101
|
Moore J, Rajasekaran K, Cary JW, Chlan C. Mode of Action of the Antimicrobial Peptide D4E1 on Aspergillus flavus. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9762-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
102
|
Spatial Vulnerabilities of the Escherichia coli Genome to Spontaneous Mutations Revealed with Improved Duplex Sequencing. Genetics 2018; 210:547-558. [PMID: 30076202 DOI: 10.1534/genetics.118.301345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/31/2018] [Indexed: 12/20/2022] Open
Abstract
Investigation of spontaneous mutations by next-generation sequencing technology has attracted extensive attention lately due to the fundamental roles of spontaneous mutations in evolution and pathological processes. However, these studies only focused on the mutations accumulated through many generations during long-term (possibly be years of) culturing, but not the freshly generated mutations that occur at very low frequencies. In this study, we established a molecularly barcoded deep sequencing strategy to detect low abundant spontaneous mutations in genomes of bacteria cell cultures. Genome-wide spontaneous mutations in 15 Escherichia coli cell culture samples were defined with a high confidence (P < 0.01). We also developed a hotspot-calling approach based on the run-length encoding algorithm to find the genomic regions that are vulnerable to the spontaneous mutations. The hotspots for the mutations appeared to be highly conserved across the bacteria samples. Further biological annotation of these regions indicated that most of the spontaneous mutations were located at the repeat domains or nonfunctional domains of the genomes, suggesting the existence of mechanisms that could somehow prevent the occurrence of mutations in crucial genic areas. This study provides a more faithful picture of mutation occurrence and spectra in a single expansion process without long-term culturing.
Collapse
|
103
|
Ma Z, Kim YM, Howard EW, Feng X, Kosanke SD, Yang S, Jiang Y, Parris AB, Cao X, Li S, Yang X. DMBA promotes ErbB2‑mediated carcinogenesis via ErbB2 and estrogen receptor pathway activation and genomic instability. Oncol Rep 2018; 40:1632-1640. [PMID: 30015966 PMCID: PMC6072406 DOI: 10.3892/or.2018.6545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/21/2018] [Indexed: 01/03/2023] Open
Abstract
Environmental factors, including 7,12‑dimethylbenz[a]anthracene (DMBA) exposure, and genetic predisposition, including ErbB2 overexpression/amplification, have been demonstrated to increase breast cancer susceptibility. Although DMBA‑ and ErbB2‑mediated breast cancers are well‑studied in their respective models, key interactions between environmental and genetic factors on breast cancer risk remain unclear. Therefore, the present study aimed to investigate the effect of DMBA exposure on ErbB2‑mediated mammary tumorigenesis. MMTV‑ErbB2 transgenic mice exposed to DMBA (1 mg) via weekly oral gavage for 6 weeks exhibited significantly enhanced mammary tumor development, as indicated by reduced tumor latency and increased tumor multiplicity compared with control mice. Whole mount analysis of premalignant mammary tissues from 15‑week‑old mice revealed increased ductal elongation and proliferative index in DMBA‑exposed mice. Molecular analyses of premalignant mammary tissues further indicated that DMBA exposure enhanced epidermal growth factor receptor (EGFR)/ErbB2 and estrogen receptor (ER) signaling, which was associated with increased mRNA levels of EGFR/ErbB2 family members and ER‑targeted genes. Furthermore, analysis of tumor karyotypes revealed that DMBA‑exposed tumors displayed more chromosomal alterations compared with control tumors, implicating DMBA‑induced chromosomal instability in tumor promotion in this model. Together, the data suggested that DMBA‑induced deregulation of EGFR/ErbB2‑ER pathways plays a critical role in the enhanced chromosomal instability and promotion of ErbB2‑mediated mammary tumorigenesis. The study highlighted gene‑environment interactions that may increase risk of breast cancer, which is a critical clinical issue.
Collapse
Affiliation(s)
- Zhikun Ma
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Young Mi Kim
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Erin W Howard
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Xiaoshan Feng
- Department of Oncology, First Affiliated Hospital of Henan University of Sciences and Technology, Luoyang, Henan 471500, P.R. China
| | - Stanley D Kosanke
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Shihe Yang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yunbo Jiang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Amanda B Parris
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Xia Cao
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Shibo Li
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Xiaohe Yang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
104
|
Ahmadi K, Soleimani A, Irani S, Kiani A, Ghanadi K, Noormohamadi Z, Sakinejad F. DNMT3B -579 G>T Promoter Polymorphism and the Risk of Gastric Cancer in the West of Iran. J Gastrointest Cancer 2018; 49:167-171. [PMID: 28220295 DOI: 10.1007/s12029-017-9928-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Many studies have suggested that modulation of DNMT3B function caused by single nucleotide polymorphisms of the DNMT3B promoter region may underlie the susceptibility to various cancers such as tumors of the digestive system. The aim of this study was to investigate the effect of -579 G>T polymorphism in the promoter of the DNMT3B gene on risk of gastric cancer in a population from West Iran. PATIENTS AND METHODS We conducted a case-control study in 100 gastric cancer patients and 112 cancer-free controls to assess the correlation between DNMT3B -579 G>T (rs1569686) polymorphism and the risk of gastric cancer. Detection of genotypes of DNMT3B G39179T polymorphism was analyzed by PCR-RFLP. RESULTS There was no significant difference in the distribution of DNMT3B -579 G>T genotypes between the cases and controls. However, in the stratified analysis by clinicopathological characteristic types, we found that statistically, the risk susceptibility to gastric cancer was significantly associated with tumor grade II and GT/TT genotype of patients, compared to patients having GG genotype, (OR = 5.4737, 95% CI = 1.4746. 20.3184, P = 0.01). CONCLUSIONS Our study suggested that the -579 T allele may increase the relative risk for the progression of clinicopathological characteristic of tumor grade of gastric cancer patients.
Collapse
Affiliation(s)
- Kulsom Ahmadi
- Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Azam Soleimani
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Kourosh Ghanadi
- Razi Herbal Medicines Research Center and Department of Internal Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Zahra Noormohamadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
105
|
Pandey A, Bahl C, Sharma S, Singh N, Behera D. Functional role of CyclinD1 polymorphism (G870A) in modifying susceptibility and overall survival of North Indian lung cancer patients. TUMORI JOURNAL 2018; 104:179-187. [PMID: 30086699 DOI: 10.1177/0300891617753477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
PURPOSE The purpose of this study was to investigate the potential role of the cyclin D1 gene G870A polymorphism in the likelihood of the development of lung cancer and the overall survival of lung cancer patients in the North Indian population. METHODS The study consisted of 353 lung cancer cases and 351 age- and gender-matched healthy controls. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLPP) was done for the CCND1 gene. The association analysis was done using the multiple linear regression, and the survival analysis was done using the Kaplan-Meier and the Cox regression models. RESULTS The GA genotype was associated with an increased risk for overall lung cancer (odds ratio [OR] = 1.63; p = 0.01). Combined variant genotype showed a significant association for overall lung cancer (OR 1.50; p = 0.03). In addition, smokers with the carrier genotype of CCND1 were found to have a significantly higher risk for lung cancer (OR 1.57; p = 0.04). No significant correlation was observed between the overall survival of lung cancer patients and CCND1 polymorphism. However, on stratifying the subjects on the basis of histology, it was evident that small-cell lung cancer (SCLC) patients carrying the mutant (AA) genotype showed nearly a fivefold increased mortality rate compared to the wild (GG) genotype (p = 0.03). CONCLUSIONS Our results suggest that polymorphic CCND1 may increase the risk of lung cancer in smokers from North India, and it may be associated with the overall survival of SCLC patients.
Collapse
Affiliation(s)
- Ankita Pandey
- 1 Department of Biotechnology, Thapar University, Patiala, Punjab - India
| | - Charu Bahl
- 1 Department of Biotechnology, Thapar University, Patiala, Punjab - India
| | - Siddharth Sharma
- 1 Department of Biotechnology, Thapar University, Patiala, Punjab - India
| | - Navneet Singh
- 2 Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh - India
| | - Digamber Behera
- 2 Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh - India
| |
Collapse
|
106
|
Marine natural products for multi-targeted cancer treatment: A future insight. Biomed Pharmacother 2018; 105:233-245. [PMID: 29859466 DOI: 10.1016/j.biopha.2018.05.142] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 12/28/2022] Open
Abstract
Cancer is world's second largest alarming disease, which involves abnormal cell growth and have potential to spread to other parts of the body. Most of the available anticancer drugs are designed to act on specific targets by altering the activity of involved transporters and genes. As cancer cells exhibit complex cellular machinery, the regeneration of cancer tissues and chemo resistance towards the therapy has been the main obstacle in cancer treatment. This fact encourages the researchers to explore the multitargeted use of existing medicines to overcome the shortcomings of chemotherapy for alternative and safer treatment strategies. Recent developments in genomics-proteomics and an understanding of the molecular pharmacology of cancer have also challenged researchers to come up with target-based drugs. The literature supports the evidence of natural compounds exhibiting antioxidant, antimitotic, anti-inflammatory, antibiotic as well as anticancer activity. In this review, we have selected marine sponges as a prolific source of bioactive compounds which can be explored for their possible use in cancer and have tried to link their role in cancer pathway. To prove this, we revisited the literature for the selection of cancer genes for the multitargeted use of existing drugs and natural products. We used Cytoscape network analysis and Search tool for retrieval of interacting genes/ proteins (STRING) to study the possible interactions to show the links between the antioxidants, antibiotics, anti-inflammatory and antimitotic agents and their targets for their possible use in cancer. We included total 78 pathways, their genes and natural compounds from the above four pharmacological classes used in cancer treatment for multitargeted approach. Based on the Cytoscape network analysis results, we shortlist 22 genes based on their average shortest path length connecting one node to all other nodes in a network. These selected genes are CDKN2A, FH, VHL, STK11, SUFU, RB1, MEN1, HRPT2, EXT1, 2, CDK4, p14, p16, TSC1, 2, AXIN2, SDBH C, D, NF1, 2, BHD, PTCH, GPC3, CYLD and WT1. The selected genes were analysed using STRING for their protein-protein interactions. Based on the above findings, we propose the selected genes to be considered as major targets and are suggested to be studied for discovering marine natural products as drug lead in cancer treatment.
Collapse
|
107
|
Yin J, Pan H, Long T, Lv L, Zhai P, Liu C, Shao A, Shi Y, Sun Y, Zhu J, Wang L, Ding G, Chen S, Tang W, Qian C, Tan L, Gu H. Polymorphisms of VDR gene and risk of gastric cardiac adenocarcinoma in Chinese population. Oncotarget 2018; 8:45531-45543. [PMID: 28489590 PMCID: PMC5542206 DOI: 10.18632/oncotarget.17270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 03/29/2017] [Indexed: 12/11/2022] Open
Abstract
Vitamin D receptor (VDR) gene polymorphisms have been reported to increase susceptibility to some malignant tumors, yet the effect on gastric cardiac adenocarcinoma susceptibility remains unknown. Here, we conducted a hospital-based case-control study to examine the correlation of single nucleotide polymorphisms of VDR rs2107301T>C, rs2228570C>T, rs1989969C>T and rs11568820 G>A and gastric cardiac adenocarcinoma susceptibility. A total 330 cases and 608 controls were enrolled in the study. Using ligation detection reaction, we found that the variant alleles of the four polymorphisms were not associated with risk of gastric cardiac adenocarcinoma. Further stratified analyses showed that there was an increased risk associated with VDR rs1989969 polymorphism among patients who were drinking or aged <60. The haplotypes VDR Trs2107301Trs2228570Crs1989969Grs11568820 reduced the susceptibility. This study demonstrated that VDR rs1989969 polymorphism was involved in the carcinogenesis of gastric cardiac adenocarcinoma, especially increased the risk in the younger and alcohol drinking Chinese population.
Collapse
Affiliation(s)
- Jun Yin
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Huiwen Pan
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Tao Long
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Lu Lv
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Peng Zhai
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Chao Liu
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Aizhong Shao
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Yijun Shi
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Yangyong Sun
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jingfeng Zhu
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Liming Wang
- Department of Chemotherapy, Cancer Institute, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Guowen Ding
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Suocheng Chen
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Weifeng Tang
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Cheng Qian
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Haiyong Gu
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
108
|
Du L, Lei L, Zhao X, He H, Chen E, Dong J, Zeng Y, Yang J. The Interaction of Smoking with Gene Polymorphisms on Four Digestive Cancers: A Systematic Review and Meta-Analysis. J Cancer 2018; 9:1506-1517. [PMID: 29721061 PMCID: PMC5929096 DOI: 10.7150/jca.22797] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/22/2018] [Indexed: 12/15/2022] Open
Abstract
The main purpose of this study was to perform a meta-analysis to assess the interaction between smoking and nine genes (GSTM1, GSTT1, GSTP1, CYP1A1, NAT2, SULT1A1, hOGG1, XRCC1 and p53) on colorectal cancer, gastric cancer, liver cancer and oesophageal cancer. Published articles from the PubMed, ISI and EMBASE databases were retrieved. A total of 67 case-control studies or nested case-control studies were identified for the analysis. The pooled jodds ratio (OR) with 95% confidence interval (CI) was calculated using the random effect model. The overall study showed that the GSTM1 polymorphism was associated with the risk of the four digestive cancers among Asian population (OR 1.284, 95% CI: 1.122-1.470, p: 0). Subgroup analyses by cancer site showed that GSTM1 null genotype increased the gastric cancer risk in total population (OR 1.335, 95% CI: 1.145-1.556, p: 0). However, the association of GSTM1 null genotype with the oesophageal cancer risk was found in smokers (OR 1.382, 95% CI: 1.009-1.894, p:0.044), but not in non-smokers (OR 1.250, 95% CI: 0.826-1.891, p:0.290). Moreover, smokers with the CYP1A1 IIe462Val polymorphism were at an increased cancer risk in Asian population (OR=1.585, 95% CI 1.029-2.442, p: 0.037). None of the other gene-smoking interactions was observed in the above cancers. This meta-analysis reveals two potential gene-smoking interactions, one is between smoking and GSTM1 on oesophageal cancer, and the other is between smoking and CYP1A1 IIe462Val on the four cancers in Asian population. Future studies need to be conducted to verify the conclusions.
Collapse
Affiliation(s)
- Le Du
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, China.,Institute of Preventive Genomic Medicine, Xi'an 710069, China
| | - Lei Lei
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, China.,Institute of Preventive Genomic Medicine, Xi'an 710069, China
| | - Xiaojuan Zhao
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, China.,Institute of Preventive Genomic Medicine, Xi'an 710069, China
| | - Hongjuan He
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, China.,Institute of Preventive Genomic Medicine, Xi'an 710069, China
| | - Erfei Chen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, China.,Institute of Preventive Genomic Medicine, Xi'an 710069, China
| | - Jing Dong
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, China.,Institute of Preventive Genomic Medicine, Xi'an 710069, China
| | - Yuan Zeng
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, China.,Institute of Preventive Genomic Medicine, Xi'an 710069, China
| | - Jin Yang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, China.,Institute of Preventive Genomic Medicine, Xi'an 710069, China
| |
Collapse
|
109
|
Carcinogenic Substances Naturrally Occuring in the Human Diet. ROMANIAN JOURNAL OF DIABETES NUTRITION AND METABOLIC DISEASES 2018. [DOI: 10.2478/rjdnmd-2018-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Oncogenesis is a result of the combined action of numerous factors peculiar to the body and the environment (the latter are more effective). Among dietary factors directly implied in the occurrence of malignant tumors we can mention: food additives, contaminated food, polycyclic aromatic hydrocarbons, nitrosamines and some components which are naturally present in food. Moreover, food-related malignancies are a consequence of the increased consumption of fats, proteins, alcohol in parallel with decreases in the consumption of dietary fibers and some micronutrients. Carcinogenic substances naturally present in food are of a particular interest for both nutritionist’s and patient’s, usually not being perceived as being harmful.
Collapse
|
110
|
Abstract
A large number of chemicals and several physical agents, such as UV light and γ-radiation, have been associated with the etiology of human cancer. Generation of DNA damage (also known as DNA adducts or lesions) induced by these agents is an important first step in the process of carcinogenesis. Evolutionary processes gave rise to DNA repair tools that are efficient in repairing damaged DNA; yet replication of damaged DNA may take place prior to repair, particularly when they are induced at a high frequency. Damaged DNA replication may lead to gene mutations, which in turn may give rise to altered proteins. Mutations in an oncogene, a tumor-suppressor gene, or a gene that controls the cell cycle can generate a clonal cell population with a distinct advantage in proliferation. Many such events, broadly divided into the stages of initiation, promotion, and progression, which may occur over a long period of time and transpire in the context of chronic exposure to carcinogens, can lead to the induction of human cancer. This is exemplified in the long-term use of tobacco being responsible for an increased risk of lung cancer. This mini-review attempts to summarize this wide area that centers on DNA damage as it relates to the development of human cancer.
Collapse
Affiliation(s)
- Ashis K Basu
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, USA.
| |
Collapse
|
111
|
Nationwide population-based study reveals increased malignancy risk in taiwanese liver transplant recipients. Oncotarget 2018; 7:83784-83794. [PMID: 27626495 PMCID: PMC5347805 DOI: 10.18632/oncotarget.11965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/02/2016] [Indexed: 12/14/2022] Open
Abstract
Post-transplant malignancy is a major cause of late mortality for liver transplant recipients (LTRs). This nationwide population-based cohort study investigated the cancer type, incidence, and risk factors associated with post-transplant malignancies in 2938 Taiwanese LTRs who underwent transplantation between 1998 and 2012. Data from the National Health Insurance Research Database were extracted on the basis of the International Classification of Disease, Ninth Revision, Clinical Modification codes. Among these patients, 284 post-transplant malignancies were diagnosed. These included 99 de novo malignancies among 98 patients, yielding a standardized incidence ratio of 2.17 (95% CI, 1.76 to 2.64) compared to the general population. The most common malignancies were infection related liver cancer (19.39%), oropharyngeal cancer (19.39%), non-Hodgkin's lymphoma (9.18%), and esophageal cancer (5.10%), as well as non-infection-related prostate cancer (6.12%). Patients with recurrent malignancies had the highest mortality. Furthermore, 186 recurrent malignancies relapsed, and the commonly affected organs were the liver (83.33%), lung (4.84%), bone and bone marrow (4.30%), and intrahepatic bile ducts (2.69%). Old age, the male sex, liver cirrhosis, hepatitis B, peptic ulcer, diabetes mellitus, and pre-existing cancer were all risk factors associated with post-transplant malignancies. Recipients with biliary atresia or urea cycle metabolism disorders were protected from post-transplant malignancies. Our data revealed a significantly increased risk of malignancies in Taiwanese LTRs and suggest implementation of a careful malignancy-surveillance program and immunosuppression-minimizing strategy for high-risk patients.
Collapse
|
112
|
Filardo EJ. A role for G-protein coupled estrogen receptor (GPER) in estrogen-induced carcinogenesis: Dysregulated glandular homeostasis, survival and metastasis. J Steroid Biochem Mol Biol 2018; 176:38-48. [PMID: 28595943 DOI: 10.1016/j.jsbmb.2017.05.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 12/18/2022]
Abstract
Mechanisms of carcinogenesis by estrogen center on its mitogenic and genotoxic potential on tumor target cells. These models suggest that estrogen receptor (ER) signaling promotes expansion of the transformed population and that subsequent accumulation of somatic mutations that drive cancer progression occur via metabolic activation of cathecol estrogens or by epigenetic mechanisms. Recent findings that GPER is linked to obesity, vascular pathology and immunosuppression, key events in the development of metabolic syndrome and intra-tissular estrogen synthesis, provides an alternate view of estrogen-induced carcinogenesis. Consistent with this concept, GPER is directly associated with clinicopathological indices that predict cancer progression and poor survival in breast and gynecological cancers. Moreover, GPER manifests cell biological responses and a microenvironment conducive for tumor development and cancer progression, regulating cellular responses associated with glandular homeostasis and survival, invading surrounding tissue and attracting a vascular supply. Thus, the cellular actions attributed to GPER fit well with the known molecular mechanisms of G-protein coupled receptors, GPCRs, namely, their ability to transactivate integrins and EGF receptors and alter the interaction between glandular epithelia and their extracellular environment, affecting epithelial-to-mesenchymal transition (EMT) and allowing for tumor cell survival and dissemination. This perspective reviews the molecular and cellular responses manifested by GPER and evaluates its contribution to female reproductive cancers as diseases that progress as a result of dysregulated glandular homeostasis resulting in chronic inflammation and metastasis. This review is organized in sections as follows: I) a brief synopsis of the current state of knowledge regarding estrogen-induced carcinogenesis, II) a review of evidence from clinical and animal-based studies that support a role for GPER in cancer progression, and III) a mechanistic framework describing how GPER-mediated estrogen action may influence the tumor and its microenvironment.
Collapse
Affiliation(s)
- Edward J Filardo
- Division of Hematology & Oncology, The Warren Alpert School of Medicine, Brown University, Providence, RI 02818, United States.
| |
Collapse
|
113
|
López de Maturana E, Malats N. Genetic Testing, Genetic Variation, and Genetic Susceptibility. Bladder Cancer 2018. [DOI: 10.1016/b978-0-12-809939-1.00033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
114
|
Večerić-Haler Ž, Cerar A, Perše M. (Mesenchymal) Stem Cell-Based Therapy in Cisplatin-Induced Acute Kidney Injury Animal Model: Risk of Immunogenicity and Tumorigenicity. Stem Cells Int 2017; 2017:7304643. [PMID: 29379525 PMCID: PMC5742889 DOI: 10.1155/2017/7304643] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/12/2017] [Indexed: 12/16/2022] Open
Abstract
Pathogenesis of AKI is complex and involves both local events in the kidney as well as systemic effects in the body that are interconnected and interdependent. Despite intensive investigations there is still no pharmacological agent that could provide complete protection against cisplatin nephrotoxicity. In the last decade mesenchymal stem cells (MSCs) have been proposed as a potentially useful therapeutic strategy in various diseases, including acute kidney injury. Although MSCs have potent immunosuppressive properties, animal studies also suggest that transplanted MSCs may elicit immune response. Interestingly, tumorigenicity of transplanted MSCs in animal studies has been rarely studied. Since the risk of tumorigenicity of particular therapy as well as the immune response to solid or cell grafts is a major issue in clinical trials, the aim of the present paper is to critically summarize the results of MSC transplantation on animal models of AKI, particularly cisplatin-induced animal models, and to expose results and main concerns about immunogenicity and tumorigenicity of transplanted MSCs, two important issues that need to be addressed in future studies.
Collapse
Affiliation(s)
- Ž. Večerić-Haler
- Department of Nephrology, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
| | - A. Cerar
- Institute of Pathology, Medical Experimental Centre, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1105 Ljubljana, Slovenia
| | - M. Perše
- Institute of Pathology, Medical Experimental Centre, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1105 Ljubljana, Slovenia
| |
Collapse
|
115
|
Pandey A, Bahl C, Sharma S, Singh N, Behera D. Functional Role of CyclinD1 Polymorphism (G870A) in Modifying Susceptibility and Overall Survival of North Indian Lung Cancer Patients. TUMORI JOURNAL 2017:tj5000707. [PMID: 29739297 DOI: 10.5301/tj.5000707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Purpose The purpose of this study was to investigate the potential role of the cyclin D1 gene G870A polymorphism in the likelihood of the development of lung cancer and the overall survival of lung cancer patients in the North Indian population. Methods The study consisted of 353 lung cancer cases and 351 age- and gender-matched healthy controls. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLPP) was done for the CCND1 gene. The association analysis was done using the multiple linear regression, and the survival analysis was done using the Kaplan-Meier and the Cox regression models. Results The GA genotype was associated with an increased risk for overall lung cancer (odds ratio [OR] = 1.63; p = 0.01). Combined variant genotype showed a significant association for overall lung cancer (OR 1.50; p = 0.03). In addition, smokers with the carrier genotype of CCND1 were found to have a significantly higher risk for lung cancer (OR 1.57; p = 0.04). No significant correlation was observed between the overall survival of lung cancer patients and CCND1 polymorphism. However, on stratifying the subjects on the basis of histology, it was evident that small-cell lung cancer (SCLC) patients carrying the mutant (AA) genotype showed nearly a fivefold increased mortality rate compared to the wild (GG) genotype (p = 0.03). Conclusions Our results suggest that polymorphic CCND1 may increase the risk of lung cancer in smokers from North India, and it may be associated with the overall survival of SCLC patients.
Collapse
Affiliation(s)
- Ankita Pandey
- 1 Department of Biotechnology, Thapar University, Patiala, Punjab - India
| | - Charu Bahl
- 1 Department of Biotechnology, Thapar University, Patiala, Punjab - India
| | - Siddharth Sharma
- 1 Department of Biotechnology, Thapar University, Patiala, Punjab - India
| | - Navneet Singh
- 2 Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh - India
| | - Digamber Behera
- 2 Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh - India
| |
Collapse
|
116
|
Myers SR, Ali Y. Determination of Tobacco Specific Hemoglobin Adducts in Smoking Mothers and New Born Babies by Mass Spectrometry. Biomark Insights 2017. [DOI: 10.1177/117727190700200027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biological markers for assessment of exposure to a variety of environmental carcinogens has been widely applied in both basic as well as clinical research. Exposure to tobacco smoke presents an ideal environment with which to develop, characterize, and refine biological markers, especially of those carcinogens found in tobacco. In the present study, a sensitive gas chromatography/mass spectrometry (GC/MS) method was developed to measure nitrosamine- hemoglobin adducts (HPB-Hb (4-Hydroxy-3-pyridinyl-1-butanone) at trace levels in red blood cells of both African-American and Caucasian smoking and nonsmoking mothers and their infants. Gas chromatographic and mass spectrometric methods with chemical ionization (CI) of methane reagent gas in both positive and negative ion mode as well as electron ionization (EI) were studied to determine differences in sensitivity of detection among the various ionization methods. Detection limits using both positive and negative chemical ionization modes were found to be 30 femtomoles of HPB, whereas detection using electron impact modes yielded a detection limit of 80 femtomoles of HBP. Comparative derivatization of HPB was performed using O-bis(Trimethylsilyl)-trifluoroacetamide (BSTFA) and 2, 3, 4, 5, 6-Pentafluorobenzoylchloride (PFBC). Both Negative CI and Positive CI modes of analysis were compared to the more widely accepted EI modes of mass spectrometric analysis.
Collapse
Affiliation(s)
- Steven R. Myers
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, 500 South Preston St. Louisville, KY 40292
| | - Yeakub Ali
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, 500 South Preston St. Louisville, KY 40292
| |
Collapse
|
117
|
Grace Nirmala J, Evangeline Celsia S, Swaminathan A, Narendhirakannan RT, Chatterjee S. Cytotoxicity and apoptotic cell death induced by Vitis vinifera peel and seed extracts in A431 skin cancer cells. Cytotechnology 2017; 70:537-554. [PMID: 28983752 DOI: 10.1007/s10616-017-0125-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 07/14/2017] [Indexed: 01/02/2023] Open
Abstract
Vitis vinifera. L is one of the most widely consumed fruits in the world and are rich in antioxidant abundant polyphenols. The present study was carried out to assess the antiproliferative and apoptotic effects of Vitis vinifera peel and seed extracts in an in vitro model using human epidermoid carcinoma A431 cell lines. Vitis vinifera peel and seed extracts were incubated with A431 cells to evaluate the antiproliferative, apoptotic effects and the morphological apoptotic changes induced by the extracts. Mitochondrial membrane potential was also measured after incubating the cells with extracts. At the inhibitory concentration (IC50), grape seed extract (111.11 µg/mL) and grape peel extract (319.14 µg/mL) were incubated for 24 h with A431 cells. Vitis vinifera peel and seed extracts were able to impart cytotoxic effects, induced apoptosis and apoptotic morphological changes in A431 cells significantly (p < 0.01) and this effect is associated with the interference with mitochondrial membrane potential. This reduction in mitochondrial membrane potential probably initiated the apoptotic cascade in the extracts treated cells. Vitis vinifera peel and seed phytochemicals can selectively target cancer cells and the phytochemicals that are occluded can serve as potential anticancer agents providing better efficacy in killing cancer cells.
Collapse
Affiliation(s)
- J Grace Nirmala
- Department of Biotechnology, School of Biotechnology and Health Sciences, Karunya University (Karunya Institute of Technology and Sciences), Karunya Nagar, Coimbatore, Tamil Nadu, 641 114, India
| | - S Evangeline Celsia
- Department of Biotechnology, School of Biotechnology and Health Sciences, Karunya University (Karunya Institute of Technology and Sciences), Karunya Nagar, Coimbatore, Tamil Nadu, 641 114, India
| | - Akila Swaminathan
- AU-KBC Research Centre and Department of Biotechnology, Anna University, Chennai, India
| | - R T Narendhirakannan
- Department of Biotechnology, School of Biotechnology and Health Sciences, Karunya University (Karunya Institute of Technology and Sciences), Karunya Nagar, Coimbatore, Tamil Nadu, 641 114, India.
| | - Suvro Chatterjee
- AU-KBC Research Centre and Department of Biotechnology, Anna University, Chennai, India
| |
Collapse
|
118
|
Alenko A, Fleming AM, Burrows CJ. Reverse Transcription Past Products of Guanine Oxidation in RNA Leads to Insertion of A and C opposite 8-Oxo-7,8-dihydroguanine and A and G opposite 5-Guanidinohydantoin and Spiroiminodihydantoin Diastereomers. Biochemistry 2017; 56:5053-5064. [PMID: 28845978 DOI: 10.1021/acs.biochem.7b00730] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species, both endogenous and exogenous, can damage nucleobases of RNA and DNA. Among the nucleobases, guanine has the lowest redox potential, making it a major target of oxidation. Although RNA is more prone to oxidation than DNA is, oxidation of guanine in RNA has been studied to a significantly lesser extent. One of the reasons for this is that many tools that were previously developed to study oxidation of DNA cannot be used on RNA. In the study presented here, the lack of a method for seeking sites of modification in RNA where oxidation occurs is addressed. For this purpose, reverse transcription of RNA containing major products of guanine oxidation was used. Extension of a DNA primer annealed to an RNA template containing 8-oxo-7,8-dihydroguanine (OG), 5-guanidinohydantoin (Gh), or the R and S diastereomers of spiroiminodihydantoin (Sp) was studied under standing start conditions. SuperScript III reverse transcriptase is capable of bypassing these lesions in RNA inserting predominantly A opposite OG, predominantly G opposite Gh, and almost an equal mixture of A and G opposite the Sp diastereomers. These data should allow RNA sequencing of guanine oxidation products by following characteristic mutation signatures formed by the reverse transcriptase during primer elongation past G oxidation sites in the template RNA strand.
Collapse
Affiliation(s)
- Anton Alenko
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Aaron M Fleming
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
119
|
Alternative Healthy Eating Index 2010, Dietary Inflammatory Index and risk of mortality: results from the Whitehall II cohort study and meta-analysis of previous Dietary Inflammatory Index and mortality studies. Br J Nutr 2017; 118:210-221. [PMID: 28831955 DOI: 10.1017/s0007114517001908] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We aimed to examine the association between the Alternative Healthy Eating Index updated in 2010 (AHEI-2010), the Dietary Inflammatory Index (DIITM) and risk of mortality in the Whitehall II study. We also conducted a meta-analysis on the DII-based results from previous studies to summarise the overall evidence. Data on dietary behaviour assessed by self-administered repeated FFQ and on mortality status were available for 7627 participants from the Whitehall II cohort. Cox proportional hazards regression models were performed to assess the association between cumulative average of AHEI-2010 and DII scores and mortality risk. During 22 years of follow-up, 1001 participants died (450 from cancer, 264 from CVD). Both AHEI-2010 (mean=48·7 (sd 10·0)) and DII (mean=0·37 (sd 1·41)) were associated with all-cause mortality. The fully adjusted hazard ratio (HR) per sd, were 0·82; 95 % CI 0·76, 0·88 for AHEI-2010 and 1·18; 95 % CI 1·08, 1·29 for DII. Significant associations were also observed with cardiovascular and cancer mortality risk. For DII, a meta-analysis (using fixed effects) from this and four previous studies showed a positive association of DII score with all-cause (HR=1·04; 95 % CI 1·03, 1·05, 28 891deaths), cardiovascular (HR=1·05; 95 % CI 1·03, 1·07, 10 424 deaths) and cancer mortality (HR=1·05; 95 % CI 1·03, 1·07, n 8269).The present study confirms the validity to assess overall diet through AHEI-2010 and DII in the Whitehall II cohort and highlights the importance of considering diet indices related to inflammation when evaluating all-cause, cardiovascular and cancer mortality risk.
Collapse
|
120
|
Sadou Yayé H, Rietveld IB, Barrio M, Secrétan PH, Faucheron A, Karoui M, Tilleul P, Yagoubi N, Do B. Investigating therapeutic usage of combined Ticagrelor and Aspirin through solid-state and analytical studies. Eur J Pharm Sci 2017; 107:62-70. [DOI: 10.1016/j.ejps.2017.06.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/21/2017] [Accepted: 06/19/2017] [Indexed: 10/19/2022]
|
121
|
Yi L, Shen H, Zhao M, Shao P, Liu C, Cui J, Wang J, Wang C, Guo N, Kang L, Lv P, Xing L, Zhang X. Inflammation-mediated SOD-2 upregulation contributes to epithelial-mesenchymal transition and migration of tumor cells in aflatoxin G 1-induced lung adenocarcinoma. Sci Rep 2017; 7:7953. [PMID: 28801561 PMCID: PMC5554181 DOI: 10.1038/s41598-017-08537-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 07/11/2017] [Indexed: 11/09/2022] Open
Abstract
Tumor-associated inflammation plays a critical role in facilitating tumor growth, invasion and metastasis. Our previous study showed Aflatoxin G1 (AFG1) could induce lung adenocarcinoma in mice. Chronic lung inflammation associated with superoxide dismutase (SOD)-2 upregulation was found in the lung carcinogenesis. However, it is unclear whether tumor-associated inflammation mediates SOD-2 to contribute to cell invasion in AFG1-induced lung adenocarcinoma. Here, we found increased SOD-2 expression associated with vimentin, α-SMA, Twist1, and MMP upregulation in AFG1-induced lung adenocarcinoma. Tumor-associated inflammatory microenvironment was also elicited, which may be related to SOD-2 upregulation and EMT in cancer cells. To mimic an AFG1-induced tumor-associated inflammatory microenvironment in vitro, we treated A549 cells and human macrophage THP-1 (MΦ-THP-1) cells with AFG1, TNF-α and/or IL-6 respectively. We found AFG1 did not promote SOD-2 expression and EMT in cancer cells, but enhanced TNF-α and SOD-2 expression in MΦ-THP-1 cells. Furthermore, TNF-α could upregulate SOD-2 expression in A549 cells through NF-κB pathway. Blocking of SOD-2 by siRNA partly inhibited TNF-α-mediated E-cadherin and vimentin alteration, and reversed EMT and cell migration in A549 cells. Thus, we suggest that tumor-associated inflammation mediates SOD-2 upregulation through NF-κB pathway, which may contribute to EMT and cell migration in AFG1-induced lung adenocarcinoma. INTRODUCTION
Collapse
Affiliation(s)
- Li Yi
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China.,Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Haitao Shen
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Mei Zhao
- Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Peilu Shao
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China.,Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Chunping Liu
- Lab of Pathology, Hebei Medical University, Shijiazhuang, China.,Department of Dermatology,The Third Hospital, Hebei Medical University, Shijiazhuang, China
| | - Jinfeng Cui
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China.,Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Juan Wang
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China.,Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Can Wang
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China.,Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Ningfei Guo
- Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Lifei Kang
- Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Ping Lv
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Lingxiao Xing
- Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Xianghong Zhang
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China. .,Lab of Pathology, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
122
|
Ewa B, Danuta MŠ. Polycyclic aromatic hydrocarbons and PAH-related DNA adducts. J Appl Genet 2017; 58:321-330. [PMID: 27943120 PMCID: PMC5509823 DOI: 10.1007/s13353-016-0380-3] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 01/20/2023]
Abstract
Investigations on the impact of chemicals on the environment and human health have led to the development of an exposome concept. The exposome refers to the totality of exposures received by a person during life, including exposures to life-style factors, from the prenatal period to death. The exposure to genotoxic chemicals and their reactive metabolites can induce chemical modifications of DNA, such as, for example, DNA adducts, which have been extensively studied and which play a key role in chemically induced carcinogenesis. Development of different methods for the identification of DNA adducts has led to adopting DNA adductomic approaches. The ability to simultaneously detect multiple PAH-derived DNA adducts may allow for the improved assessment of exposure, and offer a mechanistic insight into the carcinogenic process following exposure to PAH mixtures. The major advantage of measuring chemical-specific DNA adducts is the assessment of a biologically effective dose. This review provides information about the occurrence of the polycyclic aromatic hydrocarbons (PAHs) and their influence on human exposure and biological effects, including PAH-derived DNA adduct formation and repair processes. Selected methods used for determination of DNA adducts have been presented.
Collapse
Affiliation(s)
- Błaszczyk Ewa
- Institute for Ecology of Industrial Areas, Environmental Toxicology Group, 6, Kossutha Street, 40-844, Katowice, Poland.
| | - Mielżyńska-Švach Danuta
- Witold Pilecki State School of Higher Education, 8, Maksymiliana Kolbego Street, 32-600, Oświęcim, Poland
| |
Collapse
|
123
|
Wolf A, Moissl-Eichinger C, Perras A, Koskinen K, Tomazic PV, Thurnher D. The salivary microbiome as an indicator of carcinogenesis in patients with oropharyngeal squamous cell carcinoma: A pilot study. Sci Rep 2017; 7:5867. [PMID: 28725009 PMCID: PMC5517471 DOI: 10.1038/s41598-017-06361-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/14/2017] [Indexed: 12/13/2022] Open
Abstract
This study aimed to undertake an initial, comparative analysis of the oral salivary microbiome of patients with oral and oropharyngeal squamous cell carcinoma versus healthy controls. This project, conceived as a pilot study, included 11 patients (1 female, 10 male, mean age 61.6 yrs., SD = 8.2 yrs.) and 11 healthy controls (1 female, 10 male, mean age 46.7 yrs., SD = 15.1 yrs.). Samples of saliva were analysed by high-throughput sequencing of the 16S rRNA gene using the MiSeq platform. Sequence data revealed microbial changes that may mirror disease progression and reflect clinical preconditions such as age, alcohol consumption, tumour size, lymph node status, smoking habit, and tumour HPV-positivity. Consequently, mapping microbial changes in patients with oral and oropharyngeal squamous cell carcinomas might improve our understanding of the pathobiology of the disease, and help in the design of novel diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Axel Wolf
- Department of Otorhinolaryngology, Medical University of Graz, Auenbruggerplatz 26, 8036, Graz, Austria
| | - Christine Moissl-Eichinger
- Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
- BioTechMed, Mozartgasse 12/II, 8010, Graz, Austria.
| | - Alexandra Perras
- Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- Department of Microbiology and Archaea Center, University of Regensburg, Universitätsstrasse 1, 93053, Regensburg, Germany
| | - Kaisa Koskinen
- Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- BioTechMed, Mozartgasse 12/II, 8010, Graz, Austria
| | - Peter V Tomazic
- Department of Otorhinolaryngology, Medical University of Graz, Auenbruggerplatz 26, 8036, Graz, Austria
| | - Dietmar Thurnher
- Department of Otorhinolaryngology, Medical University of Graz, Auenbruggerplatz 26, 8036, Graz, Austria.
| |
Collapse
|
124
|
Margiotta AL, Bain LJ, Rice CD. Expression of the Major Vault Protein (MVP) and Cellular Vault Particles in Fish. Anat Rec (Hoboken) 2017; 300:1981-1992. [PMID: 28710803 DOI: 10.1002/ar.23645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 12/15/2022]
Abstract
Cellular vaults are ubiquitous 13 mega Da multi-subunit ribonuceloprotein particles that may have a role in nucleocytoplasmic transport. Seventy percent of the vault's mass consists of a ≈100 kDa protein, the major vault protein (MVP). In humans, a drug resistance-associated protein, originally identified as lung resistance protein in metastatic lung cancer, was ultimately shown to be the previously described MVP. In this study, a partial MVP sequence was cloned from channel catfish. Recombinant MVP (rMVP) was used to generate a monoclonal antibody that recognizes full length protein in distantly related fish species, as well as mice. MVP is expressed in fish spleen, liver, anterior kidney, renal kidney, and gills, with a consistent expression in epithelial cells, macrophages, or endothelium at the interface of the tissue and environment or vasculature. We show that vaults are distributed throughout cells of fish lymphoid cells, with nuclear and plasma membrane aggregations in some cells. Protein expression studies were extended to liver neoplastic lesions in Atlantic killifish collected in situ at the Atlantic Wood USA-EPA superfund site on the southern branch of the Elizabeth River, VA. MVP is highly expressed in these lesions, with intense staining at the nuclear membrane, similar to what is known about MVP expression in human liver neoplasia. Additionally, MVP mRNA expression was quantified in channel catfish ovarian cell line following treatment with different classes of pharmacological agents. Notably, mRNA expression is induced by ethidium bromide, which damages DNA. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:1981-1992, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alyssa L Margiotta
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, 29634
| | - Lisa J Bain
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, 29634.,Environmental Toxicology Graduate Program, Clemson University, Clemson, South Carolina, 29634
| | - Charles D Rice
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, 29634.,Environmental Toxicology Graduate Program, Clemson University, Clemson, South Carolina, 29634
| |
Collapse
|
125
|
Lehner AF, Horn J, Flesher JW. One electron oxidation of 3-methylcholanthrene: A chemical model for its mechanism of carcinogenesis. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.01.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
126
|
Nirmala JG, Narendhirakannan RT. Vitis vinifera peel and seed gold nanoparticles exhibit chemopreventive potential, antioxidant activity and induce apoptosis through mutant p53, Bcl-2 and pan cytokeratin down-regulation in experimental animals. Biomed Pharmacother 2017; 89:902-917. [PMID: 28292018 DOI: 10.1016/j.biopha.2017.02.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 11/15/2022] Open
Abstract
Several studies suggest surface modifications of gold nanoparticles (AuNPs) by capping agents or surface coatings could play an important role in biological systems, and site directed delivery. The present study was carried out to assess the antioxidant and apoptotic activities of the Vitis vinifera peel and seed gold nanoparticles in experimentally induced cancer in Swiss albino mice. 12-dimethylbenz [a] anthracene (DMBA) (single application) and 12-O-tetradecanoylphorbol 13-acetate (TPA) (thrice a week) were applied on the dorsal area of the skin to induce skin papillomagenesis in Swiss albino mice for 16 weeks. Gold nanoparticles were synthesized using Vitis vinifera peel and seed aqueous extracts and characterized by Transmission electron microscopic (TEM) analyses. On topical application, peel and seed gold nanoparticles demonstrated chemopreventive potential by significantly (p<0.05) reducing the cumulative number of tumors while increasing the antioxidant enzyme activities in the gold nanoparticles treated mice. The down-regulated expression of mutant p53, Bcl-2 and the levels of pan-cytokeratins might have facilitated the process of apoptosis in the chemical carcinogenesis process. The results were supported by the histopathological evaluation which exhibited mild dysplasia and acanthosis in the skin tissues of Vitis vinifera peel and seed AuNPs treated mice. Based on the present study, the chemopreventive action of Vitis vinifera peel and seed AuNPs is probably due to its ability to stimulate the antioxidant enzymes within the cells and suppressed abnormal skin cell proliferation that occurred during DMBA-induced skin papillomagenesis.
Collapse
Affiliation(s)
- J Grace Nirmala
- Department of Biotechnology, School of Biotechnology and Health Sciences, Karunya University (Karunya Institute of Technology and Sciences), Karunya Nagar, Coimbatore 641 114, Tamil Nadu, India
| | - R T Narendhirakannan
- Department of Biotechnology, School of Biotechnology and Health Sciences, Karunya University (Karunya Institute of Technology and Sciences), Karunya Nagar, Coimbatore 641 114, Tamil Nadu, India.
| |
Collapse
|
127
|
Manzanares MÁ, de Miguel C, Ruiz de Villa MC, Santella RM, Escrich E, Solanas M. Dietary lipids differentially modulate the initiation of experimental breast carcinogenesis through their influence on hepatic xenobiotic metabolism and DNA damage in the mammary gland. J Nutr Biochem 2017; 43:68-77. [PMID: 28264783 DOI: 10.1016/j.jnutbio.2017.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/15/2016] [Accepted: 01/25/2017] [Indexed: 12/30/2022]
Abstract
Breast cancer is the most common malignancy among women worldwide. In addition to reproductive factors, environmental factors such as nutrition and xenobiotic exposure have a role in the etiology of this malignancy. A stimulating and a potentially protective effect on experimental breast cancer has been previously described for high corn oil and high extra-virgin olive oil diets, respectively. This work investigates the effect of these lipids on the metabolism of 7,12-dimethylbenz(a)anthracene (DMBA), a polycyclic aromatic hydrocarbon that can initiate carcinogenesis and its consequences in an experimental rat breast cancer model. The PUFA n-6-enriched diet increased expression of Phase I enzymes prior to DMBA administration and raised the activity of CYP1s in the hours immediately after induction, while reducing the activity of Phase II enzymes, mainly NQO1. The levels of reactive metabolites measured in plasma by GC-MS and DMBA-DNA adducts in the mammary gland of the animals fed the high corn oil diet were also higher than in the other groups. On the other hand, the high extra-virgin olive oil diet and the control low-fat diet exhibited better coordinated Phase I and Phase II activity, with a lower production of reactive metabolites and less DNA damage in the mammary gland. The concordance between these effects and the different efficacy of the carcinogenesis process due to the dietary treatment suggest that lipids may differently modify mammary gland susceptibility or resistance to cancer initiation over the exposure to environmental carcinogens. SUMMARY Dietary lipids influence the initiation of DMBA-induced mammary cancer through the modulation of liver xenobiotic metabolism, formation of reactive metabolites and subsequent DNA damage in the target tissue.
Collapse
Affiliation(s)
- Miguel Ángel Manzanares
- Medical Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Cristina de Miguel
- Medical Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | - Regina M Santella
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Eduard Escrich
- Medical Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Montserrat Solanas
- Medical Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
128
|
Badal SAM, Asuncion Valenzuela MM, Zylstra D, Huang G, Vendantam P, Francis S, Quitugua A, Amis LH, Davis W, Tzeng TRJ, Jacobs H, Gangemi DJ, Raner G, Rowland L, Wooten J, Campbell P, Brantley E, Delgoda R. Glaucarubulone glucoside from Castela macrophylla suppresses MCF-7 breast cancer cell growth and attenuates benzo[a]pyrene-mediated CYP1A gene induction. J Appl Toxicol 2017; 37:873-883. [PMID: 28138972 DOI: 10.1002/jat.3436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/24/2016] [Accepted: 12/12/2016] [Indexed: 01/04/2023]
Abstract
Quassinoids often exhibit antioxidant and antiproliferative activity. Emerging evidence suggests that these natural metabolites also display chemopreventive actions. In this study, we investigated the potential for the quassinoid glaucarubulone glucoside (Gg), isolated from the endemic Jamaican plant Castela macrophylla (Simaroubaceae), to display potent cytotoxicity and inhibit human cytochrome P450s (CYPs), particularly CYP1A enzymes, known to convert polyaromatic hydrocarbons into carcinogenic metabolites. Gg reduced the viability of MCF-7 breast adenocarcinoma cells (IC50 = 121 nm) to a greater extent than standard of care anticancer agents 5-fluorouracil, tamoxifen (IC50 >10 μm) and the tamoxifen metabolite 4-hydroxytamoxifen (IC50 = 2.6 μm), yet was not cytotoxic to non-tumorigenic MCF-10A breast epithelial cells. Additionally, Gg induced MCF-7 breast cancer cell death. Gg blocked increases in reactive oxygen species in MCF-10A cells mediated by the polyaromatic hydrocarbon benzo[a]pyrene (B[a]P) metabolite B[a]P 1,6-quinone, yet downregulated the expression of genes that promote antioxidant activity in MCF-7 cells. This implies that Gg exhibits antioxidant and cytoprotective actions in non-tumorigenic breast epithelial cells and pro-oxidant, cytotoxic actions in breast cancer cells. Furthermore, Gg inhibited the activities of human CYP1A according to non-competitive kinetics and attenuated the ability of B[a]P to induce CYP1A gene expression in MCF-7 cells. These data indicate that Gg selectively suppresses MCF-7 breast cancer cell growth without impacting non-tumorigenic breast epithelial cells and blocks B[a]P-mediated CYP1A induction. Taken together, our data provide a rationale for further investigations of Gg and similar plant isolates as potential agents to treat and prevent breast cancer. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Simone A M Badal
- Natural Products Institute, Faculty of Science and Technology, University of the West Indies, Mona, Jamaica, West Indies.,Department of Basic Medical Sciences, Faculty of Medical Sciences, University of the West Indies, Mona, Jamaica, West Indies
| | - Malyn M Asuncion Valenzuela
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA, 92350, USA
| | - Dain Zylstra
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA, 92350, USA
| | - George Huang
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Pallavi Vendantam
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Sheena Francis
- Natural Products Institute, Faculty of Science and Technology, University of the West Indies, Mona, Jamaica, West Indies
| | - Ashley Quitugua
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA, 92350, USA
| | - Louisa H Amis
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA, 92350, USA
| | - Willie Davis
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA, 92350, USA.,Department of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA, 92350, USA
| | - Tzuen-Rong J Tzeng
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Helen Jacobs
- Department of Chemistry, Faculty of Science and Technology, University of the West Indies, Mona, Jamaica, West Indies
| | - David J Gangemi
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Greg Raner
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, 27402, USA.,Department of Biology and Chemistry, Liberty University, Lynchburg, VA, 24515, USA
| | - Leah Rowland
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA, 92350, USA
| | - Jonathan Wooten
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA, 92350, USA
| | - Petreena Campbell
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA, 92350, USA
| | - Eileen Brantley
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA, 92350, USA.,Department of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA, 92350, USA.,Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Rupika Delgoda
- Natural Products Institute, Faculty of Science and Technology, University of the West Indies, Mona, Jamaica, West Indies
| |
Collapse
|
129
|
Lieberman HB, Panigrahi SK, Hopkins KM, Wang L, Broustas CG. p53 and RAD9, the DNA Damage Response, and Regulation of Transcription Networks. Radiat Res 2017; 187:424-432. [PMID: 28140789 DOI: 10.1667/rr003cc.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The way cells respond to DNA damage is important since inefficient repair or misrepair of lesions can have deleterious consequences, including mutation, genomic instability, neurodegenerative disorders, premature aging, cancer or death. Whether damage occurs spontaneously as a byproduct of normal metabolic processes, or after exposure to exogenous agents, cells muster a coordinated, complex DNA damage response (DDR) to mitigate potential harmful effects. A variety of activities are involved to promote cell survival, and include DNA repair, DNA damage tolerance, as well as transient cell cycle arrest to provide time for repair before entry into critical cell cycle phases, an event that could be lethal if traversal occurs while damage is present. When such damage is prolonged or not repairable, senescence, apoptosis or autophagy is induced. One major level of DDR regulation occurs via the orchestrated transcriptional control of select sets of genes encoding proteins that mediate the response. p53 is a transcription factor that transactivates specific DDR downstream genes through binding DNA consensus sequences usually in or near target gene promoter regions. The profile of p53-regulated genes activated at any given time varies, and is dependent upon type of DNA damage or stress experienced, exact composition of the consensus DNA binding sequence, presence of other DNA binding proteins, as well as cell context. RAD9 is another protein critical for the response of cells to DNA damage, and can also selectively regulate gene transcription. The limited studies addressing the role of RAD9 in transcription regulation indicate that the protein transactivates at least one of its target genes, p21/waf1/cip1, by binding to DNA sequences demonstrated to be a p53 response element. NEIL1 is also regulated by RAD9 through a similar DNA sequence, though not yet directly verified as a bonafide p53 response element. These findings suggest a novel pathway whereby p53 and RAD9 control the DDR through a shared mechanism involving an overlapping network of downstream target genes. Details and unresolved questions about how these proteins coordinate or compete to execute the DDR through transcriptional reprogramming, as well as biological implications, are discussed.
Collapse
Affiliation(s)
- Howard B Lieberman
- a Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032; and.,b Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032
| | - Sunil K Panigrahi
- a Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032; and
| | - Kevin M Hopkins
- a Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032; and
| | - Li Wang
- a Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032; and
| | - Constantinos G Broustas
- a Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032; and
| |
Collapse
|
130
|
Zuo YT, Hu Y, Lu WW, Cao JJ, Wang F, Han X, Lu WQ, Liu AL. Toxicity of 2,6-dichloro-1,4-benzoquinone and five regulated drinking water disinfection by-products for the Caenorhabditis elegans nematode. JOURNAL OF HAZARDOUS MATERIALS 2017; 321:456-463. [PMID: 27669387 DOI: 10.1016/j.jhazmat.2016.09.038] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 06/06/2023]
Abstract
Scarce toxicological data are available for 2,6-dichloro-1,4-benzoquinone (DCBQ), an emerging water disinfection by-product (DBP) that is of potential public health concern. This study investigated the effects of DCBQ on the lethality, respiration rate, and DNA damage in the Caenorhabditis elegans nematode. Meanwhile, the toxic effects of five regulated DBPs, dichloroacetic acid (DCA), trichloroacetic acid (TCA), monobromoacetic acid (MBA), dibromoacetic acid (DBA), and N-nitrosodimethylamine (NDMA), have also been evaluated. The tested DBPs increased the lethality and inhibited the respiration of C. elegans with an identical order of toxicity as follows: DCBQ>MBA>DBA>DCA>TCA>NDMA. The EC50 value (median concentration causing 50% reduction in respiration compared with untreated C. elegans) is at least 30-fold lower than the corresponding LC50 value (median lethal concentration). Exposure to DCBQ and NDMA, but not to MBA, DBA, DCA, or TCA, resulted in DNA damage to C. elegans. The study suggested that DCBQ was more potent in inducing general toxicity than some regulated DBPs, and it revealed the in vivo genotoxic effect of DCBQ. Furthermore, the C. elegans-based bioassays may provide potentially useful tools for the toxicology assessment and ranking of DBPs.
Collapse
Affiliation(s)
- Yu-Ting Zuo
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Hu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wei-Wei Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jing-Jing Cao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Fan Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xue Han
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ai-Lin Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
131
|
Rao S, Pankove RA, Mi J, Elsey J, Arbiser JL. Chemoprevention and Angiogenesis. ANGIOGENESIS-BASED DERMATOLOGY 2017:123-144. [DOI: 10.1007/978-1-4471-7314-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
132
|
Wang Y, Xu M, Ke ZJ, Luo J. Cellular and molecular mechanisms underlying alcohol-induced aggressiveness of breast cancer. Pharmacol Res 2016; 115:299-308. [PMID: 27939360 DOI: 10.1016/j.phrs.2016.12.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 12/14/2022]
Abstract
Breast cancer is a leading cause of morbidity and mortality in women. Both Epidemiological and experimental studies indicate a positive correlation between alcohol consumption and the risk of breast cancer. While alcohol exposure may promote the carcinogenesis or onset of breast cancer, it may as well enhance the progression and aggressiveness of existing mammary tumors. Recent progress in this line of research suggests that alcohol exposure is associated with invasive breast cancer and promotes the growth and metastasis of mammary tumors. There are multiple potential mechanisms involved in alcohol-stimulated progression and aggressiveness of breast cancer. Alcohol may increase the mobility of cancer cells by inducing cytoskeleton reorganization and enhancing the cancer cell invasion by causing degradation and reconstruction of the extracellular matrix (ECM). Moreover, alcohol may promote the epithelial-mesenchymal transition (EMT), a hallmark of malignancy, and impair endothelial integrity, thereby increasing the dissemination of breast cancer cells and facilitating metastasis. Furthermore, alcohol may stimulate tumor angiogenesis through the activation of cytokines and chemokines which promotes tumor growth. Additionally, alcohol may increase the cancer stem cell population which affects neoplastic cell behavior, aggressiveness, and the therapeutic response. Alcohol can be metabolized in the mammary tissues and breast cancer cells which produces reactive oxygen species (ROS), causing oxidative stress. Recent studies suggest that the epidermal growth factor receptor (EGFR) family, particularly ErbB2 (a member of this family), is involved in alcohol-mediated tumor promotion. Breast cancer cells or mammary epithelial cells over-expressing ErbB2 are more sensitive to alcohol's tumor promoting effects. There is considerable cross-talk between oxidative stress and EGFR/ErbB2 signaling. This review further discusses how the interaction between oxidative stress and EGFR/ErbB2 signaling contributes to the cellular and molecular events associated with breast cancer aggressiveness. We also discuss the potential therapeutic approaches for cancer patients who drink alcoholic beverages.
Collapse
Affiliation(s)
- Yongchao Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Zun-Ji Ke
- Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States; Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
133
|
Martins M, Ferreira AM, Costa MH, Costa PM. Comparing the genotoxicity of a potentially carcinogenic and a noncarcinogenic PAH, singly, and in binary combination, on peripheral blood cells of the European sea bass. ENVIRONMENTAL TOXICOLOGY 2016; 31:1307-1318. [PMID: 25728603 DOI: 10.1002/tox.22135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 02/09/2015] [Accepted: 02/15/2015] [Indexed: 06/04/2023]
Abstract
Research on the toxicological mechanisms of polycyclic aromatic hydrocarbons (PAHs) deemed carcinogenic and noncarcinogenic has mostly been developed for individual compounds even though, in the environment, PAHs invariably occur in mixtures. The present work aimed at understanding the interaction effects of two model PAHs, the potentially carcinogenic benzo[b]fluoranthene (B[b]F) and the noncarcinogenic phenanthrene (Phe) to a marine fish (the sea bass Dicentrarchus labrax). The study endeavoured an ecologically-relevant scenario with respect to concentrations and contaminant matrix, sediments, which are the main reservoirs of these substances in the environment, due to their hydrophobic nature. For the purpose, 28-day laboratorial bioassays with spiked sediments (with individual and combined PAHs at equitoxic concentrations) were conducted. Genotoxicity was determined in peripheral blood through the "Comet" assay and by scoring erythrocytic nuclear abnormalities (ENA). The results showed that exposure to either PAHs induced similar levels of DNA strand breaks, although without a clear dose- or time-response, likely due to the low concentrations of exposure and potential shits in PAH bioavailability during the assays. However, clastogenic/aneugenic lesions were only observed in fish exposed to B[b]F-spiked sediments. Conversely, the combination assays revealed a supra-additive effect especially at chromosome level, linked to concentrations of PAHs in water. A decrease in DNA-strand breakage was observed over time during all assays, revealing some ability of fish to cope with this DNA lesion. Overall, the findings show that low-moderate concentrations of sediment-bound mixed PAHs may significantly increase the hazard of mutagenesis even when the individual concentrations indicate low risk, especially considering that chromosome-level damage is unlikely to be repaired, leading to the fixation of DNA lesions upon prolonged exposures. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1307-1318, 2016.
Collapse
Affiliation(s)
- Marta Martins
- MARE-Marine and Environmental Sciences Centre, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.
| | - Ana M Ferreira
- IPMA-Instituto Português do Mar e da Atmosfera, Avenida do Brasil, 1449-006, Lisboa, Portugal
| | - Maria H Costa
- MARE-Marine and Environmental Sciences Centre, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Pedro M Costa
- MARE-Marine and Environmental Sciences Centre, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| |
Collapse
|
134
|
Osman A, Moon JY, Hyun HB, Kang HR, Kim Cho S. The chloroform fraction ofCitrus limonleaves inhibits human gastric cancer cell proliferation via induction of apoptosis. ACTA ACUST UNITED AC 2016. [DOI: 10.3839/jabc.2016.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ahmed Osman
- Faculty of Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Jeong Yong Moon
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Ho Bong Hyun
- Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju 63243, Republic of Korea
| | - Hye Rim Kang
- Faculty of Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Somi Kim Cho
- Faculty of Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Republic of Korea
- Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
135
|
Kacar A, Pazi I, Gonul T, Kucuksezgin F. Marine pollution risk in a coastal city: use of an eco-genotoxic tool as a stress indicator in mussels from the Eastern Aegean Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:16067-16078. [PMID: 27146544 DOI: 10.1007/s11356-016-6783-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/27/2016] [Indexed: 06/05/2023]
Abstract
Coastal areas, such as bays, estuaries, and harbors, are heavily polluted since these areas are the settlements to which toxic chemicals from industrial and domestic wastes are discharged. The genetic damage was evaluated using bioindicator mussel Mytilus galloprovincialis caused by toxic chemicals (metals and polycyclic aromatic hydrocarbons) in İzmir and Çandarlı Bays (the Eastern Aegean Sea) through comet assay. Three sampling sites from the two bays were selected and the study was conducted during the spring and autumn periods. The highest levels of DNA damage expressed as %Tail-DNA were observed in İzmir Bay (34.60 % Tail-DNA) in the spring. Analysis of the correlation between PAHs and metals in mussels and %T-DNA in the hemolymph and gill cells showed a statistically significant positive correlation between %T-DNA and ∑PAH, chromium (p < 0.05). This study determined the pollution level of the İzmir and Çandarlı Bays by using the DNA damage to the mussel, which can identify the effects of environmental pollutants at the cellular levels. These results confirm that comet assay can be used to determine the temporal and spatial differences of DNA damage, and as a suitable tool for the measurement of genotoxicity in regions with low pollutant concentrations.
Collapse
Affiliation(s)
- Asli Kacar
- DEU, Institute of Marine Sciences and Technology, Baku Bul. No:100, 35340, Inciralti/Izmir, Turkey.
| | - Idil Pazi
- DEU, Institute of Marine Sciences and Technology, Baku Bul. No:100, 35340, Inciralti/Izmir, Turkey
| | - Tolga Gonul
- DEU, Institute of Marine Sciences and Technology, Baku Bul. No:100, 35340, Inciralti/Izmir, Turkey
| | - Filiz Kucuksezgin
- DEU, Institute of Marine Sciences and Technology, Baku Bul. No:100, 35340, Inciralti/Izmir, Turkey
| |
Collapse
|
136
|
Hemeryck LY, Moore SA, Vanhaecke L. Mass Spectrometric Mapping of the DNA Adductome as a Means to Study Genotoxin Exposure, Metabolism, and Effect. Anal Chem 2016; 88:7436-46. [DOI: 10.1021/acs.analchem.6b00863] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Lieselot Y. Hemeryck
- Laboratory of Chemical Analysis, Department
of Veterinary Public Health and Food Safety, Faculty of Veterinary
Medicine, Ghent University, Salisburylaan 133, Merelbeke, B-9820, Belgium
| | - Sharon A. Moore
- School of Pharmacy and Biomolecular Sciences, Faculty
of Science, Liverpool John Moores University, Liverpool, L3 3AF, United Kingdom
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Department
of Veterinary Public Health and Food Safety, Faculty of Veterinary
Medicine, Ghent University, Salisburylaan 133, Merelbeke, B-9820, Belgium
| |
Collapse
|
137
|
Battershill JM. The Multiple Chemicals and Actions Model of carcinogenesis. A possible new approach to developing prevention strategies for environmental carcinogenesis. Hum Exp Toxicol 2016; 24:547-58. [PMID: 16323570 DOI: 10.1191/0960327105ht559oa] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The number of definite and probable human chemical carcinogens identified by IARC approaches between 1987 and June 2004 is reported to be 50 agents. However, overall, given the rapid expansion in the number of chemicals in use, the throughput of the current approach to identifying potential environmental carcinogens is low. The long-term rodent bioassay, a key part of the current approach, identifies many chemicals which eventually turn out to be irrelevant for human health with regard to cancer. A new approach is suggested which focuses on identifying the potency of environmental mixtures for induction of toxicological changes relevant to carcinogenesis (e.g., cell proliferation, chronic inflammation, inhibition of apoptosis, mutagenicity). Details regarding a suggested strategy for prioritization of mixtures are provided with more detailed information regarding mutagenicity as an end point. The long-term rodent bioassay is not included in the proposal (although it is acknowledged that it will continue to be important in premarketing regulatory schemes) for hazard identification. The Multiple Chemicals and Actions Model (MCAM) is developed. In this model the chemical mixtures in the environment act via a number of mechanisms as ‘effectors’ or ‘inhibitors’ of a multistage carcinogenic process. Identifying effectors and inhibitors of the rate-limiting step would be important for preventive strategies. Genetic polymorphisms act as modulators of effector and inhibitor mixtures. It is suggested that the MCAM model could be used in public education programmes to help inform on public health issues regarding cancer and to help avoid future scares which tend to focus on single chemicals. It is acknowledged that there would need to be basic research undertaken to generate appropriate data to support the application of the proposal before it could be used in cancer prevention strategies.
Collapse
|
138
|
Hemeryck LY, Vanhaecke L. Diet-related DNA adduct formation in relation to carcinogenesis. Nutr Rev 2016; 74:475-89. [PMID: 27330144 DOI: 10.1093/nutrit/nuw017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The human diet contributes significantly to the initiation and promotion of carcinogenesis. It has become clear that the human diet contains several groups of natural foodborne chemicals that are at least in part responsible for the genotoxic, mutagenic, and carcinogenic potential of certain foodstuffs. Electrophilic chemicals are prone to attack nucleophilic sites in DNA, resulting in the formation of altered nucleobases, also known as DNA adducts. Since DNA adduct formation is believed to signal the onset of chemically induced carcinogenesis, the DNA adduct-inducing potential of certain foodstuffs has been investigated to gain more insight into diet-related pathways of carcinogenesis. Many studies have investigated diet-related DNA adduct formation. This review summarizes work on known or suspected dietary carcinogens and the role of DNA adduct formation in hypothesized carcinogenesis pathways.
Collapse
Affiliation(s)
- Lieselot Y Hemeryck
- L.Y. Hemeryck and L. Vanhaecke are with the Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Lynn Vanhaecke
- L.Y. Hemeryck and L. Vanhaecke are with the Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
139
|
Roellecke K, Virts EL, Einholz R, Edson KZ, Altvater B, Rossig C, von Laer D, Scheckenbach K, Wagenmann M, Reinhardt D, Kramm CM, Rettie AE, Wiek C, Hanenberg H. Optimized human CYP4B1 in combination with the alkylator prodrug 4-ipomeanol serves as a novel suicide gene system for adoptive T-cell therapies. Gene Ther 2016; 23:615-26. [PMID: 27092941 DOI: 10.1038/gt.2016.38] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/23/2016] [Accepted: 04/05/2016] [Indexed: 12/18/2022]
Abstract
Engineering autologous or allogeneic T cells to express a suicide gene can control potential toxicity in adoptive T-cell therapies. We recently reported the development of a novel human suicide gene system that is based on an orphan human cytochrome P450 enzyme, CYP4B1, and the naturally occurring alkylator prodrug 4-ipomeanol. The goal of this study was to systematically develop a clinically applicable self-inactivating lentiviral vector for efficient co-expression of CYP4B1 as an ER-located protein with two distinct types of cell surface proteins, either MACS selection genes for donor lymphocyte infusions after allogeneic stem cell transplantation or chimeric antigen receptors for retargeting primary T cells. The U3 region of the myeloproliferative sarcoma virus in combination with the T2A site was found to drive high-level expression of our CYP4B1 mutant with truncated CD34 or CD271 as MACS suitable selection markers. This lentiviral vector backbone was also well suited for co-expression of CYP4B1 with a codon-optimized CD19 chimeric antigen receptor (CAR) construct. Finally, 4-ipomeanol efficiently induced apoptosis in primary T cells that co-express mutant CYP4B1 and the divergently located MACS selection and CAR genes. In conclusion, we here developed a clinically suited lentiviral vector that supports high-level co-expression of cell surface proteins with a potent novel human suicide gene.
Collapse
Affiliation(s)
- K Roellecke
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany
| | - E L Virts
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R Einholz
- Institute for Organic Chemistry, University of Tübingen, Tübingen, Germany
| | - K Z Edson
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - B Altvater
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - C Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - D von Laer
- Institute for Virology, Innsbruck Medical University, Innsbruck, Austria
| | - K Scheckenbach
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany
| | - M Wagenmann
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany
| | - D Reinhardt
- Department of Pediatrics III, University Children's Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - C M Kramm
- Division of Pediatric Hematology and Oncology, Department of Child and Adolescent Health, University Medical Center Göttingen, Göttingen, Germany
| | - A E Rettie
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - C Wiek
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany
| | - H Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany.,Department of Pediatrics III, University Children's Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
140
|
Loeb LA. Tobacco Causes Human Cancers--A Concept Founded on Epidemiology and an Insightful Experiment Now Requires Translation Worldwide. Cancer Res 2016; 76:765-6. [PMID: 26880808 DOI: 10.1158/0008-5472.can-16-0149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The recognition that tobacco smoke is carcinogenic led to the most significant and successful effort at reducing cancer incidence in human history. A major milestone of this effort was the publication in Cancer Research by Wynder and colleagues, which demonstrated the ability of tobacco tars to produce tumors in mice. This study provided a powerful link between the epidemiology of cancer and mechanisms of carcinogenesis. This commentary asserts that we have a moral obligation to translate our success in reducing lung cancer in the United States to the 1.25 billion smokers throughout the rest of the world. See related article by Wynder et al., Cancer Res 1953;13:855-64.
Collapse
Affiliation(s)
- Lawrence A Loeb
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington. Department of Biochemistry, University of Washington School of Medicine, Seattle, Washington.
| |
Collapse
|
141
|
Hu DG, Mackenzie PI, McKinnon RA, Meech R. Genetic polymorphisms of human UDP-glucuronosyltransferase (UGT) genes and cancer risk. Drug Metab Rev 2016; 48:47-69. [DOI: 10.3109/03602532.2015.1131292] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
142
|
Qu X, Wang K, Dong W, Shen H, Wang Y, Liu Q, Du J. Association between two CHRNA3 variants and susceptibility of lung cancer: a meta-analysis. Sci Rep 2016; 6:20149. [PMID: 26831765 PMCID: PMC4735583 DOI: 10.1038/srep20149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/30/2015] [Indexed: 02/07/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified two CHRNA3 polymorphisms (rs578776 and rs938682) associated with lung cancer risk. Furthermore, these polymorphisms were investigated and genotyped by PCR analysis. All eligible case-control studies published up to Mar 1st 2015 were identified by searching Pubmed and Embase database. Negative association between rs578776-T allele and risk of lung cancer was obtained without obvious heterogeneity (OR: 0.83, 95% CI: 0.79-0.86; p = 0.898 for Q test). Rs938682-C allele carriers had a 12% to 28% decreased risk. Genotype model analysis showed results of dominant model for rs578776 (OR with 95% CI: 0.839(0.718-0.981)), dominant model for rs938682 (OR with 95% CI: 0.778(0.663-0.912)) and homozygous model for rs938682 (OR with 95% CI: 0.767(0.708-0.831)) were statistically significant. Subgroup analysis indicated rs578776-T variant had protective effect in Smokers, Caucasians, two histology subgroups, and two match subgroups. Meanwhile, rs938682-C allele was associated with decreased risk in Smokers, Caucasians, Lung cancer, and two match subgroups. Meta-regression suggested ethnicity might be the major source of heterogeneity in allele model and homozygous model for rs938682. Moreover, smoking status might contribute to part of heterogeneity under allele model. In summary, this meta-analysis suggested both rs578776 and rs938682 were significantly associated with the susceptibility of lung cancer.
Collapse
Affiliation(s)
- Xiao Qu
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, 324 Jingwu Road, Jinan, 250021 P.R. China
| | - Kai Wang
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, 324 Jingwu Road, Jinan, 250021 P.R. China
| | - Wei Dong
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, 324 Jingwu Road, Jinan, 250021 P.R. China
| | - Hongchang Shen
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, 324 Jingwu Road, Jinan, 250021 P.R. China
| | - Ying Wang
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, 324 Jingwu Road, Jinan, 250021 P.R. China
| | - Qi Liu
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, 324 Jingwu Road, Jinan, 250021 P.R. China
| | - Jiajun Du
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, 324 Jingwu Road, Jinan, 250021 P.R. China
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, 324 Jingwu Road, Jinan, 250021 P.R. China
| |
Collapse
|
143
|
Yasin HWR, van Rensburg SH, Feiler CE, Johnson RI. The adaptor protein Cindr regulates JNK activity to maintain epithelial sheet integrity. Dev Biol 2016; 410:135-149. [PMID: 26772997 DOI: 10.1016/j.ydbio.2016.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/23/2015] [Accepted: 01/04/2016] [Indexed: 12/19/2022]
Abstract
Epithelia are essential barrier tissues that must be appropriately maintained for their correct function. To achieve this a plethora of protein interactions regulate epithelial cell number, structure and adhesion, and differentiation. Here we show that Cindr (the Drosophila Cin85 and Cd2ap ortholog) is required to maintain epithelial integrity. Reducing Cindr triggered cell delamination and movement. Most delaminating cells died. These behaviors were consistent with JNK activation previously associated with loss of epithelial integrity in response to ectopic oncogene activity. We confirmed a novel interaction between Cindr and Drosophila JNK (dJNK), which when perturbed caused inappropriate JNK signaling. Genetically reducing JNK signaling activity suppressed the effects of reducing Cindr. Furthermore, ectopic JNK signaling phenocopied loss of Cindr and was partially rescued by concomitant cindr over-expression. Thus, correct Cindr-dJNK stoichiometry is essential to maintain epithelial integrity and disturbing this balance may contribute to the pathogenesis of disease states, including cancer.
Collapse
Affiliation(s)
- Hannah W R Yasin
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | | | - Christina E Feiler
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | - Ruth I Johnson
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA.
| |
Collapse
|
144
|
Langat G, Tetsuhiro M, Gonoi T, Matiru V, Bii C. Aflatoxin M1 Contamination of Milk and Its Products in Bomet County, Kenya. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/aim.2016.67053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
145
|
Zhu L, Gao J, Huang K, Luo Y, Zhang B, Xu W. miR-34a screened by miRNA profiling negatively regulates Wnt/β-catenin signaling pathway in Aflatoxin B1 induced hepatotoxicity. Sci Rep 2015; 5:16732. [PMID: 26567713 PMCID: PMC4645126 DOI: 10.1038/srep16732] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/19/2015] [Indexed: 12/15/2022] Open
Abstract
Aflatoxin-B1 (AFB1), a hepatocarcinogenic mycotoxin, was demonstrated to induce the high rate of hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) participate in the regulation of several biological processes in HCC. However, the function of miRNAs in AFB1-induced HCC has received a little attention. Here, we applied Illumina deep sequencing technology for high-throughout profiling of microRNAs in HepG2 cells lines after treatment with AFB1. Analysis of the differential expression profile of miRNAs in two libraries, we identified 9 known miRNAs and 1 novel miRNA which exhibited abnormal expression. KEGG analysis indicated that predicted target genes of differentially expressed miRNAs are involved in cancer-related pathways. Down-regulated of Drosha, DGCR8 and Dicer 1 indicated an impairment of miRNA biogenesis in response to AFB1. miR-34a was up-regulated significantly, down-regulating the expression of Wnt/β-catenin signaling pathway by target gene β-catenin. Anti-miR-34a can significantly relieved the down-regulated β-catenin and its downstream genes, c-myc and Cyclin D1, and the S-phase arrest in cell cycle induced by AFB1 can also be relieved. These results suggested that AFB1 might down-regulate Wnt/β-catenin signaling pathway in HepG2 cells by up-regulating miR-34a, which may involve in the mechanism of liver tumorigenesis.
Collapse
Affiliation(s)
- Liye Zhu
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China, 100083
| | - Jing Gao
- Beijing Laboratory for Food Quality and Safety, Beijing, P. R. China
| | - Kunlun Huang
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China, 100083
- Beijing Laboratory for Food Quality and Safety, Beijing, P. R. China
| | - Yunbo Luo
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China, 100083
- Beijing Laboratory for Food Quality and Safety, Beijing, P. R. China
| | - Boyang Zhang
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China, 100083
| | - Wentao Xu
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China, 100083
- Beijing Laboratory for Food Quality and Safety, Beijing, P. R. China
| |
Collapse
|
146
|
Antwi SO, Eckert EC, Sabaque CV, Leof ER, Hawthorne KM, Bamlet WR, Chaffee KG, Oberg AL, Petersen GM. Exposure to environmental chemicals and heavy metals, and risk of pancreatic cancer. Cancer Causes Control 2015; 26:1583-1591. [PMID: 26293241 PMCID: PMC4624268 DOI: 10.1007/s10552-015-0652-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/08/2015] [Indexed: 01/02/2023]
Abstract
PURPOSE Exposure to various chemicals and heavy metals has been associated with risk of different cancers; however, data on whether such exposures may increase the risk of pancreatic cancer (PC) are very limited and inconclusive. We examined PC risk with self-reported exposures to chemicals and heavy metals. METHODS The design was a clinic-based, case-control study of data collected from 2000 to 2014 at Mayo Clinic in Rochester, Minnesota, USA. Cases were rapidly ascertained patients diagnosed with pancreatic ductal adenocarcinoma (n = 2,092). Controls were cancer-free patients in primary care clinics (n = 2,353), frequency-matched to cases on age, race, sex, and state/region of residence. Cases and controls completed identical risk factor questionnaires, which included yes/no questions about regular exposure to pesticides, asbestos, benzene, chlorinated hydrocarbons, chromium, and nickel. Unconditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CI) comparing those who affirmed exposure to each of the chemicals/heavy metals to those who reported no regular exposure, adjusting for potential confounders. RESULTS Self-reported regular exposure to pesticides was associated with increased odds of PC (OR 1.21, 95% CI 1.02-1.44). Regular exposure to asbestos (OR 1.54, 95% CI 1.23-1.92), benzene (OR 1.70, 95% CI 1.23-2.35), and chlorinated hydrocarbons (OR 1.63, 95% CI 1.32-2.02) also was associated with higher odds of PC. Chromium and nickel exposures were not significantly associated with PC. CONCLUSIONS These findings add to the limited data suggesting that exposure to pesticides, asbestos, benzene, and chlorinated hydrocarbons may increase PC risk. They further support the importance of implementing strategies that reduce exposure to these substances.
Collapse
Affiliation(s)
- Samuel O Antwi
- Division of Epidemiology, Health Sciences Research, Mayo Clinic, 200 First Street SW, Charlton 6-243, Rochester, MN, 55905, USA
| | - Elizabeth C Eckert
- Department of Clinical and Translational Science, Mayo Clinic Graduate School, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Corinna V Sabaque
- Division of Epidemiology, Health Sciences Research, Mayo Clinic, 200 First Street SW, Charlton 6-243, Rochester, MN, 55905, USA
| | - Emma R Leof
- Division of Epidemiology, Health Sciences Research, Mayo Clinic, 200 First Street SW, Charlton 6-243, Rochester, MN, 55905, USA
| | - Kieran M Hawthorne
- Division of Biomedical Statistics and Informatics, Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - William R Bamlet
- Division of Biomedical Statistics and Informatics, Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kari G Chaffee
- Division of Biomedical Statistics and Informatics, Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Ann L Oberg
- Division of Biomedical Statistics and Informatics, Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Gloria M Petersen
- Division of Epidemiology, Health Sciences Research, Mayo Clinic, 200 First Street SW, Charlton 6-243, Rochester, MN, 55905, USA.
| |
Collapse
|
147
|
Brenlla A, Rueda D, Romano LJ. Mechanism of aromatic amine carcinogen bypass by the Y-family polymerase, Dpo4. Nucleic Acids Res 2015; 43:9918-27. [PMID: 26481355 PMCID: PMC4787768 DOI: 10.1093/nar/gkv1067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/05/2015] [Indexed: 01/16/2023] Open
Abstract
Bulky DNA damage inhibits DNA synthesis by replicative polymerases and often requires the action of error prone bypass polymerases. The exact mechanism governing adduct-induced mutagenesis and its dependence on the DNA sequence context remains unclear. In this work, we characterize Dpo4 binding conformations and activity with DNA templates modified with the carcinogenic DNA adducts, 2-aminofluoene (AF) or N-acetyl-2-aminofluorene (AAF), using single-molecule FRET (smFRET) analysis and DNA synthesis extension assays. We find that in the absence of dNTPs, both adducts alter polymerase binding as measured by smFRET, but the addition of dNTPs induces the formation of a ternary complex having what appears to be a conformation similar to the one observed with an unmodified DNA template. We also observe that the misincorporation pathways for each adduct present significant differences: while an AF adduct induces a structure consistent with the previously observed primer-template looped structure, its acetylated counterpart uses a different mechanism, one consistent with a dNTP-stabilized misalignment mechanism.
Collapse
Affiliation(s)
- Alfonso Brenlla
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - David Rueda
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA Department of Medicine, Section of Virology, Imperial College London, London, UK Single Molecule Imaging Group, MRC Clinical Sciences Centre, Imperial College London, London, UK
| | - Louis J Romano
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
148
|
Association between inflammatory potential of diet and mortality among women in the Swedish Mammography Cohort. Eur J Nutr 2015; 55:1891-900. [PMID: 26227485 DOI: 10.1007/s00394-015-1005-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/21/2015] [Indexed: 12/28/2022]
Abstract
PURPOSE Diet and dietary components have been studied previously in relation to mortality; however, little is known about the relationship between the inflammatory potential of overall diet and mortality. MATERIALS AND METHODS We examined the association between the Dietary Inflammatory Index (DII) and mortality among 33,747 participants in the population-based Swedish Mammography Cohort. The DII score was calculated based on dietary information obtained from a self-administered food frequency questionnaire. Mortality was determined through linkage to the Swedish Cause of Death Registry through 2013. Cox proportional hazard regression was used to estimate hazard ratios (HR). During 15 years of follow-up, 7095 deaths were identified, including 1996 due to cancer, 602 of which were due to digestive-tract cancer, and 2399 due to cardiovascular disease. RESULTS After adjusting for age, energy intake, education, alcohol intake, physical activity, BMI, and smoking status, analyses revealed a positive association between higher DII score and all-cause mortality. When used as a continuous variable (range -4.19 to 5.10), DII score was associated with all-cause mortality (HRContinuous = 1.05; 95 % CI 1.01-1.09) and digestive-tract cancer mortality (HRContinuous = 1.15; 95 % CI 1.02-1.29). Comparing subjects in the highest quintile of DII (≥1.91) versus the lowest quintile (DII ≤ -0.67), a significant association was observed for all-cause mortality (HR = 1.25; 95 % CI 1.07-1.47, P trend = 0.003). CONCLUSION These results indicate that a pro-inflammatory diet, as indicated by higher DII score, was associated with all-cause and digestive-tract cancer mortality.
Collapse
|
149
|
Abstract
Defined cellular mechanisms have evolved that recognize and repair DNA to protect the integrity of its structure and sequence when encountering assaults from endogenous and exogenous sources. There are five major DNA repair pathways: mismatch repair, nucleotide excision repair, direct repair, base excision repair and DNA double strand break repair (including non-homologous end joining and homologous recombination repair). Aberrant activation of the Hedgehog (Hh) signaling pathway is a feature of many cancer types. The Hh pathway has been documented to be indispensable for epithelial-mesenchymal transition, invasion and metastasis, cancer stemness, and chemoresistance. The functional transcription activators of the Hh pathway include the GLI proteins. Inhibition of the activity of GLI can interfere with almost all DNA repair types in human cancer, indicating that Hh/GLI functions may play an important role in enabling tumor cells to survive lethal types of DNA damage induced by chemotherapy and radiotherapy. Thus, Hh signaling presents an important therapeutic target to overcome DNA repair-enabled multi-drug resistance and consequently increase chemotherapeutic response in the treatment of cancer.
Collapse
|
150
|
Affiliation(s)
- Lucio Luzzatto
- From the Istituto Toscano Tumori and University of Firenze, Florence, Italy (L.L.); and the Cancer Research Institute and Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston (P.P.P.)
| | | |
Collapse
|