101
|
Saied M, Hasanin M, Abdelghany TM, Amin BH, Hashem AH. Anticandidal activity of nanocomposite based on nanochitosan, nanostarch and mycosynthesized copper oxide nanoparticles against multidrug-resistant Candida. Int J Biol Macromol 2023; 242:124709. [PMID: 37141971 DOI: 10.1016/j.ijbiomac.2023.124709] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/22/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023]
Abstract
Recently, antimicrobial resistance has increased globally particularly Candida infections. Most of antifungal drugs used for treating candidiasis became resistant to most of Candida species. In the current study, a nanocomposite based on mycosynthesized copper oxide nanoparticles (CuONPs), nanostarch, nanochitosan was prepared. Results illustrated that twenty-four Candida isolates were isolated from clinical samples. Furthermore, three Candida strains were selected as the most resistant among others toward commercial antifungal drugs; these selected strains were identified genetically as C. glabrata MTMA 19, C. glabrata MTMA 21 and C. tropicalis MTMA 24. Characterization of the prepared nanocomposite was carried out using physiochemical analysis included Ultraviolet-visible spectroscopy (Uv-Vis), Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray spectroscopy (EDX) and Transmission Electron Microscopy (TEM). Moreover, the nanocomposite exhibited promising anticandidal activity against C. glabrata MTMA 19, C. glabrata MTMA 21 and C. tropicalis MTMA 24, where the inhibition zones were 15.3, 27 and 28 mm, respectively. Ultrastructure changes observed in nanocomposite-treated C. tropicalis demonstrated disruption of the cell wall which led to cell death. In conclusion, our results confirmed that the novel biosynthesized nanocomposite based on mycosynthesized CuONPs, nanostarch and nanochitosan is a promising anticandidal agent to fight multidrug-resistant Candida.
Collapse
Affiliation(s)
- Mohamed Saied
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mohamed Hasanin
- Cellulose and Paper Department, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Tarek M Abdelghany
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Basma H Amin
- Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Amr H Hashem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| |
Collapse
|
102
|
Lindsay CA, Kinghorn AD, Rakotondraibe HL. Bioactive and unusual steroids from Penicillium fungi. PHYTOCHEMISTRY 2023; 209:113638. [PMID: 36914145 PMCID: PMC10077519 DOI: 10.1016/j.phytochem.2023.113638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Penicillium fungi are represented by various species and can be found worldwide and thrive in a range of environments, such as in the soil, air, and indoors, and in marine environments, as well as food products. Chemical investigation of species of this genus has led to the discovery of compounds from several structural classes with varied bioactivities. As an example, this genus has been a source of bioactive and structurally unusual steroids. The scope of this short review is to cover specialized metabolites of the steroid class and the cytotoxic, antimicrobial, anti-inflammatory as well as phytotoxic activities of these compounds. Other steroids that possess unusual structures, with significant bioactivity yet to determined, will also be discussed to further demonstrate the structural diversity of this compound class from Penicillium fungi, and hopefully inspire the further exploration of such compounds to uncover their activity.
Collapse
Affiliation(s)
- Charmaine A Lindsay
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Harinantenaina L Rakotondraibe
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
103
|
Sawant AM, Navale VD, Vamkudoth KR. Isolation and Molecular Characterization of Indigenous Penicillium chrysogenum/ rubens Strain Portfolio for Penicillin V Production. Microorganisms 2023; 11:1132. [PMID: 37317105 PMCID: PMC10221864 DOI: 10.3390/microorganisms11051132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 06/16/2023] Open
Abstract
Beta (β)-lactam antibiotic is an industrially important molecule produced by Penicillium chrysogenum/rubens. Penicillin is a building block for 6-aminopenicillanic acid (6-APA), an important active pharmaceutical intermediate (API) used for semi-synthetic antibiotics biosynthesis. In this investigation, we isolated and identified Penicillium chrysogenum, P. rubens, P. brocae, P. citrinum, Aspergillus fumigatus, A. sydowii, Talaromyces tratensis, Scopulariopsis brevicaulis, P. oxalicum, and P. dipodomyicola using the internal transcribed spacer (ITS) region and the β-tubulin (BenA) gene for precise species identification from Indian origin. Furthermore, the BenA gene distinguished between complex species of P. chrysogenum and P. rubens to a certain extent which partially failed by the ITS region. In addition, these species were distinguished by metabolic markers profiled by liquid chromatography-high resolution mass spectrometry (LC-HRMS). Secalonic acid, Meleagrin, and Roquefortine C were absent in P. rubens. The crude extract evaluated for PenV production by antibacterial activities by well diffusion method against Staphylococcus aureus NCIM-2079. A high-performance liquid chromatography (HPLC) method was developed for simultaneous detection of 6-APA, phenoxymethyl penicillin (PenV), and phenoxyacetic acid (POA). The pivotal objective was the development of an indigenous strain portfolio for PenV production. Here, a library of 80 strains of P. chrysogenum/rubens was screened for PenV production. Results showed 28 strains capable of producing PenV in a range from 10 to 120 mg/L when 80 strains were screened for its production. In addition, fermentation parameters, precursor concentration, incubation period, inoculum size, pH, and temperature were monitored for the improved PenV production using promising P. rubens strain BIONCL P45. In conclusion, P. chrysogenum/rubens strains can be explored for the industrial-scale PenV production.
Collapse
Affiliation(s)
- Amol M. Sawant
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; (A.M.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vishwambar D. Navale
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; (A.M.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Koteswara Rao Vamkudoth
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; (A.M.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
104
|
Tran VT, Thai HD, Vu TX, Vu HH, Nguyen GT, Trinh MT, Tran HTT, Pham HTT, Le NTH. An efficient Agrobacterium-mediated system based on the pyrG auxotrophic marker for recombinant expression in the filamentous fungus Penicillium rubens. Biotechnol Lett 2023; 45:689-702. [PMID: 37071381 DOI: 10.1007/s10529-023-03374-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/28/2023] [Accepted: 03/31/2023] [Indexed: 04/19/2023]
Abstract
OBJECTIVES This work aimed to construct a versatile, effective, and food-grade Agrobacterium tumefaciens-mediated transformation (ATMT) system for recombinant expression in the filamentous fungus Penicillium rubens (also known as Pencillium chrysogenum). RESULTS In this study, the wild-type P. chrysogenum VTCC 31172 strain was re-classified as P. rubens by a multilocus sequencing analysis. Further, the pyrG gene required for uridine/uracil biosynthesis was successfully deleted in the VTCC 31172 strain by homologous recombination to generate a stable uridine/uracil auxotrophic mutant (ΔpyrG). The growth of the P. rubens ΔpyrG strain could be restored by uridine/uracil supplementation, and a new ATMT system based on the uridine/uracil auxotrophic mechanism was established for this strain. The optimal ATMT efficiency could reach 1750 transformants for 106 spores (equivalent to 0.18%). In addition, supplementation of uridine/uracil at the concentrations of 0.005-0.02% during the co-cultivation process significantly promoted transformation efficiency. Especially, we demonstrated that the pyrG marker and the amyB promoter from the koji mold Aspergillus oryzae were fully functional in P. rubens ΔpyrG. Expression of the DsRed reporter gene under the regulation of the A. oryzae amyB promoter lighted up the mycelium of P. rubens with a robust red signal under fluorescence microscopy. Furthermore, genomic integration of multiple copies of the Aspergillus fumigatus phyA gene under the control of the amyB promoter significantly enhanced phytase activity in P. rubens. CONCLUSIONS The ATMT system developed in our work provides a safe genetic platform for producing recombinant products in P. rubens without using drug resistance markers.
Collapse
Affiliation(s)
- Van-Tuan Tran
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam.
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam.
| | - Hanh-Dung Thai
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Tao Xuan Vu
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
- Center for Experimental Biology, National Center for Technological Progress, Ministry of Science and Technology of Vietnam, C6 Thanh Xuan Bac, Thanh Xuan, Hanoi, Vietnam
| | - Ha Hong Vu
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Giang Thu Nguyen
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Minh Thi Trinh
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Huyen Thi Thanh Tran
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Huong Thi Thu Pham
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Nhung Thi Hong Le
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| |
Collapse
|
105
|
da Silva IJS, Sousa TF, de Queiroz CA, dos Santos Castro G, Caniato FF, de Medeiros LS, Angolini CFF, Hanada RE, Koolen HHF, da Silva GF. Penicillium amapaense sp. nov., section Exilicaulis, and new records of Penicillium labradorum in Brazil isolated from Amazon River sediments with potential applications in agriculture and biotechnology. Mycol Prog 2023. [DOI: 10.1007/s11557-023-01868-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
106
|
Menu E, Filori Q, Dufour JC, Ranque S, L’Ollivier C. A Repertoire of Clinical Non-Dermatophytes Moulds. J Fungi (Basel) 2023; 9:jof9040433. [PMID: 37108888 PMCID: PMC10146755 DOI: 10.3390/jof9040433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Humans are constantly exposed to micromycetes, especially filamentous fungi that are ubiquitous in the environment. In the presence of risk factors, mostly related to an alteration of immunity, the non-dermatophyte fungi can then become opportunistic pathogens, causing superficial, deep or disseminated infections. With new molecular tools applied to medical mycology and revisions in taxonomy, the number of fungi described in humans is rising. Some rare species are emerging, and others more frequent are increasing. The aim of this review is to (i) inventory the filamentous fungi found in humans and (ii) provide details on the anatomical sites where they have been identified and the semiology of infections. Among the 239,890 fungi taxa and corresponding synonyms, if any, retrieved from the Mycobank and NCBI Taxonomy databases, we were able to identify 565 moulds in humans. These filamentous fungi were identified in one or more anatomical sites. From a clinical point of view, this review allows us to realize that some uncommon fungi isolated in non-sterile sites may be involved in invasive infections. It may present a first step in the understanding of the pathogenicity of filamentous fungi and the interpretation of the results obtained with the new molecular diagnostic tools.
Collapse
Affiliation(s)
- Estelle Menu
- Laboratoire de Parasitologie-Mycologie, IHU Méditerranée Infection, 13385 Marseille, France
- Institut de Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, VITROME: Vecteurs-Infections Tropicales et Méditerra-néennes, Aix Marseille Université, 13385 Marseille, France
| | - Quentin Filori
- INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l’Information Médicale, ISSPAM, Aix Marseille University, 13385 Marseille, France
| | - Jean-Charles Dufour
- INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l’Information Médicale, ISSPAM, Aix Marseille University, 13385 Marseille, France
- APHM, Hôpital de la Timone, Service Biostatistique et Technologies de l’Information et de la Communication, 13385 Marseille, France
| | - Stéphane Ranque
- Laboratoire de Parasitologie-Mycologie, IHU Méditerranée Infection, 13385 Marseille, France
- Institut de Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, VITROME: Vecteurs-Infections Tropicales et Méditerra-néennes, Aix Marseille Université, 13385 Marseille, France
| | - Coralie L’Ollivier
- Laboratoire de Parasitologie-Mycologie, IHU Méditerranée Infection, 13385 Marseille, France
- Institut de Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, VITROME: Vecteurs-Infections Tropicales et Méditerra-néennes, Aix Marseille Université, 13385 Marseille, France
| |
Collapse
|
107
|
Nesterenko LE, Popov RS, Zhuravleva OI, Kirichuk NN, Chausova VE, Krasnov KS, Pivkin MV, Yurchenko EA, Isaeva MP, Yurchenko AN. A Study of the Metabolic Profiles of Penicillium dimorphosporum KMM 4689 Which Led to Its Re-Identification as Penicillium hispanicum. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Changes in cultivation conditions, in particular salinity and temperature, affect the production of secondary fungal metabolites. In this work, the extracts of fungus previously described as Penicillium dimorphosporum cultivated in various salinity and temperature conditions were investigated using HPLC UV/MS techniques, and their DPPH radical scavenging and cytotoxicity activities against human prostate cancer PC-3 cells and rat cardiomyocytes H9c2 were tested. In total, 25 compounds, including 13 desoxyisoaustamide-related alkaloids and eight anthraquinones, were identified in the studied extracts and their relative amounts were estimated. The production of known neuroprotective alkaloids 5, 6 and other brevianamide alkaloids was increased in hypersaline and high-temperature conditions, and this may be an adaptation to extreme conditions. On the other hand, hyposalinity stress may induce the synthesis of unidentified antioxidants with low cytotoxicity that could be very interesting for future investigation. The study of secondary metabolites of the strain KMM 4689 showed that although brevianamide-related alkaloids and anthraquinone pigments are widely distributed in various fungi, these metabolites have not been described for P. dimorphosporum and related species. For this reason, the strain KMM 4689 was re-sequenced using the β-tubulin gene and ITS regions as molecular markers and further identified as P. hispanicum.
Collapse
|
108
|
Acetylcholine Esterase Inhibitory Effect, Antimicrobial, Antioxidant, Metabolomic Profiling, and an In Silico Study of Non-Polar Extract of The Halotolerant Marine Fungus Penicillium chrysogenum MZ945518. Microorganisms 2023; 11:microorganisms11030769. [PMID: 36985342 PMCID: PMC10054823 DOI: 10.3390/microorganisms11030769] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Major health issues, such as the rise in oxidative stress, incidences of Alzheimer’s disease, and infections caused by antibiotic-resistant microbes, have prompted researchers to look for new therapeutics. Microbial extracts are still a good source of novel compounds for biotechnological use. The objective of the current work was to investigate marine fungal bioactive compounds with potential antibacterial, antioxidant, and acetylcholinesterase inhibitory effects. Penicillium chrysogenum strain MZ945518 was isolated from the Mediterranean Sea in Egypt. The fungus was halotolerant with a salt tolerance index of 1.3. The mycelial extract showed antifungal properties against Fusarium solani with an inhibitory percentage of 77.5 ± 0.3, followed by Rhizoctonia solani and Fusarium oxysporum with percentages of 52 ± 0.0 and 40 ± 0.5, respectively. The extract also showed antibacterial activity against both Gram-negative and Gram-positive bacterial strains using the agar diffusion technique. The fungal extract was significantly more effective with Proteus mirabilis ATCC 29906 and Micrococcus luteus ATCC 9341; inhibition zones recorded 20 and 12 mm, respectively, compared with the antibiotic gentamycin, which recorded 12 and 10 mm, respectively. The antioxidant activity of the fungus extract revealed that it successfully scavenged DPPH free radicals and recorded an IC50 of 542.5 µg/mL. Additionally, it was capable of reducing Fe3+ to Fe2+ and exhibiting chelating ability in the metal ion-chelating test. The fungal extract was identified as a crucial inhibitor of acetylcholinesterase with an inhibition percentage of 63% and an IC50 value of 60.87 µg/mL. Using gas chromatography–mass spectrometry (GC/MS), 20 metabolites were detected. The most prevalent ones were (Z)-18-octadec-9-enolide and 1,2-Benzenedicarboxylic acid, with ratios of 36.28 and 26.73%, respectively. An in silico study using molecular docking demonstrated interactions between the major metabolites and the target proteins, including: DNA Gyrase, glutathione S-transferase, and Acetylcholinesterase, confirming the extract’s antimicrobial and antioxidant activity. Penicillium chrysogenum MZ945518, a halotolerant strain, has promising bioactive compounds with antibacterial, antioxidant, and acetylcholinesterase inhibitory activities
Collapse
|
109
|
Marketed Quinoa (Chenopodium quinoa Willd.) Seeds: A Mycotoxin-Free Matrix Contaminated by Mycotoxigenic Fungi. Pathogens 2023; 12:pathogens12030418. [PMID: 36986340 PMCID: PMC10057975 DOI: 10.3390/pathogens12030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
A total of 25 marketed quinoa seed samples different for origin, farming system and packaging were analyzed for the presence of mycotoxigenic fungi (by isolation both on Potato Dextrose Agar and with the deep-freezing blotter method) and relative contamination by mycotoxins (by LC-MS/MS analysis). Fungal microorganisms, but not mycotoxins, were detected in all the samples, and 25 isolates representative of the mycobiota were obtained. Morphological and molecular characterization and, for some isolates, the in vitro mycotoxigenic profile, allowed the identification of 19 fungal species within five different genera: Alternaria, Aspergillus, Penicillium, Cladosporium and Fusarium. Among the identified species, Alternaria abundans, A. chartarum, A. arborescens, Cladosporium allicinum, C. parasubtilissimum, C. pseudocladosporioides, C. uwebraunianum, Aspergillus jensenii, A. tubingensis, Penicillium dipodomyis, P. verrucosum and P. citreosulfuratum were first reported on quinoa, and Alternaria infectoria and Fusarium oxysporum were first reported on quinoa seeds. The geographical origin, farming system and packaging were showed to affect the amount and type of the isolated fungal species, highlighting that the level of fungal presence and their related secondary metabolites is conditioned by different steps of the quinoa supply chain. However, despite the presence of mycotoxigenic fungi, the marketed quinoa seeds analyzed resulted in being free from mycotoxins.
Collapse
|
110
|
Wiederhold NP, Patterson HP, Sanders CJ, Cañete-Gibas C. Dihydroorotate dehydrogenase inhibitor olorofim has potent in vitro activity against Microascus/Scopulariopsis, Rasamsonia, Penicillium and Talaromyces species. Mycoses 2023; 66:242-248. [PMID: 36435987 DOI: 10.1111/myc.13548] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Treatment options against infections caused by rare but emerging moulds may be limited by their reduced susceptibility or resistance to clinically available antifungals. The investigational antifungal olorofim, which targets the biosynthesis of pyrimidines within fungi, has activity against different species of filamentous fungi, including Aspergillus and Scedosporium/Lomentospora prolificans isolates that are resistant to available antifungals. OBJECTIVE We evaluated the in vitro activity of olorofim against 160 isolates within the genera Microascus/Scopulariopsis, Penicillium, Talaromyces and the Rasamsonia argillacea species complex. METHODS One hundred sixty clinical isolates that had previously been identified to the species level by DNA sequence analysis were included. Antifungal susceptibility testing was performed by CLSI M38 broth microdilution for olorofim, amphotericin B, caspofungin, posaconazole and voriconazole. RESULTS Olorofim demonstrated in vitro activity against each of the genera tested. Overall, olorofim MICs ranged from ≤0.008 to 0.5 mg/L against all isolates tested, with MIC90 and modal MIC values ranging from ≤0.008 to 0.25 mg/L and ≤0.008 to 0.03 mg/L, respectively. This activity was also maintained against individual isolates that had reduced susceptibility to or in vitro resistance against amphotericin B, posaconazole and/or voriconazole. CONCLUSIONS The investigational agent olorofim demonstrated good in vitro activity against clinical isolates of emerging mould pathogens, including those with reduced susceptibility or resistance to clinically available antifungals. Further studies are warranted to determine how well this in vitro activity translates into in vivo efficacy against infections caused by these fungi.
Collapse
Affiliation(s)
- Nathan P Wiederhold
- Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Hoja P Patterson
- Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Carmita J Sanders
- Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Connie Cañete-Gibas
- Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
111
|
Han J, Zhang S, Shi X, Herrera-Balandrano DD, Wang S, Laborda P. First Report of Penicillium oxalicum Causing Leaf Blight on Maize in China. PLANT DISEASE 2023; 107:2554. [PMID: 36734940 DOI: 10.1094/pdis-12-22-2965-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In August 2022, two-month-old maize plants (Zea mays cv. 'Zihei'; "Chinese purple corn") exhibited irregular lesions on leaves and leaf blight symptoms (Figure 1). Although the lesions were yellow at the early infection stages, they turned brown during the pathogen advancement and culminated in leaf blight. Nearly 60% of plants from a non-commercial maize field (0.2 ha) in south-eastern Jiangsu (Nantong municipality, China; 120.54º E, 31.58º N) exhibited brown lesions, and about 4% of the diseased plants showed advanced leaf blight symptoms. The disease resulted in approximately a 9% yield loss compared to previous years when no disease symptoms were observed. Thirty small leaf pieces, approximately 0.3 cm2 in size and showing disease symptoms, were surface sterilized in 1.5% NaOCl for 1 min and washed twice with sterile ddH2O. The pathogen was cultured on PDA medium in the dark at 25 ºC, with grayish colonies observed after 5 days. Morphological analysis showed the presence of round/oval conidia (8.81 ± 0.50 μm diameter; n = 86) and branched conidiophores, which was consistent with the morphology of Penicillium spp. (Visagie et al. 2014). Nine representative isolates were obtained from different leaf pieces via single spore isolation, and the internal transcribed spacer (ITS), β-tubulin (TUB2) and calmodulin (CMD) genes were amplified using ITS1/ITS4, BT2a/BT2b and CMD5/CMD6 primers, respectively. The obtained ITS (OP954496-OP954497 and OP942428-OP942434), TUB2 (OP966781-OP966784 and OQ025045-OQ025049) and CMD (OQ078664-OQ078672) sequences were submitted in GenBank. Two isolates belonged to the P. citrinum species, while seven of the isolates belonged to the P. oxalicum species. A blast search revealed that the obtained P. citrinum ITS and CMD sequences had 99.39% and 100% homology to the ex-type strain P. citrinum NRRL 1841; GenBank numbers: AF033422 and GU944638 (Peterson & Horn 2009). Additionally, the obtained P. oxalicum ITS and CMD sequences had 99.82-100% and 94.64-95.49% homology to the ex-type strain P. oxalicum NRRL 787; GenBank numbers: AF033438 and KF296367 (Visagie et al. 2015). A molecular phylogenetic tree was constructed using MEGA7 to confirm the identity of the pathogen (Figure 2). To confirm pathogenicity, 3-week-old healthy 'Zihei' plants were used. The leaves were sprayed with aqueous solutions (sterilized ddH2O) that contained 1 × 106 spores/mL of each isolate. For the control experiment, sterilized ddH2O was used. After 5 days in a growth chamber at 25 ºC and 70% relative humidity, yellow lesions were observed. The number of lesions was higher when inoculating with P. oxalicum than when inoculating with P. citrinum. This result, together with the higher occurrence of P. oxalicum isolates, suggests that P. oxalicum is the main species causing the disease symptoms. The pathogen was recovered from the infected plants, and its identity was confirmed by ITS sequencing and morphological analysis. As far as we know, this is the first report of P. citrinum and P. oxalicum causing maize leaf blight worldwide. These species have previously been associated with maize kernels, as a source of mycotoxins posing relevant hazards to human health (Keller et al. 2013; Yang et al. 2020). P. citrinum was recently identified as the causal agent of green mold on Dictyophora rubrovalvata in China (Qin et al. 2022), while P. oxalicum was reported to cause citrus rot, pineapple leaf spot, and blue mold on Gastrodia elata, Astralagus membranaceus and muskmelon (Tang et al. 2020; Wu et al. 2022; Zheng et al. 2022). China is one of the world's largest producers of maize, harvesting more than 171 million tons in 2021. This report will help to better understand the pathogens that affect China's maize production.
Collapse
Affiliation(s)
- Jiaxin Han
- Nantong University, 66479, College of Life Sciences, Nantong, China;
| | - Shiling Zhang
- Nantong University, 66479, College of Life Sciences, Nantong, China;
| | - Xinchi Shi
- Nantong University, 66479, College of Life Sciences, Nantong, China;
| | | | - Suyan Wang
- Nantong University, 66479, College of Life Sciences, No. 9 seyuan road, Nantong, China, 226019;
| | - Pedro Laborda
- Jiangsu Academy of Agricultural Sciences, 117941, Institute of Plant Protection, Tongwei street, Nanjing, Jiangsu, China, 210014;
| |
Collapse
|
112
|
Petersen C, Sørensen T, Nielsen MR, Sondergaard TE, Sørensen JL, Fitzpatrick DA, Frisvad JC, Nielsen KL. Comparative genomic study of the Penicillium genus elucidates a diverse pangenome and 15 lateral gene transfer events. IMA Fungus 2023; 14:3. [PMID: 36726175 PMCID: PMC9893605 DOI: 10.1186/s43008-023-00108-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
The Penicillia are known to produce a wide range natural products-some with devastating outcome for the agricultural industry and others with unexploited potential in different applications. However, a large-scale overview of the biosynthetic potential of different species has been lacking. In this study, we sequenced 93 Penicillium isolates and, together with eleven published genomes that hold similar assembly characteristics, we established a species phylogeny as well as defining a Penicillium pangenome. A total of 5612 genes were shared between ≥ 98 isolates corresponding to approximately half of the average number of genes a Penicillium genome holds. We further identified 15 lateral gene transfer events that have occurred in this collection of Penicillium isolates, which might have played an important role, such as niche adaption, in the evolution of these fungi. The comprehensive characterization of the genomic diversity in the Penicillium genus supersedes single-reference genomes, which do not necessarily capture the entire genetic variation.
Collapse
Affiliation(s)
- Celine Petersen
- grid.5117.20000 0001 0742 471XDepartment of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Ålborg, Denmark
| | - Trine Sørensen
- grid.5117.20000 0001 0742 471XDepartment of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Ålborg, Denmark
| | - Mikkel R. Nielsen
- grid.5117.20000 0001 0742 471XDepartment of Chemistry and Bioscience, Aalborg University, Niels-Bohrs Vej 8, 6700 Esbjerg, Denmark
| | - Teis E. Sondergaard
- grid.5117.20000 0001 0742 471XDepartment of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Ålborg, Denmark
| | - Jens L. Sørensen
- grid.5117.20000 0001 0742 471XDepartment of Chemistry and Bioscience, Aalborg University, Niels-Bohrs Vej 8, 6700 Esbjerg, Denmark
| | - David A. Fitzpatrick
- grid.95004.380000 0000 9331 9029Department of Biology, Maynooth University, Maynooth, W23 F2K8 Ireland
| | - Jens C. Frisvad
- grid.5170.30000 0001 2181 8870Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads B221, 2800 Kgs, Lyngby, Denmark
| | - Kåre L. Nielsen
- grid.5117.20000 0001 0742 471XDepartment of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Ålborg, Denmark
| |
Collapse
|
113
|
Rodrigues P, Jelassi A, Kanoun E, Sulyok M, Correia P, Ramalhosa E, Pereira EL. Effect of different storage conditions on the stability and safety of almonds. J Food Sci 2023; 88:848-859. [PMID: 36633227 DOI: 10.1111/1750-3841.16453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
Abstract
Almond production in Portugal is of great importance for the economy of their main producing areas. However, the contamination of these nut fruits with fungi and mycotoxins poses a significant risk to food safety and security. This work intended to evaluate the influence of storage conditions on the microbial and mycotoxin stability and safety of almonds throughout long-term storage. Two almond varieties-Lauranne and Guara-were submitted to three different storage conditions, namely, 4°C with noncontrolled relative humidity (RH), 60% RH at 25°C, and 70% RH at 25°C, for a storage period of 9 months. Samples were collected after 0, 3, 6, and 9 months of storage and analyzed for microbial loads (aerobic mesophiles, yeasts, and molds), mold incidence and diversity, and mycotoxin contamination. In total, 26 species were identified belonging to 6 genera: Aspergillus, Cladosporium, Fusarium, Penicillium, Paecilomyces, and Talaromyces. For the variety Guara, mycotoxins related to Aspergillus sect. Flavi, such as aflatoxins, averufin, versicolorin C, and norsolorinic acid, were detected only after 9 months of storage at 70% and 60% RH. Penicillium mycotoxins, such as quinolactacin A and roquefortine C, were also detected. For the variety Lauranne, Penicillium mycotoxins were detected, such as citrinin, quinolactacins A and B, roquefortines C and D, cyclopenin, cyclopenol, penitrem A, viridicatin, and viridicatol. Mycotoxins related to Aspergillus, such as aspulvinone E, flavoglaucin, paspalin, asperglaucide, asperphenamate, cyclo(L-Pro-L-Tyr), and cyclo(L-Pro-L-Val), were also detected. PRACTICAL APPLICATION: (Optional, for JFS Research Articles ONLY) The quality of almonds depends on the storage period and the RH and temperature at which they are stored. Storage of almonds at 60% RH at 25°C is a good storage condition to maintain the stability and safety of nuts in terms of microbial and mycotoxin contaminations.
Collapse
Affiliation(s)
- Paula Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Arij Jelassi
- Ecole Polytechnique, Université Libre de Tunis, Tunis, Tunisia
| | - Elifa Kanoun
- Ecole Polytechnique, Université Libre de Tunis, Tunis, Tunisia
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Paula Correia
- CERNAS Research Centre, Polytechnic Institute of Viseu, Viseu, Portugal
| | - Elsa Ramalhosa
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Ermelinda Lopes Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| |
Collapse
|
114
|
García-Calvo L, Rodríguez-Castro R, Ullán RV, Albillos SM, Fernández-Aguado M, Vicente CM, Degnes KF, Sletta H, Barreiro C. Penicillium chrysogenum as a fungal factory for feruloyl esterases. Appl Microbiol Biotechnol 2023; 107:691-717. [PMID: 36595038 DOI: 10.1007/s00253-022-12335-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 01/04/2023]
Abstract
Plant biomass is a promising substrate for biorefinery, as well as a source of bioactive compounds, platform chemicals, and precursors with multiple industrial applications. These applications depend on the hydrolysis of its recalcitrant structure. However, the effective biological degradation of plant cell walls requires several enzymatic groups acting synergistically, and novel enzymes are needed in order to achieve profitable industrial hydrolysis processes. In the present work, a feruloyl esterase (FAE) activity screening of Penicillium spp. strains revealed a promising candidate (Penicillium rubens Wisconsin 54-1255; previously Penicillium chrysogenum), where two FAE-ORFs were identified and subsequently overexpressed. Enzyme extracts were analyzed, confirming the presence of FAE activity in the respective gene products (PrFaeA and PrFaeB). PrFaeB-enriched enzyme extracts were used to determine the FAE activity optima (pH 5.0 and 50-55 °C) and perform proteome analysis by means of MALDI-TOF/TOF mass spectrometry. The studies were completed with the determination of other lignocellulolytic activities, an untargeted metabolite analysis, and upscaled FAE production in stirred tank reactors. The findings described in this work present P. rubens as a promising lignocellulolytic enzyme producer. KEY POINTS: • Two Penicillium rubens ORFs were first confirmed to have feruloyl esterase activity. • Overexpression of the ORFs produced a novel P. rubens strain with improved activity. • The first in-depth proteomic study of a P. rubens lignocellulolytic extract is shown.
Collapse
Affiliation(s)
- Laura García-Calvo
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Raquel Rodríguez-Castro
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain
| | - Ricardo V Ullán
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain.
- mAbxience, Upstream Production, Parque Tecnológico de León, Julia Morros, S/N, Armunia, 24009, León, Spain.
| | - Silvia M Albillos
- Área de Bioquímica Y Biología Molecular, Departamento de Biotecnología Y Ciencia de los Alimentos, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Marta Fernández-Aguado
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain
| | - Cláudia M Vicente
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077, Toulouse, France
| | - Kristin F Degnes
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands Vei 3 B, 7034, Trondheim, Norway
| | - Håvard Sletta
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands Vei 3 B, 7034, Trondheim, Norway
| | - Carlos Barreiro
- Área de Bioquímica Y Biología Molecular, Departamento de Biología Molecular, Universidad de León, Campus de Vegazana, 24007, León, Spain.
| |
Collapse
|
115
|
da Silva Gaspar S, Assis LLRD, Prado MPRD, Pedroso Miguel MG, Magno dos Reis Ferreira G, Schwan RF, Pasqual M, Rigobelo EC, Castro RP, Buttrós VH, Dória J. Diversity and enzymatic activity of the microbiota isolated from compost based on restaurant waste and yard trimmings. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1013361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
IntroductionThe bad management of organic waste negatively affects environmental quality and composting has been a viable recycling alternative. Microorganisms are responsible for waste degradation during the composting process and, consequently, for transforming this waste into natural fertilizer. This work aimed to analyze and identify the biodiversity of yeasts and filamentous fungi throughout a composting process based on organic residues under different treatments (commercial inoculum, non-commercial inoculum, and control treatment) and to investigate the enzymatic activity of these microorganisms.MethodsMicroorganisms were isolated and identified from samples at 0, 5, 10, 20, 40, 60, and 120 days. Filamentous fungi were identified according to their macroscopic and microscopic characteristics, and yeasts were identified by sequencing the 18S rDNA region. All identified strains were evaluated for ligninolytic, cellulolytic, hemicellulolytic, amylolytic, pectinolytic, proteolytic, lipolytic, and ammonification. During the composting phases, the filamentous fungi were higher than the yeast population.Results and discussionAt the beginning of the process, a higher species diversity was observed, and the population of yeasts and filamentous fungi was, on average, 6.50 log CFU g−1. The microbial communities were similar throughout the process in the two inoculated treatments, which showed more significant microbial activity, diversity, and efficiency in the transformation of organic matter, and consequently, advantages in terms of the final product quality compared to the control treatment. The yeasts Pichia kudriavzevii, Pichia farinosa, Issatchenkia orientalis, and the filamentous fungi of the genus Aspergillus spp. proved to have high biotechnological value and could be used as starter cultures to accelerate the composting process.
Collapse
|
116
|
Requena E, Alonso-Guirado L, Veloso J, Villarino M, Melgarejo P, Espeso EA, Larena I. Comparative analysis of Penicillium genomes reveals the absence of a specific genetic basis for biocontrol in Penicillium rubens strain 212. Front Microbiol 2023; 13:1075327. [PMID: 36713150 PMCID: PMC9880469 DOI: 10.3389/fmicb.2022.1075327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/06/2022] [Indexed: 01/15/2023] Open
Abstract
Penicillium rubens strain 212 (PO212) is a filamentous fungus belonging to the division Ascomycete. PO212 acts as an effective biocontrol agent against several pathogens in a variety of horticultural crops including Fusarium oxysporum f.sp. lycopersici, causing vascular wilt disease in tomato plants. We assembled draft genomes of two P. rubens strains, the biocontrol agent PO212 and the soil isolate S27, which lacks biocontrol activity. We also performed comparative analyses of the genomic sequence of PO212 with that of the other P. rubens and P. chrysogenum strains. This is the first Penicillium strain with biocontrol activity whose genome has been sequenced and compared. PO212 genome size is 2,982 Mb, which is currently organized into 65 scaffolds and a total of 10,164 predicted Open Reading Frames (ORFs). Sequencing confirmed that PO212 belongs to P. rubens clade. The comparative analysis of the PO212 genome with the genomes of other P. rubens and Penicillium chrysogenum strains available in databases showed strong conservation among genomes, but a correlation was not found between these genomic data and the biocontrol phenotype displayed by PO212. Finally, the comparative analysis between PO212 and S27 genomes showed high sequence conservation and a low number of variations mainly located in ORF regions. These differences found in coding regions between PO212 and S27 genomes can explain neither the biocontrol activity of PO212 nor the absence of such activity in S27, opening a possible avenue toward transcriptomic and epigenetic studies that may shed light on this mechanism for fighting plant diseases caused by fungal pathogens. The genome sequences described in this study provide a useful novel resource for future research into the biology, ecology, and evolution of biological control agents.
Collapse
Affiliation(s)
- Elena Requena
- Grupo Hongos Fitopatógenos, Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Lola Alonso-Guirado
- Grupo de Epidemiología Genética y Molecular, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Javier Veloso
- Departamento de Biología Funcional, Escuela Politécnica Superior de Ingeniería, Universidad de Santiago de Compostela, Lugo, Spain
| | - María Villarino
- Grupo Hongos Fitopatógenos, Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Paloma Melgarejo
- Grupo Hongos Fitopatógenos, Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Eduardo Antonio Espeso
- Laboratorio de Biología Celular de Aspergillus, Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas Margarita Salas, CSIC (CIB-CSIC), Madrid, Spain
| | - Inmaculada Larena
- Grupo Hongos Fitopatógenos, Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| |
Collapse
|
117
|
Tessaro APG, de Araujo LG, Silva TT, Coelho E, Corrêa B, Rolindo NC, Vicente R. Prospects for fungal bioremediation of unburied waste packages from the Goiânia radiological accident. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41045-41059. [PMID: 36627427 DOI: 10.1007/s11356-023-25247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
Goiânia, the Goiás State capital, starred in 1987, where one of the largest radiological accidents in the world happened. A teletherapy machine was subtracted from a derelict radiotherapy clinic and disassembled by scavengers who distributed fragments of the 50 TBq 137CsCl source among relatives and acquaintances, enchanted by the blue shine of the substance. During the 15 days before the accident was acknowledged, contaminated recycling materials were delivered to recycling factories in four cities in the state of São Paulo, Brazil, in the form of recycling paper bales. The contaminated bales were spotted, collected, and stored in fifty 1.6 m3 steel boxes at the interim storage facility of the Nuclear and Energy Research Institute (IPEN). In 2017, a check of the content was performed in a few boxes and the presence of high moisture content was observed even though the bales were dry when conditioned and the packages were kept sealed since then. The main objective of this work was to report the fungi found in the radioactive waste after they evolved for 30 years in isolation inside the waste boxes and their role in the decay of the waste. Examination of the microbiome showed the presence of nematodes and fungal communities. The fungi species isolated were Aspergillus quadricinctus, Fusarium oxysporum, Lecanicillium coprophilumi, Scedosporium boydii, Scytalidium lignicola, Xenoacremonium recifei, and Pleurostoma richardsiae. These microorganisms showed a significant capacity to digest cellulose in our trials, which could be one of the ways they survive in such a harsh environment, reducing the volume of radioactive paper waste. These metabolic abilities give us a future perspective of using these fungi in biotechnology to remediate radioactively contaminated materials, particularly cellulose-based waste.
Collapse
Affiliation(s)
- Ana Paula Gimenes Tessaro
- Instituto de Pesquisas Energéticas E Nucleares, IPEN/CNEN, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, 05508-000, Brazil
| | - Leandro Goulart de Araujo
- Instituto de Pesquisas Energéticas E Nucleares, IPEN/CNEN, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, 05508-000, Brazil.
- Current Affiliation, Université de Lorraine, CNRS, 88000, Epinal, IJL, France.
| | - Thalita Tieko Silva
- Instituto de Pesquisas Energéticas E Nucleares, IPEN/CNEN, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, 05508-000, Brazil
| | - Ednei Coelho
- Microbiology Department, University of Sao Paulo, Av. Professor Lineu Prestes, São Paulo, 1374, Brazil
| | - Benedito Corrêa
- Microbiology Department, University of Sao Paulo, Av. Professor Lineu Prestes, São Paulo, 1374, Brazil
| | - Natalie Costa Rolindo
- Instituto de Pesquisas Energéticas E Nucleares, IPEN/CNEN, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, 05508-000, Brazil
| | - Roberto Vicente
- Instituto de Pesquisas Energéticas E Nucleares, IPEN/CNEN, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
118
|
Visagie CM, Yilmaz N. Along the footpath of Penicillium discovery: Six new species from the Woodville Big Tree Forest Trail. Mycologia 2023; 115:87-106. [PMID: 36441981 DOI: 10.1080/00275514.2022.2135915] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we studied the diversity of Penicillium occurring in soil collected along the Woodville Big Tree Forest Trail situated close to the coastal town of Wilderness in South Africa. Strains were accessioned into a collection and then identified to species based on β-tubulin DNA sequences, which is the recommended DNA barcode for the genus. The 74 strains were found to represent 18 species, including six we consider undescribed. Here, we introduce them as Penicillium claroviride, P. kalander, P. mattheeae, P. outeniquaense, P. subfuscum, and P. umkhoba. Phylogenetic comparisons were made, and genealogical concordance was demonstrated for these new species using DNA sequences from nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS barcode), β-tubulin, calmodulin, and RNA polymerase II second largest subunit. Notes on morphological characters distinguishing the new species from their close relatives are provided.
Collapse
Affiliation(s)
- Cobus M Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Neriman Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
119
|
Humicolopsis cephalosporioides synthesizes DHN-melanin in its chlamydospores. Mycol Prog 2023. [DOI: 10.1007/s11557-022-01853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
120
|
Worsley SF, Davies CS, Mannarelli ME, Komdeur J, Dugdale HL, Richardson DS. Assessing the causes and consequences of gut mycobiome variation in a wild population of the Seychelles warbler. MICROBIOME 2022; 10:242. [PMID: 36575553 PMCID: PMC9795730 DOI: 10.1186/s40168-022-01432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Considerable research has focussed on the importance of bacterial communities within the vertebrate gut microbiome (GM). However, studies investigating the significance of other microbial kingdoms, such as fungi, are notably lacking, despite their potential to influence host processes. Here, we characterise the fungal GM of individuals living in a natural population of Seychelles warblers (Acrocephalus sechellensis). We evaluate the extent to which fungal GM structure is shaped by environment and host factors, including genome-wide heterozygosity and variation at key immune genes (major histocompatibility complex (MHC) and Toll-like receptor (TLR)). Importantly, we also explore the relationship between fungal GM differences and subsequent host survival. To our knowledge, this is the first time that the genetic drivers and fitness consequences of fungal GM variation have been characterised for a wild vertebrate population. RESULTS Environmental factors, including season and territory quality, explain the largest proportion of variance in the fungal GM. In contrast, neither host age, sex, genome-wide heterozygosity, nor TLR3 genotype was associated with fungal GM differences in Seychelles warblers. However, the presence of four MHC-I alleles and one MHC-II allele was associated with changes in fungal GM alpha diversity. Changes in fungal richness ranged from between 1 and 10 sequencing variants lost or gained; in some cases, this accounted for 20% of the fungal variants carried by an individual. In addition to this, overall MHC-I allelic diversity was associated with small, but potentially important, changes in fungal GM composition. This is evidenced by the fact that fungal GM composition differed between individuals that survived or died within 7 months of being sampled. CONCLUSIONS Our results suggest that environmental factors play a primary role in shaping the fungal GM, but that components of the host immune system-specifically the MHC-may also contribute to the variation in fungal communities across individuals within wild populations. Furthermore, variation in the fungal GM can be associated with differential survival in the wild. Further work is needed to establish the causality of such relationships and, thus, the extent to which components of the GM may impact host evolution. Video Abstract.
Collapse
Affiliation(s)
- Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK.
| | - Charli S Davies
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Maria-Elena Mannarelli
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
| | - Hannah L Dugdale
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK.
- Nature Seychelles, Roche Caiman, Mahé, Republic of Seychelles.
| |
Collapse
|
121
|
Rengifo LR, Rosas P, Méndez N, Ludeña Y, Sirvas S, Samolski I, Villena GK. Comparison of Pigment Production by Filamentous Fungal Strains under Submerged (SmF) and Surface Adhesion Fermentation (SAF). J Fungi (Basel) 2022; 9:jof9010048. [PMID: 36675869 PMCID: PMC9861739 DOI: 10.3390/jof9010048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/17/2022] [Accepted: 12/17/2022] [Indexed: 12/29/2022] Open
Abstract
Although synthetic colorants are widely used in many industries due to their high stability at different conditions in industrial processes, evidence of its negative impact on health and the environment is undeniable. Filamentous fungi are well known for their use as alternative sources to produce natural pigments. However, an adequate comparison of the productivity parameters between the fermentation systems could be limited to their heterogeneous conditions. Even though Solid-State Fermentations (SSF) on natural substrates are widely used for pigments production, complex media, and non-controlled variables (T, pH, medium composition), these systems could not only hamper the finding of accurate productivity parameters, but also mathematical modeling and genomics-based optimization. In this context, the present study screened five pigment-producing fungi by comparing Submerged (SmF) and Surface Adhesion Fermentation [biofilm (BF) and Solid-State (SSF)] with defined media and controlled variables. For this purpose, we used the same defined media with sucrose as the carbon source for pigment production on SmF, BF, and SSF, and BF and SSF were carried out on inert supports. Five molecularly identified Penicillium and Talaromyces strains isolated from the Peruvian rainforest were selected for their ability to produce yellowish-orange colorants. Highest productivities were obtained from T. brunneus LMB-HP43 in SmF (0.18 AU/L/h) and SSF (0.17 AU/L/h), and P. mallochii LMB-HP37 in SSF (0.18 AU/L/h). Both strains also exhibited the highest yields (AU/g biomass) in the three fermentation systems, reaching values greater than 18-folds in SSF compared to the other strains. Conversely, T. wortmannii LMB-HP14 and P. maximae LMB-HP33 showed no ability to produce pigments in the SSF system. The performed experiments accurately compared the effect of the fermentation system on yield and productivity. From this, further genomics approaches can be considered for an extensive analysis of pigment synthesis pathways and a genomics-driven optimization in the best fermentation system.
Collapse
|
122
|
Ordóñez-Enireb E, Cucalón RV, Cárdenas D, Ordóñez N, Coello S, Elizalde P, Cárdenas WB. Antarctic fungi with antibiotic potential isolated from Fort William Point, Antarctica. Sci Rep 2022; 12:21477. [PMID: 36509821 PMCID: PMC9744802 DOI: 10.1038/s41598-022-25911-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The Antarctic continent is one of the most inhospitable places on earth, where living creatures, mostly represented by microorganisms, have specific physiological characteristics that allow them to adapt to the extreme environmental conditions. These physiological adaptations can result in the production of unique secondary metabolites with potential biotechnological applications. The current study presents a genetic and antibacterial characterization of four Antarctic fungi isolated from soil samples collected in Pedro Vicente Maldonado Scientific Station, at Fort William Point, Greenwich Island, Antarctica. Based on the sequences of the internal transcribed spacer (ITS) region, the fungi were identified as Antarctomyces sp., Thelebolus sp., Penicillium sp., and Cryptococcus gilvescens. The antibacterial activity was assessed against four clinical bacterial strains: Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis, and Staphylococcus aureus, by a modified bacterial growth inhibition assay on agar plates. Results showed that C. gilvescens and Penicillium sp. have potential antibiotic activity against all bacterial strains. Interestingly, Thelebolus sp. showed potential antibiotic activity only against E. coli. In contrast, Antarctomyces sp. did not show antibiotic activity against any of the bacteria tested under our experimental conditions. This study highlights the importance of conservation of Antarctica as a source of metabolites with important biomedical applications.
Collapse
Affiliation(s)
- Eunice Ordóñez-Enireb
- grid.442143.40000 0001 2107 1148Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Roberto V. Cucalón
- grid.442143.40000 0001 2107 1148Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador ,grid.35403.310000 0004 1936 9991Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Natural Resources Building 607 E. Peabody Dr., Champaign, IL 61820 USA
| | - Diana Cárdenas
- grid.442143.40000 0001 2107 1148Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Nadia Ordóñez
- grid.442143.40000 0001 2107 1148Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador ,grid.420044.60000 0004 0374 4101Biochemistry and Biosupport, Research and Development, Crop Science, Bayer AG, Monheim, Germany
| | - Santiago Coello
- grid.442143.40000 0001 2107 1148Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Paola Elizalde
- grid.442143.40000 0001 2107 1148Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador ,grid.25152.310000 0001 2154 235XVaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK S7N5E3 Canada ,grid.25152.310000 0001 2154 235XSchool of Public Health, University of Saskatchewan, Saskatoon, SK S7N5E5 Canada
| | - Washington B. Cárdenas
- grid.442143.40000 0001 2107 1148Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| |
Collapse
|
123
|
Kovács E, Szűcs C, Farkas A, Szuhaj M, Maróti G, Bagi Z, Rákhely G, Kovács KL. Pretreatment of lignocellulosic biogas substrates by filamentous fungi. J Biotechnol 2022; 360:160-170. [PMID: 36273669 DOI: 10.1016/j.jbiotec.2022.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/12/2022] [Accepted: 10/16/2022] [Indexed: 11/19/2022]
Abstract
Decomposition of lignocellulosic plant biomass by four filamentous fungi was carried out to facilitate subsequent anaerobic degradation and biogas formation. Agricultural side products, wheat straw and corn stover and forestry energy plant willow chips were selected as plant biomass sources. The substrates were confronted by pure cultures of Penicillium aurantiogriseum (new isolate from rumen), Trichoderma reesei (DSM768), Gilbertella persicaria (SZMC11086) and Rhizomucor miehei (SZMC11005). In addition to total cellulolytic filter paper degradation activity, the production of endoglucanase, cellobiohydrolase, β-glucosidase enzymes were followed during the pretreatment period, which lasted for 10 days at 37 °C. The products of pretreatments were subsequently tested for mesophilic biogas production in batch reactors. All 4 strains effectively pretreated the lignocellulosic substrates albeit in varying degrees, which was related to the level of the tested hydrolytic enzyme activities. Penicillium aurantiogriseum showed outstanding hydrolytic enzyme production and highest biogas yield from the partially degraded substrates. Corn stover was the best substrate for biomass decomposition and biogas production. Scanning electron microscopy confirmed the deep penetration of fungal hyphae into the lignocellulosic substrate in all cases.
Collapse
Affiliation(s)
- Etelka Kovács
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Plant Biology, Biological Research Center, Szeged, Hungary
| | - Csilla Szűcs
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Plant Biology, Biological Research Center, Szeged, Hungary
| | - Attila Farkas
- Institute of Plant Biology, Biological Research Center, Szeged, Hungary
| | - Márk Szuhaj
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Center, Szeged, Hungary
| | - Zoltán Bagi
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Plant Biology, Biological Research Center, Szeged, Hungary; Institute of Biophysics, Biological Research Center, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Biophysics, Biological Research Center, Szeged, Hungary
| | - Kornél L Kovács
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Plant Biology, Biological Research Center, Szeged, Hungary; Institute of Biophysics, Biological Research Center, Szeged, Hungary; Department of Oral Biology and Experimental Dentistry, University of Szeged, Szeged, Hungary.
| |
Collapse
|
124
|
de Camargo BR, Takematsu HM, Ticona ARP, da Silva LA, Silva FL, Quirino BF, Hamann PRV, Noronha EF. Penicillium polonicum a new isolate obtained from Cerrado soil as a source of carbohydrate-active enzymes produced in response to sugarcane bagasse. 3 Biotech 2022; 12:348. [PMID: 36386566 PMCID: PMC9652181 DOI: 10.1007/s13205-022-03405-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Penicillium species have been studied as producers of plant cell wall degrading enzymes to deconstruct agricultural residues and to be applied in industrial processes. Natural environments containing decaying plant matter are ideal places for isolating fungal strains with cellulolytic and xylanolytic activities. In the present study, Cerrado soil samples were used as source of filamentous fungi able to degrade xylan and cellulose. Penicillium was the most abundant genus among the obtained xylan and carboxymethylcellulose degraders. Penicillium polonicum was one of the best enzyme producers in agar-plate assays. In addition, it secretes CMCase, Avicelase, pectinase, mannanase, and xylanase during growth in liquid media containing sugarcane bagasse as carbon source. The highest value for endo-β-1,4-xylanase activity was obtained after 4 days of growth. Xyl PP, a 20 kDa endo-β-1,4-xylanase, was purified and partially characterized. The purified enzyme presented the remarkable feature of being resistant to the lignin-derived phenolic compounds, p-coumaric and trans-ferulic acids. This feature calls for its further use in bioprocesses that use lignocellulose as feedstock. Furthermore, future work should explore its structural features which may contribute to the understanding of the relationship between its structure and resistance to phenolic compounds. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03405-x.
Collapse
Affiliation(s)
- Brenda Rabelo de Camargo
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900 Brazil
| | - Hamille Mey Takematsu
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900 Brazil
| | - Alonso R. Poma Ticona
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900 Brazil
| | - Leonardo Assis da Silva
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900 Brazil
| | - Francilene Lopes Silva
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900 Brazil
| | - Betania Ferraz Quirino
- Embrapa-Agroenergia, Genetics and Biotechnology Laboratory, Brasilia, DF 70770-901 Brazil
| | - Pedro R. Vieira Hamann
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900 Brazil
| | - Eliane Ferreira Noronha
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900 Brazil
| |
Collapse
|
125
|
Kirchmair M, Embacher J, Heimdörfer D, Walch G, Neuhauser S. Penicillium poederi and P. tirolense, two new species of section Torulomyces. Fungal Syst Evol 2022; 10:91-101. [PMID: 36789281 PMCID: PMC9903346 DOI: 10.3114/fuse.2022.10.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/07/2022] [Indexed: 11/07/2022] Open
Abstract
Here we describe two new species of the genus Penicillium section Torulomyces with solitary phialides. Penicillium poederi sp. nov. was isolated from volcanic soils in Iceland. Penicillium tirolense sp. nov. was isolated from a sporocarp of Serpula lacrymans. Both species are characterised by slow growth rates and the production of a brown soluble pigment on CYA, conidiophores with solitary ampulliform phialides with smooth-walled stipes and warty, globose conidia and with connectives without visible rings. The spores of. P. poederi are 2.5 μm diam, while the spores of P. tirolense are 2.0 μm diam. In a multigene phylogeny based on the ITS, BenA, CaM and RPB2 gene regions P. tubakianum and P. wollemiicola are the closest relatives of P. poederi. This species differs from P. tubakianum and P. wollemiicola by its growth rates and by its pigmentation. The holotype of P. poederi is IB2017/0007, while SF014017 (CBS 147622) is a culture derived from the holotype. The closest relatives of P. tirolense are P. austricola and P. riverlandense. It differs from P. austricola by lower growth rates on all tested media and temperatures and by its larger spores. It differs from P. riverlandense by lower growth rates and the absence of growth at 37 °C. The holotype of P. tirolense is IBF2019/0162, while SF015108 (CBS 147625) is a culture derived from the holotype. Citation: Kirchmair M, Embacher J, Heimdörfer D, Walch G, Neuhauser S (2022). Penicillium poederi and Penicillium tirolense, two new species of section Torulomyces. Fungal Systematics and Evolution 10: 91-101. doi: 10.3114/fuse.2022.10.03.
Collapse
Affiliation(s)
- M. Kirchmair
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - J. Embacher
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - D. Heimdörfer
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - G. Walch
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - S. Neuhauser
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
126
|
Issa MAS, Hanan ZK. The biofabrication of ZnO nanoparticles using the green soft technique reduction of Zincum Gluconicum (ZNG) by extracellular mycofiltrate of Penicillium italicum Pit-L6. J Med Life 2022; 15:1476-1487. [PMID: 36762330 PMCID: PMC9884358 DOI: 10.25122/jml-2021-0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 07/05/2022] [Indexed: 02/11/2023] Open
Abstract
Recently, biological techniques for manufacturing nanoparticles, such as employing filamentous fungi to synthesize ZnO nanoparticles, have become environmentally friendly, bio congruous, and safe. This study aimed to look for Penicillium italicum [Filamentous Blue Mold (FiBM)] in rotting citrus fruits and exploit this in the biofabrication of ZnO nanoparticles. The study isolated 39 different filamentous mold samples and used conventional and molecular diagnosis. Only 11 (28%) of the isolates obtained contained Penicillium italicum, for which we investigated the capability of ZnO nanoparticles biosynthesis by fungal extracellular free-cells filtrate solution. The results showed that Penicillium italicum Pit-L6 was given the peak of ZnONps 378 nm detected by UV-visible spectrophotometry, and it considered significantly optimum strain in the highest quantity (mean±S.D) 0.015±0.002 gm/100 ml with small enough average nanoparticles size. The ZnONps were characterized by UV-visible scanning spectrophotometry, atomic force microscopy (AFM), X|-RD, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The final average ZnONps through 0f in all measuring devices ranged between 53.13-69.67 nm (with different shapes and dimensions). This study concluded that these fungi (FiBMs) are highly capable as eco-friendly and cheap bio-nano factories to manufacture ZnONps as alternative novel biological technology, in fine particles within average size at nano-level, as continuous renewable sources for producing nanoparticles, for different usage.
Collapse
Affiliation(s)
- Mohammed Abdul-Sahib Issa
- Department of Biology, College of Science, University of Thi-Qar, Nassiryhia, Iraq,Corresponding Author: Mohammed Abdul-Sahib Issa, Department of Biology, College of Science, University of Thi-Qar, Nassiryhia, Iraq. E-mail: Zaman Kareem Hanan, College of Dentistry, University of Thi-Qar, Nassiryhia, Iraq E-mail:
| | - Zaman Kareem Hanan
- College of Dentistry, University of Thi-Qar, Nassiryhia, Iraq,Corresponding Author: Mohammed Abdul-Sahib Issa, Department of Biology, College of Science, University of Thi-Qar, Nassiryhia, Iraq. E-mail: Zaman Kareem Hanan, College of Dentistry, University of Thi-Qar, Nassiryhia, Iraq E-mail:
| |
Collapse
|
127
|
dos Reis Gasparetto B, Chelala Moreira R, Priscilla França de Melo R, de Souza Lopes A, de Oliveira Rocha L, Maria Pastore G, Lemos Bicas J, Martinez J, Joy Steel C. Effect of supercritical CO2 fractionation of Tahiti lemon (Citrus latifolia Tanaka) essential oil on its antifungal activity against predominant molds from pan bread. Food Res Int 2022; 162:111900. [DOI: 10.1016/j.foodres.2022.111900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 11/04/2022]
|
128
|
Occurrence of Aflatoxins and Ochratoxin A during Merkén Pepper Powder Production in Chile. Foods 2022; 11:foods11233843. [PMID: 36496651 PMCID: PMC9739129 DOI: 10.3390/foods11233843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
Berry fruits of Capsicum annuum L. cv. "Cacho de Cabra" are used for the manufacture of a traditional pepper powder known as Merkén. In the present study, aflatoxins (AFs) and ochratoxin A (OTA) contamination in berry fruits of C. annuum was determined at harvest, drying, and smoking stages of Merkén production, in cumin and coriander seeds used as Merkén ingredients, and in the final packaged Merkén produced by local farmers. Additionally, Merkén samples from local markets in the region of La Araucanía (Chile) were also evaluated. Chromatographic analysis was based on a qualitative method. AFs and OTA were not detected on pepper pods and seeds. There was no detection of AFs and OTA on cultured Aspergillus and Penicillium strains isolated from pepper pods, cumin and coriander seeds and Merkén. The lack of AFs/OTA-producers among the isolated fungal species can explain and support the absence of contamination in pepper pods. In contrast, the AFB1 was detected in 75% of Merkén obtained from farmers and 46% of Merkén samples purchased from local markets; while OTA was detected in 100% of Merkén samples obtained from farmers and local markets. In the Merkén production chain, the harvest and post-harvest are key stages for fungal growth while the commercialization stage is highly susceptible to AFs and OTA contamination.
Collapse
|
129
|
Fernandes L, Graeff F, Jelassi A, Sulyok M, Garcia C, Rodrigues N, Pereira JA, Bento A, Kanoun A, Rodrigues P, Pereira EL, Ramalhosa E. Effect of relative humidity on the quality and safety of peeled almond kernels (
Prunus dulcis
Mill.) during simulated maritime transport/storage. J Food Sci 2022; 87:5363-5374. [DOI: 10.1111/1750-3841.16369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Luana Fernandes
- Centro de Investigação de Montanha (CIMO)Instituto Politécnico de Bragança BragançaPortugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC)Instituto Politécnico de Bragança BragançaPortugal
- MORE, Laboratório Colaborativo Montanhas de Investigação ‐ Associação BragançaPortugal
| | - Francieli Graeff
- Centro de Investigação de Montanha (CIMO)Instituto Politécnico de Bragança BragançaPortugal
- School of Food ScienceFederal TechnologicalUniversity of Paraná, UTFPR MedianeiraBrazil
| | - Arij Jelassi
- Ecole Polytechnique Université Libre de Tunis TunisTunisia
| | - Michael Sulyok
- Institute of Bioanalytics and Agro‐MetabolomicsUniversity of Natural Resources and Life Sciences ViennaAustria
| | - Carolina Garcia
- School of Food ScienceFederal TechnologicalUniversity of Paraná, UTFPR MedianeiraBrazil
| | - Nuno Rodrigues
- Centro de Investigação de Montanha (CIMO)Instituto Politécnico de Bragança BragançaPortugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC)Instituto Politécnico de Bragança BragançaPortugal
| | - José Alberto Pereira
- Centro de Investigação de Montanha (CIMO)Instituto Politécnico de Bragança BragançaPortugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC)Instituto Politécnico de Bragança BragançaPortugal
| | - Albino Bento
- Centro de Investigação de Montanha (CIMO)Instituto Politécnico de Bragança BragançaPortugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC)Instituto Politécnico de Bragança BragançaPortugal
| | - Alifa Kanoun
- Ecole Polytechnique Université Libre de Tunis TunisTunisia
| | - Paula Rodrigues
- Centro de Investigação de Montanha (CIMO)Instituto Politécnico de Bragança BragançaPortugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC)Instituto Politécnico de Bragança BragançaPortugal
| | - Ermelinda Lopes Pereira
- Centro de Investigação de Montanha (CIMO)Instituto Politécnico de Bragança BragançaPortugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC)Instituto Politécnico de Bragança BragançaPortugal
| | - Elsa Ramalhosa
- Centro de Investigação de Montanha (CIMO)Instituto Politécnico de Bragança BragançaPortugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC)Instituto Politécnico de Bragança BragançaPortugal
| |
Collapse
|
130
|
Mirsam H, Suriani, Aqil M, Azrai M, Efendi R, Muliadi A, Sembiring H, Azis AI. Molecular Characterization of Indigenous Microbes and Its Potential as a Biological Control Agent of Fusarium Stem Rot (Fusarium verticillioides) on Maize. Heliyon 2022; 8:e11960. [DOI: 10.1016/j.heliyon.2022.e11960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/14/2022] [Accepted: 11/19/2022] [Indexed: 12/02/2022] Open
|
131
|
Tarroum M, Romdhane WB, Al-Qurainy F, Ali AAM, Al-Doss A, Fki L, Hassairi A. A novel PGPF Penicillium olsonii isolated from the rhizosphere of Aeluropus littoralis promotes plant growth, enhances salt stress tolerance, and reduces chemical fertilizers inputs in hydroponic system. Front Microbiol 2022; 13:996054. [PMID: 36386667 PMCID: PMC9648140 DOI: 10.3389/fmicb.2022.996054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2022] Open
Abstract
The hydroponic farming significantly enhances the yield and enables multiple cropping per year. These advantages can be improved by using plant growth-promoting fungi (PGPF) either under normal or stress conditions. In this study, the fungal strain (A3) isolated from the rhizosphere of the halophyte plant Aeluropus littoralis was identified as Penicillium olsonii based on sequence homology of its ITS region. The A3 fungus was shown to be halotolerant (up to 1 M NaCl) and its optimal growth was at 27°C, but inhibited at 40°C. In liquid culture medium, the A3 produced indole acetic acid (IAA) especially in the presence of L-tryptophan. Tobacco plants grown under hydroponic farming system were used to evaluate the promoting activity of the direct effect of A3 mycelium (DE) and the indirect effect (IDE) of its cell-free culture filtrate (A3CFF). The results showed that for the two conditions (DE or IDE) the tobacco seedlings exhibited significant increase in their height, leaf area, dry weight, and total chlorophyll content. Interestingly, the A3CFF (added to the MS liquid medium or to nutrient solution (NS), prepared from commercial fertilizers) induced significantly the growth parameters, the proline concentration, the catalase (CAT) and the superoxide dismutase (SOD) activities of tobacco plants. The A3CFF maintained its activity even after extended storage at 4°C for 1 year. Since the A3 is a halotolerant fungus, we tested its ability to alleviate salt stress effects. Indeed, when added at 1:50 dilution factor to NS in the presence of 250 mM NaCl, the A3CFF enhanced the plant salt tolerance by increasing the levels of total chlorophyll, proline, CAT, and SOD activities. In addition, the treated plants accumulated less Na+ in their roots but more K+ in their leaves. The A3CFF was also found to induce the expression of five salt stress related genes (NtSOS1, NtNHX1, NtHKT1, NtSOD, and NtCAT1). Finally, we proved that the A3CFF can reduce by half the chemical fertilizers inputs. Indeed, the tobacco plants grown in a hydroponic system using 0.5xNS supplemented with A3CFF (1:50) exhibited significantly higher growth than those grown in 0.5xNS or 1xNS. In an attempt to explain this mechanism, the expression profile of some growth related genes (nitrogen metabolism (NR1, NRT1), auxin (TRYP1, YUCCA6-like), and brassinosteroid (DET2, DWF4) biosynthesis) was performed. The results showed that all these genes were up-regulated following plant treatment with A3CFF. In summary the results revealed that the halotolerant fungus P. olsonii can stimulates tobacco plant growth, enhances its salt tolerance, and reduces by half the required chemical fertilizer inputs in a hydroponic farming system.
Collapse
Affiliation(s)
- Mohamed Tarroum
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Mohamed Tarroum,
| | - Walid Ben Romdhane
- Department of Plant Production, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
| | - Fahad Al-Qurainy
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Abdelrahim Mohamed Ali
- Department of Plant Production, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Al-Doss
- Department of Plant Production, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
| | - Lotfi Fki
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Afif Hassairi
- Department of Plant Production, College of Food and Agricultural Science, King Saud University, Riyadh, Saudi Arabia
- Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
- Afif Hassairi,
| |
Collapse
|
132
|
Kim YS, Ngo MT, Kim B, Han JW, Song J, Park MS, Choi GJ, Kim H. Biological Control Potential of Penicillium brasilianum against Fire Blight Disease. THE PLANT PATHOLOGY JOURNAL 2022; 38:461-471. [PMID: 36221918 PMCID: PMC9561163 DOI: 10.5423/ppj.oa.06.2022.0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
Erwinia amylovora is a causative pathogen of fire blight disease, affecting apple, pear, and other rosaceous plants. Currently, management of fire blight relies on cultural and chemical practices, whereas it has been known that few biological resources exhibit disease control efficacy against the fire blight. In the current study, we found that an SFC20201208-M01 fungal isolate exhibits antibacterial activity against E. amylovora TS3128, and the isolate was identified as a Penicillium brasilianum based on the β-tubulin (BenA) gene sequence. To identify active compounds from the P. brasilianum culture, the culture filtrate was partitioned with ethyl acetate and n-butanol sequentially. From the ethyl acetate layer, we identified two new compounds (compounds 3-4) and two known compounds (compounds 1-2) based on spectroscopic analyses and comparison with literature data. Of these active compounds, penicillic acid (1) exhibited promising antibacterial activity against E. amylovora TS3128 with a minimal inhibitory concentration value of 25 μg/ml. When culture filtrate and penicillic acid (125 μg/ml) were applied onto Chinese pearleaf crab apple seedlings prior to inoculation of E. amylovora TS3128, the development of fire blight disease was effectively suppressed in the treated plants. Our results provide new insight into the biocontrol potential of P. brasilianum SFC20201208-M01 with an active ingredient to control fire blight.
Collapse
Affiliation(s)
- Yeong Seok Kim
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114,
Korea
- Division of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113,
Korea
| | - Men Thi Ngo
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114,
Korea
- Division of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113,
Korea
| | - Bomin Kim
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114,
Korea
- Division of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113,
Korea
| | - Jae Woo Han
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114,
Korea
| | - Jaekyeong Song
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365,
Korea
| | - Myung Soo Park
- Department of School of Biological Sciences, Seoul National University, Seoul 08826,
Korea
| | - Gyung Ja Choi
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114,
Korea
- Division of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113,
Korea
| | - Hun Kim
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114,
Korea
- Division of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113,
Korea
| |
Collapse
|
133
|
Jakobija I, Bankina B, Klūga A, Roga A, Skinderskis E, Fridmanis D. The Diversity of Fungi Involved in Damage to Japanese Quince. PLANTS (BASEL, SWITZERLAND) 2022; 11:2572. [PMID: 36235437 PMCID: PMC9571690 DOI: 10.3390/plants11192572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022]
Abstract
In recent years, Japanese quince (Chaenomeles japonica) plantations in Latvia have increased. Interest in breeding Japanese quince is also known in other European countries and Russia. The occurrence and harmfulness of fungal diseases have become increasingly significant. However, there is a lack of overall information in the literature about the diversity of fungi afflicting C. japonica. In our study, we aimed to determine the diversity of fungi associated with C. japonica in Latvia, with the possibility of identifying the fungi that are most characteristically associated with certain parts of the plant. Our research was conducted from 2017 to 2019 in eight Japanese quince plantations in Latvia. Samples of plant parts with disease symptoms were collected. Pure cultures of fungi were obtained and identified using ITS region sequencing. We determined the relative density of identified genera of fungi, which were grouped using hierarchical cluster analysis depending on the plant part from which they were found. Various disease-like symptoms were observed and described. A total of 538 isolates of fungi were obtained that belong to 36 genera and represent different ecological niches. Fusarium, Alternaria, Botrytis, and Sarocladium were the genera most frequently found during our study. The number of identified cases of fungal genera differed depending on the part of the plant from which the fungi were obtained. However, it is not possible to relate a specific genus of fungus to only one certain part of a plant. Further research is needed to clarify the pathogenicity of detected fungi and the composition of species in the detected genera of fungi.
Collapse
Affiliation(s)
- Inta Jakobija
- Faculty of Agriculture, Latvia University of Life Sciences and Technologies, Liela Street 2, LV-3001 Jelgava, Latvia
- Institute of Plant Protection Research “Agrihorts”, Latvia University of Life Sciences and Technologies, Paula Lejina Street 2, LV-3001 Jelgava, Latvia
| | - Biruta Bankina
- Faculty of Agriculture, Latvia University of Life Sciences and Technologies, Liela Street 2, LV-3001 Jelgava, Latvia
| | - Alise Klūga
- Faculty of Agriculture, Latvia University of Life Sciences and Technologies, Liela Street 2, LV-3001 Jelgava, Latvia
- Institute of Plant Protection Research “Agrihorts”, Latvia University of Life Sciences and Technologies, Paula Lejina Street 2, LV-3001 Jelgava, Latvia
| | - Ance Roga
- Latvian Biomedical Research and Study Centre, Rātsupites Street 1 k-1, LV-1067 Riga, Latvia
| | - Edmunds Skinderskis
- Latvian Biomedical Research and Study Centre, Rātsupites Street 1 k-1, LV-1067 Riga, Latvia
| | - Dāvids Fridmanis
- Latvian Biomedical Research and Study Centre, Rātsupites Street 1 k-1, LV-1067 Riga, Latvia
| |
Collapse
|
134
|
Penicillium digitatum, First Clinical Report in Chile: Fungal Co-Infection in COVID-19 Patient. J Fungi (Basel) 2022; 8:jof8090961. [PMID: 36135686 PMCID: PMC9503875 DOI: 10.3390/jof8090961] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 12/04/2022] Open
Abstract
Penicillium digitatum is one of the most important phytopathogens. It causes deterioration and rotting of citrus fruits, generating significant economic losses worldwide. As a human pathogen, it is extremely rare. We present a case of pulmonary co-infection in a patient diagnosed with pneumonia due to SARS-CoV-2. A 20-year-old female patient, primigravid, 36 weeks of gestation, without comorbidities, and diagnosed with severe pneumonia due to the SARS-CoV-2, showed rapid lung deterioration for which their pregnancy was interrupted by surgery. The patient was hospitalized in the Intensive Care Unit (ICU), connected to mechanical ventilation and receiving corticosteroids and antibiotics. The diagnosis of pulmonary fungal infection was made through bronchoalveolar lavage (BAL) culture, and the species identification was performed by sequencing of β-tubulin. Phylogenetic analysis with related species was performed for the confirmation of species identification. Antifungal susceptibility tests were performed for itraconazole (4 µg/mL), voriconazole (2 µg/mL), and amphotericin B (2 µg/mL). The patient was successfully treated with itraconazole. This is the second worldwide report of pulmonary infection by P. digitatum and the first in Chile. Although it is a fungus that rarely infects humans, it could represent an emerging opportunistic fungal pathogen, with associated risk factors that should be considered in the differential diagnosis of Penicillium species isolated from infections in humans.
Collapse
|
135
|
Seo CW, Kim SH, Lim YW, Park MS. Re-Identification on Korean Penicillium Sequences in GenBank Collected by Software GenMine. MYCOBIOLOGY 2022; 50:231-237. [PMID: 36158042 PMCID: PMC9467555 DOI: 10.1080/12298093.2022.2116816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 06/16/2023]
Abstract
Penicillium species have been actively studied in various fields, and many new and unrecorded species continue to be reported in Korea. Moreover, unidentified and misidentified Korean Penicillium species still exist in GenBank. Therefore, it is necessary to revise the Korean Penicillium inventory based on accurate identification. We collected Korean Penicillium nucleotide sequence records from GenBank using the newly developed software, GenMine, and re-identified Korean Penicillium based on the maximum likelihood trees. A total of 1681 Korean Penicillium GenBank nucleotide sequence records were collected from GenBank. In these records, 1208 strains with four major genes (Internal Transcribed Spacer rDNA region, β-tubulin, Calmodulin and RNA polymerase II) were selected for Penicillium re-identification. Among 1208 strains, 927 were identified, 82 were identified as other genera, the rest remained undetermined due to low phylogenetic resolution. Identified strains consisted of 206 Penicillium species, including 156 recorded species and 50 new species candidates. However, 37 species recorded in the national list of species in Korea were not found in GenBank. Further studies on the presence or absence of these species are required through literature investigation, additional sampling, and sequencing. Our study can be the basis for updating the Korean Penicillium inventory.
Collapse
Affiliation(s)
- Chang Wan Seo
- School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul, South Korea
| | - Sung Hyun Kim
- School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul, South Korea
| | - Young Woon Lim
- School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul, South Korea
| | - Myung Soo Park
- Department of Crops and Forestry, Korea National University of Agriculture and Fisheries, Jeonju, South Korea
| |
Collapse
|
136
|
Telagathoti A, Probst M, Mandolini E, Peintner U. Mortierellaceae from subalpine and alpine habitats: new species of Entomortierella, Linnemannia, Mortierella, Podila and Tyroliella gen. nov.. Stud Mycol 2022; 103:25-58. [PMID: 37342154 PMCID: PMC10277274 DOI: 10.3114/sim.2022.103.02] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/02/2022] [Indexed: 10/09/2023] Open
Abstract
Fungi are incredibly diverse, but they are unexplored, especially in the subalpine and alpine zone. Mortierellaceae are certainly one of the most abundant, species-rich, and widely distributed cultivable soil fungal families in terrestrial habitats, including subalpine and alpine zones. The phylogeny of Mortierellaceae was recently resolved based on current state of the art molecular techniques, and the paraphyletic genus Mortierella sensu lato (s.l.) was divided into 13 monophyletic genera. Our extensive sampling campaigns in the Austrian Alps resulted in 139 different Mortierellaceae pure culture isolates representing 13 new species. For the definition of taxa, we applied both classical morphological criteria, as well as modern DNA-based methods. Phylogenetic relationships were resolved based on the ribosomal DNA internal transcribed spacer (rDNA ITS), the large subunit (LSU), and the DNA-directed RNA polymerase II largest subunit 1 (RPB1). In this study, we proposed a new genus and described 13 new species belonging to the genera Entomortierella, Linnemannia, Mortierella and Podila. In addition, we proposed eight new combinations, re-defined E. jenkinii at species level, defined a neotype for M. alpina and lecto- as well as epitypes for M. fatshederae, M. jenkinii, and M. longigemmata. The rDNA ITS region is generally applied as classical barcoding gene for fungi. However, the obtained phylogenetic resolution is often too low for an accurate identification of closely related species of Mortierellaceae, especially for small sampling sizes. In such cases, unambiguous identification can be obtained based on morphological characters of pure culture isolates. Therefore, we also provide dichotomous keys for species identification within phylogenetic lineages. Taxonomic novelties: new genus: Tyroliella Telagathoti, Probst & Peintner; New species: Entomortierella galaxiae Telagathoti, M. Probst & Peintner, Linnemannia bainierella Telagathoti, M. Probst & Peintner, Linnemannia stellaris Telagathoti, M. Probst & Peintner, Linnemannia nimbosa Telagathoti, M. Probst & Peintner, Linnemannia mannui Telagathoti, M. Probst & Peintner, Linnemannia friederikiana Telagathoti, M. Probst & Peintner, Linnemannia scordiella Telagathoti, M. Probst & Peintner, Linnemannia solitaria Telagathoti, M. Probst & Peintner, Mortierella triangularis Telagathoti, M. Probst & Peintner, Mortierella lapis Telagathoti, M. Probst & Peintner, Podila himami Telagathoti, M. Probst & Peintner, Podila occulta Telagathoti, M. Probst & Peintner, Tyroliella animus-liberi Telagathoti, Probst & Peintner; New combinations: Entomortierella basiparvispora (W. Gams & Grinb.) Telagathoti, M. Probst & Peintner, Entomortierella jenkinii (A.L. Sm.) Telagathoti, M. Probst & Peintner; Entomortierella sugadairana (Y. Takash. et al.) Telagathoti, M. Probst & Peintner, Linnemannia zonata (Linnem. ex W. Gams) Telagathoti, M. Probst & Peintner, Linnemannia fluviae (Hyang B. Lee et al.) Telagathoti, M. Probst & Peintner, Linnemannia biramosa (Tiegh.) Telagathoti, M. Probst & Peintner, Linnemannia cogitans (Degawa) Telagathoti, M. Probst & Peintner, Tyroliella pseudozygospora (W. Gams & Carreiro) Telagathoti, M. Probst & Peintner; Epitypifications (basionyms): Mortierella bainieri var. jenkinii A.L. Sm., Mortierella fatshederae Linnem., Mortierella longigemmata Linnem. Neotypification (basionym): Mortierella alpina Peyronel. Citation: Telagathoti A, Probst M, Mandolini E, Peintner U (2022). Mortierellaceae from subalpine and alpine habitats: new species of Entomortierella, Linnemannia, Mortierella, Podila and Tyroliella gen. nov. Studies in Mycology 103: 25-58. doi: 10.3114/sim.2022.103.02.
Collapse
Affiliation(s)
- A. Telagathoti
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - M. Probst
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - E. Mandolini
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - U. Peintner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| |
Collapse
|
137
|
Organic Farm Bedded Pack System Microbiomes: A Case Study with Comparisons to Similar and Different Bedded Packs. DAIRY 2022. [DOI: 10.3390/dairy3030042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Animal housing and bedding materials influence cow and farm worker exposure to microbial pathogens, biocontrol agents, and/or allergens. This case study represents an effort to characterize the bacterial and fungal community of bedding systems using an amplicon sequencing approach supplemented with the ecological assessment of cultured Trichocomaceae isolates (focusing on Penicillium and Aspergillus species) and yeasts (Saccharomycetales). Bedding from five certified organic dairy farms in northern Vermont USA were sampled monthly between October 2015 and May 2016. Additional herd level samples from bulk tank milk and two bedding types were collected from two farms to collect fungal isolates for culturing and ecology. Most of the microorganisms in cattle bedding were microbial decomposers (saprophytes) or coprophiles, on account of the bedding being composed of dead plant matter, cattle feces, and urine. Composition of bacterial and fungal communities exhibited distinct patterns of ecological succession measured through time and by bedding depth. Community composition patterns were related to management practices and choice of bedding material. Aspergillus and Penicillium species exhibited niche differentiation expressed as differential substrate requirements; however, they generally exhibited traits of early colonizers of bedding substrates, typically rich in carbon and low in nitrogen. Pichia kudriavzevii was the most prevalent species cultured from milk and bedding. P. kudriavzevii produced protease and its abundance directly related to temperature. The choice of bedding and its management represent a potential opportunity to curate the microbial community of the housing environment.
Collapse
|
138
|
Borzęcka J, Suchodolski J, Dudek B, Matyaszczyk L, Spychała K, Ogórek R. The First Comprehensive Biodiversity Study of Culturable Fungal Communities Inhabiting Cryoconite Holes in the Werenskiold Glacier on Spitsbergen (Svalbard Archipelago, Arctic). BIOLOGY 2022; 11:1224. [PMID: 36009851 PMCID: PMC9405543 DOI: 10.3390/biology11081224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
Cryoconite holes on glacier surfaces are a source of cold-adapted microorganisms, but little is known about their fungal inhabitants. Here, we provide the first report of distinctive fungal communities in cryoconite holes in the Werenskiold Glacier on Spitsbergen (Svalbard Archipelago, Arctic). Due to a combination of two incubation temperatures (7 °C and 24 ± 0.5 °C) and two media during isolation (PDA, YPG), as well as classical and molecular identification approaches, we were able to identify 23 different fungi (21 species and 2 unassigned species). Most of the fungi cultured from cryoconite sediment were ascomycetous filamentous micromycetes. However, four representatives of macromycetes were also identified (Bjerkandera adusta, Holwaya mucida, Orbiliaceae sp., and Trametes versicolor). Some of the described fungi possess biotechnological potential (Aspergillus pseudoglaucus, A. sydowii, Penicillium expansum, P. velutinum, B. adusta, and T. versicolor), thus, we propose the Arctic region as a source of new strains for industrial applications. In addition, two phytopathogenic representatives were present (P. sumatraense, Botrytis cinerea), as well as one potentially harmful to humans (Cladosporium cladosporioides). To the best of our knowledge, we are the first to report the occurrence of A. pseudoglaucus, C. allicinum, C. ramotenellum, P. sumatraense, P. velutinum, P. cumulodentata, B. adusta, and T. versicolor in polar regions. In all likelihood, two unassigned fungus species (Orbiliaceae and Dothideomycetes spp.) might also be newly described in such environments. Additionally, due to experimenting with 10 sampling sites located at different latitudes, we were able to conclude that the number of fungal spores decreases as one moves down the glacier. Considering the prevalence and endangerment of glacial environments worldwide, such findings suggest their potential as reservoirs of fungal diversity, which should not be overlooked.
Collapse
Affiliation(s)
- Justyna Borzęcka
- Department of Mycology and Genetics, University of Wrocław, Przybyszewskiego Street 63-77, 51-148 Wrocław, Poland
| | - Jakub Suchodolski
- Department of Mycology and Genetics, University of Wrocław, Przybyszewskiego Street 63-77, 51-148 Wrocław, Poland
| | - Bartłomiej Dudek
- Department of Microbiology, University of Wrocław, Przybyszewskiego Street 63-77, 51-148 Wrocław, Poland
| | - Lena Matyaszczyk
- Department of Mycology and Genetics, University of Wrocław, Przybyszewskiego Street 63-77, 51-148 Wrocław, Poland
| | - Klaudyna Spychała
- Department of Mycology and Genetics, University of Wrocław, Przybyszewskiego Street 63-77, 51-148 Wrocław, Poland
| | - Rafał Ogórek
- Department of Mycology and Genetics, University of Wrocław, Przybyszewskiego Street 63-77, 51-148 Wrocław, Poland
| |
Collapse
|
139
|
Two Novel Species of Talaromyces Discovered in a Karst Cave in the Satun UNESCO Global Geopark of Southern Thailand. J Fungi (Basel) 2022; 8:jof8080825. [PMID: 36012813 PMCID: PMC9410482 DOI: 10.3390/jof8080825] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022] Open
Abstract
Karst caves are oligotrophic environments that appear to support a high diversity of fungi. Studies of fungi in Thailand’s caves are limited. During a 2019 exploration of the mycobiota associated with soil samples from a karst cave, namely, Phu Pha Phet in the Satun UNESCO Global Geopark in Satun Province, southern Thailand, two previously undescribed fungi belonging to Talaromyces (Trichocomaceae, Eurotiales, Eurotiomycetes) were studied using a polyphasic approach combining phenotypic and molecular data. Based on datasets of four loci (ITS, BenA, CaM, and RPB2), phylogenetic trees of the section Trachyspermi were constructed, and two new species—Talaromyces phuphaphetensis sp. nov. and T. satunensis sp. nov.—phylogenetically related to T. subericola, T. resinae, and T. brasiliensis, are described. Detailed descriptions and illustrations of the new species are provided. This study increases the number of cave-dwelling soil fungi discovered in Thailand’s Satun UNESCO Global Geopark, which appears to be a unique environment with a high potential for discovering fungal species previously undescribed.
Collapse
|
140
|
Hasan AEZ, Julistiono H, Bermawie N, Riyanti EI, Arifni FR. Soursop leaves (Annona muricata L.) endophytic fungi anticancer activity against HeLa cells. Saudi J Biol Sci 2022; 29:103354. [PMID: 35813114 PMCID: PMC9256652 DOI: 10.1016/j.sjbs.2022.103354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 05/11/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022] Open
|
141
|
Wang X, Ding X, Fu K, Guo W, Zhan F, Yuan Z, Jia Z, Zhou L, Jiang X, Ghenijan O, Li Z, Dai J, Xie Y, Wang Z, Xinping Y. Molecular Identification and Efficacy of Entomopathogenic Fungi Isolates Against Larvae of the Asian Corn Borer
Ostrinia furnacalis
(Lepidoptera: Crambidae) in Xinjiang, China. J Appl Microbiol 2022; 133:2979-2992. [DOI: 10.1111/jam.15749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaowu Wang
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences PR China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis Ministry of Agriculture Ürümqi PR China
| | - Xinhua Ding
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis Ministry of Agriculture Ürümqi PR China
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences Ürümqi PR China
| | - Kaiyun Fu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis Ministry of Agriculture Ürümqi PR China
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences Ürümqi PR China
| | - Wenchao Guo
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis Ministry of Agriculture Ürümqi PR China
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences Ürümqi PR China
| | - Faqiang Zhan
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences PR China
| | - Zihan Yuan
- College of Agriculture Xinjiang Agricultural University Ürümqi PR China
| | - Zunzun Jia
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis Ministry of Agriculture Ürümqi PR China
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences Ürümqi PR China
| | - Liuyan Zhou
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences PR China
| | - Xudong Jiang
- College of Agriculture Xinjiang Agricultural University Ürümqi PR China
| | - Osman Ghenijan
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences PR China
| | - Zhi Li
- Institute of Agricultural Economics and Technology Information, Xinjiang Academy of Agricultural Sciences Ürümqi PR China
| | - Jinping Dai
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences PR China
| | - Yuqing Xie
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences PR China
| | - Zhifang Wang
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences PR China
| | - Yang Xinping
- Institute of Microbiology Applications, Xinjiang Academy of Agricultural Sciences PR China
| |
Collapse
|
142
|
Luo X, Zhan X, Ruan R, Xi Y, Shen C, Wang H, Wang M. Genome-wide identification of the Penicillium digitatum bZIP gene family and the roles of one key member, PdatfA. Res Microbiol 2022; 173:103970. [PMID: 35868518 DOI: 10.1016/j.resmic.2022.103970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
Penicillium digitatum is the most common cause of postharvest decay in citrus fruits around the world. Previous studies revealed that the bZIP gene family plays crucial roles in development, stress adaptation, and pathogenicity in fungi. However, little is known about the bZIP genes in P. digitatum. In this study, we systematically identified the bZIP family in 23 Penicillium species and analyzed their evolutionary relationships. We found that gene loss and gene duplication shaped the evolution of the Penicillium bZIP family. P. digitatum experienced 3 bZIP gene loss events, but with no gene duplication. We subsequently characterized the biological functions of one important member, PdatfA in P. digitatum by constructing the deletion mutant. Results showed that ΔPdatfA exhibited a moderate growth defect, reduced pigmentation, and slightly increased resistance to fungicides iprodione and fludioxonil. However, ΔPdatfA displayed similar rot symptoms to that of the wild type. The ΔPdatfA mycelia were not affected in response to oxidative stress while its conidia showed enhanced resistance due to the upregulation of catalases. Our results provide new insights into the evolution and functions of the bZIP gene family in Penicillium.
Collapse
Affiliation(s)
- Xiujun Luo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Xiaori Zhan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Ruoxin Ruan
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Yue Xi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Mingshuang Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
143
|
Light enhanced the antimicrobial, anticancer, and catalytic activities of selenium nanoparticles fabricated by endophytic fungal strain, Penicillium crustosum EP-1. Sci Rep 2022; 12:11834. [PMID: 35821239 PMCID: PMC9276666 DOI: 10.1038/s41598-022-15903-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/30/2022] [Indexed: 01/03/2023] Open
Abstract
Selenium nanoparticles (Se-NPs) has recently received great attention over owing to their superior optical properties and wide biological and biomedical applications. Herein, crystallographic and dispersed spherical Se-NPs were green synthesized using endophytic fungal strain, Penicillium crustosum EP-1. The antimicrobial, anticancer, and catalytic activities of biosynthesized Se-NPs were investigated under dark and light (using Halogen tungsten lamp, 100 Watt, λ > 420 nm, and light intensity of 2.87 W m−2) conditions. The effect of Se-NPs was dose dependent and higher activities against Gram-positive and Gram-negative bacteria as well different Candida spp. were attained in the presence of light than obtained under dark conditions. Moreover, the viabilities of two cancer cells (T47D and HepG2) were highly decreased from 95.8 ± 2.9% and 93.4 ± 3.2% in dark than those of 84.8 ± 2.9% and 46.4 ± 3.3% under light-irradiation conditions, respectively. Significant decreases in IC50 values of Se-NPs against T47D and HepG2 were obtained at 109.1 ± 3.8 and 70.4 ± 2.5 µg mL−1, respectively in dark conditions than 19.7 ± 7.2 and 4.8 ± 4.2 µg mL−1, respectively after exposure to light-irradiation. The photoluminescence activity of Se-NPs revealed methylene blue degradation efficiency of 89.1 ± 2.1% after 210 min under UV-irradiation compared to 59.7 ± 0.2% and 68.1 ± 1.03% in dark and light conditions, respectively. Moreover, superior stability and efficient MB degradation efficiency were successfully achieved for at least five cycles.
Collapse
|
144
|
Wang X, Han P, Bai F, Luo A, Bensch K, Meijer M, B. K, Han D, Sun B, Crous P, Houbraken J. Taxonomy, phylogeny and identification of Chaetomiaceae with emphasis on thermophilic species. Stud Mycol 2022; 101:121-243. [PMID: 36059895 PMCID: PMC9365047 DOI: 10.3114/sim.2022.101.03] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/16/2022] [Indexed: 11/07/2022] Open
Abstract
Chaetomiaceae comprises phenotypically diverse species, which impact biotechnology, the indoor environment and human health. Recent studies showed that most of the traditionally defined genera in Chaetomiaceae are highly polyphyletic. Many of these morphology-based genera, such as Chaetomium, Thielavia and Humicola, have been redefined using multigene phylogenetic analysis combined with morphology; however, a comprehensive taxonomic overview of the family is lacking. In addition, the phylogenetic relationship of thermophilic Chaetomiaceae species with non-thermophilic taxa in the family is largely unclear due to limited taxon sampling in previous studies. In this study, we provide an up-to-date overview on the taxonomy and phylogeny of genera and species belonging to Chaetomiaceae, including an extensive taxon sampling of thermophiles. A multigene phylogenetic analysis based on the ITS (internal transcribed spacers 1 and 2 including the 5.8S nrDNA), LSU (D1/D2 domains of the 28S nrDNA), rpb2 (partial RNA polymerase II second largest subunit gene) and tub2 (β-tubulin gene) sequences was performed on 345 strains representing Chaetomiaceae and 58 strains of other families in Sordariales. Divergence times based on the multi-gene phylogeny were estimated as aid to determine the genera in the family. Genera were delimited following the criteria that a genus must be a statistically well-supported monophyletic clade in both the multigene phylogeny and molecular dating analysis, fall within a divergence time of over 27 million years ago, and be supported by ecological preference or phenotypic traits. Based on the results of the phylogeny and molecular dating analyses, combined with morphological characters and temperature-growth characteristics, 50 genera and 275 species are accepted in Chaetomiaceae. Among them, six new genera, six new species, 45 new combinations and three new names are proposed. The results demonstrate that the thermophilic species fall into seven genera (Melanocarpus, Mycothermus, Remersonia, Thermocarpiscus gen. nov., Thermochaetoides gen. nov., Thermothelomyces and Thermothielavioides). These genera cluster in six separate lineages, suggesting that thermophiles independently evolved at least six times within the family. A list of accepted genera and species in Chaetomiaceae, together with information on their MycoBank numbers, living ex-type strains and GenBank accession numbers to ITS, LSU, rpb2 and tub2 sequences is provided. Furthermore, we provide suggestions how to describe and identify Chaetomiaceae species. Taxonomic novelties: new genera: Parvomelanocarpus X.Wei Wang & Houbraken, Pseudohumicola X.Wei Wang, P.J. Han, F.Y. Bai & Houbraken, Tengochaeta X.Wei Wang & Houbraken, Thermocarpiscus X.Wei Wang & Houbraken, Thermochaetoides X.Wei Wang & Houbraken, Xanthiomyces X.Wei Wang & Houbraken; New species: Botryotrichum geniculatum X.Wei Wang, P.J. Han & F.Y. Bai, Chaetomium subaffine Sergejeva ex X.Wei Wang & Houbraken, Humicola hirsuta X.Wei Wang, P.J. Han & F.Y. Bai, Subramaniula latifusispora X.Wei Wang, P.J. Han & F.Y. Bai, Tengochaeta nigropilosa X.Wei Wang & Houbraken, Trichocladium tomentosum X.Wei Wang, P.J. Han & F.Y. Bai; New combinations: Achaetomiella gracilis (Udagawa) Houbraken, X.Wei Wang, P.J. Han & F.Y. Bai, Allocanariomyces americanus (Cañete-Gibas et al.) Cañete-Gibas, Wiederhold, X.Wei Wang & Houbraken, Amesia dreyfussii (Arx) X.Wei Wang & Houbraken, Amesia raii (G. Malhotra & Mukerji) X.Wei Wang & Houbraken, Arcopilus macrostiolatus (Stchigel et al.) X.Wei Wang & Houbraken, Arcopilus megasporus (Sörgel ex Seth) X.Wei Wang & Houbraken, Arcopilus purpurascens (Udagawa & Y. Sugiy.) X.Wei Wang & Houbraken, Arxotrichum deceptivum (Malloch & Benny) X.Wei Wang & Houbraken, Arxotrichum gangligerum (L.M. Ames) X.Wei Wang & Houbraken, Arxotrichum officinarum (M. Raza & L. Cai) X.Wei Wang & Houbraken, Arxotrichum piluliferoides (Udagawa & Y. Horie) X.Wei Wang & Houbraken, Arxotrichum repens (Guarro & Figueras) X.Wei Wang & Houbraken, Arxotrichum sinense (K.T. Chen) X.Wei Wang & Houbraken, Botryotrichum inquinatum (Udagawa & S. Ueda) X.Wei Wang & Houbraken, Botryotrichum retardatum (A. Carter & R.S. Khan) X.Wei Wang & Houbraken, Botryotrichum trichorobustum (Seth) X.Wei Wang & Houbraken, Botryotrichum vitellinum (A. Carter) X.Wei Wang & Houbraken, Collariella anguipilia (L.M. Ames) X.Wei Wang & Houbraken, Collariella hexagonospora (A. Carter & Malloch) X.Wei Wang & Houbraken, Collariella pachypodioides (L.M. Ames) X.Wei Wang & Houbraken, Ovatospora amygdalispora (Udagawa & T. Muroi) X.Wei Wang & Houbraken, Ovatospora angularis (Yu Zhang & L. Cai) X.Wei Wang & Houbraken, Parachaetomium biporatum (Cano & Guarro) X.Wei Wang & Houbraken, Parachaetomium hispanicum (Guarro & Arx) X.Wei Wang & Houbraken, Parachaetomium inaequale (Pidopl. et al.) X.Wei Wang & Houbraken, Parachaetomium longiciliatum (Yu Zhang & L. Cai) X.Wei Wang & Houbraken, Parachaetomium mareoticum (Besada & Yusef) X.Wei Wang & Houbraken, Parachaetomium muelleri (Arx) X.Wei Wang & Houbraken, Parachaetomium multispirale (A. Carter et al.) X.Wei Wang & Houbraken, Parachaetomium perlucidum (Sergejeva) X.Wei Wang & Houbraken, Parachaetomium subspirilliferum (Sergejeva) X.Wei Wang & Houbraken, Parathielavia coactilis (Nicot) X.Wei Wang & Houbraken, Parvomelanocarpus tardus (X.Wei Wang & Samson) X.Wei Wang & Houbraken, Parvomelanocarpus thermophilus (Abdullah & Al-Bader) X.Wei Wang & Houbraken, Pseudohumicola atrobrunnea (X.Wei Wang et al.) X.Wei Wang, P.J. Han, F.Y. Bai & Houbraken, Pseudohumicola pulvericola (X.Wei Wang et al.) X.Wei Wang, P.J. Han, F.Y. Bai & Houbraken, Pseudohumicola semispiralis (Udagawa & Cain) X.Wei Wang, P.J. Han, F.Y. Bai & Houbraken, Pseudohumicola subspiralis (Chivers) X.Wei Wang, P.J. Han, F.Y. Bai & Houbraken, Staphylotrichum koreanum (Hyang B. Lee & T.T.T. Nguyen) X.Wei Wang & Houbraken, Staphylotrichum limonisporum (Z.F. Zhang & L. Cai) X.Wei Wang & Houbraken, Subramaniula lateralis (Yu Zhang & L. Cai) X.Wei Wang & Houbraken, Thermocarpiscus australiensis (Tansey & M.A. Jack) X.Wei Wang & Houbraken, Thermochaetoides dissita (Cooney & R. Emers.) X.Wei Wang & Houbraken, Thermochaetoides thermophila (La Touche) X.Wei Wang & Houbraken, Xanthiomyces spinosus (Chivers) X.Wei Wang & Houbraken; New names: Chaetomium neoglobosporum X.Wei Wang & Houbraken, Thermothelomyces fergusii X.Wei Wang & Houbraken, Thermothelomyces myriococcoides X.Wei Wang & Houbraken; Lecto- and / or epi-typifications (basionyms): Botryoderma rostratum Papendorf & H.P. Upadhyay, Botryotrichum piluliferum Sacc. & Marchal, Chaetomium carinthiacum Sörgel, Thielavia heterothallica Klopotek. Citation: Wang XW, Han PJ, Bai FY, Luo A, Bensch K, Meijer M, Kraak B, Han DY, Sun BD, Crous PW, Houbraken J (2022). Taxonomy, phylogeny and identification of Chaetomiaceae with emphasis on thermophilic species. Studies in Mycology 101: 121-243. doi: 10.3114/sim.2022.101.03.
Collapse
Affiliation(s)
- X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Road, Chaoyang District, Beijing 100101, China
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - P.J. Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Road, Chaoyang District, Beijing 100101, China
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Road, Chaoyang District, Beijing 100101, China
| | - A. Luo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - M. Meijer
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Kraak B.
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - D.Y. Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Road, Chaoyang District, Beijing 100101, China
| | - B.D. Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Road, Chaoyang District, Beijing 100101, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| |
Collapse
|
145
|
Cottrell MT. A Search for Diastatic Enzymes Endogenous to Humulus lupulus and Produced by Microbes Associated with Pellet Hops Driving “Hop Creep” of Dry Hopped Beer. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2022. [DOI: 10.1080/03610470.2022.2084327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
146
|
Li CX, Liu L, Zhang T, Luo XM, Feng JX, Zhao S. Three-Dimensional Genome Map of the Filamentous Fungus Penicillium oxalicum. Microbiol Spectr 2022; 10:e0212121. [PMID: 35499317 PMCID: PMC9241887 DOI: 10.1128/spectrum.02121-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/31/2022] [Indexed: 01/14/2023] Open
Abstract
Higher-order spatial organization of the chromatin in the nucleus plays crucial roles in the maintenance of cell functions and the regulation of gene expression. Three-dimensional (3D) genome sequencing has been used to great effect in mammal and plants, but the availability of 3D genomes of filamentous fungi is severely limited. Here, we performed a chromosome-level genome assembly of Penicillium oxalicum through single-molecule real-time sequencing (Pacific Biosciences) and chromatin interaction mapping (Hi-C), with a scaffold N50 of 4.07 Mb and a contig N50 of 3.81 Mb, and further elucidated the 3D genome architecture of P. oxalicum. High-frequency interchromosomal contacts occurred within the centromeres and telomeres, as well as within individual chromosomes. There were 12,203 cis-interactions and 7,884 trans-interactions detected at a resolution of 1 kb. Moreover, a total of 1,099 topologically associated domains (or globules) were found, ranging in size from 2.0 to 76.0 kb. Interestingly, transcription factor-bound motifs were enriched in the globule boundaries. All the cellulase and xylanase genes were discretely distributed in the 3D model of the P. oxalicum genome as a result of few cis- and trans-interactions. Our results from this study provide a global view of chromatin interactions in the P. oxalicum genome and will act as a resource for studying spatial regulation of gene expression in filamentous fungi. IMPORTANCE The spatial structure of chromatin plays important roles in normal cell functions and the regulation of gene expression. The three-dimensional (3D) architectures of the genomes of many mammals and plants have been elucidated, but corresponding studies on filamentous fungi, which play vital roles as decomposers of organic matter in the soil, are very limited. Penicillium oxalicum is one of the predominant cellulolytic aerobic fungi in subtropical and tropical forest soils and can secrete integrative cellulase and xylanase under integrated regulatory control, degrading plant biomass highly efficiently. In the present study, we employed Hi-C technology to construct the 3D genome model of P. oxalicum strain HP7-1 and to further investigate cellulase and xylanase as well as transcription factor genes in 3D genome. These results provide a resource to achieve a deeper understanding of cell function and the regulation of gene expression in filamentous fungi.
Collapse
Affiliation(s)
- Cheng-Xi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
- Anhui Key Laboratory of Infection and Immunity, Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui, China
| | - Lin Liu
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan, Hubei, China
| | - Ting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
147
|
Lichtner FJ, Jurick WM, Bradshaw M, Broeckling C, Bauchan G, Broders K. Penicillium raperi, a species isolated from Colorado cropping soils, is a potential biological control agent that produces multiple metabolites and is antagonistic against postharvest phytopathogens. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01812-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
148
|
New Species of Talaromyces (Trichocomaceae, Eurotiales) from Southwestern China. J Fungi (Basel) 2022; 8:jof8070647. [PMID: 35887409 PMCID: PMC9319149 DOI: 10.3390/jof8070647] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/01/2022] Open
Abstract
Species of Talaromyces are cosmopolitan and ubiquitous, and some are of industrial and medicinal importance. Species of Talaromyces have been successively reported in China. During our examinations of samples collected from southwestern China, two new species belonging to Talaromyces sect. Talaromyces were further discovered based on phylogenetic analyses and morphological comparisons. Talaromyces ginkgonis sp. nov., isolated from a partially colonized fruit of Ginkgo biloba, differs from closely-related fungi in the combination of conidia ellipsoidal, smooth and 3.5−4 × 2−3 μm, no growth on CYA at 37 °C and sequence divergences; T. shilinensis sp. nov. is distinguished from its related allies in the combination of smooth conidia, colonies 10−11 mm diameter on CYA at 25 °C and sequence differences. Detailed descriptions and illustrations of the new taxa are given.
Collapse
|
149
|
Lenz AR, Balbinot E, de Abreu FP, de Oliveira NS, Fontana RC, de Avila E Silva S, Park MS, Lim YW, Houbraken J, Camassola M, Dillon AJP. Taxonomy, comparative genomics and evolutionary insights of Penicillium ucsense: a novel species in series Oxalica. Antonie Van Leeuwenhoek 2022; 115:1009-1029. [PMID: 35678932 DOI: 10.1007/s10482-022-01746-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
The genomes of two Penicillium strains were sequenced and studied in this study: strain 2HH was isolated from the digestive tract of Anobium punctatum beetle larva in 1979 and the cellulase hypersecretory strain S1M29, derived from strain 2HH by a long-term mutagenesis process. With these data, the strains were reclassified and insight is obtained on molecular features related to cellulase hyperproduction and the albino phenotype of the mutant. Both strains were previously identified as Penicillium echinulatum and this investigation indicated that these should be reclassified. Phylogenetic and phenotype data showed that these strains represent a new Penicillium species in series Oxalica, for which the name Penicillium ucsense is proposed here. Six additional strains (SFC101850, SFCP10873, SFCP10886, SFCP10931, SFCP10932 and SFCP10933) collected from the marine environment in the Republic of Korea were also classified as this species, indicating a worldwide distribution of this new taxon. Compared to the closely related strain Penicillium oxalicum 114-2, the composition of cell wall-associated proteins of P. ucsense 2HH shows five fewer chitinases, considerable differences in the number of proteins related to β-D-glucan metabolism. The genomic comparison of 2HH and S1M29 highlighted single amino-acid substitutions in two major proteins (BGL2 and FlbA) that can be associated with the hyperproduction of cellulases. The study of melanin pathways shows that the S1M29 albino phenotype resulted from a single amino-acid substitution in the enzyme ALB1, a precursor of the 1,8-dihydroxynaphthalene (DHN)-melanin biosynthesis. Our study provides important knowledge towards understanding species distribution, molecular mechanisms, melanin production and cell wall biosynthesis of this new Penicillium species.
Collapse
Affiliation(s)
- Alexandre Rafael Lenz
- Bioinformatics and Computational Biology Laboratory, Institute of Biotechnology, University of Caxias Do Sul, Francisco Getúlio Vargas Street 1130, Caxias do Sul, RS, 95070-560, Brazil. .,Bahia State University, Silveira Martins Street 2555, Salvador, BA, 41150-000, Brazil.
| | - Eduardo Balbinot
- Bioinformatics and Computational Biology Laboratory, Institute of Biotechnology, University of Caxias Do Sul, Francisco Getúlio Vargas Street 1130, Caxias do Sul, RS, 95070-560, Brazil
| | - Fernanda Pessi de Abreu
- Bioinformatics and Computational Biology Laboratory, Institute of Biotechnology, University of Caxias Do Sul, Francisco Getúlio Vargas Street 1130, Caxias do Sul, RS, 95070-560, Brazil
| | - Nikael Souza de Oliveira
- Bioinformatics and Computational Biology Laboratory, Institute of Biotechnology, University of Caxias Do Sul, Francisco Getúlio Vargas Street 1130, Caxias do Sul, RS, 95070-560, Brazil
| | - Roselei Claudete Fontana
- Laboratory of Enzymes and Biomass, Institute of Biotechnology, University of Caxias Do Sul, Francisco Getúlio Vargas Street 1130, Caxias do Sul, RS, 95070-560, Brazil
| | - Scheila de Avila E Silva
- Bioinformatics and Computational Biology Laboratory, Institute of Biotechnology, University of Caxias Do Sul, Francisco Getúlio Vargas Street 1130, Caxias do Sul, RS, 95070-560, Brazil
| | - Myung Soo Park
- School of Biological Sciences and Institution of Microbiology, Seoul National University, Seoul, 08826, South Korea
| | - Young Woon Lim
- School of Biological Sciences and Institution of Microbiology, Seoul National University, Seoul, 08826, South Korea
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Marli Camassola
- Laboratory of Enzymes and Biomass, Institute of Biotechnology, University of Caxias Do Sul, Francisco Getúlio Vargas Street 1130, Caxias do Sul, RS, 95070-560, Brazil
| | - Aldo José Pinheiro Dillon
- Laboratory of Enzymes and Biomass, Institute of Biotechnology, University of Caxias Do Sul, Francisco Getúlio Vargas Street 1130, Caxias do Sul, RS, 95070-560, Brazil
| |
Collapse
|
150
|
van den Brule T, Punt M, Seekles SJ, Segers FJ, Houbraken J, Hazeleger WC, Ram AF, Wösten HA, Zwietering MH, Dijksterhuis J, den Besten HM. Intraspecific variability in heat resistance of fungal conidia. Food Res Int 2022; 156:111302. [DOI: 10.1016/j.foodres.2022.111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 11/29/2022]
|