li-Li Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Tao He
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Fo-Peng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Zhi-Min Xu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Qu-Sheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
147
|
Li Z, Liang Y, Hu H, Shaheen SM, Zhong H, Tack FMG, Wu M, Li YF, Gao Y, Rinklebe J, Zhao J. Speciation, transportation, and pathways of cadmium in soil-rice systems: A review on the environmental implications and remediation approaches for food safety. ENVIRONMENT INTERNATIONAL 2021; 156:106749. [PMID: 34247006 DOI: 10.1016/j.envint.2021.106749] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/03/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) contamination in paddy fields is a serious health concern because of its high toxicity and widespread pollution. Recently, much progress has been made in elucidating the mechanisms involved in Cd uptake, transport, and transformation from paddy soils to rice grains, aiming to mitigate the associated health risk; however, these topics have not been critically reviewed to date. Here, we summarized and reviewed the (1) geochemical distribution and speciation of Cd in soil-rice systems, (2) mobilization, uptake, and transport of Cd from soil to rice grains and the associated health risks, (3) pathways and transformation mechanisms of Cd from soil to rice grains, (4) transporters involved in reducing Cd uptake, transport, and accumulation in rice plants, (5) factors governing Cd bioavailability in paddy, and (6) comparison of remediation approaches for mitigating the environmental and health risks of Cd contamination in paddy fields. Briefly, this review presents the state of the art about the fate of Cd in paddy fields and its transport from soil to grains, contributing to a better understanding of the environmental hazards of Cd in rice ecosystems. Challenges and perspectives for controlling Cd risks in rice are thus raised. The summarized findings in this review may help to develop innovative and applicable methods for controlling Cd accumulation in rice grains and sustainably manage Cd-contaminated paddy fields.
Collapse
Affiliation(s)
- Zhanming Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Liang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Hangwei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 659, B-9000 Gent, Belgium
| | - Mengjie Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yu-Feng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxi Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea.
| | - Jiating Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
148
|
The Combined Effect of Pseudomonas stutzeri and Biochar on the Growth Dynamics and Tolerance of Lettuce Plants (Lactuca sativa) to Cadmium Stress. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Agricultural activities lead to the accumulation of cadmium (Cd) in the soil. It is necessary to identify effective and economical ways to reduce the soil Cd bioavailability. To achieve this, three bacterial strains, Pseudomonas stutzeri, P. koreensis, and P. fluorescens, were tested for tolerance and biosorption of different concentrations of Cd (0, 5, 10, 15, 20, and 25 mg L−1). During the 2020 and 2021 seasons, a pot experiment was conducted using four different soil amendments (control, biochar, P. stutzeri, and a combination) under four levels of Cd (0, 40, 80, and 120 mg kg−1) and assessing the effect on growth parameters, physiological modifications, antioxidant enzymes, and Cd accumulation in lettuce plants (Lactuca sativa cv. Balady). In vitro, the results showed that P. stutzeri was the most tolerant of Cd. Our findings in pot trials showed that T4 (biochar + P. stutzeri) was a more efficient treatment in terms of the growth parameters, with 452.00 g plant−1 was recorded for fresh weight, 40.10 g plant−1 for dry weight, 18.89 cm plant−1 for plant height, 6.03 cm2 for leaf area, and 20.48 for the number of leaves plant−1, while in terms of physiological characteristics, we recorded 1.29 mg g−1 FW, 0.35 μg g−1 FW, and 3.69 μg g−1 FW for total chlorophyll, carotenoids, and total soluble sugar, respectively; this was also reflected in the number of antioxidant enzymes and intensity of soil biological activities in soil treated with 120 mg kg−1 Cd compared with the control and other treatments in the first season. A similar trend was observed in the second season. Additionally, significantly lower Cd was observed in both the root (67%) and shoots (78%). Therefore, a combined application of biochar and P. stutzeri could be used as an alternative to mitigate Cd toxicity.
Collapse
|
149
|
Karnaeva A, Kulikova O, Mazlova E, Buryak A. Aged diesel and heavy metal pollution in the Arctic tundra (Yamal Peninsula, Russia). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148471. [PMID: 34157523 DOI: 10.1016/j.scitotenv.2021.148471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Monitoring pollution in Arctic regions is a challenging and important task, regardless of the way these lands are used. The summer 2019 expedition to the Yamal Peninsula revealed historic petroleum pollution of the tundra area adjacent to "Yamalsky" natural reserve. Soil, surface water and bottom sediments from a downhill lake, and herbaceous plant Eriophorum scheuchzeri samples were collected to address the origin and the level of the aged pollution, and to investigate, if E. scheuchzeri species could be a potential phytoremediation agent. Compositional GC-MS analysis of the soil organic matter showed that diesel fuel spillage affected the study area and the territories nearby. Weathered diesel compounds penetrated the soil and reached the permafrost layer at 85 cm depth. Petroleum hydrocarbon level peaked at 11% (wt) in the topsoil at the polluted site and 3% (wt) in the bottom sediments of the downhill lake, demonstrating chronic ecosystem exposure. The following ICP-MS analysis showed presence of trace elements (V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Ag, Cd, Ba, Pb, Bi, U) in the soil, water, and E. scheuchzeri samples. Observed concentrations of V, Cr, Cd, Pb, Ni, and Zn in the soil samples exceeded the background values by 3.6, 2.3, 9.7, 2.9, and 3.0 times, respectively. V (0.4 mg/L) and Cr (0.12 mg/L) levels in the lake water exceeded the established national limits by 40 and 2.4 times, respectively, which demonstrated the possibility of pollution migration with groundwater or surface water. The plant E. scheuchzeri tolerated diesel pollution and stimulated natural attenuation, bioaccumulating Mo, Cd, Ba, and Bi in its tissue from the soil. E. scheuchzeri is proposed for phytoremediation of Arctic soils polluted with petroleum and metals.
Collapse
Affiliation(s)
- Anastasiia Karnaeva
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninsky Prospect, 31-4, GSP-1, 119071 Moscow, Russia.
| | - Olga Kulikova
- Gubkin Russian State University of Oil and Gas (National Research University), Leninsky Prospect, 65, 119991 Moscow, Russia
| | - Elena Mazlova
- Gubkin Russian State University of Oil and Gas (National Research University), Leninsky Prospect, 65, 119991 Moscow, Russia
| | - Aleksey Buryak
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninsky Prospect, 31-4, GSP-1, 119071 Moscow, Russia
| |
Collapse
|
150
|
Qin X, Xia Y, Hu C, Yu M, Shabala S, Wu S, Tan Q, Xu S, Sun X. Ionomics analysis provides new insights into the co-enrichment of cadmium and zinc in wheat grains. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112623. [PMID: 34388658 DOI: 10.1016/j.ecoenv.2021.112623] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/31/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is present in many soils and, when enter a food chain, represents a major health threat to humans. The existent large variation in grain Cd content amongst wheat genotypes opens prospects for genetic improvement for reduced Cd uptake in this species. However, selecting low-Cd-accumulating varieties comes with a possible caveat of affecting uptake other essential nutrients. In this work, we screened 134 wheat varieties in 3 various field studies and selected 15 high- and 15 low-Cd accumulating varieties in grains for ionomics analysis. Our results showed that high-Cd accumulating varieties also possessed an ability to accumulate mineral elements of calcium, magnesium, manganese, iron and zinc, while varieties with low Cd content were deficient in many essential nutrients and, especially, zinc (Zn). The above data was confirmed in an independent trail involving another 97 wheat varieties. Thus, selecting plants for high Zn accumulation (as a part of biofortification programs) resulted in an inadvertent increase in accumulation of the toxic Cd in wheat. Vice versa, selecting low Cd-accumulating varieties comes with a danger of reducing their Zn content, with major consequences to food quality and human health. We suggest that the above conundrum can be resolved by understanding the structure-function relations of various transporters isoforms involved in Zn and Cd transport and issue-specific mode of their operation, via cell-based phenotyping followed by molecular breeding.
Collapse
Affiliation(s)
- Xiaoming Qin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| | - Yitao Xia
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengxiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China; Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001, Australia
| | - Songwei Wu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiling Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shoujun Xu
- Institute of Quality Stander and Monitoring Technology for Agro-products, Guangdong Academy of Agricultural Sciencs, Guangzhou 510640, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China.
| |
Collapse
|