101
|
Talevich E, Kannan N. Structural and evolutionary adaptation of rhoptry kinases and pseudokinases, a family of coccidian virulence factors. BMC Evol Biol 2013; 13:117. [PMID: 23742205 PMCID: PMC3682881 DOI: 10.1186/1471-2148-13-117] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/22/2013] [Indexed: 12/17/2022] Open
Abstract
Background The widespread protozoan parasite Toxoplasma gondii interferes with host cell functions by exporting the contents of a unique apical organelle, the rhoptry. Among the mix of secreted proteins are an expanded, lineage-specific family of protein kinases termed rhoptry kinases (ROPKs), several of which have been shown to be key virulence factors, including the pseudokinase ROP5. The extent and details of the diversification of this protein family are poorly understood. Results In this study, we comprehensively catalogued the ROPK family in the genomes of Toxoplasma gondii, Neospora caninum and Eimeria tenella, as well as portions of the unfinished genome of Sarcocystis neurona, and classified the identified genes into 42 distinct subfamilies. We systematically compared the rhoptry kinase protein sequences and structures to each other and to the broader superfamily of eukaryotic protein kinases to study the patterns of diversification and neofunctionalization in the ROPK family and its subfamilies. We identified three ROPK sub-clades of particular interest: those bearing a structurally conserved N-terminal extension to the kinase domain (NTE), an E. tenella-specific expansion, and a basal cluster including ROP35 and BPK1 that we term ROPKL. Structural analysis in light of the solved structures ROP2, ROP5, ROP8 and in comparison to typical eukaryotic protein kinases revealed ROPK-specific conservation patterns in two key regions of the kinase domain, surrounding a ROPK-conserved insert in the kinase hinge region and a disulfide bridge in the kinase substrate-binding lobe. We also examined conservation patterns specific to the NTE-bearing clade. We discuss the possible functional consequences of each. Conclusions Our work sheds light on several important but previously unrecognized features shared among rhoptry kinases, as well as the essential differences between active and degenerate protein kinases. We identify the most distinctive ROPK-specific features conserved across both active kinases and pseudokinases, and discuss these in terms of sequence motifs, evolutionary context, structural impact and potential functional relevance. By characterizing the proteins that enable these parasites to invade the host cell and co-opt its signaling mechanisms, we provide guidance on potential therapeutic targets for the diseases caused by coccidian parasites.
Collapse
Affiliation(s)
- Eric Talevich
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
102
|
Characterization of Staphylococcus aureus EssB, an integral membrane component of the Type VII secretion system: atomic resolution crystal structure of the cytoplasmic segment. Biochem J 2013; 449:469-77. [PMID: 23098276 PMCID: PMC3526858 DOI: 10.1042/bj20121209] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Type VII protein translocation/secretion system, unique to Gram-positive bacteria, is a key virulence determinant in Staphylococcus aureus. We aim to characterize the architecture of this secretion machinery and now describe the present study of S. aureus EssB, a 52 kDa bitopic membrane protein essential for secretion of the ESAT-6 (early secretory antigenic target of 6 kDa) family of proteins, the prototypic substrate of Type VII secretion. Full-length EssB was heterologously expressed in Escherichia coli, solubilized from the bacterial membrane, purified to homogeneity and shown to be dimeric. A C-terminal truncation, EssB∆C, and two soluble fragments termed EssB-N and EssB-C, predicted to occur on either side of the cytoplasmic membrane, have been successfully purified in a recombinant form, characterized and, together with the full-length protein, used in crystallization trials. EssB-N, the 25 kDa N-terminal cytoplasmic fragment, gave well-ordered crystals and we report the structure, determined by SAD (single-wavelength anomalous diffraction) targeting an SeMet (selenomethionine) derivative, refined to atomic (1.05 Å; 1 Å=0.1 nm) resolution. EssB-N is dimeric in solution, but crystallizes as a monomer and displays a fold comprised of two globular domains separated by a cleft. The structure is related to that of serine/threonine protein kinases and the present study identifies that the Type VII secretion system exploits and re-uses a stable modular entity and fold that has evolved to participate in protein–protein interactions in a similar fashion to the catalytically inert pseudokinases.
Collapse
|
103
|
Barcia-Sanjurjo I, Vázquez-Cedeira M, Barcia R, Lazo PA. Sensitivity of the kinase activity of human vaccinia-related kinase proteins to toxic metals. J Biol Inorg Chem 2013; 18:473-82. [DOI: 10.1007/s00775-013-0992-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/26/2013] [Indexed: 01/22/2023]
|
104
|
Narendra DP, Wang C, Youle RJ, Walker JE. PINK1 rendered temperature sensitive by disease-associated and engineered mutations. Hum Mol Genet 2013; 22:2572-89. [PMID: 23459931 DOI: 10.1093/hmg/ddt106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mutations in Parkin or PINK1 are the most common cause of recessively inherited parkinsonism. Parkin and PINK1 function in a conserved mitochondrial quality control pathway, in which PINK1, a putative mitochondrial kinase, directs Parkin, a cytosolic E3 ubiquitin ligase, selectively to dysfunctional mitochondria to promote their isolation, immobilization and degradation by macroautophagy (hereafter, mitophagy). As Parkin recruitment to mitochondria is robustly induced by PINK1 expression on the outer mitochondrial membrane, Parkin recruitment to mitochondria was used as an assay for PINK1 function. Unexpectedly, mutation of serine residues within the activation segment of PINK1 uncovered a temperature-sensitive variant of PINK1 (tsPINK1). tsPINK1 allowed for the first time the disassociation of PINK1 activity from its expression and localization. Additionally, extensive mutagenesis identified three disease-associated variants in the activation segment and one in an α-helix N-terminal to kinase domain (Q126P) that are similarly thermally labile, suggesting that their activity could be restored post-translationally (e.g. by reducing the temperature or by a chemical or pharmacologic chaperone). Together, these findings suggest that tsPINK1 may represent a valuable tool for the analysis of the PINK1/Parkin pathway in human cells; additionally, as the serine residue promoting thermal lability is conserved among Mus musculus, Danio rerio, Drosophila melanogaster and Caenorhabditis elegans, it may serve as the basis for developing other temperature-sensitive models for the study of recessive parkinsonism and mitophagy. Finally, these results suggest that PINK1 kinase function could be restored for a subset of patients with PINK1 mutations, and perhaps alter the course of their disease.
Collapse
Affiliation(s)
- Derek P Narendra
- Medical Research Council Mitochondrial Biology Unit, Hills Road, Cambridge, UK
| | | | | | | |
Collapse
|
105
|
Abstract
VRK2 is a novel Ser-Thr kinase whose VRK2A isoform is located in the endoplasmic reticulum and mitochondrial membranes. We have studied the potential role that VRK2A has in the regulation of mitochondrial-mediated apoptosis. VRK2A can regulate the intrinsic apoptotic pathway in two different ways. The VRK2A protein directly interacts with Bcl-xL, but not with Bcl-2, Bax, Bad, PUMA or Binp-3L. VRK2A does not compete with Bax for interaction with Bcl-xL, and these proteins can form a complex that reduces apoptosis. Thus, high VRK2 levels confer protection against apoptosis. In addition, VRK2 knockdown results in an increased expression of BAX gene expression that is mediated by its proximal promoter, thus VRK2A behaves as a negative regulator of BAX. Low levels of VRK2A causes an increase in mitochondrial Bax protein level, leading to an increase in the release of cytochrome C and caspase activation, detected by PARP processing. VRK2A loss results in an increase in cell death that can be detected by an increase in annexinV+ cells. Low levels of VRK2A increase cell sensitivity to induction of apoptosis by chemotherapeutic drugs like camptothecin or doxorubicin. We conclude that VRK2A protein is a novel modulator of apoptosis.
Collapse
|
106
|
Taylor SS, Keshwani MM, Steichen JM, Kornev AP. Evolution of the eukaryotic protein kinases as dynamic molecular switches. Philos Trans R Soc Lond B Biol Sci 2012; 367:2517-28. [PMID: 22889904 PMCID: PMC3415842 DOI: 10.1098/rstb.2012.0054] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Protein kinases have evolved in eukaryotes to be highly dynamic molecular switches that regulate a plethora of biological processes. Two motifs, a dynamic activation segment and a GHI helical subdomain, distinguish the eukaryotic protein kinases (EPKs) from the more primitive eukaryotic-like kinases. The EPKs are themselves highly regulated, typically by phosphorylation, and this allows them to be rapidly turned on and off. The EPKs have a novel hydrophobic architecture that is typically regulated by the dynamic assembly of two hydrophobic spines that is usually mediated by the phosphorylation of an activation loop phosphate. Cyclic AMP-dependent protein kinase (protein kinase A (PKA)) is used as a prototype to exemplify these features of the PKA superfamily. Specificity in PKA signalling is achieved in large part by packaging the enzyme as inactive tetrameric holoenzymes with regulatory subunits that then are localized to macromolecular complexes in close proximity to dedicated substrates by targeting scaffold proteins. In this way, the cell creates discrete foci that most likely represent the physiological environment for cyclic AMP-mediated signalling.
Collapse
Affiliation(s)
- Susan S Taylor
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA.
| | | | | | | |
Collapse
|
107
|
Bosch D, Saiardi A. Arginine transcriptional response does not require inositol phosphate synthesis. J Biol Chem 2012; 287:38347-55. [PMID: 22992733 PMCID: PMC3488103 DOI: 10.1074/jbc.m112.384255] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 09/17/2012] [Indexed: 12/25/2022] Open
Abstract
Inositol phosphates are key signaling molecules affecting a large variety of cellular processes. Inositol-polyphosphate multikinase (IPMK) is a central component of the inositol phosphate biosynthetic routes, playing essential roles during development. IPMK phosphorylates inositol 1,4,5-trisphosphate to inositol tetrakisphosphate and subsequently to inositol pentakisphosphate and has also been described to function as a lipid kinase. Recently, a catalytically inactive mammalian IPMK was reported to be involved in nutrient signaling by way of mammalian target of rapamycin and AMP-activated protein kinase. In yeast, the IPMK homologue, Arg82, is the sole inositol-trisphosphate kinase. Arg82 has been extensively studied as part of the transcriptional complex regulating nitrogen sensing, in particular arginine metabolism. Whether this role requires Arg82 catalytic activity has long been a matter of contention. In this study, we developed a novel method for the real time study of promoter strength in vivo and used it to demonstrate that catalytically inactive Arg82 fully restored the arginine-dependent transcriptional response. We also showed that expression in yeast of catalytically active, but structurally very different, mammalian or plant IPMK homologue failed to restore arginine regulation. Our work indicates that inositol phosphates do not regulate arginine-dependent gene expression.
Collapse
Affiliation(s)
- Daniel Bosch
- From the Cell Biology Unit, Medical Research Council Laboratory for Molecular Cell Biology, and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Adolfo Saiardi
- From the Cell Biology Unit, Medical Research Council Laboratory for Molecular Cell Biology, and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
108
|
Vázquez-Cedeira M, Lazo PA. Human VRK2 (vaccinia-related kinase 2) modulates tumor cell invasion by hyperactivation of NFAT1 and expression of cyclooxygenase-2. J Biol Chem 2012; 287:42739-50. [PMID: 23105117 DOI: 10.1074/jbc.m112.404285] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human VRK2 (vaccinia-related kinase 2), a kinase that emerged late in evolution, affects different signaling pathways, and some carcinomas express high levels of VRK2. Invasion by cancer cells has been associated with NFAT1 (nuclear factor of activated T cells) activation and expression of the COX-2 (cyclooxygenase 2) gene. We hypothesized that VRK proteins might play a regulatory role in NFAT1 activation in tumor cells. We demonstrate that VRK2 directly interacts and phosphorylates NFAT1 in Ser-32 within its N-terminal transactivation domain. VRK2 increases NFAT1-dependent transcription by phosphorylation, and this effect is only detected following cell phorbol 12-myristate 13-acetate and ionomycin stimulation and calcineurin activation. This NFAT1 hyperactivation by VRK2 increases COX-2 gene expression through the proximal NFAT1 binding site in the COX-2 gene promoter. Furthermore, VRK2A down-regulation by RNA interference reduces COX-2 expression at transcriptional and protein levels. Therefore, VRK2 down-regulation reduces cell invasion by tumor cells, such as MDA-MB-231 and MDA-MB-435, upon stimulation with phorbol 12-myristate 13-acetate plus ionomycin. These findings identify the first reported target and function of human VRK2 as an active kinase playing a role in regulation of cancer cell invasion through the NFAT pathway and COX-2 expression.
Collapse
Affiliation(s)
- Marta Vázquez-Cedeira
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | | |
Collapse
|
109
|
Zhang H, Photiou A, Grothey A, Stebbing J, Giamas G. The role of pseudokinases in cancer. Cell Signal 2012; 24:1173-84. [PMID: 22330072 DOI: 10.1016/j.cellsig.2012.01.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 01/27/2012] [Indexed: 01/12/2023]
Abstract
Kinases play a critical role in regulating many cellular functions including development, differentiation and proliferation. To date, over 518 proteins with kinase activity, comprising ~2-3% of total cellular proteins, have been identified from within the human kinome. Interestingly, approximately 10% of kinases are categorised as pseudokinases since they lack one or more conserved catalytic residues within their kinase domain and were originally thought to have no enzymatic activity. Recently, there has been strong evidence to suggest that some pseudokinsases can not only function as scaffold proteins, but may also possess kinase activity leading to modulation of cell signalling pathways. Altered activity of these pseudokinases can result in impaired cellular function, particularly in malignancies. In this review we are discussing recent evidence that apart from a scaffolding role, pseudokinases also orchestrate cellular processes as active kinases per se in signalling pathways of malignant cells.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Cancer and Surgery, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK
| | | | | | | | | |
Collapse
|
110
|
Suijkerbuijk S, van Dam T, Karagöz G, von Castelmur E, Hubner N, Duarte A, Vleugel M, Perrakis A, Rüdiger S, Snel B, Kops G. The Vertebrate Mitotic Checkpoint Protein BUBR1 Is an Unusual Pseudokinase. Dev Cell 2012; 22:1321-9. [DOI: 10.1016/j.devcel.2012.03.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/17/2012] [Accepted: 03/18/2012] [Indexed: 10/28/2022]
|
111
|
Sanz-García M, Monsalve DM, Sevilla A, Lazo PA. Vaccinia-related kinase 1 (VRK1) is an upstream nucleosomal kinase required for the assembly of 53BP1 foci in response to ionizing radiation-induced DNA damage. J Biol Chem 2012; 287:23757-68. [PMID: 22621922 DOI: 10.1074/jbc.m112.353102] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cellular responses to DNA damage require the formation of protein complexes in a highly organized fashion. The complete molecular components that participate in the sequential signaling response to DNA damage remain unknown. Here we demonstrate that vaccinia-related kinase 1 (VRK1) in resting cells plays an important role in the formation of ionizing radiation-induced foci that assemble on the 53BP1 scaffold protein during the DNA damage response. The kinase VRK1 is activated by DNA double strand breaks induced by ionizing radiation (IR) and specifically phosphorylates 53BP1 in serum-starved cells. VRK1 knockdown resulted in the defective formation of 53BP1 foci in response to IR both in number and size. This observed effect on 53BP1 foci is p53- and ataxia-telangiectasia mutated (ATM)-independent and can be rescued with VRK1 mutants resistant to siRNA. VRK1 knockdown also prevented the activating phosphorylation of ATM, CHK2, and DNA-dependent protein kinase in response to IR. VRK1 activation in response to DNA damage is a novel and early step in the signaling of mammalian DNA damage responses.
Collapse
Affiliation(s)
- Marta Sanz-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | | | | | | |
Collapse
|
112
|
Endicott JA, Noble MEM, Johnson LN. The structural basis for control of eukaryotic protein kinases. Annu Rev Biochem 2012; 81:587-613. [PMID: 22482904 DOI: 10.1146/annurev-biochem-052410-090317] [Citation(s) in RCA: 322] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic protein kinases are key regulators of cell processes. Comparison of the structures of protein kinase domains, both alone and in complexes, allows generalizations to be made about the mechanisms that regulate protein kinase activation. Protein kinases in the active state adopt a catalytically competent conformation upon binding of both the ATP and peptide substrates that has led to an understanding of the catalytic mechanism. Docking sites remote from the catalytic site are a key feature of several substrate recognition complexes. Mechanisms for kinase activation through phosphorylation, additional domains or subunits, by scaffolding proteins and by kinase dimerization are discussed.
Collapse
Affiliation(s)
- Jane A Endicott
- Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | |
Collapse
|
113
|
Dudkiewicz M, Szczepińska T, Grynberg M, Pawłowski K. A novel protein kinase-like domain in a selenoprotein, widespread in the tree of life. PLoS One 2012; 7:e32138. [PMID: 22359664 PMCID: PMC3281104 DOI: 10.1371/journal.pone.0032138] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 01/24/2012] [Indexed: 12/21/2022] Open
Abstract
Selenoproteins serve important functions in many organisms, usually providing essential oxidoreductase enzymatic activity, often for defense against toxic xenobiotic substances. Most eukaryotic genomes possess a small number of these proteins, usually not more than 20. Selenoproteins belong to various structural classes, often related to oxidoreductase function, yet a few of them are completely uncharacterised. Here, the structural and functional prediction for the uncharacterised selenoprotein O (SELO) is presented. Using bioinformatics tools, we predict that SELO protein adopts a three-dimensional fold similar to protein kinases. Furthermore, we argue that despite the lack of conservation of the “classic” catalytic aspartate residue of the archetypical His-Arg-Asp motif, SELO kinases might have retained catalytic phosphotransferase activity, albeit with an atypical active site. Lastly, the role of the selenocysteine residue is considered and the possibility of an oxidoreductase-regulated kinase function for SELO is discussed. The novel kinase prediction is discussed in the context of functional data on SELO orthologues in model organisms, FMP40 a.k.a.YPL222W (yeast), and ydiU (bacteria). Expression data from bacteria and yeast suggest a role in oxidative stress response. Analysis of genomic neighbourhoods of SELO homologues in the three domains of life points toward a role in regulation of ABC transport, in oxidative stress response, or in basic metabolism regulation. Among bacteria possessing SELO homologues, there is a significant over-representation of aquatic organisms, also of aerobic ones. The selenocysteine residue in SELO proteins occurs only in few members of this protein family, including proteins from Metazoa, and few small eukaryotes (Ostreococcus, stramenopiles). It is also demonstrated that enterobacterial mchC proteins involved in maturation of bactericidal antibiotics, microcins, form a distant subfamily of the SELO proteins. The new protein structural domain, with a putative kinase function assigned, expands the known kinome and deserves experimental determination of its biological role within the cell-signaling network.
Collapse
Affiliation(s)
| | - Teresa Szczepińska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Pawłowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Warsaw University of Life Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
114
|
Park YI, Do KH, Kim IS, Park HH. Structural and functional studies of casein kinase I-like protein from rice. PLANT & CELL PHYSIOLOGY 2012; 53:304-311. [PMID: 22199373 DOI: 10.1093/pcp/pcr175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Casein kinase I (CKI) is a protein serine/threonine kinase that is highly conserved from plants to animals. It performs various functions in both the cytoplasm and nucleus, such as DNA repair, cell cycle, cytokinesis, vesicular trafficking, morphogenesis and circadian rhythm. CKI proteins contain a highly conserved kinase domain responsible for catalytic activity at the N-terminus and a highly diverse regulatory domain responsible for determining substrate specificity at the C-terminus. CKI-like protein has been identified in plants, including in rice, but its function and structure have not been reported. Here, we report the 2.0 Å crystal structure of the kinase domain of CKI-like protein from rice. Although the structure adopts the typical bi-lobal kinase architecture, the length and orientation of the glycine-rich ATP-binding motif are dynamic within the CKI family. A loop between α5 and α6 (the α5-α6 loop), which was previously not detected in the CKI family because of flexibility, was clearly detected in our structure. In addition, we identified a lipase as a substrate of CKI-like protein from rice. Phosphorylation of the lipase dramatically reduced its catalytic activity, suggesting that CKI may play a role in the regulation of lipase activity.
Collapse
Affiliation(s)
- Young-Il Park
- School of Life Science and Biotechnology at Kyungpook National University, Daegu, South Korea
| | | | | | | |
Collapse
|
115
|
Schwessinger B, Ronald PC. Plant innate immunity: perception of conserved microbial signatures. ANNUAL REVIEW OF PLANT BIOLOGY 2012; 63:451-82. [PMID: 22404464 DOI: 10.1146/annurev-arplant-042811-105518] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plants and animals sense conserved microbial signatures through receptors localized to the plasma membrane and cytoplasm. These receptors typically carry or associate with non-arginine-aspartate (non-RD) kinases that initiate complex signaling networks cumulating in robust defense responses. In plants, coregulatory receptor kinases have been identified that not only are critical for the innate immune response but also serve an essential function in other regulatory signaling pathways.
Collapse
|
116
|
Dar AC, Shokat KM. The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling. Annu Rev Biochem 2011; 80:769-95. [PMID: 21548788 DOI: 10.1146/annurev-biochem-090308-173656] [Citation(s) in RCA: 292] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Kinases are highly regulated enzymes with diverse mechanisms controlling their catalytic output. Over time, chemical discovery efforts for kinases have produced ATP-competitive compounds, allosteric regulators, irreversible binders, and highly specific inhibitors. These distinct classes of small molecules have revealed many novel aspects about kinase-mediated signaling, and some have progressed from simple tool compounds into clinically validated therapeutics. This review explores several small-molecule inhibitors for kinases highlighting elaborate mechanisms by which kinase function is modulated. A complete surprise of targeted kinase drug discovery has been the finding of ATP-competitive inhibitors that behave as agonists, rather than antagonists, of their direct kinase target. These studies hint at a connection between ATP-binding site occupancy and networks of communication that are independent of kinase catalysis. Indeed, kinase inhibitors that induce changes in protein localization, protein-protein interactions, and even enhancement of catalytic activity of the target kinase have been found. The relevance of these findings to the therapeutic efficacy of kinase inhibitors and to the future identification of new classes of drug targets is discussed.
Collapse
Affiliation(s)
- Arvin C Dar
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158, USA.
| | | |
Collapse
|
117
|
Sanz-García M, Vázquez-Cedeira M, Kellerman E, Renbaum P, Levy-Lahad E, Lazo PA. Substrate profiling of human vaccinia-related kinases identifies coilin, a Cajal body nuclear protein, as a phosphorylation target with neurological implications. J Proteomics 2011; 75:548-60. [PMID: 21920476 DOI: 10.1016/j.jprot.2011.08.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 08/19/2011] [Accepted: 08/23/2011] [Indexed: 01/13/2023]
Abstract
Protein phosphorylation by kinases plays a central role in the regulation and coordination of multiple biological processes. In general, knowledge on kinase specificity is restricted to substrates identified in the context of specific cellular responses, but kinases are likely to have multiple additional substrates and be integrated in signaling networks that might be spatially and temporally different, and in which protein complexes and subcellular localization can play an important role. In this report the substrate specificity of atypical human vaccinia-related kinases (VRK1 and VRK2) using a human peptide-array containing 1080 sequences phosphorylated in known signaling pathways has been studied. The two kinases identify a subset of potential peptide targets, all of them result in a consensus sequence composed of at least four basic residues in peptide targets. Linear peptide arrays are therefore a useful approach in the characterization of kinases and substrate identification, which can contribute to delineate the signaling network in which VRK proteins participate. One of these target proteins is coilin; a basic protein located in nuclear Cajal bodies. Coilin is phosphorylated in Ser184 by both VRK1 and VRK2. Coilin colocalizes and interacts with VRK1 in Cajal bodies, but not with the mutant VRK1 (R358X). VRK1 (R358X) is less active than VRK1. Altered regulation of coilin might be implicated in several neurological diseases such as ataxias and spinal muscular atrophies.
Collapse
Affiliation(s)
- Marta Sanz-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas(CSIC)-Universidad de Salamanca, Salamanca 37007, Spain
| | | | | | | | | | | |
Collapse
|
118
|
Reese ML, Boothroyd JC. A conserved non-canonical motif in the pseudoactive site of the ROP5 pseudokinase domain mediates its effect on Toxoplasma virulence. J Biol Chem 2011; 286:29366-29375. [PMID: 21708941 PMCID: PMC3190742 DOI: 10.1074/jbc.m111.253435] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/21/2011] [Indexed: 11/06/2022] Open
Abstract
The ROP5 family is a closely related set of polymorphic pseudokinases that are critical to the ability of Toxoplasma to cause disease. Polymorphisms in ROP5 also make it a major determinant of strain-specific differences in virulence. ROP5 possesses all of the major kinase motifs required for catalysis except for a substitution at the catalytic Asp. We show that this substitution in the catalytic loop of ROP5 is part of a motif conserved in other pseudokinases of both Toxoplasma and human origin, and that this motif is required for the full activity in vivo of ROP5. This suggests evolutionary selection at this site for a biochemical function, rather than simple drift away from catalysis. We present the crystal structures of a virulent isoform of ROP5 both in its ATP-bound and -unbound states and have demonstrated that despite maintaining the canonical ATP-binding motifs, ROP5 binds ATP in a distorted conformation mediated by unusual magnesium coordination sites that would not be predicted from the primary sequence. In addition, we have mapped the polymorphisms spread throughout the primary sequence of ROP5 to two major surfaces, including the activation segment of ROP5. This suggests that the pseudoactive site of this class of pseudokinases may have evolved to use the canonical ATP-binding motifs for non-catalytic signaling through allostery.
Collapse
Affiliation(s)
- Michael L Reese
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305-5124
| | - John C Boothroyd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305-5124.
| |
Collapse
|
119
|
The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling. Nat Struct Mol Biol 2011; 18:971-6. [PMID: 21841788 DOI: 10.1038/nsmb.2099] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 06/14/2011] [Indexed: 12/13/2022]
Abstract
Human JAK2 tyrosine kinase mediates signaling through numerous cytokine receptors. The JAK2 JH2 domain functions as a negative regulator and is presumed to be a catalytically inactive pseudokinase, but the mechanism(s) for its inhibition of JAK2 remains unknown. Mutations in JH2 lead to increased JAK2 activity, contributing to myeloproliferative neoplasms (MPNs). Here we show that JH2 is a dual-specificity protein kinase that phosphorylates two negative regulatory sites in JAK2: Ser523 and Tyr570. Inactivation of JH2 catalytic activity increased JAK2 basal activity and downstream signaling. Notably, different MPN mutations abrogated JH2 activity in cells, and in MPN (V617F) patient cells phosphorylation of Tyr570 was reduced, suggesting that loss of JH2 activity contributes to the pathogenesis of MPNs. These results identify the catalytic activity of JH2 as a previously unrecognized mechanism to control basal activity and signaling of JAK2.
Collapse
|
120
|
Vázquez-Cedeira M, Barcia-Sanjurjo I, Sanz-García M, Barcia R, Lazo PA. Differential inhibitor sensitivity between human kinases VRK1 and VRK2. PLoS One 2011; 6:e23235. [PMID: 21829721 PMCID: PMC3150407 DOI: 10.1371/journal.pone.0023235] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 07/10/2011] [Indexed: 01/13/2023] Open
Abstract
Human vaccinia-related kinases (VRK1 and VRK2) are atypical active Ser-Thr kinases implicated in control of cell cycle entry, apoptosis and autophagy, and affect signalling by mitogen activated protein kinases (MAPK). The specific structural differences in VRK catalytic sites make them suitable candidates for development of specific inhibitors. In this work we have determined the sensitivity of VRK1 and VRK2 to kinase inhibitors, currently used in biological assays or in preclinical studies, in order to discriminate between the two proteins as well as with respect to the vaccinia virus B1R kinase. Both VRK proteins and vaccinia B1R are poorly inhibited by inhibitors of different types targeting Src, MEK1, B-Raf, JNK, p38, CK1, ATM, CHK1/2 and DNA-PK, and most of them have no effect even at 100 µM. Despite their low sensitivity, some of these inhibitors in the low micromolar range are able to discriminate between VRK1, VRK2 and B1R. VRK1 is more sensitive to staurosporine, RO-31-8220 and TDZD8. VRK2 is more sensitive to roscovitine, RO 31–8220, Cdk1 inhibitor, AZD7762, and IC261. Vaccinia virus B1R is more sensitive to staurosporine, KU55933, and RO 31–8220, but not to IC261. Thus, the three kinases present a different pattern of sensitivity to kinase inhibitors. This differential response to known inhibitors can provide a structural framework for VRK1 or VRK2 specific inhibitors with low or no cross-inhibition. The development of highly specific VRK1 inhibitors might be of potential clinical use in those cancers where these kinases identify a clinical subtype with a poorer prognosis, as is the case of VRK1 in breast cancer.
Collapse
Affiliation(s)
- Marta Vázquez-Cedeira
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Iria Barcia-Sanjurjo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Marta Sanz-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Ramiro Barcia
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Pedro A. Lazo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
121
|
Manning G, Reiner DS, Lauwaet T, Dacre M, Smith A, Zhai Y, Svard S, Gillin FD. The minimal kinome of Giardia lamblia illuminates early kinase evolution and unique parasite biology. Genome Biol 2011; 12:R66. [PMID: 21787419 PMCID: PMC3218828 DOI: 10.1186/gb-2011-12-7-r66] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 05/04/2011] [Accepted: 07/25/2011] [Indexed: 01/23/2023] Open
Abstract
Background The major human intestinal pathogen Giardia lamblia is a very early branching eukaryote with a minimal genome of broad evolutionary and biological interest. Results To explore early kinase evolution and regulation of Giardia biology, we cataloged the kinomes of three sequenced strains. Comparison with published kinomes and those of the excavates Trichomonas vaginalis and Leishmania major shows that Giardia's 80 core kinases constitute the smallest known core kinome of any eukaryote that can be grown in pure culture, reflecting both its early origin and secondary gene loss. Kinase losses in DNA repair, mitochondrial function, transcription, splicing, and stress response reflect this reduced genome, while the presence of other kinases helps define the kinome of the last common eukaryotic ancestor. Immunofluorescence analysis shows abundant phospho-staining in trophozoites, with phosphotyrosine abundant in the nuclei and phosphothreonine and phosphoserine in distinct cytoskeletal organelles. The Nek kinase family has been massively expanded, accounting for 198 of the 278 protein kinases in Giardia. Most Neks are catalytically inactive, have very divergent sequences and undergo extensive duplication and loss between strains. Many Neks are highly induced during development. We localized four catalytically active Neks to distinct parts of the cytoskeleton and one inactive Nek to the cytoplasm. Conclusions The reduced kinome of Giardia sheds new light on early kinase evolution, and its highly divergent sequences add to the definition of individual kinase families as well as offering specific drug targets. Giardia's massive Nek expansion may reflect its distinctive lifestyle, biphasic life cycle and complex cytoskeleton.
Collapse
Affiliation(s)
- Gerard Manning
- Razavi Newman Center for Bioinformatics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Fukuda K, Knight JDR, Piszczek G, Kothary R, Qin J. Biochemical, proteomic, structural, and thermodynamic characterizations of integrin-linked kinase (ILK): cross-validation of the pseudokinase. J Biol Chem 2011; 286:21886-95. [PMID: 21524996 PMCID: PMC3122243 DOI: 10.1074/jbc.m111.240093] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/05/2011] [Indexed: 12/13/2022] Open
Abstract
Integrin-linked kinase (ILK) is one of the few evolutionarily conserved focal adhesion proteins involved in diverse cell adhesion-dependent physiological and pathological responses. Despite more than a decade of studies and extensive literature, the kinase function of ILK is controversial. ILK contains a highly degraded kinase active site but it has been argued that ILK may be an unusual manganese (Mn)-dependent serine-threonine kinase that targets specific substrates such as glycogen synthase kinase-3β (GSK-3β). In this study, we have tackled this issue by a systematic bottom-up biochemical, proteomic, structural, and thermodynamic analysis of ILK. We show that recombinant ILK from either bacteria or mammalian cells exhibits no kinase activity on GSK-3β in the presence of either Mn(2+) or the conventional kinase co-factor Mg(2+). A comprehensive and unbiased whole cell-based kinase assay using entire mammalian CG-4 and C2C12 cell lysate did not identify any specific ILK substrates. High resolution crystallographic structure analysis further confirmed that the Mn-bound ILK adopts the same pseudo active site conformation as that of the Mg-bound ILK. More importantly, thermodynamic analysis revealed that the K220M mutation, previously thought to inactivate ILK by disrupting ATP binding, significantly impairs the structural integrity and stability of ILK, which provides a new basis for understanding how this mutation caused renal agenesis, a failure of fetal kidney development. Collectively, our data provide strong evidence that ILK lacks intrinsic kinase function. It is a bona fide pseudokinase that likely evolved from an ancestral catalytic counterpart to act as a distinct scaffold to mediate protein-protein interactions during focal adhesion assembly and many other cellular events.
Collapse
Affiliation(s)
- Koichi Fukuda
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - James D. R. Knight
- the Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
- the Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada, and
| | - Grzegorz Piszczek
- the Biophysics Core Facility, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Rashmi Kothary
- the Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
- the Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada, and
| | - Jun Qin
- From the Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
123
|
Shin J, Chakraborty G, Bharatham N, Kang C, Tochio N, Koshiba S, Kigawa T, Kim W, Kim KT, Yoon HS. NMR solution structure of human vaccinia-related kinase 1 (VRK1) reveals the C-terminal tail essential for its structural stability and autocatalytic activity. J Biol Chem 2011; 286:22131-8. [PMID: 21543316 DOI: 10.1074/jbc.m110.200162] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Vaccinia-related kinase 1 (VRK1) is one of the mitotic kinases that play important roles in cell cycle, nuclear condensation, and transcription regulation. Kinase domain structures of two other VRK family members (VRK2 and VRK3) have been determined previously. However, the structure of VRK1, the most extensively studied and constitutively active VRK member, is yet to be characterized. Here, we present the nuclear magnetic resonance (NMR) solution structure of a catalytically active form of human VRK1 with its extended C-terminal tail (residues 1-361). The NMR structure of human VRK1 reveals that the C-terminal tail orients toward the catalytic site and forms a number of interactions that are critical for structural stability and catalysis. The role of this unique C-terminal tail was further investigated by deletion mutant studies where deletion of the terminal tail resulted in a dramatic reduction in the autocatalytic activity of VRK1. NMR titration studies carried out with ATP or an ATP analog confirm that ATP/ATP analogs interact with all of the crucial residues present in important motifs of the protein kinase such as the hinge region, catalytic loop, DYG motif, and thereby suggest that the catalytic domain of VRK1 is not atypical. In addition to the conventional interactions, some of the residues present on the extended C-terminal tail also interact with the ligands. These observations also substantiate the role of the extended C-terminal tail in the biological activity of VRK1.
Collapse
Affiliation(s)
- Joon Shin
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Nimchuk ZL, Tarr PT, Meyerowitz EM. An evolutionarily conserved pseudokinase mediates stem cell production in plants. THE PLANT CELL 2011; 23:851-4. [PMID: 21398569 PMCID: PMC3082267 DOI: 10.1105/tpc.110.075622] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 02/10/2011] [Accepted: 02/23/2011] [Indexed: 05/20/2023]
Abstract
Sequence comparisons, biochemical experiments, and studies with mutants in transgenic plants show that the Arabidopsis protein CORYNE, currently thought to be a kinase that acts as part of a receptor kinase complex, is likely to be a pseudokinase and not a kinase.
Collapse
|
125
|
Taylor SS, Kornev AP. Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem Sci 2011; 36:65-77. [PMID: 20971646 PMCID: PMC3084033 DOI: 10.1016/j.tibs.2010.09.006] [Citation(s) in RCA: 679] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 09/23/2010] [Accepted: 09/28/2010] [Indexed: 11/29/2022]
Abstract
Eukayotic protein kinases evolved as a family of highly dynamic molecules with strictly organized internal architecture. A single hydrophobic F-helix serves as a central scaffold for assembly of the entire molecule. Two non-consecutive hydrophobic structures termed "spines" anchor all the elements important for catalysis to the F-helix. They make firm, but flexible, connections within the molecule, providing a high level of internal dynamics of the protein kinase. During the course of evolution, protein kinases developed a universal regulatory mechanism associated with a large activation segment that can be dynamically folded and unfolded in the course of cell functioning. Protein kinases thus represent a unique, highly dynamic, and precisely regulated set of switches that control most biological events in eukaryotic cells.
Collapse
Affiliation(s)
- Susan S Taylor
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
126
|
Plk5, a polo box domain-only protein with specific roles in neuron differentiation and glioblastoma suppression. Mol Cell Biol 2011; 31:1225-39. [PMID: 21245385 DOI: 10.1128/mcb.00607-10] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Polo-like kinases (Plks) are characterized by the presence of a specific domain, known as the polo box (PBD), involved in protein-protein interactions. Plk1 to Plk4 are involved in centrosome biology as well as the regulation of mitosis, cytokinesis, and cell cycle checkpoints in response to genotoxic stress. We have analyzed here the new member of the vertebrate family, Plk5, a protein that lacks the kinase domain in humans. Plk5 does not seem to have a role in cell cycle progression; in fact, it is downregulated in proliferating cells and accumulates in quiescent cells. This protein is mostly expressed in the brain of both mice and humans, and it modulates the formation of neuritic processes upon stimulation of the brain-derived neurotrophic factor (BDNF)/nerve growth factor (NGF)-Ras pathway in neurons. The human PLK5 gene is significantly silenced in astrocytoma and glioblastoma multiforme by promoter hypermethylation, suggesting a tumor suppressor function for this gene. Indeed, overexpression of Plk5 has potent apoptotic effects in these tumor cells. Thus, Plk5 seems to have evolved as a kinase-deficient PBD-containing protein with nervous system-specific functions and tumor suppressor activity in brain cancer.
Collapse
|
127
|
Choi YH, Park CH, Kim W, Ling H, Kang A, Chang MW, Im SK, Jeong HW, Kong YY, Kim KT. Vaccinia-related kinase 1 is required for the maintenance of undifferentiated spermatogonia in mouse male germ cells. PLoS One 2010; 5:e15254. [PMID: 21179456 PMCID: PMC3001494 DOI: 10.1371/journal.pone.0015254] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 11/02/2010] [Indexed: 11/18/2022] Open
Abstract
Vaccinia-related kinase 1 (VRK1) is a crucial protein kinase for mitotic regulation. VRK1 is known to play a role in germ cell development, and its deficiency results in sterility. Here we describe that VRK1 is essential for the maintenance of spermatogonial stem cells. To determine whether VRK1 plays a role in these cells, we assessed the population size of undifferentiated spermatogonia. Flow cytometry analyses showed that the number of undifferentiated spermatogonia was markedly reduced in VRK1-deficient testes. VRK1 was highly expressed in spermatogonial populations, and approximately 66% of undifferentiated spermatogonia that were sorted as an Ep-CAM+/c-kit−/alpha-6-integrin+ population showed a positive signal for VRK1. Undifferentiated stem cells expressing Plzf and Oct4 but not c-kit also expressed VRK1, suggesting that VRK1 is an intrinsic factor for the maintenance of spermatogonial stem cells. Microarray analyses of the global testicular transcriptome and quantitative RT-PCR of VRK1-deficient testes revealed significantly reduced expression levels of undifferentiated spermatogonial marker genes in early postnatal mice. Together, these results suggest that VRK1 is required for the proliferation and differentiation of undifferentiated spermatogonia, which are essential for spermatogenic cell maintenance.
Collapse
Affiliation(s)
- Yoon Ha Choi
- Division of Molecular and Life Science, Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Choon-Ho Park
- Division of Molecular and Life Science, Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Wanil Kim
- Division of Molecular and Life Science, Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Hua Ling
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Aram Kang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Matthew Wook Chang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Sun-Kyoung Im
- Division of Molecular and Life Science, Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Hyun-Woo Jeong
- Division of Molecular and Life Science, Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Young-Yun Kong
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyong-Tai Kim
- Division of Molecular and Life Science, Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Division of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- * E-mail:
| |
Collapse
|
128
|
Zeqiraj E, van Aalten DMF. Pseudokinases-remnants of evolution or key allosteric regulators? Curr Opin Struct Biol 2010; 20:772-81. [PMID: 21074407 PMCID: PMC3014569 DOI: 10.1016/j.sbi.2010.10.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 10/05/2010] [Accepted: 10/08/2010] [Indexed: 11/18/2022]
Abstract
Protein kinases provide a platform for the integration of signal transduction networks. A key feature of transmitting these cellular signals is the ability of protein kinases to activate one another by phosphorylation. A number of kinases are predicted by sequence homology to be incapable of phosphoryl group transfer due to degradation of their catalytic motifs. These are termed pseudokinases and because of the assumed lack of phosphoryltransfer activity their biological role in cellular transduction has been mysterious. Recent structure-function studies have uncovered the molecular determinants for protein kinase inactivity and have shed light to the biological functions and evolution of this enigmatic subset of the human kinome. Pseudokinases act as signal transducers by bringing together components of signalling networks, as well as allosteric activators of active protein kinases.
Collapse
Affiliation(s)
- Elton Zeqiraj
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Room 1090, Toronto, Ontario M5G 1X5, Canada
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Daan MF van Aalten
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| |
Collapse
|
129
|
Li GH, Huang JF. CMASA: an accurate algorithm for detecting local protein structural similarity and its application to enzyme catalytic site annotation. BMC Bioinformatics 2010; 11:439. [PMID: 20796320 PMCID: PMC2936402 DOI: 10.1186/1471-2105-11-439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 08/27/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The rapid development of structural genomics has resulted in many "unknown function" proteins being deposited in Protein Data Bank (PDB), thus, the functional prediction of these proteins has become a challenge for structural bioinformatics. Several sequence-based and structure-based methods have been developed to predict protein function, but these methods need to be improved further, such as, enhancing the accuracy, sensitivity, and the computational speed. Here, an accurate algorithm, the CMASA (Contact MAtrix based local Structural Alignment algorithm), has been developed to predict unknown functions of proteins based on the local protein structural similarity. This algorithm has been evaluated by building a test set including 164 enzyme families, and also been compared to other methods. RESULTS The evaluation of CMASA shows that the CMASA is highly accurate (0.96), sensitive (0.86), and fast enough to be used in the large-scale functional annotation. Comparing to both sequence-based and global structure-based methods, not only the CMASA can find remote homologous proteins, but also can find the active site convergence. Comparing to other local structure comparison-based methods, the CMASA can obtain the better performance than both FFF (a method using geometry to predict protein function) and SPASM (a local structure alignment method); and the CMASA is more sensitive than PINTS and is more accurate than JESS (both are local structure alignment methods). The CMASA was applied to annotate the enzyme catalytic sites of the non-redundant PDB, and at least 166 putative catalytic sites have been suggested, these sites can not be observed by the Catalytic Site Atlas (CSA). CONCLUSIONS The CMASA is an accurate algorithm for detecting local protein structural similarity, and it holds several advantages in predicting enzyme active sites. The CMASA can be used in large-scale enzyme active site annotation. The CMASA can be available by the mail-based server (http://159.226.149.45/other1/CMASA/CMASA.htm).
Collapse
Affiliation(s)
- Gong-Hua Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | | |
Collapse
|
130
|
Rabiller M, Getlik M, Klüter S, Richters A, Tückmantel S, Simard JR, Rauh D. Proteus in the world of proteins: conformational changes in protein kinases. Arch Pharm (Weinheim) 2010; 343:193-206. [PMID: 20336692 DOI: 10.1002/ardp.201000028] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The 512 protein kinases encoded by the human genome are a prime example of nature's ability to create diversity by introducing variations to a highly conserved theme. The activity of each kinase domain is controlled by layers of regulatory mechanisms involving different combinations of post-translational modifications, intramolecular contacts, and intermolecular interactions. Ultimately, they all achieve their effect by favoring particular conformations that promote or prevent the kinase domain from catalyzing protein phosphorylation. The central role of kinases in various diseases has encouraged extensive investigations of their biological function and three-dimensional structures, yielding a more detailed understanding of the mechanisms that regulate protein kinase activity by conformational changes. In the present review, we discuss these regulatory mechanisms and show how conformational changes can be exploited for the design of specific inhibitors that lock protein kinases in inactive conformations. In addition, we highlight recent developments to monitor ligand-induced structural changes in protein kinases and for screening and identifying inhibitors that stabilize enzymatically incompetent kinase conformations.
Collapse
Affiliation(s)
- Matthias Rabiller
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany
| | | | | | | | | | | | | |
Collapse
|
131
|
Scheeff ED, Axelrod HL, Miller MD, Chiu HJ, Deacon AM, Wilson IA, Manning G. Genomics, evolution, and crystal structure of a new family of bacterial spore kinases. Proteins 2010; 78:1470-82. [PMID: 20077512 PMCID: PMC2860764 DOI: 10.1002/prot.22663] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bacterial spore formation is a complex process of fundamental relevance to biology and human disease. The spore coat structure is complex and poorly understood, and the roles of many of the protein components remain unclear. We describe a new family of spore coat proteins, the bacterial spore kinases (BSKs), and the first crystal structure of a BSK, YtaA (CotI) from Bacillus subtilis. BSKs are widely distributed in spore-forming Bacillus and Clostridium species, and have a dynamic evolutionary history. Sequence and structure analyses indicate that the BSKs are CAKs, a prevalent group of small molecule kinases in bacteria that is distantly related to the eukaryotic protein kinases. YtaA has substantial structural similarity to CAKs, but also displays distinctive features that broaden our understanding of the CAK group. Evolutionary constraint analysis of the protein surfaces indicates that members of the BSK family have distinct clade-conserved patterns in the substrate binding region, and probably bind and phosphorylate distinct targets. Several classes of BSKs have apparently independently lost catalytic activity to become pseudokinases, indicating that the family also has a major noncatalytic function. Proteins 2010. © 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Eric D Scheeff
- Razavi Newman Center for Bioinformatics, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
132
|
Suzuki Y, Ogawa K, Koyanagi Y, Suzuki Y. Functional disruption of the moloney murine leukemia virus preintegration complex by vaccinia-related kinases. J Biol Chem 2010; 285:24032-43. [PMID: 20511217 DOI: 10.1074/jbc.m110.116640] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retroviral integration is executed by the preintegration complex (PIC), which contains viral DNA together with a number of proteins. Barrier-to-autointegration factor (BAF), a cellular component of Moloney murine leukemia virus (MMLV) PICs, has been demonstrated to protect viral DNA from autointegration and stimulate the intermolecular integration activity of the PIC by its DNA binding activity. Recent studies reveal that the functions of BAF are regulated by phosphorylation via a family of cellular serine/threonine kinases called vaccinia-related kinases (VRK), and VRK-mediated phosphorylation causes a loss of the DNA binding activity of BAF. These results raise the possibility that BAF phosphorylation may influence the integration activities of the PIC through removal of BAF from viral DNA. In the present study, we report that VRK1 was able to abolish the intermolecular integration activity of MMLV PICs in vitro. This was accompanied by an enhancement of autointegration activity and dissociation of BAF from the PICs. In addition, in vitro phosphorylation of BAF by VRK1 abrogated the activity of BAF in PIC function. Among the VRK family members, VRK1 as well as VRK2, which catalyze hyperphosphorylation of BAF, could abolish PIC function. We also found that treatment of PICs with certain nucleotides such as ATP resulted in the inhibition of the intermolecular integration activity of PICs through the dissociation of BAF. More importantly, the ATP-induced disruption was not observed with the PICs from VRK1 knockdown cells. Our in vitro results therefore suggest the presence of cellular kinases including VRKs that can inactivate the retroviral integration complex via BAF phosphorylation.
Collapse
Affiliation(s)
- Yasutsugu Suzuki
- Laboratory for Host Factors, Center for Emerging Virus Research, Kyoto University, Kyoto 606-8507, Japan.
| | | | | | | |
Collapse
|
133
|
|
134
|
Rajakulendran T, Sicheri F. Allosteric Protein Kinase Regulation by Pseudokinases: Insights from STRAD. Sci Signal 2010; 3:pe8. [DOI: 10.1126/scisignal.3111pe8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
135
|
Fukuda K, Gupta S, Chen K, Wu C, Qin J. The pseudoactive site of ILK is essential for its binding to alpha-Parvin and localization to focal adhesions. Mol Cell 2010; 36:819-30. [PMID: 20005845 DOI: 10.1016/j.molcel.2009.11.028] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 11/20/2009] [Accepted: 11/23/2009] [Indexed: 01/29/2023]
Abstract
Integrin-linked kinase (ILK) plays a pivotal role in connecting transmembrane receptor integrin to the actin cytoskeleton and thereby regulating diverse cell-adhesion-dependent processes. The kinase domain (KD) of ILK is indispensable for its function, but the underlying molecular basis remains enigmatic. Here we present the crystal structure of the ILK KD bound to its cytoskeletal regulator, the C-terminal calponin homology domain of alpha-parvin. While maintaining a canonical kinase fold, the ILK KD displays a striking pseudoactive site conformation. We show that rather than performing the kinase function, this conformation specifically recognizes alpha-parvin for promoting effective assembly of ILK into focal adhesions. The alpha-parvin-bound ILK KD can simultaneously engage integrin beta cytoplasmic tails. These results thus define ILK as a distinct pseudokinase that mechanically couples integrin and alpha-parvin for mediating cell adhesion. They also highlight functional diversity of the kinase fold and its "active" site in mediating many biological processes.
Collapse
Affiliation(s)
- Koichi Fukuda
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
136
|
Haan C, Behrmann I, Haan S. Perspectives for the use of structural information and chemical genetics to develop inhibitors of Janus kinases. J Cell Mol Med 2010; 14:504-27. [PMID: 20132407 PMCID: PMC3823453 DOI: 10.1111/j.1582-4934.2010.01018.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gain-of-function mutations in the genes encoding Janus kinases have been discovered in various haematologic diseases. Jaks are composed of a FERM domain, an SH2 domain, a pseudokinase domain and a kinase domain, and a complex interplay of the Jak domains is involved in regulation of catalytic activity and association to cytokine receptors. Most activating mutations are found in the pseudokinase domain. Here we present recently discovered mutations in the context of our structural models of the respective domains. We describe two structural hotspots in the pseudokinase domain of Jak2 that seem to be associated either to myeloproliferation or to lymphoblastic leukaemia, pointing at the involvement of distinct signalling complexes in these disease settings. The different domains of Jaks are discussed as potential drug targets. We present currently available inhibitors targeting Jaks and indicate structural differences in the kinase domains of the different Jaks that may be exploited in the development of specific inhibitors. Moreover, we discuss recent chemical genetic approaches which can be applied to Jaks to better understand the role of these kinases in their biological settings and as drug targets.
Collapse
Affiliation(s)
- Claude Haan
- Life Sciences Research Unit, University of Luxembourg, 162A, av. de la Faïencerie, 1511 Luxembourg, Luxembourg.
| | | | | |
Collapse
|
137
|
Zeqiraj E, Filippi BM, Deak M, Alessi DR, van Aalten DMF. Structure of the LKB1-STRAD-MO25 complex reveals an allosteric mechanism of kinase activation. Science 2009; 326:1707-11. [PMID: 19892943 PMCID: PMC3518268 DOI: 10.1126/science.1178377] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The LKB1 tumor suppressor is a protein kinase that controls the activity of adenosine monophosphate-activated protein kinase (AMPK). LKB1 activity is regulated by the pseudokinase STRADalpha and the scaffolding protein MO25alpha through an unknown, phosphorylation-independent, mechanism. We describe the structure of the core heterotrimeric LKB1-STRADalpha-MO25alpha complex, revealing an unusual allosteric mechanism of LKB1 activation. STRADalpha adopts a closed conformation typical of active protein kinases and binds LKB1 as a pseudosubstrate. STRADalpha and MO25alpha promote the active conformation of LKB1, which is stabilized by MO25alpha interacting with the LKB1 activation loop. This previously undescribed mechanism of kinase activation may be relevant to understanding the evolution of other pseudokinases. The structure also reveals how mutations found in Peutz-Jeghers syndrome and in various sporadic cancers impair LKB1 function.
Collapse
Affiliation(s)
- Elton Zeqiraj
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Beatrice Maria Filippi
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Maria Deak
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Dario R. Alessi
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Daan M. F. van Aalten
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| |
Collapse
|
138
|
Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3. Proc Natl Acad Sci U S A 2009; 106:21608-13. [PMID: 20007378 DOI: 10.1073/pnas.0912101106] [Citation(s) in RCA: 258] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The kinase domain of human epidermal growth factor receptor (HER) 3/ErbB3, a member of the EGF receptor (EGFR) family, lacks several residues that are critical for catalysis. Because catalytic activity in EGFR family members is switched on by an allosteric interaction between kinase domains in an asymmetric kinase domain dimer, HER3 might be specialized to serve as an activator of other EGFR family members. We have determined the crystal structure of the HER3 kinase domain and show that it appears to be locked into an inactive conformation that resembles that of EGFR and HER4. Although the crystal structure shows that the HER3 kinase domain binds ATP, we confirm that it is catalytically inactive but can serve as an activator of the EGFR kinase domain. The HER3 kinase domain forms a dimer in the crystal, mediated by hydrophobic contacts between the N-terminal lobes of the kinase domains. This N-lobe dimer closely resembles a dimer formed by inactive HER4 kinase domains in crystal structures determined previously, and molecular dynamics simulations suggest that the HER3 and HER4 N-lobe dimers are stable. The kinase domains of HER3 and HER4 form similar chains in their respective crystal lattices, in which N-lobe dimers are linked together by reciprocal exchange of C-terminal tails. The conservation of this tiling pattern in HER3 and HER4, which is the closest evolutionary homolog of HER3, might represent a general mechanism by which this branch of the HER receptors restricts ligand-independent formation of active heterodimers with other members of the EGFR family.
Collapse
|
139
|
Basu N, Arshad N, Visweswariah SS. Receptor guanylyl cyclase C (GC-C): regulation and signal transduction. Mol Cell Biochem 2009; 334:67-80. [PMID: 19960363 DOI: 10.1007/s11010-009-0324-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 11/04/2009] [Indexed: 12/27/2022]
Abstract
Receptor guanylyl cyclase C (GC-C) is the target for the gastrointestinal hormones, guanylin, and uroguanylin as well as the bacterial heat-stable enterotoxins. The major site of expression of GC-C is in the gastrointestinal tract, although this receptor and its ligands play a role in ion secretion in other tissues as well. GC-C shares the domain organization seen in other members of the family of receptor guanylyl cyclases, though subtle differences highlight some of the unique features of GC-C. Gene knock outs in mice for GC-C or its ligands do not lead to embryonic lethality, but modulate responses of these mice to stable toxin peptides, dietary intake of salts, and development and differentiation of intestinal cells. It is clear that there is much to learn in future about the role of this evolutionarily conserved receptor, and its properties in intestinal and extra-intestinal tissues.
Collapse
Affiliation(s)
- Nirmalya Basu
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
140
|
Structure and functional characterization of the atypical human kinase haspin. Proc Natl Acad Sci U S A 2009; 106:20198-203. [PMID: 19918057 DOI: 10.1073/pnas.0901989106] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The protein kinase haspin/Gsg2 plays an important role in mitosis, where it specifically phosphorylates Thr-3 in histone H3 (H3T3). Its protein sequence is only weakly homologous to other protein kinases and lacks the highly conserved motifs normally required for kinase activity. Here we report structures of human haspin in complex with ATP and the inhibitor iodotubercidin. These structures reveal a constitutively active kinase conformation, stabilized by haspin-specific inserts. Haspin also has a highly atypical activation segment well adapted for specific recognition of the basic histone tail. Despite the lack of a DFG motif, ATP binding to haspin is similar to that in classical kinases; however, the ATP gamma-phosphate forms hydrogen bonds with the conserved catalytic loop residues Asp-649 and His-651, and a His651Ala haspin mutant is inactive, suggesting a direct role for the catalytic loop in ATP recognition. Enzyme kinetic data show that haspin phosphorylates substrate peptides through a rapid equilibrium random mechanism. A detailed analysis of histone modifications in the neighborhood of H3T3 reveals that increasing methylation at Lys-4 (H3K4) strongly decreases substrate recognition, suggesting a key role of H3K4 methylation in the regulation of haspin activity.
Collapse
|
141
|
Chung S, Tamura K, Furihata M, Uemura M, Daigo Y, Nasu Y, Miki T, Shuin T, Fujioka T, Nakamura Y, Nakagawa H. Overexpression of the potential kinase serine/ threonine/tyrosine kinase 1 (STYK 1) in castration-resistant prostate cancer. Cancer Sci 2009; 100:2109-14. [PMID: 19664042 PMCID: PMC11159893 DOI: 10.1111/j.1349-7006.2009.01277.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Abstract
Despite high response rates and clinical benefits, androgen ablation often fails to cure advanced or relapsed prostate cancer because castration-resistant prostate cancer (CRPC) cells inevitably emerge. CRPC cells not only grow under castration, but also behave more aggressively, indicating that a number of malignant signaling pathways are activated in CRPC cells as well as androgen receptor signaling. Based on information from the gene expression profiles of clinical CRPC cells, we here identified one overexpressed gene, serine/threonine/tyrosine kinase 1 (STYK1), encoding a potential kinase, as a molecular target for CRPC. RNA and immunohistochemical analyses validated the overexpression of STYK1 in prostate cancer cells, and its expression was distinct in CRPC cells. Knockdown of STYK1 by siRNA resulted in drastic suppression of prostate cancer cell growth and, concordantly, enforced expression of STYK1 promoted cell proliferation, whereas ectopic expression of a kinase-dead mutant STYK1 did not. An in vitro kinase assay using recombinant STYK1 demonstrated that STYK1 could have some potential as a kinase, although its specific substrates are unknown. These findings suggest that STYK1 could be a possible molecular target for CRPC, and small molecules specifically inhibiting STYK1 kinase could be a possible approach for the development of novel CRPC therapies.
Collapse
Affiliation(s)
- Suyoun Chung
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Eswaran J, Knapp S. Insights into protein kinase regulation and inhibition by large scale structural comparison. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:429-32. [PMID: 19854302 PMCID: PMC2845818 DOI: 10.1016/j.bbapap.2009.10.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/06/2009] [Accepted: 10/08/2009] [Indexed: 12/11/2022]
Abstract
Protein structure determination of soluble globular protein domains has developed into an efficient routine technology which can now be applied to generate and analyze structures of entire human protein families. In the kinase area, several kinase families still lack comprehensive structural analysis. Nevertheless, Structural Genomics (SG) efforts contributed more than 40 kinase catalytic domain structures during the past 4 years providing a rich resource of information for large scale comparisons of kinase active sites. Moreover, many of the released structures are inhibitor complexes that offer chemical starting points for development of selective and potent inhibitors. Here we discuss the currently available structural data and strategies that can be utilized for the development of highly selective inhibitors.
Collapse
Affiliation(s)
- Jeyanthy Eswaran
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford Old Road Campus Building, Oxford OX3 7DQ, UK.
| | | |
Collapse
|
143
|
Classification of nonenzymatic homologues of protein kinases. Comp Funct Genomics 2009:365637. [PMID: 19809514 PMCID: PMC2754085 DOI: 10.1155/2009/365637] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 07/01/2009] [Indexed: 11/17/2022] Open
Abstract
Protein Kinase-Like Non-kinases (PKLNKs), which are closely related to protein kinases, lack the crucial catalytic aspartate in the catalytic loop, and hence cannot function as protein kinase, have been analysed. Using various sensitive sequence analysis methods, we have recognized 82 PKLNKs from four higher eukaryotic organisms, namely, Homo sapiens, Mus musculus, Rattus norvegicus, and Drosophila melanogaster. On the basis of their domain combination and function, PKLNKs have been classified mainly into four categories: (1) Ligand binding PKLNKs, (2) PKLNKs with extracellular protein-protein interaction domain, (3) PKLNKs involved in dimerization, and (4) PKLNKs with cytoplasmic protein-protein interaction module. While members of the first two classes of PKLNKs have transmembrane domain tethered to the PKLNK domain, members of the other two classes of PKLNKs are cytoplasmic in nature. The current classification scheme hopes to provide a convenient framework to classify the PKLNKs from other eukaryotes which would be helpful in deciphering their roles in cellular processes.
Collapse
|
144
|
Zeqiraj E, Filippi BM, Goldie S, Navratilova I, Boudeau J, Deak M, Alessi DR, van Aalten DMF. ATP and MO25alpha regulate the conformational state of the STRADalpha pseudokinase and activation of the LKB1 tumour suppressor. PLoS Biol 2009; 7:e1000126. [PMID: 19513107 PMCID: PMC2686265 DOI: 10.1371/journal.pbio.1000126] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 04/29/2009] [Indexed: 01/27/2023] Open
Abstract
Pseudokinases lack essential residues for kinase activity, yet are emerging as important regulators of signal transduction networks. The pseudokinase STRAD activates the LKB1 tumour suppressor by forming a heterotrimeric complex with LKB1 and the scaffolding protein MO25. Here, we describe the structure of STRADalpha in complex with MO25alpha. The structure reveals an intricate web of interactions between STRADalpha and MO25alpha involving the alphaC-helix of STRADalpha, reminiscent of the mechanism by which CDK2 interacts with cyclin A. Surprisingly, STRADalpha binds ATP and displays a closed conformation and an ordered activation loop, typical of active protein kinases. Inactivity is accounted for by nonconservative substitution of almost all essential catalytic residues. We demonstrate that binding of ATP enhances the affinity of STRADalpha for MO25alpha, and conversely, binding of MO25alpha promotes interaction of STRADalpha with ATP. Mutagenesis studies reveal that association of STRADalpha with either ATP or MO25alpha is essential for LKB1 activation. We conclude that ATP and MO25alpha cooperate to maintain STRADalpha in an "active" closed conformation required for LKB1 activation. It has recently been demonstrated that a mutation in human STRADalpha that truncates a C-terminal region of the pseudokinase domain leads to the polyhydramnios, megalencephaly, symptomatic epilepsy (PMSE) syndrome. We demonstrate this mutation destabilizes STRADalpha and prevents association with LKB1. In summary, our findings describe one of the first structures of a genuinely inactive pseudokinase. The ability of STRADalpha to activate LKB1 is dependent on a closed "active" conformation, aided by ATP and MO25alpha binding. Thus, the function of STRADalpha is mediated through an active kinase conformation rather than kinase activity. It is possible that other pseudokinases exert their function through nucleotide binding and active conformations.
Collapse
Affiliation(s)
- Elton Zeqiraj
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, Scotland
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland
| | - Beatrice Maria Filippi
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland
| | - Simon Goldie
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, Scotland
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland
| | - Iva Navratilova
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, Scotland
| | - Jérôme Boudeau
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland
| | - Maria Deak
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland
| | - Dario R. Alessi
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland
| | - Daan M. F. van Aalten
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, Scotland
- * E-mail:
| |
Collapse
|
145
|
|