101
|
Liao CS, Cao XD, Lee WC, Yang CW. The Effects of Preservatives on Antibiotic- and Preservative-Resistant Microbes and Nitrogen/Sulfur Cycle Associated Microbial Communities in Freshwater River Sediments. Antibiotics (Basel) 2023; 12:1082. [PMID: 37508178 PMCID: PMC10375977 DOI: 10.3390/antibiotics12071082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/04/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
The intensive use of benzoic acid (BA), 4-hydroxybenzoic acid (HB), and dehydroacetate (DHA) as additives and preservatives in cosmetics and foods causes emerging environmental pollutions. Anthropogenic releases of BA, HB and DHA are primarily emissions into water and soil. However, few studies investigate the effects of BA, HB and DHA on microbial communities in freshwater river sediments. The aim of this study is to reveal the effects of BA, HB and DHA on microbial communities in freshwater river sediments. Tetracycline-, sulfamethoxazole- and preservative-resistant microbes were increased in the river sediments treated with BA, HB and DHA. The relative abundances of methanogen- and xenobiotic-degradation-associated microbial communities were also increased in the BA-, HB- and DHA-treated sediments. The relative abundance of four nitrogen cycle associated microbial groups (anammox, nitrogen fixation, denitrification, and dissimilatory nitrate reduction) were increased after the eighth week in the BA-, HB- and DHA-treated sediments. For the sulfur cycle, the relative abundance of thiosulfate oxidation associated microbial communities were increased after the eighth week in the BA-, HB- and DHA-treated sediments. Results of this study provide insight into the effects of BA, HB and DHA on antibiotic resistance, nitrogen cycle, sulfur cycle, drug resistance and methane production in freshwater aquatic environments.
Collapse
Affiliation(s)
- Chien-Sen Liao
- Department of Biological Science and Technology, I-Shou University, Kaohsiung 82445, Taiwan
| | - Xuan-Di Cao
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 84001, Taiwan
| | - Wei-Chen Lee
- Department of Microbiology, Soochow University, Taipei City 111002, Taiwan
| | - Chu-Wen Yang
- Department of Microbiology, Soochow University, Taipei City 111002, Taiwan
| |
Collapse
|
102
|
Hu Y, Chen H, Tian Y, Wu D, Vinturache A, Ding G, Yu G. Association of parabens and bisphenols with lung function in children aged 5-12 years from Shanghai, China. Int J Hyg Environ Health 2023; 252:114210. [PMID: 37348164 DOI: 10.1016/j.ijheh.2023.114210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/24/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
Epidemiological studies have reported potential effects of individual paraben or bisphenol exposure on lung function, but few studies have estimated their joint effects. We conducted a cross sectional survey to investigate the associations of parabens and bisphenols exposure with lung function in 205 children aged 5-12 years from Shanghai, China. Urinary concentrations of six parabens [methyl-, ethyl-, propyl-, butyl-, benzyl-, and heptyl-paraben (MeP, EtP, PrP, BuP, BzP, and HeP)] and seven bisphenols [bisphenol A (BPA), bisphenol AF (BPAF), bisphenol AP (BPAP), bisphenol B (BPB), bisphenol P (BPP), bisphenol S (BPS), and bisphenol Z (BPZ)] were assessed by the high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Lung function, including forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC, peak expiratory flow (PEF), and forced expiratory flow between 25% and 75% of forced vital capacity (FEF25-75%), was further measured. Linear regression, bayesian kernel machine regression (BKMR), and weighted quantile sum regression (WQS) evaluated the individual and joint relationships of the parabens and bisphenols with the lung function parameters. Further, the analysis was stratified by child sex. Parabens (MeP, EtP, PrP, and BuP) and bisphenols (BPA, BPAP, BPB, and BPS) with detection rates >75% were included for analyses. In linear regressions, parabens (MeP, PrP, and BuP) were generally negatively associated with FEV1, FVC, PEF, and FEF25-75%, but no associations for bisphenols were found. The association of parabens with lung function was more pronounced in girls. The aforementioned negative associations between parabens and lung function were confirmed by both the BKMR and WQS, with MeP being considered most heavily weighing chemical. Our findings suggested that exposure to parabens, either individuals or as a mixture, were associated with decreased lung function in children aged 5-12 years, and these associations were stronger among girls. Considering the cross-sectional study design, large longitudinal studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Yi Hu
- Center for Medical Bioinformatics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Chen
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Tian
- Department of Child Health Management, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Wu
- Center for Medical Bioinformatics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Angela Vinturache
- Department of Obstetrics & Gynecology, University of Alberta, Edmonton, Alberta, Canada; Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Guodong Ding
- Department of Pediatric Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guangjun Yu
- Center for Medical Bioinformatics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
103
|
Martín-Carrasco I, Carbonero-Aguilar P, Dahiri B, Moreno IM, Hinojosa M. Comparison between pollutants found in breast milk and infant formula in the last decade: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162461. [PMID: 36868281 DOI: 10.1016/j.scitotenv.2023.162461] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Since ancient times, breastfeeding has been the fundamental way of nurturing the newborn. The benefits of breast milk are widely known, as it is a source of essential nutrients and provides immunological protection, as well as developmental benefits, among others. However, when breastfeeding is not possible, infant formula is the most appropriate alternative. Its composition meets the nutritional requirements of the infant, and its quality is subject to strict control by the authorities. Nonetheless, the presence of different pollutants has been detected in both matrices. Thus, the aim of the present review is to make a comparison between the findings in both breast milk and infant formula in terms of contaminants in the last decade, in order to choose the most convenient option depending on the environmental conditions. For that, the emerging pollutants including metals, chemical compounds derived from heat treatment, pharmaceutical drugs, mycotoxins, pesticides, packaging materials, and other contaminants were described. While in breast milk the most concerning contaminants found were metals and pesticides, in infant formula pollutants such as metals, mycotoxins, and packaging materials were the most outstanding. In conclusion, the convenience of using a feeding diet based on breast milk or either infant formula depends on the maternal environmental circumstances. However, it is important to take into account the immunological benefits of the breast milk compared to the infant formula, and the possibility of using breast milk in combination with infant formula when the nutritional requirements are not fulfilled only with the intake of breast milk. Therefore, more attention should be paid in terms of analyzing these conditions in each case to be able to make a proper decision, as it will vary depending on the maternal and newborn environment.
Collapse
Affiliation(s)
- I Martín-Carrasco
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain
| | - P Carbonero-Aguilar
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain
| | - B Dahiri
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain
| | - I M Moreno
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain.
| | - M Hinojosa
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain; Department of Biochemistry and Biophysics, Stockholm University, Institutionen för biokemi och biofysik, 106 91 Stockholm, Sweden
| |
Collapse
|
104
|
Mosaoa RM, Kumosani TA, Yaghmoor SS, Rihan S, Moselhy SS. Rhus tripartite methanolic extract alleviates propylparaben-induced reproductive toxicity via anti-inflammatory, antioxidant, 5-α reductase in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27802-8. [PMID: 37249771 DOI: 10.1007/s11356-023-27802-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
Evidence showed that herbal medicine could be beneficial for protection against diseases that may be exist in consequence of exposure to environmental toxicants. Propylparaben (PrP) is used as preservative in food, pharmaceuticals, and cosmetics. It is classified as one of endocrine disruptive chemicals (EDCs). This study evaluated the protective effect of Rhus tripartita methanolic extract (RTME) against reproductive toxicity induced by PrP in male rats. A total of 60 Wister albino rats were divided into four groups (15 rats for each group). Group I (control): rats received the vehicle (DMSO), group II: normal rats received RTME (10 mg/kg/day), group III: rats received PrP (10 mg/kg/day), and group IV: rats received PrP (10 mg/kg/day) and RTME (10 mg/kg/day) for 4 weeks. At the end of experiment, levels of testosterone, dihydrotestosterone (DHT), and 5α-reductase were analyzed in sera. Data obtained showed a significant reduction in the levels of testosterone, dihydrotestosterone (DHT), and 5α- reductase in rats given PrP versus control (p < 0.001) and RTME treatment improved these parameters but not returned to normal. Data obtained showed a significant elevation in levels of IL-6 and TNF-α in the testis of rats given PrP versus control (p < 0.001), these inflammatory mediators were significant reduced in rats treated with RTME compared with untreated rats (p < 0.001). There was a positive correlation between level of DHT and antioxidant enzymes activities (r = 0.56). A significant elevation in the levels of MDA with reduction in the activities of GST, GSPx, SOD, and catalase (p < 0.001) in rat testicular tissues of PrP group versus control (p < 0.001) was found. Treatment with RTME significantly reduced the levels of MDA and enhanced activities of GST, GSPx, SOD, and catalase (p < 0.001) compared to untreated group (p < 0.001). In conclusion, the active ingredient components of RTME abrogate the toxicity of PrP by exhibiting antioxidative and anti-inflammatory effects, enhancing 5-α reductase with improved hormonal status against PrP- induced testicular damage. Toxicity of propylparaben, and effect of Rhus tripartita methanolic extract.
Collapse
Affiliation(s)
- Rami M Mosaoa
- Biochemistry Department, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Taha A Kumosani
- Biochemistry Department, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Production of Bioproducts for Industrial Applications Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Soonham S Yaghmoor
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Production of Bioproducts for Industrial Applications Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shaimaa Rihan
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Said S Moselhy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
105
|
Wahab RA, Omar TFT, Nurulnadia MY, Rozulan NNA. Occurrence, distribution, and risk assessment of parabens in the surface water of Terengganu River, Malaysia. MARINE POLLUTION BULLETIN 2023; 192:115036. [PMID: 37207388 DOI: 10.1016/j.marpolbul.2023.115036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/15/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023]
Abstract
The concentration, distribution, and risk assessment of parabens were determined in the surface water of the Terengganu River, Malaysia. Target chemicals were extracted via solid-phase extraction, followed by high-performance liquid chromatography analysis. Method optimization produced a high percentage recovery for methylparaben (MeP, 84.69 %), ethylparaben (EtP, 76.60 %), and propylparaben (PrP, 76.33 %). Results showed that higher concentrations were observed for MeP (3.60 μg/L) as compared with EtP (1.21 μg/L) and PrP (1.00 μg/L). Parabens are ubiquitously present in all sampling stations, with >99 % of detection. Salinity and conductivity were the major factors influencing the level of parabens in the surface water. Overall, we found no potential risk of parabens in the Terengganu River ecosystem due to low calculated risk assessment values (risk quotient < 1). In conclusion, parabens are present in the river, but their levels are too low to pose risks to aquatic organisms.
Collapse
Affiliation(s)
- Rohaya Abd Wahab
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Tuan Fauzan Tuan Omar
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia; Ocean Pollution and Ecotoxicology Research Group, Faculty of Science and Marine Environment, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Mohd Yusoff Nurulnadia
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia; Ocean Pollution and Ecotoxicology Research Group, Faculty of Science and Marine Environment, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Najaa Nur Atiqah Rozulan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
106
|
Usman M, Kuckelkorn J, Kämpfe A, Zwiener C, Wintgens TA, Linnemann V. Identification of disinfection by-products (DBP) in thermal water swimming pools applying non-target screening by LC-/GC-HRMS. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:130981. [PMID: 36801715 DOI: 10.1016/j.jhazmat.2023.130981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The discovery of new disinfection by-products (DBPs) is still a rarely investigated research area in past studies. In particular, compared to freshwater pools, therapeutic pools with their unique chemical composition have rarely been investigated for novel DBPs. Here we have developed a semi-automated workflow that combines data from target and non-target screening, calculated and measured toxicities into a heat map using hierarchical clustering to assess the pool's overall potential chemical risk. In addition, we used complementary analytical techniques such as positive and negative chemical ionization to demonstrate how novel DBPs can be better identified in future studies. We identified two representatives of the haloketones (pentachloroacetone, and pentabromoacetone) and tribromo furoic acid detected for the first time in swimming pools. Non-target screening combined with target analysis and toxicity assessment may help to define risk-based monitoring strategies in the future, as required by regulatory frameworks for swimming pool operations worldwide.
Collapse
Affiliation(s)
- Muhammad Usman
- Institute of Environmental Engineering, Environmental Analytical Laboratory, RWTH Aachen University, Mies-van-der-Rohe-Str.1, 52056 Aachen, Germany
| | - Jochen Kuckelkorn
- German Environment Agency, Toxicology of Drinking Water and Swimming Pool Water, Heinrich-Heine-Str. 12, 08645 Bad Elster, Germany
| | - Alexander Kämpfe
- German Environment Agency, Swimming Pool Water, Chemical Analytics, Heinrich-Heine-Str. 12, 08645 Bad Elster, Germany
| | - Christian Zwiener
- Environmental Analytical Chemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| | - Thomas A Wintgens
- Institute of Environmental Engineering, Environmental Analytical Laboratory, RWTH Aachen University, Mies-van-der-Rohe-Str.1, 52056 Aachen, Germany
| | - Volker Linnemann
- Institute of Environmental Engineering, Environmental Analytical Laboratory, RWTH Aachen University, Mies-van-der-Rohe-Str.1, 52056 Aachen, Germany.
| |
Collapse
|
107
|
Tian M, Hu C, Yu J, Chen L. Carbon quantum dots (CQDs) mediated Z-scheme g-C 3N 4-CQDs/BiVO 4 heterojunction with enhanced visible light photocatalytic degradation of Paraben. CHEMOSPHERE 2023; 323:138248. [PMID: 36868421 DOI: 10.1016/j.chemosphere.2023.138248] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/02/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The construction of a novel Z-scheme system which possesses superior charge separation and high redox ability is highly desirable for efficient photocatalytic degradation of organic pollutants. Herein, a carbon quantum dots (CQDs) modified g-C3N4 (GCN) and BiVO4 (BVO) composite (GCN-CQDs/BVO) was fabricated via an initial loading of CQDs on GCN, and a subsequent combination with BVO during its hydrothermal synthesis. Physical characterization (e.g. TEM, XRD, XPS) verified the intimate heterojunction structure of the composite, while CQDs improved its light absorption. The band structures of GCN and BVO were evaluated, displaying the feasibility for Z-scheme formation. In comparison with GCN, BVO, and GCN/BVO, GCN-CQDs/BVO generated the highest photocurrent and lowest charge transfer resistance, inferring the prominently improved charge separation. Under visible light irradiation, GCN-CQDs/BVO exhibited the significantly enhanced activity in degrading the typical Paraben pollutant--benzyl paraben (BzP), achieving the removal of 85.7% in 150 min. The effects of various parameters were explored, demonstrating that neutral pH was optimal, while coexisting ions (CO32-, SO42-, NO3-, K+, Ca2+, Mg2+) and humic acid impacted the degradation negatively. Meanwhile, trapping experiments and electron paramagnetic resonance (EPR) technique revealed that superoxide radicals (•O2-) and hydroxyl radical (•OH) were primarily responsible for BzP degradation by GCN-CQDs/BVO. In particular, with the assistance of CQDs, the generation of •O2- and •OH was notably augmented. Based on these results, a Z-scheme photocatalytic mechanism was proposed for GCN-CQDs/BVO, where CQDs acted as electron mediators to combine the holes from GCN and electrons from BVO, resulting in significantly improved charge separation and maximized redox ability. Moreover, the toxicity of BzP was remarkably reduced during the photocatalytic process, emphasizing its great potential in abating the risk of Paraben pollutants.
Collapse
Affiliation(s)
- Maosheng Tian
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China.
| | - Junxia Yu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
108
|
Mao W, Qu J, Zhong S, Wu X, Mao K, Liao K, Jin H. Associations between urinary parabens and lung cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66186-66194. [PMID: 37097579 DOI: 10.1007/s11356-023-26953-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
Parabens are a family of endocrine-disrupting chemicals. Environmental estrogens may play a vital role in the development of lung cancer. To date, the association between parabens and lung cancer is unknown. Based on the 189 cases and 198 controls recruited between 2018 and 2021 in Quzhou, China, we measured 5 urinary parabens concentrations and examined the association between urinary concentrations of parabens and lung cancer risk. Cases showed significantly higher median concentrations of methyl-paraben (MeP) (2.1 versus 1.8 ng/mL), ethyl-paraben (0.98 versus 0.66 ng/mL), propyl-paraben (PrP) (2.2 versus 1.4 ng/mL), and butyl-paraben (0.33 versus 0.16 ng/mL) than controls. The detection rates of benzyl-paraben were only 8 and 6% in the control and case groups, respectively. Therefore, the compound was not considered in the further analysis. The significant correlation between urinary concentrations of PrP and the risk of lung cancer (odds ratio (OR)adjusted = 2.22, 95% confidence interval (CI): 1.76, 2.75; Ptrend < 0.001) was identified in the adjusted model. In the stratification analysis, we found that urinary concentrations of MeP were significantly associated with lung cancer risk (OR = 1.16, 95% CI: 1.01, 1.27 for the highest quartile group). Besides, comparing the second, third, and fourth quartile groups with the lowest group of PrP, we also observed urinary PrP concentrations associated with lung cancer risk, with the adjusted OR of 1.52 (95% CI: 1.29, 1.65, Ptrend = 0.007), 1.39 (95% CI: 1.15, 1.60, Ptrend = 0.010), and 1.85 (95% CI: 1.53, 2.30, Ptrend = 0.001), respectively. MeP and PrP exposure, reflected in urinary concentrations of parabens, may be positively associated with the risk of lung cancer in adults.
Collapse
Affiliation(s)
- Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, People's Republic of China
| | - Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, People's Republic of China
| | - Songyang Zhong
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, People's Republic of China
| | - Xilin Wu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, People's Republic of China
| | - Kaili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, People's Republic of China.
| | - Kaizhen Liao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, People's Republic of China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, People's Republic of China
| |
Collapse
|
109
|
Liang J, Yang X, Xiang T, Chen X, Ren Z, Wang X, Su J, Zhang Y, Liu QS, Qu G, Zhou Q, Jiang G. The perturbation of parabens on the neuroendocrine system in zebrafish larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163593. [PMID: 37087015 DOI: 10.1016/j.scitotenv.2023.163593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Parabens, as the synthetic preservatives, have caused universal environmental contamination and human exposure. Whether parabens could disturb neuroendocrine system was still ambiguous. In this study, the effects of four commonly-used parabens, i.e. methyl paraben (MeP), ethyl paraben (EtP), propyl paraben (PrP) and butyl paraben (BuP), were tested on the neuroendocrine system of zebrafish larvae by investigating the swimming behavior, the related hormones and biomarkers in the hypothalamic-pituitary-interrenal (HPI) axis. The results showed that all test chemicals significantly reduced the swimming distance and mean velocity of zebrafish larvae. The adrenocorticotropic hormone (ACTH) levels in zebrafish larvae were significantly increased, while the cortisol levels were obviously decreased by paraben exposure. The transcriptional analysis showed that the expressions of the target genes including gr, mr and crhr2 in the HPI axis were mostly down-regulated. The exploration of the initial molecular event showed that parabens could bind with the glucocorticoid receptor (GR) and trigger its transactivation, according to MDA-kb2 luciferase assay and molecular docking analysis. The interaction of parabens with the GR included the hydrogen bond and hydrophobic interaction. The findings herein revealed the potential deleterious effects of parabens on the neuroendocrine system of zebrafish larvae, thus accumulating the in vivo toxicological data on this kind of food preservatives.
Collapse
Affiliation(s)
- Jiefeng Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Tongtong Xiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Science, Northeastern University, Shenyang 110004, China
| | - Xuanyue Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyun Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahui Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuzhu Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
110
|
Yang CW, Lee WC. Parabens Increase Sulfamethoxazole-, Tetracycline- and Paraben-Resistant Bacteria and Reshape the Nitrogen/Sulfur Cycle-Associated Microbial Communities in Freshwater River Sediments. TOXICS 2023; 11:387. [PMID: 37112614 PMCID: PMC10142436 DOI: 10.3390/toxics11040387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Backgrounds Parabens are pollutants of emerging concern in aquatic environments. Extensive studies regarding the occurrences, fates and behavior of parabens in aquatic environments have been reported. However, little is known about the effects of parabens on microbial communities in freshwater river sediments. This study reveals the effects of methylparaben (MP), ethylparaben (EP), propylparaben (PP) and butylparaben (BP) on antimicrobial-resistant microbiomes, nitrogen/sulfur cycle-associated microbial communities and xenobiotic degrading microbial communities in freshwater river sediments. Methods The river water and sediments collected from the Wai-shuangh-si Stream in Taipei City, Taiwan were used to construct a model system in fish tanks to test the effects of parabens in laboratory. Results Tetracycline-, sulfamethoxazole- and paraben-resistant bacteria increased in all paraben treated river sediments. The order of the overall ability to produce an increment in sulfamethoxazole-, tetracycline- and paraben-resistant bacteria was MP > EP > PP > BP. The proportions of microbial communities associated with xenobiotic degradation also increased in all paraben-treated sediments. In contrast, penicillin-resistant bacteria in both the aerobic and anaerobic culture of paraben-treated sediments decreased drastically at the early stage of the experiments. The proportions of four microbial communities associated with the nitrogen cycle (anammox, nitrogen fixation, denitrification and dissimilatory nitrate reduction) and sulfur cycle (thiosulfate oxidation) largely increased after the 11th week in all paraben-treated sediments. Moreover, methanogens and methanotrophic bacteria increased in all paraben-treated sediments. In contrast, the nitrification, assimilatory sulfate reduction and sulfate-sulfur assimilation associated to microbial communities in the sediments were decreased by the parabens. The results of this study uncover the potential effects and consequences of parabens on microbial communities in a freshwater river environment.
Collapse
|
111
|
Pereira AR, Gomes IB, Simões M. Impact of parabens on drinking water bacteria and their biofilms: The role of exposure time and substrate materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117413. [PMID: 36764214 DOI: 10.1016/j.jenvman.2023.117413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/13/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Parabens have been detected in drinking water (DW) worldwide, however, their impact on DW microbial communities remains to be explored. Microorganisms can easily adapt to environmental changes. Therefore, their exposure to contaminants of emerging concern, particularly parabens, in DW distribution systems (DWDS) may affect the microbiological quality and safety of the DW reaching the consumers tap. This work provides a pioneer evaluation of the effects of methylparaben (MP), propylparaben (PP), butylparaben (BP), and their combination (MIX), in bacterial biofilms formed on different surfaces, representative of DWDS materials - high-density polyethylene (HDPE), polypropylene (PPL) and polyvinyl chloride (PVC). Acinetobacter calcoaceticus and Stenotrophomonas maltophilia, isolated from DW, were used to form single and dual-species biofilms on the surface materials selected. The exposure to MP for 7 days caused the most significant effects on biofilms, by increasing their cellular culturability, density, and thickness up to 233%, 150%, and 224%, respectively, in comparison to non-exposed biofilms. Overall, more pronounced alterations were detected for single biofilms than for dual-species biofilms when HDPE and PPL, demonstrating that the surface material used affected the action of parabens on biofilms. Swimming motility and the production of virulence factors (protease and gelatinase) by S. maltophilia were increased up to 141%, 41%, and 73%, respectively, when exposed to MP for 7 days. The overall results highlight the potential of parabens to interfere with DW bacteria in planktonic state and biofilms, and compromise the DW microbiological quality and safety.
Collapse
Affiliation(s)
- Ana Rita Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Inês B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
112
|
Caioni G, Benedetti E, Perugini M, Amorena M, Merola C. Personal Care Products as a Contributing Factor to Antimicrobial Resistance: Current State and Novel Approach to Investigation. Antibiotics (Basel) 2023; 12:724. [PMID: 37107085 PMCID: PMC10135053 DOI: 10.3390/antibiotics12040724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the world's industrialized nations' biggest issues. It has a significant influence on the ecosystem and negatively affects human health. The overuse of antibiotics in the healthcare and agri-food industries has historically been defined as a leading factor, although the use of antimicrobial-containing personal care products plays a significant role in the spread of AMR. Lotions, creams, shampoos, soaps, shower gels, toothpaste, fragrances, and other items are used for everyday grooming and hygiene. However, in addition to the primary ingredients, additives are included to help preserve the product by lowering its microbial load and provide disinfection properties. These same substances are released into the environment, escaping traditional wastewater treatment methods and remaining in ecosystems where they contact microbial communities and promote the spread of resistance. The study of antimicrobial compounds, which are often solely researched from a toxicological point of view, must be resumed considering the recent discoveries, to highlight their contribution to AMR. Parabens, triclocarban, and triclosan are among the most worrying chemicals. To investigate this issue, more effective models must be chosen. Among them, zebrafish is a crucial study system because it allows for the assessment of both the risks associated with exposure to these substances as well as environmental monitoring. Furthermore, artificial intelligence-based computer systems are useful in simplifying the handling of antibiotic resistance data and speeding up drug discovery processes.
Collapse
Affiliation(s)
- Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Monia Perugini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy; (M.P.); (M.A.); (C.M.)
| | - Michele Amorena
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy; (M.P.); (M.A.); (C.M.)
| | - Carmine Merola
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy; (M.P.); (M.A.); (C.M.)
| |
Collapse
|
113
|
Presence of Parabens in Different Children Biological Matrices and Its Relationship with Body Mass Index. Nutrients 2023; 15:nu15051154. [PMID: 36904152 PMCID: PMC10005709 DOI: 10.3390/nu15051154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Parabens have been accepted almost worldwide as preservatives by the cosmetic, food, and pharmaceutical industries. Since epidemiological evidence of the obesogenic activity of parabens is weak, the aim of this study was to investigate the association between parabens exposure and childhood obesity. Four parabens (methylparaben/MetPB, ethylparaben/EthPB, propylparaben/PropPB, and butylparaben/ButPB) were measured in 160 children's bodies between 6 and 12 years of age. Parabens measurements were performed with ultrahigh-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). Logistic regression was used to evaluate risk factors for elevated body weight associated with paraben exposure. No significant relation was detected between children's body weight and the presence of parabens in the samples. This study confirmed the omnipresence of parabens in children's bodies. Our results could be a basis for future research about the effect of parabens on childhood body weight using nails as a biomarker due to the ease of its collection and its non-invasive character.
Collapse
|
114
|
Efficient Combination of Carbon Quantum Dots and BiVO4 for Significantly Enhanced Photocatalytic Activities. Catalysts 2023. [DOI: 10.3390/catal13030463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
The development of highly efficient and stable photocatalysts is of critical importance for the removal of environmental pollutants, such as paraben preservatives. In this work, carbon quantum dots (CQDs) were used to modify bismuth vanadate (BiVO4) through a hydrothermal reaction. Regarding the as-formed CQDs/BiVO4 composite, TEM, XPS, and Raman spectra analysis demonstrated the strong interaction between CQDs and BiVO4, possibly leading to the elevated energy level of the composite. As compared to pristine BiVO4, CQDs/BiVO4 showed an increase in light harvesting, and significantly enhanced visible-light activities in degrading the typical paraben pollutant—benzyl paraben (BzP)—where the maximum 85.4% of BzP was degraded in 150 min. After four cycle reactions, the optimum sample 0.6%CQDs/BiVO4 still degraded 78.2% of BzP, indicating the good stability and reusability of the composite. The notably higher photocurrent and smaller arc in Nyquist plot were measured by CQDs/BiVO4, unveiling the improved photocharge separation and lowered interfacial charge transfer resistance by CQDs modification. Meanwhile, due to the promoted energy level, CQDs/BiVO4 practically produced •O2− species and thereby contributed to the BzP degradation, while they had no ability to produce •OH. This was contrary to the BiVO4 system, where •OH and h+ played the dominant roles.
Collapse
|
115
|
Ao J, Qiu W, Huo X, Wang Y, Wang W, Zhang Q, Liu Z, Zhang J. Paraben exposure and couple fecundity: a preconception cohort study. Hum Reprod 2023; 38:726-738. [PMID: 36749105 DOI: 10.1093/humrep/dead016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/22/2022] [Indexed: 02/08/2023] Open
Abstract
STUDY QUESTION Is pre-conception exposure to parabens associated with fecundity in couples of childbearing age? SUMMARY ANSWER Paraben exposure in female partners was associated with reduced couple fecundity and anti-Müllerian hormone (AMH) might be one of the possible mediators. WHAT IS KNOWN ALREADY The reproductive toxicity of parabens, a class of widely used preservatives, has been suggested but evidence regarding their effects on couple fecundity is scarce. STUDY DESIGN, SIZE, DURATION In this couple-based prospective cohort study, a total of 884 pre-conception couples who participated in the Shanghai Birth Cohort between 2013 and 2015 were included. PARTICIPANTS/MATERIALS, SETTING, METHODS Concentrations of six parabens were measured in urine samples collected from couples. Malondialdehyde, C-reactive protein, and AMH were assessed in female partners. The outcomes included couple fecundability (time-to-pregnancy, TTP) and infertility (TTP > 12 menstrual cycles). Partner-specific and couple-based models were applied to estimate the associations. The joint effect of paraben mixture on couple fecundity was estimated by quantile-based g-computation (q-gcomp). Mediation analysis was used to assess the mediating roles of oxidative stress, inflammation and ovarian reserve. MAIN RESULTS AND THE ROLE OF CHANCE A total of 525 couples (59.4%) conceived spontaneously. In the partner-specific model, propyl paraben (PrP), butyl paraben (BuP), and heptyl paraben (HeP) in female partners were associated with reduced fecundability (fecundability odds ratio (95% CI): 0.96 (0.94-0.98) for PrP; 0.90 (0.87-0.94) for BuP; 0.42 (0.28-0.65) for HeP) and increased risk of infertility (rate ratio (95% CI): 1.06 (1.03-1.10) for PrP; 1.14 (1.08-1.21) for BuP; 1.89 (1.26-2.83) for HeP). Similar associations were observed in the couple-based model. AMH played a significant mediation role in the association (average causal mediation effect (95% CI): 0.001 (0.0001-0.003)). Paraben exposure in male partners was not associated with couple fecundity. The joint effect of paraben mixture on couple fecundity was non-significant. LIMITATIONS, REASONS FOR CAUTION Self-reported pregnancy and single urine sample may lead to misclassification. The mediation analysis is limited in that levels of sex hormones were not measured. The inclusion of women with irregular menstrual cycles might affect the results. It is possible that the observed association was due to reverse causation. WIDER IMPLICATIONS OF THE FINDINGS This is the first study to assess the effects of paraben exposure on couple fecundity in Asians. Given the widespread exposure to parabens in couples of childbearing age, the present findings may have important public health implications. STUDY FUNDING/COMPETING INTEREST(S) This study was supported in part by the National Natural Science Foundation of China (41991314), the Shanghai Science and Technology Development Foundation (22YF1426700), the Science and Technology Commission of Shanghai Municipality (21410713500), and the Shanghai Municipal Health Commission (2020CXJQ01). All authors declare no conflict of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Junjie Ao
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Qiu
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaona Huo
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqing Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjuan Wang
- Department of Reproductive Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianlong Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiwei Liu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Public Health, Shanghai Jiao Tong University, Shanghai, China.,International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
116
|
Zhang D, Xiao J, Xiao Q, Chen Y, Li X, Zheng Q, Ma J, Xu J, Fu J, Shen J, Xiao L, Lu S. Infant exposure to parabens, triclosan, and triclocarban via breastfeeding and formula supplementing in southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159820. [PMID: 36349623 DOI: 10.1016/j.scitotenv.2022.159820] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Parabens, triclosan (TCS), and triclocarban (TCC) are antimicrobial additives that are widely used in personal care products (PCPs) and may dysregulate infant gut microbiota and induce a series of chronic diseases. Dietary intake may be an underestimated exposure route of such antimicrobial additives in infants, but relevant data remain scarce. Therefore, this study determined five common preservatives, including methyl- (MeP), ethyl- (EtP), propyl- (PrP), butyl- (BuP), and benzyl-paraben (BeP), and two antimicrobials TCS and TCC, in major infant food sources (breastmilk, milk-based infant formula [MIF], and cereal-based complementary food [CCF]) in southern China. The health risks associated with dietary exposure among infants across different months of age were also evaluated. The results demonstrated a high incidence of MeP, EtP, PrP, and BeP in processed infant food products, while TCS and TCC were mainly detected in maternal breastmilk. Notably, MeP and EtP were found in all of the MIFs tested, while MeP, EtP, and BeP were detected in 85.6 %-100 % of the CCFs. By incorporating the human equivalent dose and an additional 10-fold margin of safety for infants into the health risk assessment, the 95th percentile hazard quotient of PrP via the ingestion of breastmilk among neonates exceeded 1. For the first time, the results showed that exposure to PrP via breastmilk intake may pose a considerable health risk to urban neonates in southern China. The health risks caused by antimicrobial exposure via ingesting MIF and CCF among infants were negligible. Thus, we recommend breastfeeding women reduce their consumption of PCPs and processed food, especially during the first month after delivery.
Collapse
Affiliation(s)
- Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Jinqiu Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Yining Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiangyu Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Quanzhi Zheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Jiaojiao Ma
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Jiayi Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Jinfeng Fu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Junchun Shen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Lehan Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
117
|
Miao Y, Chen PP, Zhang M, Cui FP, Liu C, Deng YL, Zeng JY, Yin WJ, Zeng Q. Within-day variability, predictors, and risk assessments of exposure to parabens among Chinese adult men. ENVIRONMENTAL RESEARCH 2023; 218:115026. [PMID: 36502903 DOI: 10.1016/j.envres.2022.115026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/25/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Parabens, as suspected endocrine disruptors, are widely used in personal care products and pharmaceuticals. However, variability, predictors, and risk assessments of human exposure to parabens are not well characterized. OBJECTIVE To evaluate within-day variability, predictors, and risk assessments of exposure to parabens among Chinese adult men. METHODS We measured four parabens including methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP) in repeated urine samples from 850 Chinese adult men. We examined the variability by intraclass correlation coefficients (ICCs) and identified the predictors by multivariable linear mixed models. We assessed risks of paraben exposures based on the estimated daily intake (EDI). RESULTS The four parabens were detected in >76% of urinary samples. We observed fair to good to high reproducibility (ICCs: 0.71 to 0.86) for urinary paraben concentrations within one day. Use of facial cleanser was associated with higher four urinary paraben concentrations. Increasing age, taking medicine, intravenous injection, and interior decoration in the workplace were related to higher urinary concentrations of specific parabens. Smoking and drinking were associated with lower urinary concentrations of specific parabens. The maximum EDIs for the four parabens ranged from 13.76 to 848.68 μg/kg bw/day, and 0.9% of participants had the hazard quotient values > 1 driven by PrP exposure. CONCLUSIONS Urinary paraben concentrations were less variable within one day. Several lifestyle characteristics including use of facial cleanser and pharmaceuticals may contribute to paraben exposures.
Collapse
Affiliation(s)
- Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan-Pan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Jun Yin
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, Hubei, PR China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
118
|
Ning T, Di S, Li Z, Zhang H, Peng Z, Yang H, Chen P, Bao Y, Zhai Y, Zhu S. Fabrication of a core-shell porphyrin-based magnetic covalent organic framework for effective extraction of PCPs in a wide polarity range. Anal Chim Acta 2023; 1239:340615. [PMID: 36628698 DOI: 10.1016/j.aca.2022.340615] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/20/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022]
Abstract
A novel porphyrin-based magnetic covalent organic framework (PCOF) was first reported by using a facile synthetic procedure. The Fe3O4@NH2@PCOF nanospheres were utilized to effectively extract personal care products in a wide polarity range (log Kow values from 1.96 to 7.60). The successful magnetic solid-phase extraction (MSPE) of target analytes could be ascribed to the sufficient oxygen-, nitrogen- and phenyl-containing functional groups of the COF layer, which are demonstrated to be of good compatibility with pollutants exhibiting different polarities by using molecular dynamics simulations, independent gradient model analysis and various characterizations. The MSPE extraction efficiency was enhanced by optimizing key parameters. The findings indicated that the method had a wide linearity range (1-500 ng mL-1 for parabens and UV filters) and low detection limits (0.4-0.9 ng mL-1 for parabens and 0.2-0.6 ng mL-1 for UV filters). The accuracy was reflected by recoveries ranging from 74% to 114%. Satisfactory intra- and inter-day precisions from 3.0% to 9.8% and 0.5%-9.1% were obtained. Overall, the proposed MSPE-HPLC method is accurate and reliable for identifying parabens as well as UV filters in wastewater and swimming pool water. The potential of the method for evaluating human exposure risk was unfolded.
Collapse
Affiliation(s)
- Tao Ning
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Zihan Li
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Haokun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Zhangdi Peng
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Hucheng Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Pin Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Yue Bao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Yixin Zhai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
119
|
Gonkowski S, Martín J, Aparicio I, Santos JL, Alonso E, Rytel L. Evaluation of Parabens and Bisphenol A Concentration Levels in Wild Bat Guano Samples. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1928. [PMID: 36767313 PMCID: PMC9916121 DOI: 10.3390/ijerph20031928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Parabens and bisphenol A are synthetic compounds found in many everyday objects, including bottles, food containers, personal care products, cosmetics and medicines. These substances may penetrate the environment and living organisms, on which they have a negative impact. Till now, numerous studies have described parabens and BPA in humans, but knowledge about terrestrial wild mammals' exposure to these compounds is very limited. Therefore, during this study, the most common concentration levels of BPA and parabens were selected (such as methyl paraben-MeP, ethyl paraben-EtP, propyl paraben-PrP and butyl paraben-BuP) and analyzed in guano samples collected in summer (nursery) colonies of greater mouse-eared bats (Myotis myotis) using liquid chromatography with the tandem mass spectrometry (LC-MS-MS) method. MeP has been found in all guano samples and its median concentration levels amounted to 39.6 ng/g. Other parabens were present in smaller number of samples (from 5% for BuP to 62.5% for EtP) and in lower concentrations. Median concentration levels of these substances achieved 0.95 ng/g, 1.45 ng/g and 15.56 ng/g for EtP, PrP and BuP, respectively. BPA concentration levels did not exceed the method quantification limit (5 ng/g dw) in any sample. The present study has shown that wild bats are exposed to parabens and BPA, and guano samples are a suitable matrix for studies on wild animal exposure to these substances.
Collapse
Affiliation(s)
- Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Street Oczapowskiego 14, 10-719 Olsztyn, Poland
| | - Julia Martín
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Irene Aparicio
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Liliana Rytel
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 14, 10-719 Olsztyn, Poland
| |
Collapse
|
120
|
Chromatin modifiers: A new class of pollutants with potential epigenetic effects revealed by in vitro assays and transcriptomic analyses. Toxicology 2023; 484:153413. [PMID: 36581016 DOI: 10.1016/j.tox.2022.153413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
A great variety of endocrine-disrupting chemicals (EDCs) have been used extensively and become widespread in the environment nowadays. Limited mammalian studies have shown that certain EDCs may target chromosome and epigenome of the germline, leading to adverse effects in subsequent generations, despite these progenies having never been exposed to the EDC before. However, the underlying mechanisms of chromosomal changes induced by these pollutants remain poorly known. Using the human ovarian granulosa tumor cell line COV434 as a model, we investigated and compared the transcriptomic changes induced by nine EDCs with diverse chemical structures (i.e. BDE-47, BPA, BP-3, DEHP, DHP, EE2, TCS, TDCPP and NP), to inquire if there is any common epigenetic modification associated with reproductive functions induced by these EDCs. Our results showed that COV434 cells were more responsive to BP-3, NP, DEHP and EE2, and more importantly, these four EDCs altered the expression of gene clusters related to DNA damage response, cell cycle, proliferation, and chromatin remodeling, which can potentially lead to epigenetic modifications and transgenerational inheritance. Furthermore, dysregulation of similar gene clusters was common in DEHP and NP treatments. Bioinformatics analysis further revealed that BP-3 disturbed signaling pathways associated with reproductive functions, whereas alterations in telomere-related pathways were highlighted upon EE2 exposure. Overall, this study highlighted chromatin modifications caused by a class of chemicals which that may potentially lead to epigenetic changes and transgenerational reproductive impairments.
Collapse
|
121
|
Zhang D, Liu X, Xiao Q, Han L, Yang J, Li X, Xu J, Zheng Q, Ma J, Chen J, Lu S. Co-Exposure to Bisphenols, Parabens, and Antimicrobials and Association with Coronary Heart Disease: Oxidative Stress as a Potential Mediating Factor? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:531-538. [PMID: 36534741 DOI: 10.1021/acs.est.2c06488] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Coronary heart disease (CHD) is the leading cause of global morbidity, but the effect of plasticizers and antimicrobial additives on CHD is unknown. Here, we conducted a case-control study to investigate the mediating role of oxidative stress in the association between co-exposure to seven bisphenols, four parabens, triclosan (TCS), triclocarban, and CHD risk in Guangzhou, China. Quantile-based g-computation and weighted quantile sum regression were used to analyze mixture-outcome associations. Quantile-based g-computation showed a positive joint effect of a decile increase in exposure to all examined pollutants on CHD risk (OR: 1.52, 95% CI: 1.25-1.84), with bisphenol A (BPA), bisphenol F (BPF), n-butyl paraben (BuP), and TCS representing major contributors. The results also showed a decile nonmonotonic increase in the exposure mixtures, positively correlated with a 2.22 ng/mL (95% CI: 1.21-3.23 ng/mL) elevation of 8-hydroxy-2'-deoxyguanosine (8-OHdG), with BuP, TCS, bisphenol AP (BPAP), and BPF contributing dominantly. Mediation analysis showed that 8-OHdG mediated the relationship between BPA, BPF, BPAP, and TCS, and CHD risk. Moreover, the mediating role of high-density lipoprotein (HDL) between several bisphenols and CHD was also identified. It is yet to be verified, but bisphenols may elevate CHD risk by reducing HDL status and increasing oxidative stress.
Collapse
Affiliation(s)
- Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiang Liu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Linjiang Han
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jialei Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiangyu Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiayi Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Quanzhi Zheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiaojiao Ma
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jimei Chen
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
122
|
Denghel H, Göen T. Comprehensive monitoring of a special mixture of prominent endocrine disrupting chemicals in human urine using a carefully adjusted hydrolysis of conjugates. Anal Bioanal Chem 2023; 415:555-570. [PMID: 36435840 PMCID: PMC9839815 DOI: 10.1007/s00216-022-04438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/28/2022]
Abstract
Many xenobiotics were identified as possible endocrine disruptors during the last decades. Structural analogy of these substances to natural hormones may lead to agonists or antagonists of hormone receptors. For a comprehensive human biomonitoring of such substances, we developed a simple, reliable, and highly sensitive method for the simultaneous monitoring of the parameters bisphenol A, triclosan, methylparaben, ethylparaben, propylparaben, butylparaben, benzophenone-1, benzophenone-3, 3,5,6-trichloropyridin-2-ol, p-nitrophenol, genistein, and daidzein in urine. Thereby, optimization of the enzymatic hydrolysis and the use of β-glucuronidase from E. coli K12 as well as sulfatase from Aerobacter aerogenes ensures the acquisition of intact analytes without cleavage of ester bonds among parabens. Validation of the method revealed limits of detection between 0.02 and 0.25 µg/L as well as limits of quantification between 0.08 and 0.83 µg/L. Thereby, the use of analyte-free surrogate matrix for calibration and control material influenced the sensitivity of the procedure positively. Furthermore, excellent precision in and between series was observed. Good absolute and relative recoveries additionally proved the robustness of the multimethod. Thus, the procedure can be applied for exploring the exposome to these prominent endocrine disruptors in the general population.
Collapse
Affiliation(s)
- Heike Denghel
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054 Erlangen, Germany
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9-11, 91054, Erlangen, Germany.
| |
Collapse
|
123
|
Hu C, Bai Y, Li J, Sun B, Chen L. Endocrine disruption and reproductive impairment of methylparaben in adult zebrafish. Food Chem Toxicol 2022; 171:113545. [PMID: 36470324 DOI: 10.1016/j.fct.2022.113545] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022]
Abstract
Methylparaben (MeP) is one of the most frequently used preservatives in our daily products. However, it is becoming an aquatic pollutant of emerging concern. To reveal the endocrine disruption mechanism and reproductive impairment of MeP, the present study exposed adult zebrafish to 0, 1, 3, and 10 μg/L (0, 6.6, 19.7, and 65.7 nM) of MeP for 28 days. The results showed that subchronic exposure to 10 μg/L of MeP significantly increased the gonadosomatic index in zebrafish. Spermatogenesis and oogenesis were blocked by MeP at concentrations as low as 1 μg/L. Furthermore, parental exposure to MeP induced developmental deficits in offspring larvae, by increasing mortality, stimulating precocious hatching, and elevating heart rate. Blood concentrations of estradiol, testosterone, and 11-keto-testosterone were consistently lowered in MeP exposure groups. Transcriptional results evidenced that the disturbance in steroidogenesis and feedback regulation mechanisms along the hypothalamic-pituitary-gonadal axis underlay the imbalance of sex hormones. In line with the low estradiol level, hepatic production of vitellogenin (VTG) was significantly down-regulated, subsequently leading to a deficiency of VTG supply during oogenesis. To our knowledge, this is the first study to provide systemic insight about the antiestrogenic activity and reproductive toxicity of MeP.
Collapse
Affiliation(s)
- Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Yachen Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
124
|
Bloom MS, Varde M, Newman RB. Environmental toxicants and placental function. Best Pract Res Clin Obstet Gynaecol 2022; 85:105-120. [PMID: 36274037 PMCID: PMC11184919 DOI: 10.1016/j.bpobgyn.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/11/2022] [Accepted: 09/25/2022] [Indexed: 12/14/2022]
Abstract
The placenta is a temporary endocrine organ that facilitates gas, nutrient, and waste exchange between maternal and fetal compartments, partially shielding the fetus from potentially hazardous environmental toxicants. However, rather than being "opaque", the placenta is translucent or even transparent to some potential fetal developmental hazards, including toxic trace elements (TEs), perfluoroalkyl and polyfluoroalkyl substances (PFAS), and environmental phenols (EPs) to which women with pregnancy are frequently exposed. These agents are both passively and actively transferred to the fetal compartment, where endocrine disruption, oxidative stress, and epigenetic changes may occur. These pathologies may directly impact the fetus or deposit and accumulate in the placenta to indirectly impact fetal development. Thus, it is critical for clinicians to understand the potential placental toxicity and transfer of widely distributed environmental agents ubiquitous during pregnancy. With such knowledge, targeted interventions and clinical recommendations can be developed to limit those risks.
Collapse
Affiliation(s)
- Michael S Bloom
- Department of Global and Community Health, George Mason University, 4400 University Dr., MS 5B7, Fairfax, VA 22030, USA.
| | - Meghana Varde
- Department of Global and Community Health, George Mason University, 4400 University Dr., MS 5B7, Fairfax, VA 22030, USA.
| | - Roger B Newman
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Rm 634, Clinical Science Bldg., 96 Jonathan Lucas St., Charleston, SC 29425, USA.
| |
Collapse
|
125
|
Jia LL, Luan YL, Shen HM, Guo Y. Long-term stability of several endocrine disruptors in the first morning urine samples and their associations with lifestyle characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157873. [PMID: 35940260 DOI: 10.1016/j.scitotenv.2022.157873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Parabens, triclosan (TCS), bisphenols, benzophenones, and phthalates are typical endocrine disruptors (EDs) with short half-lives in the human body. The concentration levels of those EDs in a spot urine sample are frequently used in exposure assessment studies, and the reproducibility of urinary levels of these nonpersistent EDs should be considered. In the present study, we consecutively collected 45-day first morning void (FMV) urine samples, as well as daily questionnaires, in six recruited participants and measured the urinary concentrations of six parabens, TCS, nine bisphenols, five benzophenones, and ten phthalate metabolites by using high-performance liquid chromatography-tandem mass spectrometry. MeP, EtP, PrP, TCS, BPA, BPS, BPF, and most phthalate metabolites were frequently detected (over 62 % of samples). The intraclass correlation coefficients (ICCs) for ED concentrations in FMV urine samples ranged from fair to excellent for MeP (0.683), EtP (0.702), BPA (0.505), BPS (0.908), BPF (0.887), BP-3 (0.712), mMP (0.661), mEP (0.523), mBP (0.500), miBP (0.724), mBzP (0.961) and all metabolites of DEHP (0.867-0.957), whereas they were low for PrP (0.321) and TCS (0.306). After creatinine adjustment, the values of ICCs for most target EDs were increased with mild to significant improvement. The stability of ED concentrations was affected by daily diet (MeP, TCS, BPA, mMP, miBP, mBP and mBzP), food containers (PrP and mECPP), use of personal care products (HMWP metabolites), pharmaceuticals (EtP) and recorded activities (BPS, mEHP, mBzP, mEHHP and mEOHP), as confirmed by a general linear mixed model. Furthermore, extending the FMV sampling period improved the probability of acceptable reproducibility (ICCs > 0.40) of MeP, EtP, BP-3 and mEP concentrations. For BPS, BPF and HMWP metabolite concentrations showed high probabilities (>80 %) of acceptable reproducibility in the last three days, and the increasing sample size slowly improved the ability to discriminate the subjects. The results were exactly the opposite for BPA concentrations.
Collapse
Affiliation(s)
- Lu-Lu Jia
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yu-Ling Luan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Hui-Min Shen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
126
|
Tkalec Ž, Codling G, Tratnik JS, Mazej D, Klánová J, Horvat M, Kosjek T. Suspect and non-targeted screening-based human biomonitoring identified 74 biomarkers of exposure in urine of Slovenian children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120091. [PMID: 36064054 DOI: 10.1016/j.envpol.2022.120091] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/06/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Human exposure to organic contaminants is widespread. Many of these contaminants show adverse health effects on human population. Human biomonitoring (HBM) follows the levels and the distribution of biomarkers of exposure (BoE), but it is usually done in a targeted manner. Suspect and non-targeted screening (SS/NTS) tend to find BoE in an agnostic way, without preselection of compounds, and include finding evidence of exposure to predicted, unpredicted known and unknown chemicals. This study describes the application of high-resolution mass spectrometry (HRMS)-based SS/NTS workflow for revealing organic contaminants in urine of a cohort of 200 children from Slovenia, aged 6-9 years. The children originated from two regions, urban and rural, and the latter were sampled in two time periods, summer and winter. We tentatively identified 74 BoE at the confidence levels of 2 and 3. These BoE belong to several classes of pharmaceuticals, personal care products, plasticizers and plastic related products, volatile organic compounds, nicotine, caffeine and pesticides. The risk of three pesticides, atrazine, amitraz and diazinon is of particular concern since their use was limited in the EU. Among BoE we tentatively identified compounds that have not yet been monitored in HBM schemes and demonstrate limited exposure data, such as bisphenol G, polyethylene glycols and their ethers. Furthermore, 7 compounds with unknown use and sources of exposure were tentatively identified, either indicating the entry of new chemicals into the market, or their metabolites and transformation products. Interestingly, several BoE showed location and time dependency. Globally, this study presents high-throughput approach to SS/NTS for HBM. The results shed a light on the exposure of Slovenian children and raise questions on potential adverse health effects of such mixtures on this vulnerable population.
Collapse
Affiliation(s)
- Žiga Tkalec
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Garry Codling
- Research Centre for Toxic Compounds in the Environment, Masaryk University, Brno, Czech Republic
| | - Janja Snoj Tratnik
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Darja Mazej
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Jana Klánová
- Research Centre for Toxic Compounds in the Environment, Masaryk University, Brno, Czech Republic
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Tina Kosjek
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia.
| |
Collapse
|
127
|
Wei F, Cheng H, Sang N. Comprehensive assessment of estrogenic activities of parabens by in silico approach and in vitro assays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157194. [PMID: 35810903 DOI: 10.1016/j.scitotenv.2022.157194] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/25/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Parabens are ubiquitous pollutants in the environment and humans due to their wide applications in food, pharmaceuticals, and personal care products. Although the estrogenic activity of some parabens has been confirmed, the underlying mechanisms and the structure-estrogenic activity relationship are still largely unclear. Here, we systematically used in silico and in vitro approaches to investigate the estrogenic potency of typical parabens, including methyl-, ethyl-, propyl-, iso-propyl-, butyl-, iso-butyl- and benzyl-paraben. Molecular dynamics simulations and binding free energy calculations were combined to investigate the atomic-level mechanism of paraben binding to estrogen receptors (ERs). Computational analysis showed that ER were the targets of tested parabens and kept a stable agonist conformation. The calculated total binding free energies suggested that van der Waals interactions were the major driving forces for paraben-ER interaction and correlated with the structure of paraben side chains. In in vitro assays, paraben with an aromatic side chain, benzyl-paraben, showed the strongest estrogenic activity at 0.01 μM and the EC50 at 0.796 ± 0.307 μM, on par with levels commonly detected in human organs. Among tested parabens with an alkyl side chain, the estrogenicity increased as the side chain length increased from 1 to 4, but no significant difference appeared between parabens with isomeric alkyl side chains (propyl- vs isopropyl and butyl- vs iso-butylparaben). The estrogenic activity of parabens was significantly related to the calculated binding energies (R2 = 0.94, p = 0.0012), depending on the side chains of parabens. Our findings provide a significant mechanism for parabens to disrupt estrogenic function and considerations for structural optimization from the perspective of environmental protection.
Collapse
Affiliation(s)
- Fang Wei
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China; Department of Environmental Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Hefa Cheng
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
128
|
Abad-Gil L, Lucas-Sánchez S, Jesús Gismera M, Teresa Sevilla M, Procopio JR. HPLC method with electrochemical detection on gold electrode for simultaneous determination of different antimicrobial agents in cosmetics. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
129
|
Pacyga DC, Chiang C, Li Z, Strakovsky RS, Ziv-Gal A. Parabens and Menopause-Related Health Outcomes in Midlife Women: A Pilot Study. J Womens Health (Larchmt) 2022; 31:1645-1654. [PMID: 35787012 PMCID: PMC10024061 DOI: 10.1089/jwh.2022.0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Parabens are antimicrobial agents prevalently found in daily-use products that can interfere with the endocrine and reproductive systems. In this study, we examined the cross-sectional associations of parabens with hot flashes, hormone concentrations, and ovarian volume in a subsample of 101 nonsmoking, non-Hispanic 45- to 54-year-old women from the Midlife Women's Health Study. Materials and Methods: Women self-reported their hot flash history and underwent a transvaginal ultrasound to measure ovarian volume. Participants provided blood for quantification of serum hormones (by enzyme-linked immunosorbent assay or radioimmunoassay) and urine samples for measurements of urinary paraben biomarker levels (by high-performance liquid chromatography negative-ion electrospray ionization-tandem mass spectrometry). Linear or logistic regression models evaluated associations of specific gravity-adjusted paraben biomarker concentrations with hot flashes, hormone concentrations, and ovarian volume. Results: We observed marginal associations of propylparaben, methylparaben, and ∑parabens biomarkers (molar sum of four parabens) with hot flashes and follicle-stimulating hormone (FSH) concentrations, and of these paraben biomarkers and ethylparaben with ovarian volume. For example, women tended to have 32% (95% confidence intervals [CI]: 0.9 to 1.81), 40% (95% CI: 1.0 to 1.95), and 40% (95% CI: 0.98 to 2.01) higher odds of having recent, monthly, and mild hot flashes, respectively, for every two-fold increase in ∑parabens. Similarly, women tended to have 14.54% (95% CI: -0.10 to 31.32) higher FSH concentrations, but 5.67% (95% CI: -12.54 to 1.75) reduced ovarian volume for every two-fold increase in ∑parabens Conclusions: Overall, our preliminary findings suggest that urinary paraben biomarkers may be associated with menopause-related outcomes in midlife women. Additional studies in larger and diverse populations are needed to expand on these findings.
Collapse
Affiliation(s)
- Diana C. Pacyga
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Catheryne Chiang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Zhong Li
- Metabolomics Lab, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Rita S. Strakovsky
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Ayelet Ziv-Gal
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
130
|
Klančič V, Gobec M, Jakopin Ž. Environmental contamination status with common ingredients of household and personal care products exhibiting endocrine-disrupting potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73648-73674. [PMID: 36083363 DOI: 10.1007/s11356-022-22895-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The continuous use of household and personal care products (HPCPs) produces an immense amount of chemicals, such as parabens, bisphenols, benzophenones and alkylphenol ethoxylates, which are of great concern due to their well-known endocrine-disrupting properties. These chemicals easily enter the environment through man-made activities, thus contaminating the biota, including soil, water, plants and animals. Thus, on top of the direct exposure on account of their presence in HPCPs, humans are also susceptible to secondary indirect exposure attributed to the ubiquitous environmental contamination. The aim of this review was therefore to examine the sources and occurrence of these noteworthy contaminants (i.e. parabens, bisphenols, benzophenones, alkylphenol ethoxylates), to summarise the available research on their environmental presence and to highlight their bioaccumulation potential. The most notable environmental contaminants appear to be MeP and PrP among parabens, BPA and BPS among bisphenols, BP-3 among benzophenones and NP among alkylphenols. Their maximum detected concentrations in the environment are mostly in the range of ng/L, while in human tissues, their maximum concentrations achieved μg/L due to bioaccumulation, with BP-3 and nonylphenol showing the highest potential to bioaccumulate. Finally, of another great concern is the fact that even the unapproved parabens and benzophenones have been detected in the environment.
Collapse
Affiliation(s)
- Veronika Klančič
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Martina Gobec
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Žiga Jakopin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
131
|
Zhou S, Lu H, Zhang X, Shi X, Jiang S, Wang L, Lu Q. Paraben exposures and their interactions with ESR1/2 genetic polymorphisms on hypertension. ENVIRONMENTAL RESEARCH 2022; 213:113651. [PMID: 35690089 DOI: 10.1016/j.envres.2022.113651] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The widely used paraben preservatives have been frequently detected in human urine, and shown to disrupt the endocrine system. Recently, several epidemiologic studies have investigated the associations between paraben exposures and hypertension risk, but findings are inconsistent. Genetic susceptibility variation may contribute to the conflicting results. This study aimed to explore the associations of paraben exposures and their interactions with estrogen receptor genes 1 and 2 (ESR1 and ESR2) polymorphisms with hypertension. We conducted a hospital-based case-control study involving 396 hypertension cases and 396 controls in Wuhan, China. The urinary paraben concentrations were determined using a liquid chromatography-quadrupole time of flight mass spectrometer. The genotyping of ESR1 and ESR2 was performed using the Applied Biosystems 3730 XL sequencer. Multivariable logistic regression models were applied to examine the associations between urinary paraben concentrations and hypertension risk. Gene-environment interactions were estimated on both multiplicative and additive scales. The results showed that urinary ethylparaben (EtP), propylparaben (PrP), and ∑parabens (∑PBs) levels were positively associated with the risk of hypertension (Ptrend<0.05). Compared with their reference groups, subjects in the highest tertile of EtP, PrP, and ∑PBs had a 4.05-fold (95% CI: 2.56, 6.41), 2.72-fold (95% CI: 1.76, 4.20), and 1.60-fold (95% CI: 1.08, 2.36) increased risk of hypertension, respectively. When stratified by sex, the hypertensive effect of EtP was more pronounced in males (Pinteraction = 0.012). Furthermore, interaction analysis showed that PrP exposure interacted with ESR1 rs2234693 polymorphism on hypertension risk, with the significance of multiplicative (Pinteraction = 0.043) and additive (RERI = 1.27, AP = 0.52). Our results suggested that paraben exposure was positively related to hypertension risk, and that ESR1 rs2234693 polymorphism might modify the parabens exposure-related hypertensive effect.
Collapse
Affiliation(s)
- Shuang Zhou
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hao Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xu Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xueting Shi
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunli Jiang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
132
|
Hu C, Bai Y, Sun B, Tang L, Chen L. Significant impairment of intestinal health in zebrafish after subchronic exposure to methylparaben. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156389. [PMID: 35654191 DOI: 10.1016/j.scitotenv.2022.156389] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Methylparaben (MeP) is a ubiquitous pollutant in aquatic environment, which has caused severe pollution worldwide. However, aquatic toxicology of MeP is still largely unknown. In the present study, adult zebrafish were exposed to environmentally realistic concentrations of MeP (0, 1, 3, and 10 μg/L) for 28 days. In terms of the antimicrobial nature, dysregulation of gut microbiota and zebrafish health by MeP were elucidated after exposure. High-throughput amplicon sequencing showed that MeP subchronic exposure was able to disrupt the composition and diversity of gut microbial community, which was characterized by the alterations in alpha diversity and divergent distribution by principal component analysis. In addition, MeP exposure increased the body length and body weight of female fish, implying stimulated growth at low doses. In male intestine, consistent increases were notable in goblet cell density, tight junction protein (TJP) 2 expression, and serotonin neurotransmitter concentration after MeP exposure. In contrast, female intestine exposed to MeP had lower density of goblet cells, inhibited expression of TJP2, reduced concentration of serotonin, but up-regulated transcription of pro-inflammatory cytokine. Under the stress of MeP pollutant, intestinal catalase antioxidant enzyme was activated, thus contributing to the removal of oxidative free radicals. Correlation analysis verified the modulation of TJP2 expression by Lactobacillus probiotic bacteria. Disturbances in goblet cell, tight junctions, and serotonin by MeP may be combined to interfere with gut barrier function. Overall, the present study highlights the impairment of intestinal health by environmentally realistic concentrations of MeP, which necessitates an urgent risk assessment.
Collapse
Affiliation(s)
- Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Yachen Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
133
|
Klančič V, Gobec M, Jakopin Ž. Halogenated ingredients of household and personal care products as emerging endocrine disruptors. CHEMOSPHERE 2022; 303:134824. [PMID: 35525453 DOI: 10.1016/j.chemosphere.2022.134824] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
The everyday use of household and personal care products (HPCPs) generates an enormous amount of chemicals, of which several groups warrant additional attention, including: (i) parabens, which are widely used as preservatives; (ii) bisphenols, which are used in the manufacture of plastics; (iii) UV filters, which are essential components of many cosmetic products; and (iv) alkylphenol ethoxylates, which are used extensively as non-ionic surfactants. These chemicals are released continuously into the environment, thus contaminating soil, water, plants and animals. Wastewater treatment and water disinfection procedures can convert these chemicals into halogenated transformation products, which end up in the environment and pose a potential threat to humans and wildlife. Indeed, while certain parent HPCP ingredients have been confirmed as endocrine disruptors, less is known about the endocrine activities of their halogenated derivatives. The aim of this review is first to examine the sources and occurrence of halogenated transformation products in the environment, and second to compare their endocrine-disrupting properties to those of their parent compounds (i.e., parabens, bisphenols, UV filters, alkylphenol ethoxylates). Albeit previous reports have focused individually on selected classes of such substances, none have considered the problem of their halogenated transformation products. This review therefore summarizes the available research on these halogenated compounds, highlights the potential exposure pathways, and underlines the existing knowledge gaps within their toxicological profiles.
Collapse
Affiliation(s)
- Veronika Klančič
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Martina Gobec
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Žiga Jakopin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
134
|
Aimuzi R, Wang Y, Luo K, Jiang Y. Exposure to phthalates, phenols, and parabens mixture and alterations in sex steroid hormones among adolescents. CHEMOSPHERE 2022; 302:134834. [PMID: 35533932 DOI: 10.1016/j.chemosphere.2022.134834] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Exposure to phthalates (PAEs), phenols, and parabens has been linked with sex hormone imbalance; however, previous studies were predominantly limited to adults and failed to examine the combined effects of these chemicals mixture among adolescents. Thus, we used the data from the National Health and Nutrition Examination Survey (2013-2016) to explore the associations of urinary PAEs, phenols, and parabens biomarkers with sex hormones among participants aged 12-19 years old (n = 613). Latent class analysis (LCA) and quantile-based g-computation (QGC) were applied to assess the associations of the latent exposure profiles and chemicals mixture with sex hormone indicators, including steroid hormones and sex hormone binding globulin (SHBG), in adolescents and by sex. Using LCA, four latent classes were identified among all participants. Compared with the class characterized by "Low exposure", the class represented by "High PAEs" [mono (2-ethyl-5-carboxypentyl) phthalate (MECPP), mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), and monobenzyl phthalate (MBZP)] had lower level of estradiol (E2) [β = -0.249, 95% confidence interval (CI): -0.419, -0.08], free androgen index (FAI) (β = -0.258, 95%CI: -0.512, -0.005) and free testosterone (FT) (β = -0.248, 95%CI: -0.496, -0.001) among male adolescents. These results were echoed by the results in QGC analyses, where PAEs mixture was negatively associated with E2 (β = -0.137, 95% CI: -0.263, -0.011), FAI (β = -0.198, 95%CI: -0.387, -0.008) and FT (β = -0.189, 95%CI: -0.375, -0.002) among male adolescents. By contrast, the associations of the identified latent classes or chemicals mixture with sex hormone indicators were generally nonsignificant among female counterparts, except for a positive association between PAEs mixture and SHBG (β = 0.121, 95%CI: 0.012, 0.23). Our study demonstrated that exposure to PAEs, particularly MECPP, MEHHP, and MBZP, would be a threat to the sex hormone homeostasis of male adolescents.
Collapse
Affiliation(s)
- Ruxianguli Aimuzi
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuqing Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Kai Luo
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Yu Jiang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
135
|
Hu C, Sun B, Tang L, Liu M, Huang Z, Zhou X, Chen L. Hepatotoxicity caused by methylparaben in adult zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106255. [PMID: 35905631 DOI: 10.1016/j.aquatox.2022.106255] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/19/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Parabens are a class of aquatic pollutants of emerging concern, among which methylparaben (MeP) causes severe pollution worldwide. However, aquatic toxicology of MeP remains largely unknown, which hinders ecological risk evaluation. In the present study, adult zebrafish were exposed to environmentally realistic concentrations (0, 1, 3, and 10 μg/L) of MeP for 28 days, with objectives to reveal the hepatotoxicity based on transcriptional, biochemical, metabolomics, and histopathological evidences. The results showed that MeP subchronic exposure induced the occurrence of hepatocellular vacuolization in zebrafish. The most severe symptom was noted in 10 μg/L MeP-exposed female liver, which was characterized by rupture of cell membrane and small nuclei. In addition, MeP exposure disturbed the balance between oxidative stress and antioxidant capacity. Lipid metabolism dynamics across gut, blood, and liver system were significantly dysregulated after MeP exposure by altering the transcriptions of lipid nuclear receptors and concentrations of key metabolites. Metabolomic profiling of MeP-exposed liver identified differential metabolites mainly belonging to fatty acyls, steroids, and retinoids. In particular, hepatic concentration of cortisol was increased in male liver by MeP pollutant, implying the activation of stress response. Exposure to MeP also inhibited the synthesis and conjugation of primary bile acid (e.g., 7-ketolithocholic acid and taurochenodeoxycholic acid) in female liver. Furthermore, degradation of biologically active molecules, including retinoic acid and estradiol, was enhanced in the liver by MeP. Overall, the present study highlights the hepatotoxicity caused by MeP pollutant even at environmentally realistic concentrations, which necessitates an urgent and accurate risk assessment.
Collapse
Affiliation(s)
- Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zileng Huang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Xiangzhen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
136
|
Yang XS, Zhao J, Wang LL, Liu YS, Liu QW, Peng XY, Wang P. Core-shell-structured magnetic covalent organic frameworks for effective extraction of parabens prior to their determination by HPLC. Mikrochim Acta 2022; 189:340. [PMID: 35995957 DOI: 10.1007/s00604-022-05444-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
Covalent organic framework (COF)-decorated magnetic nanoparticles (Fe3O4@DhaTab) with core-shell structure have been synthesized by one-pot method. The prepared Fe3O4@DhaTab was well characterized, and parameters of magnetic solid-phase extraction (MSPE) for parabens were also investigated in detail. Under optimized conditions, the adsorbent dosage was only 3 mg and extraction time was 10 min. The developed Fe3O4@DhaTab-based MSPE-HPLC analysis method offered good linearity (0.01-20 μg mL-1) with R2 (0.999) and low limits of detection (3.3-6.5 μg L-1) using UV detector at 254 nm. The proposed method was applied to determine four parabens in environmental water samples with recoveries in the range 64.0-105% and relative standard deviations of 0.16-7.8%. The adsorption mechanism was explored and indicated that porous DhaTab shell provided π-π, hydrophobic, and hydrogen bonding interactions in the MSPE process. The results revealed the potential of magnetic-functionalized COFs in determination of environmental contaminants.
Collapse
Affiliation(s)
- Xiao-Shuai Yang
- School of Food Engineering, Ludong University, Yantai, Shandong, People's Republic of China, 264025
| | - Jie Zhao
- School of Food Engineering, Ludong University, Yantai, Shandong, People's Republic of China, 264025
| | - Lu-Liang Wang
- School of Food Engineering, Ludong University, Yantai, Shandong, People's Republic of China, 264025. .,Institute of Bionanotechnology, Ludong University, Yantai, Shandong, People's Republic of China, 264025.
| | - Yu-Shen Liu
- School of Food Engineering, Ludong University, Yantai, Shandong, People's Republic of China, 264025.,Institute of Bionanotechnology, Ludong University, Yantai, Shandong, People's Republic of China, 264025
| | - Quan-Wen Liu
- School of Food Engineering, Ludong University, Yantai, Shandong, People's Republic of China, 264025
| | - Xin-Yan Peng
- Institute of Food Science and Engineering, Yantai University, Yantai, Shandong, People's Republic of China, 264005
| | - Ping Wang
- School of Food Engineering, Ludong University, Yantai, Shandong, People's Republic of China, 264025.,Institute of Bionanotechnology, Ludong University, Yantai, Shandong, People's Republic of China, 264025
| |
Collapse
|
137
|
Adhikari S, Kumar R, Driver EM, Perleberg TD, Yanez A, Johnston B, Halden RU. Mass trends of parabens, triclocarban and triclosan in Arizona wastewater collected after the 2017 FDA ban on antimicrobials and during the COVID-19 pandemic. WATER RESEARCH 2022; 222:118894. [PMID: 35917669 DOI: 10.1016/j.watres.2022.118894] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Antimicrobials like parabens, triclosan (TCS), and triclocarban (TCC) are of public health concern worldwide due to their endocrine-disrupting properties and ability to promote antimicrobial drug resistance in human pathogens. The overall use of antimicrobials presumably has increased during the COVID-19 pandemic, whereas TCS and TCC may have experienced reductions in use due to their recent ban from thousands of over-the-counter (OTC) personal care products by the U.S. Food and Drug Administration (FDA). No quantitative data are available on the use of parabens or the impact the FDA ban had on TCC and TCS. Here, we use wastewater samples (n = 1514) from 10 different communities in Arizona to measure the presence of the six different antimicrobial products (TCS, TCC, and four alkylated parabens [methylparaben (MePb), ethylparaben (EtPb), propylparaben (PrPb), butylparaben (BuPb)]) collected before and during the COVID-19 pandemic using a combination of solid-phase extraction, liquid chromatography/tandem mass spectrometry (LC-MS/MS), and isotope dilution for absolute quantitation. The average mass loadings of all antimicrobials combined (1,431 ± 22 mg/day per 1,000 people) after the onset of the local epidemic (March 2020 - October 2020) were significantly higher (945 ± 62 mg/day per 1,000 people; p < 0.05) than before the pandemic (January 2019 - February 2020). Overall, parabens (∑Pbs = 999 ± 16 mg/day per 1,000 people) were the most used antimicrobials, followed by TCS (117 ± 14 mg/day per 1,000 people) and TCC (117 ± 14 mg/day per 1,000 people). After the 2017 U.S. FDA ban, we found a statistically significant (p < 0.05) reduction in the mass loadings of TCS (-89%) and TCC (-80%) but a rise in paraben use (+72%). Mass flows of 3 of a total of 4 parabens (MePb, EtPb, and PrPb) in wastewater were significantly higher upon the onset of the epidemic locally (p < 0.05). This is the first longitudinal study investigating the use of antimicrobials during the COVID-19 pandemic by employing wastewater-based epidemiology. Whereas an overall increase in the use of antimicrobials was evident from analyzing Arizona wastewater, a notable reduction in the use of TCS and TCC was evident during the pandemic, triggered by the U.S. FDA ban.
Collapse
Affiliation(s)
- Sangeet Adhikari
- School of Sustainable Engineering and Built Environment, Arizona State University, Tempe, AZ 85287, USA; Biodesign Center for Environmental Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Rahul Kumar
- Biodesign Center for Environmental Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Erin M Driver
- Biodesign Center for Environmental Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Tyler D Perleberg
- Biodesign Center for Environmental Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Allan Yanez
- Biodesign Center for Environmental Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Bridger Johnston
- Biodesign Center for Environmental Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Rolf U Halden
- School of Sustainable Engineering and Built Environment, Arizona State University, Tempe, AZ 85287, USA; Biodesign Center for Environmental Engineering, Arizona State University, Tempe, AZ 85287, USA; OneWaterOneHealth, Nonprofit Project of the Arizona State University Foundation, Tempe, AZ 85287, USA; Global Futures Laboratory, Arizona State University, 800 S. Cady Mall, Tempe, AZ 85281, USA.
| |
Collapse
|
138
|
Disposable screen-printed carbon-based electrodes in amperometric detection for simultaneous determination of parabens in complex-matrix personal care products by HPLC. Talanta 2022; 245:123459. [DOI: 10.1016/j.talanta.2022.123459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/31/2022] [Accepted: 04/03/2022] [Indexed: 01/02/2023]
|
139
|
Improved method for the determination of endocrine-disrupting chemicals in urine of school-age children using microliquid-liquid extraction and UHPLC-MS/MS. Anal Bioanal Chem 2022; 414:6681-6694. [PMID: 35879427 DOI: 10.1007/s00216-022-04231-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/20/2022] [Accepted: 07/13/2022] [Indexed: 11/01/2022]
Abstract
The presence of endocrine-disrupting chemicals in our daily life is increasing every day and, by extension, human exposure and the consequences thereof. Among these substances are bisphenols and parabens. Urine is used to analyze the exposure. The determination of 12 bisphenol homologues and 6 parabens is proposed. A procedure based on a method previously developed by our research group in 2014 is improved. The extraction yield is higher, because the new protocol is 5 times more efficient. Also, a comparison between calibration with pure standards and matrix calibration, to calculate the matrix effect, was also made. A high grade of matrix effect for all analytes was observed. In terms of validation, the limits of detection (LOD) were between 0.03 and 0.3 ng mL-1 and limits of quantification (LOQ) 0.1 to 1.0 ng mL-1, respectively, and the recovery is higher than 86.4% and lower than 113.6%, with a RSD lower than 13.5% in all cases. A methodology for accurate and sensitive quantification of bisphenol homologues together with parabens in human urine using UHPLC-MS/MS was developed. The method was successfully applied to 30 urine samples from children.
Collapse
|
140
|
Reber KP, Sivey JD, Vollmuth M, Gujarati PD. Synthesis of
13
C‐Labeled Parabens from Isotopically Enriched Phenols Using the Houben–Hoesch Reaction. J Labelled Comp Radiopharm 2022; 65:254-263. [DOI: 10.1002/jlcr.3992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022]
Affiliation(s)
| | - John D. Sivey
- Department of Chemistry Towson University Towson MD USA
| | | | - Priyansh D. Gujarati
- Department of Chemistry Towson University Towson MD USA
- Department of Chemistry University of Oxford Oxford UK
| |
Collapse
|
141
|
Ball AL, Solan ME, Franco ME, Lavado R. Comparative cytotoxicity induced by parabens and their halogenated byproducts in human and fish cell lines. Drug Chem Toxicol 2022:1-9. [PMID: 35854652 DOI: 10.1080/01480545.2022.2100900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Parabens are a group of para-hydroxybenzoic acid (p-HBA) esters widely used in pharmaceutical industries. Their safety is well documented in mammalian models, but little is known about their toxicity in non-mammal species. In addition, chlorinated and brominated parabens resulting from wastewater treatment have been identified in effluents. In the present study, we explored the cytotoxic effects (EC50) of five parabens: methylparaben (MP), ethylparaben (EP), propylparaben (PP), butylparaben (BuP), and benzylparaben (BeP); the primary metabolite, 4-hydroxybenzoic acid (4-HBA), and three of the wastewater chlorinated/brominated byproducts on fish and human cell lines. In general, higher cytotoxicity was observed with increased paraben chain length. The tested compounds induced toxicity in the order of 4-HBA < MP < EP < PP < BuP < BeP. The halogenated byproducts led to higher toxicity with the addition of second chlorine. The longer chain-parabens (BuP and BeP) caused a concentration-dependent decrease in cell viability in fish cell lines. Intriguingly, the main paraben metabolite, 4-HBA, proved to be more toxic to fish hepatocytes than human hepatocytes by 100-fold. Our study demonstrated that the cytotoxicity of some of these compounds appears to be tissue-dependent. These observations provide valuable information for early cellular responses in human and non-mammalian models upon exposure to paraben congeners.
Collapse
Affiliation(s)
- Ashley L Ball
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Megan E Solan
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Marco E Franco
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX, USA
| |
Collapse
|
142
|
Parabens Permeation through Biological Membranes: A Comparative Study Using Franz Cell Diffusion System and Biomimetic Liquid Chromatography. Molecules 2022; 27:molecules27134263. [PMID: 35807508 PMCID: PMC9268571 DOI: 10.3390/molecules27134263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Parabens (PBs) are used as preservatives to extend the shelf life of various foodstuffs, and pharmaceutical and cosmetic preparations. In this work, the membrane barrier passage potential of a subset of seven parabens, i.e., methyl-, ethyl-, propyl- isopropyl, butyl, isobutyl, and benzyl paraben, along with their parent compound, p-hydroxy benzoic acid, were studied. Thus, the Franz cell diffusion (FDC) method, biomimetic liquid chromatography (BLC), and in silico prediction were performed to evaluate the soundness of both describing their permeation through the skin. While BLC allowed the achievement of a full scale of affinity for membrane phospholipids of the PBs under research, the permeation of parabens through Franz diffusion cells having a carbon chain > ethyl could not be measured in a fully aqueous medium, i.e., permeation enhancer-free conditions. Our results support that BLC and in silico prediction alone can occasionally be misleading in the permeability potential assessment of these preservatives, emphasizing the need for a multi-technique and integrated experimental approach.
Collapse
|
143
|
Lan L, Wan Y, Qian X, Wang A, Mahai G, He Z, Li Y, Xu S, Zheng T, Xia W. Urinary paraben derivatives in pregnant women at three trimesters: Variability, predictors, and association with oxidative stress biomarkers. ENVIRONMENT INTERNATIONAL 2022; 165:107300. [PMID: 35635959 DOI: 10.1016/j.envint.2022.107300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Exposure to parabens has been shown to increase oxidative stress, which has a vital impact on the development of numerous diseases. However, few studies reported the effects of the paraben derivatives on oxidative stress, particularly among pregnant women. This study, using repeated measurements, aimed to understand the exposure profiles of urinary paraben derivative concentrations and their relationships with oxidative stress biomarkers (OSBs). A total of 861 pregnant women, who provided spot urine samples at three trimesters, were included, and 2583 urine samples were used to measure four paraben derivatives [p-hydroxybenzoic acid (p-HB), 3,4-dihydroxybenzoic acid (3,4-DHB), methyl protocatechuate, and ethyl protocatechuate], four parabens (methyl, ethyl, propyl, and butyl), and three OSBs [8-hydroxy-2'-deoxyguanosine (for DNA), 8-hydroxyguanosine (for RNA), and 4-hydroxy nonenal mercapturic acid (for lipid)]. Pregnant women were extensively exposed to parabens and paraben derivatives with detection frequencies (DFs) of 86.1%-100%, except for butylparaben with a DF of 14.9%. p-HB and 3,4-DHB had relatively high urinary concentrations (specific gravity-adjusted median values: 1394 and 74.5 ng/mL, respectively). Low reproducibility in paraben derivatives was found across the three trimesters. Sampling season, pre-pregnancy body mass index, and infant sex were predictors of some paraben derivatives/parabens. Linear mixed model analyses showed that all target compounds (if DF > 50%) were associated with increases in all the selected OSBs, where the percent change in OSBs with an interquartile range increase in paraben concentration ranged from 9.85% to 24.7%, while those in paraben derivative concentration ranged from 13.8% to 72.1%. Weighted quantile sum model showed that joint exposure was significantly associated with increased OSBs, and paraben derivatives were stronger contributors to OSBs compared with parabens. Overall, urinary paraben derivatives were associated with increased oxidative stress of nucleic acids and lipid in pregnant women.
Collapse
Affiliation(s)
- Liwen Lan
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430024, PR China.
| | - Xi Qian
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Aizhen Wang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Gaga Mahai
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430024, PR China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Tongzhang Zheng
- School of Public Health, Brown University, Providence, RI 02903, USA.
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
144
|
Le TM, Pham PT, Nguyen TQ, Nguyen TQ, Bui MQ, Nguyen HQ, Vu ND, Kannan K, Tran TM. A survey of parabens in aquatic environments in Hanoi, Vietnam and its implications for human exposure and ecological risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46767-46777. [PMID: 35174457 DOI: 10.1007/s11356-022-19254-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Seven parabens including methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), iso-propylparaben (iPrP), butylparaben (BuP), benzylparaben (BzP), and heptylparaben (HepP) were determined in bottled water, tap water, river water, lake water, and wastewater samples collected from Hanoi, Vietnam, using solid phase extraction (SPE) followed by ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The highest total concentration of parabens were measured in wastewater (range, 27.3-1050 ng/L; mean/median, 268/175 ng/L), followed by lake water (range, 18.0-254 ng/L; mean/median, 51.7/58.5 ng/L), river water (range, 16.5-52.1 ng/L; mean/median, 32.1/42.6 ng/L), tap water (range, 5.01-54.3 ng/L; mean/median, 28.6/41.1 ng/L), and bottled water (range, 1.56-39.9 ng/L; mean/median, 6.92/9.19 ng/L). Methylparaben and propylparaben were the predominant compounds found in all samples. The mean estimated human exposure dose of parabens through drinking bottled water was 0.27 ng/kg-bw/day, which is 6 orders of magnitude below the safety threshold recommended by the Joint FAO/WHO Expert Committee on Food Additive in 1974 (10 mg/kg-bw/day). Concentrations of parabens measured in river water, lake water, and wastewater samples were assessed to pose low to moderate ecological risks to aquatic organisms (0.1 < RQ < 1). Methyl, ethyl, and propyl parabens exhibited significant correlations in water samples.
Collapse
Affiliation(s)
- Thuy Minh Le
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi, 10000, Vietnam
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
| | - Phuong Thi Pham
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi, 10000, Vietnam
| | - Truong Quang Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi, 10000, Vietnam
| | - Trung Quang Nguyen
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
| | - Minh Quang Bui
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
| | - Hoa Quynh Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
| | - Nam Duc Vu
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Tri Manh Tran
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi, 10000, Vietnam.
| |
Collapse
|
145
|
Eco-friendly magnetic Solid-Phase extraction and deep eutectic solvent for the separation and detection of parabens from the environmental water and urine samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
146
|
Schildroth S, Wise LA, Wesselink AK, Bethea TN, Fruh V, Taylor KW, Calafat AM, Baird DD, Claus Henn B. Correlates of non-persistent endocrine disrupting chemical mixtures among reproductive-aged Black women in Detroit, Michigan. CHEMOSPHERE 2022; 299:134447. [PMID: 35358566 PMCID: PMC9215202 DOI: 10.1016/j.chemosphere.2022.134447] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Some studies indicate that Black women have higher exposure to multiple non-persistent endocrine disrupting chemicals (EDCs) than white women, but little is known about correlates of exposure to EDC mixtures. Using baseline data from a prospective cohort study of reproductive-aged Black women (N = 751), we characterized profiles of EDC mixtures and identified correlates of exposure. At baseline, we quantified biomarkers of 16 phthalates, 7 phenols, 4 parabens, and triclocarban in urine and collected covariate data through self-administered questionnaires and interviews. We used principal component (PC) analysis and k-means clustering to describe EDC mixture profiles. Associations between correlates and PCs were estimated as the mean difference (β) in PC scores, while associations between correlates and cluster membership were estimated as the odds ratio (OR) of cluster membership. Personal care product use was consistently associated with profiles of higher biomarker concentrations of non-persistent EDCs. Use of nail polish, menstrual and vaginal products (e.g., vaginal powder, vaginal deodorant), and sunscreen was associated with a mixture of phthalate and some phenol biomarkers using both methods. Current vaginal ring use, a form of hormonal contraception placed inside the vagina, was strongly associated with higher concentrations of high molecular weight phthalate biomarkers (k-means clustering: OR = 2.42, 95% CI = 1.28, 4.59; PCA: β = -0.32, 95% CI = -0.71, 0.07). Several dietary, reproductive, and demographic correlates were also associated with mixtures of EDC biomarkers. These findings suggest that personal care product use, diet, and contraceptive use may be sources of exposure to multiple non-persistent EDCs among reproductive-aged Black women. Targeted interventions to reduce exposure to multiple EDCs among Black women are warranted.
Collapse
Affiliation(s)
- Samantha Schildroth
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA.
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Amelia K Wesselink
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Traci N Bethea
- Office of Minority Health & Health Disparities Research, Georgetown Lombardi Comprehensive Cancer Center, Washington DC, USA
| | - Victoria Fruh
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Kyla W Taylor
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Donna D Baird
- National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
147
|
Screening of Contaminants of Emerging Concern in Surface Water and Wastewater Effluents, Assisted by the Persistency-Mobility-Toxicity Criteria. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123915. [PMID: 35745037 DOI: 10.3390/molecules27123915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Contaminants of emerging concern (CECs) are compounds of diverse origins that have not been deeply studied in the past which are now accruing growing environmental interest. The NOR-Water project aimed to identify the main CECs and their sources in the water environment of Northern Portugal-Galicia (located in northwest Spain) transnational region. To achieve these goals, a suspect screening analytical methodology based on the use of liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) was applied to 29 sampling sites in two campaigns. These sampling sites included river and sea water, as well as treated wastewater. The screening was driven by a library of over 3500 compounds, which included 604 compounds prioritized from different relevant lists on the basis of the persistency, mobility, and toxicity criteria. Thus, a total of 343 chemicals could be tentatively identified in the analyzed samples. This list of 343 identified chemicals was submitted to the classification workflow used for prioritization and resulted in 153 chemicals tentatively classified as persistent, mobile, and toxic (PMT) and 23 as very persistent and very mobile (vMvP), pinpointing the relevance of these types of chemicals in the aqueous environment. Pharmaceuticals, such as the antidepressant venlafaxine or the antipsychotic sulpiride, and industrial chemicals, especially high production volume chemicals (HPVC) such as ε-caprolactam, were the groups of compounds that were detected at the highest frequencies.
Collapse
|
148
|
Ao J, Wang Y, Tang W, Aimuzi R, Luo K, Tian Y, Zhang Q, Zhang J. Patterns of environmental exposure to phenols in couples who plan to become pregnant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153520. [PMID: 35101495 DOI: 10.1016/j.scitotenv.2022.153520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/10/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Phenols are widely used in consumer products and known for their reproductive toxicities. Little is known regarding the environmental exposure to phenols in couples prior to conception, a key period affecting fertility. We measured the urinary concentrations of six parabens and seven bisphenols in 903 pre-conception couples in China. We investigated the occurrence, distribution, source and health risk of phenols in husbands and wives separately, and the correlation and difference in phenol concentrations between couples. Similar distribution profiles of urinary phenols were observed between females and males. Methyl 4-hydroxybenzoate (MeP) and bisphenol A (BPA) were the predominant compounds. The level of urinary phenols in our population was mostly lower than the global levels. Exposure to phenols was linked to processed food and personal care products. The correlations between phenols in males and females were moderate (0.218-0.686), while the correlation in phenols between husband and wife was low (0.009-0.215). Female had a significantly higher urinary phenol levels than male (P < 0.05). Urinary phenols in couples were associated with family income, type of drinking water and frequency of household cleaning. Household factors accounted for ≤1.5% of variance in phenol levels between couples, suggesting that individual variations may be the major factor. Risk assessment showed that exposure to phenols posed a low hazard to 17.5% of the couples in our population. Our findings provide important evidence of environmental exposure to phenols in couples of child-bearing age.
Collapse
Affiliation(s)
- Junjie Ao
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yuqing Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Weifeng Tang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ruxianguli Aimuzi
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Kai Luo
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ying Tian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Qianlong Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China.
| |
Collapse
|
149
|
Cetinić KA, Grgić I, Previšić A, Rožman M. The curious case of methylparaben: Anthropogenic contaminant or natural origin? CHEMOSPHERE 2022; 294:133781. [PMID: 35104549 DOI: 10.1016/j.chemosphere.2022.133781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/28/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The widespread use of methylparaben as a preservative has caused increased exposure to natural aquatic systems in recent decades. However, current studies have suggested that exposure to this compound can result in endocrine disrupting effects, raising much concern regarding its environmental impact. In contast, methylparaben has also been found to be part of the metabolome of some organisms, prompting the question as to whether this compound may be more natural than previously assumed. Through a combination of field studies investigating the natural presence of methylparaben across different taxa, and a 54-day microcosm experiment examining the bioaccumulation and movement of methylparaben across different life stages of aquatic insects (order Trichoptera), our results offer evidence suggesting the natural origin of methylparaben in aquatic and terrestrial biota. This study improves our understanding of the role and impact this compound has on biota and challenges the current paradigm that methylparaben is exclusively a harmful anthropogenic contaminant. Our findings highlight the need for further research on this topic to fully understand the origin and role of parabens in the environment which will allow for a comprehensive understanding of the extent of environmental contamination and result in a representative assessment of the environmental risk that may pose.
Collapse
Affiliation(s)
| | | | - Ana Previšić
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | | |
Collapse
|
150
|
Claessens J, Pirard C, Charlier C. Determination of contamination levels for multiple endocrine disruptors in hair from a non-occupationally exposed population living in Liege (Belgium). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152734. [PMID: 34973319 DOI: 10.1016/j.scitotenv.2021.152734] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/29/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Today, the interest in hair as alternative matrix for human biomonitoring of environmental pollutants has increased, but available data on chemical levels in hair remain scarce. In this study, the measurement of 2 bisphenols (A and S), 3 parabens (methyl-, ethyl- and propylparabens) and 8 perfluroralkyl compounds (PFCs) namely perfluoroctanesulfonate (PFOS), perfluorohexanesulfonate (PFHxS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluroroheptanoic acid (PFHpA), perfluoropentanoic acid (PFPeA) and perfluorohexanoic acid (PFHxA) was carried out, using a thoroughly validated UPLC-MS/MS method, in the hair from 114 adults living in Liege (Belgium) and surrounding areas. The most frequently quantified compounds in the population were: bisphenol S (97.4%, median = 31.9 pg·mg-1), methylparaben (94.7%, median = 28.9 pg·mg-1), bisphenol A (93.9%, median = 46.6 pg·mg-1), ethylparaben (66.7%, median = 5.2 pg·mg-1), propylparaben (54.8%, median = 16.4 pg·mg-1) and PFOA (46.4%, median < 0.2 pg·mg-1). The other PFCs were detected only in few samples although current exposure of the Belgian population to PFCs was previously demonstrated using blood analyses. Nonparametric statistical analyses were performed to evaluate the influence of gender, hair treatments and hair length, but no significant difference was observed. Only age was positively correlated with the propylparaben contamination. Although blood seems to remain more suitable for PFCs exposure assessment, the results of this study suggest that hair can be an appropriate matrix for biomonitoring of organic pollutants such as parabens or bisphenols.
Collapse
Affiliation(s)
- Julien Claessens
- Laboratory of Clinical, Forensic, Industrial and Environmental Toxicology, University Hospital of Liege, CHU (B35), 4000, Liege, Belgium; Center for Interdisciplinary Research on Medicines (C.I.R.M), University of Liège, CHU (B35), 4000, Liege, Belgium.
| | - Catherine Pirard
- Laboratory of Clinical, Forensic, Industrial and Environmental Toxicology, University Hospital of Liege, CHU (B35), 4000, Liege, Belgium; Center for Interdisciplinary Research on Medicines (C.I.R.M), University of Liège, CHU (B35), 4000, Liege, Belgium
| | - Corinne Charlier
- Laboratory of Clinical, Forensic, Industrial and Environmental Toxicology, University Hospital of Liege, CHU (B35), 4000, Liege, Belgium; Center for Interdisciplinary Research on Medicines (C.I.R.M), University of Liège, CHU (B35), 4000, Liege, Belgium
| |
Collapse
|