101
|
Girgis CM, Cheng K, Scott CH, Gunton JE. Novel links between HIFs, type 2 diabetes, and metabolic syndrome. Trends Endocrinol Metab 2012; 23:372-80. [PMID: 22766319 DOI: 10.1016/j.tem.2012.05.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/03/2012] [Accepted: 05/05/2012] [Indexed: 12/25/2022]
Abstract
Hypoxia inducible factors (HIFs) are master-regulators of cellular responses to hypoxia, and thus are crucial for survival. HIFs also play a role in regulating cellular processes in β-cells, liver, muscle, and adipose tissue, have effects on the regulation of weight, and play a role in type 2 diabetes (T2D). Indeed, in people with T2D the HIF pathway is dyregulated in major metabolic tissues involved in the pathogenesis of diabetes. This review covers the contrasting, complementary and conflicting effects of decreasing and increasing HIFs in various tissues, and shows that a delicate balance exists between HIF levels and optimal metabolic function. We propose that increasing the activity of HIFs might be a potential therapeutic strategy for treating T2D.
Collapse
Affiliation(s)
- Christian M Girgis
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia
| | | | | | | |
Collapse
|
102
|
Xu J, Xiang Q, Lin G, Fu X, Zhou K, Jiang P, Zheng S, Wang T. Estrogen improved metabolic syndrome through down-regulation of VEGF and HIF-1α to inhibit hypoxia of periaortic and intra-abdominal fat in ovariectomized female rats. Mol Biol Rep 2012; 39:8177-85. [PMID: 22570111 DOI: 10.1007/s11033-012-1665-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 09/14/2011] [Indexed: 01/09/2023]
Abstract
Metabolic syndrome (MBS), a cluster of metabolic abnormalities and visceral fat accumulation, increases cardiovascular risks in postmenopausal women. In addition to visceral fat, perivascular adipose tissue has been recently found to play an important role in vascular pathophysiology. Hence, the present study investigates the effects of estrogen on both intra-abdominal fat (visceral fat) and periaortic fat (perivascular fat) accumulation as well as hypoxia in ovariectomized female rats. Female rats were divided into sham operation, ovariectomy and ovariectomy with 17β-estradiol supplementation groups. Twelve weeks later, we found that estrogen improved MBS via reducing body weight gain, the weight of periaortic and intra-abdominal fat, hepatic triglyceride, and total serum cholesterol levels. Estrogen also increased insulin sensitivity through restoring glucose and serum leptin levels. For periaortic fat, western blot showed estrogen inhibited hypoxia by reducing the levels of VEGF and HIF-1α, which is consistent with the results from immunohistochemical staining. The correlation analysis indicated that perivascular fat had a positive correlation with body weight, intra-abdominal fat or serum total cholesterol, but a negative correlation with insulin sensitivity index. For intra-abdominal fat, real-time fluorescent RT-PCR showed estrogen improved fat dysfunction via reducing the levels of relative leptin, MCP-1 but increasing adiponectin mRNA. Estrogen reduced the levels of VEGF and HIF-1α to inhibit hypoxia but restored the levels of PPARγ and Srebp-1c, which are important for lipid capacity function of intra-abdominal fat. These results demonstrated estrogen improved MBS through down-regulating VEGF and HIF-1α to inhibit hypoxia of periaortic and intra-abdominal fat in ovariectomized female rats.
Collapse
Affiliation(s)
- Jinwen Xu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Rd 2, Guangzhou 510080, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Suagee JK, Corl BA, Geor RJ. A Potential Role for Pro-Inflammatory Cytokines in the Development of Insulin Resistance in Horses. Animals (Basel) 2012; 2:243-60. [PMID: 26486919 PMCID: PMC4494330 DOI: 10.3390/ani2020243] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/16/2012] [Accepted: 04/26/2012] [Indexed: 02/07/2023] Open
Abstract
Insulin resistance is a metabolic condition involving reduced sensitivity of insulin-sensitive tissues to insulin-induced glucose disposal, including adipose tissue, skeletal muscle, and liver. Insulin resistance occurs in overweight and obese horses, and may increase risk for the development of laminitis. The development of insulin resistance is thought to occur in response to increased production of pro-inflammatory cytokines by adipose tissue in obesity, that then have an inhibitory effect on insulin signaling pathways in multiple tissues. This article reviews current knowledge of the involvement of pro-inflammatory cytokines in the development of insulin resistance in horses and uses data from other species to provide context. Understanding the mechanisms involved in the development of insulin resistance in horses should enable development of effective treatment and prevention strategies. Current knowledge of these mechanisms is based upon research in obese humans and rodents, in which there is evidence that the increased production of pro-inflammatory cytokines by adipose tissue negatively influences insulin signaling in insulin-responsive tissues. In horses, plasma concentrations of the cytokine, tumor necrosis factor-α, have been positively correlated with body fatness and insulin resistance, leading to the hypothesis that inflammation may reduce insulin sensitivity in horses. However, little evidence has documented a tissue site of production and a direct link between inflammation and induction of insulin resistance has not been established. Several mechanisms are reviewed in this article, including the potential for macrophage infiltration, hyperinsulinemia, hypoxia, and lipopolysaccharide to increase pro-inflammatory cytokine production by adipose tissue of obese horses. Clearly defining the role of cytokines in reduced insulin sensitivity of horses will be a very important step in determining how obesity and insulin resistance are related.
Collapse
Affiliation(s)
- Jessica K Suagee
- Department of Dairy Science, Virginia Tech, Blacksburg, VA 24071, USA.
| | - Benjamin A Corl
- Department of Dairy Science, Virginia Tech, Blacksburg, VA 24071, USA.
| | - Raymond J Geor
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
104
|
Quintero P, González-Muniesa P, García-Díaz DF, Martínez JA. Effects of hyperoxia exposure on metabolic markers and gene expression in 3T3-L1 adipocytes. J Physiol Biochem 2012; 68:663-9. [PMID: 22535284 DOI: 10.1007/s13105-012-0169-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/30/2012] [Indexed: 12/31/2022]
Abstract
Adipose tissue often becomes poorly oxygenated in obese subjects. This feature may provide cellular mechanisms involving chronic inflammation processes such as the release of pro-inflammatory cytokines and macrophage infiltration. In this context, the purpose of the present study was to determine whether a hyperoxia exposure on mature adipocytes may influence the expression of some adipokines and involve favorable changes in specific metabolic variables. Thus, 3T3-L1 adipocytes (14 days differentiated) were treated with 95 % oxygen for 24 h. Cell viability, intra and extracellular reactive oxygen species (ROS) content, glucose uptake, as well as lactate and glycerol concentrations were measured in the culture media. Also, mRNA levels of hypoxia-inducible factor (HIF)-1α, leptin, interleukin (IL)-6, monocyte chemotactic protein (MCP)-1, peroxisome proliferator-activated receptor (PPAR)-γ, adiponectin, and angiopoietin-related protein (ANGPTL)4 were analyzed. Hyperoxia treatment increased intra and extracellular ROS content, reduced glucose uptake and lactate release and increased glycerol release. Additionally, a higher oxygen tension led to an upregulation of the expression of IL-6, MCP-1, and PPAR-γ, while ANGPTL4 was downregulated in the hyperoxia group with respect to control. The present data shows that hyperoxia treatment seems to produce an inflammatory response due to the release of ROS and the upregulation of pro-inflammatory adipokines, such as IL-6 and MCP-1. On the other hand, hyperoxia may have an indirect effect on insulin sensitivity due to the upregulation of PPAR-γ signaling as well as a possible modulation of both glucose and lipid metabolic markers. To our knowledge, this is the first study analyzing the effect of hyperoxia in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- P Quintero
- Department of Nutrition, Food Science, Physiology and Toxicology, University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain
| | | | | | | |
Collapse
|
105
|
Fernández-Barral A, Orgaz JL, Gomez V, del Peso L, Calzada MJ, Jiménez B. Hypoxia negatively regulates antimetastatic PEDF in melanoma cells by a hypoxia inducible factor-independent, autophagy dependent mechanism. PLoS One 2012; 7:e32989. [PMID: 22457728 PMCID: PMC3311626 DOI: 10.1371/journal.pone.0032989] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 02/07/2012] [Indexed: 11/26/2022] Open
Abstract
Pigment epithelium-derived factor (PEDF), a member of the serine protease inhibitor (SERPIN) superfamily, displays a potent antiangiogenic and antimetastatic activity in a broad range of tumor types. Melanocytes and low aggressive melanoma cells secrete high levels of PEDF, while its expression is lost in highly aggressive melanomas. PEDF efficiently abrogates a number of functional properties critical for the acquisition of metastatic ability by melanoma cells, such as neovascularization, proliferation, migration, invasiveness and extravasation. In this study, we identify hypoxia as a relevant negative regulator of PEDF in melanocytes and low aggressive melanoma cells. PEDF was regulated at the protein level. Importantly, although downregulation of PEDF was induced by inhibition of 2-oxoglutarate-dependent dioxygenases, it was independent of the hypoxia inducible factor (HIF), a key mediator of the adaptation to hypoxia. Decreased PEDF protein was not mediated by inhibition of translation through untranslated regions (UTRs) in melanoma cells. Degradation by metalloproteinases, implicated on PEDF degradation in retinal pigment epithelial cells, or by the proteasome, was also excluded as regulatory mechanism in melanoma cells. Instead, we found that degradation by autophagy was critical for PEDF downregulation under hypoxia in human melanoma cells. Our findings show that hypoxic conditions encountered during primary melanoma growth downregulate antiangiogenic and antimetastasic PEDF by a posttranslational mechanism involving degradation by autophagy and could therefore contribute to the acquisition of highly metastatic potential characteristic of aggressive melanoma cells.
Collapse
Affiliation(s)
- Asunción Fernández-Barral
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - José Luis Orgaz
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Valentí Gomez
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Luis del Peso
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - María José Calzada
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
- Servicio de Inmunologia, Hospital de la Princesa, Instituto de Investigación Sanitaria Princesa and Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Benilde Jiménez
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
- * E-mail:
| |
Collapse
|
106
|
Vachal P, Miao S, Pierce JM, Guiadeen D, Colandrea VJ, Wyvratt MJ, Salowe SP, Sonatore LM, Milligan JA, Hajdu R, Gollapudi A, Keohane CA, Lingham RB, Mandala SM, DeMartino JA, Tong X, Wolff M, Steinhuebel D, Kieczykowski GR, Fleitz FJ, Chapman K, Athanasopoulos J, Adam G, Akyuz CD, Jena DK, Lusen JW, Meng J, Stein BD, Xia L, Sherer EC, Hale JJ. 1,3,8-Triazaspiro[4.5]decane-2,4-diones as Efficacious Pan-Inhibitors of Hypoxia-Inducible Factor Prolyl Hydroxylase 1–3 (HIF PHD1–3) for the Treatment of Anemia. J Med Chem 2012; 55:2945-59. [DOI: 10.1021/jm201542d] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Petr Vachal
- Departments of †Medicinal Chemistry, ‡Infectious Diseases; §Immunology; ∥Drug Metabolism/Pharmacokinetics; ⊥Process Research; #Target Validation; ▽Information Technology; ○Chemistry Modeling
and Informatics. Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Shouwu Miao
- Departments of †Medicinal Chemistry, ‡Infectious Diseases; §Immunology; ∥Drug Metabolism/Pharmacokinetics; ⊥Process Research; #Target Validation; ▽Information Technology; ○Chemistry Modeling
and Informatics. Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Joan M. Pierce
- Departments of †Medicinal Chemistry, ‡Infectious Diseases; §Immunology; ∥Drug Metabolism/Pharmacokinetics; ⊥Process Research; #Target Validation; ▽Information Technology; ○Chemistry Modeling
and Informatics. Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Deodial Guiadeen
- Departments of †Medicinal Chemistry, ‡Infectious Diseases; §Immunology; ∥Drug Metabolism/Pharmacokinetics; ⊥Process Research; #Target Validation; ▽Information Technology; ○Chemistry Modeling
and Informatics. Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Vincent J. Colandrea
- Departments of †Medicinal Chemistry, ‡Infectious Diseases; §Immunology; ∥Drug Metabolism/Pharmacokinetics; ⊥Process Research; #Target Validation; ▽Information Technology; ○Chemistry Modeling
and Informatics. Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Matthew J. Wyvratt
- Departments of †Medicinal Chemistry, ‡Infectious Diseases; §Immunology; ∥Drug Metabolism/Pharmacokinetics; ⊥Process Research; #Target Validation; ▽Information Technology; ○Chemistry Modeling
and Informatics. Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Scott P. Salowe
- Departments of †Medicinal Chemistry, ‡Infectious Diseases; §Immunology; ∥Drug Metabolism/Pharmacokinetics; ⊥Process Research; #Target Validation; ▽Information Technology; ○Chemistry Modeling
and Informatics. Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Lisa M. Sonatore
- Departments of †Medicinal Chemistry, ‡Infectious Diseases; §Immunology; ∥Drug Metabolism/Pharmacokinetics; ⊥Process Research; #Target Validation; ▽Information Technology; ○Chemistry Modeling
and Informatics. Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - James A. Milligan
- Departments of †Medicinal Chemistry, ‡Infectious Diseases; §Immunology; ∥Drug Metabolism/Pharmacokinetics; ⊥Process Research; #Target Validation; ▽Information Technology; ○Chemistry Modeling
and Informatics. Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Richard Hajdu
- Departments of †Medicinal Chemistry, ‡Infectious Diseases; §Immunology; ∥Drug Metabolism/Pharmacokinetics; ⊥Process Research; #Target Validation; ▽Information Technology; ○Chemistry Modeling
and Informatics. Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Anantha Gollapudi
- Departments of †Medicinal Chemistry, ‡Infectious Diseases; §Immunology; ∥Drug Metabolism/Pharmacokinetics; ⊥Process Research; #Target Validation; ▽Information Technology; ○Chemistry Modeling
and Informatics. Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Carol A. Keohane
- Departments of †Medicinal Chemistry, ‡Infectious Diseases; §Immunology; ∥Drug Metabolism/Pharmacokinetics; ⊥Process Research; #Target Validation; ▽Information Technology; ○Chemistry Modeling
and Informatics. Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Russell B. Lingham
- Departments of †Medicinal Chemistry, ‡Infectious Diseases; §Immunology; ∥Drug Metabolism/Pharmacokinetics; ⊥Process Research; #Target Validation; ▽Information Technology; ○Chemistry Modeling
and Informatics. Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Suzanne M. Mandala
- Departments of †Medicinal Chemistry, ‡Infectious Diseases; §Immunology; ∥Drug Metabolism/Pharmacokinetics; ⊥Process Research; #Target Validation; ▽Information Technology; ○Chemistry Modeling
and Informatics. Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Julie A. DeMartino
- Departments of †Medicinal Chemistry, ‡Infectious Diseases; §Immunology; ∥Drug Metabolism/Pharmacokinetics; ⊥Process Research; #Target Validation; ▽Information Technology; ○Chemistry Modeling
and Informatics. Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Xinchun Tong
- Departments of †Medicinal Chemistry, ‡Infectious Diseases; §Immunology; ∥Drug Metabolism/Pharmacokinetics; ⊥Process Research; #Target Validation; ▽Information Technology; ○Chemistry Modeling
and Informatics. Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Michael Wolff
- Departments of †Medicinal Chemistry, ‡Infectious Diseases; §Immunology; ∥Drug Metabolism/Pharmacokinetics; ⊥Process Research; #Target Validation; ▽Information Technology; ○Chemistry Modeling
and Informatics. Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Dietrich Steinhuebel
- Departments of †Medicinal Chemistry, ‡Infectious Diseases; §Immunology; ∥Drug Metabolism/Pharmacokinetics; ⊥Process Research; #Target Validation; ▽Information Technology; ○Chemistry Modeling
and Informatics. Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Gerard R. Kieczykowski
- Departments of †Medicinal Chemistry, ‡Infectious Diseases; §Immunology; ∥Drug Metabolism/Pharmacokinetics; ⊥Process Research; #Target Validation; ▽Information Technology; ○Chemistry Modeling
and Informatics. Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Fred J. Fleitz
- Departments of †Medicinal Chemistry, ‡Infectious Diseases; §Immunology; ∥Drug Metabolism/Pharmacokinetics; ⊥Process Research; #Target Validation; ▽Information Technology; ○Chemistry Modeling
and Informatics. Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Kevin Chapman
- Departments of †Medicinal Chemistry, ‡Infectious Diseases; §Immunology; ∥Drug Metabolism/Pharmacokinetics; ⊥Process Research; #Target Validation; ▽Information Technology; ○Chemistry Modeling
and Informatics. Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - John Athanasopoulos
- Departments of †Medicinal Chemistry, ‡Infectious Diseases; §Immunology; ∥Drug Metabolism/Pharmacokinetics; ⊥Process Research; #Target Validation; ▽Information Technology; ○Chemistry Modeling
and Informatics. Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Gregory Adam
- Departments of †Medicinal Chemistry, ‡Infectious Diseases; §Immunology; ∥Drug Metabolism/Pharmacokinetics; ⊥Process Research; #Target Validation; ▽Information Technology; ○Chemistry Modeling
and Informatics. Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Can D. Akyuz
- Departments of †Medicinal Chemistry, ‡Infectious Diseases; §Immunology; ∥Drug Metabolism/Pharmacokinetics; ⊥Process Research; #Target Validation; ▽Information Technology; ○Chemistry Modeling
and Informatics. Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Dhirendra K. Jena
- Departments of †Medicinal Chemistry, ‡Infectious Diseases; §Immunology; ∥Drug Metabolism/Pharmacokinetics; ⊥Process Research; #Target Validation; ▽Information Technology; ○Chemistry Modeling
and Informatics. Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Jeffrey W. Lusen
- Departments of †Medicinal Chemistry, ‡Infectious Diseases; §Immunology; ∥Drug Metabolism/Pharmacokinetics; ⊥Process Research; #Target Validation; ▽Information Technology; ○Chemistry Modeling
and Informatics. Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Juncai Meng
- Departments of †Medicinal Chemistry, ‡Infectious Diseases; §Immunology; ∥Drug Metabolism/Pharmacokinetics; ⊥Process Research; #Target Validation; ▽Information Technology; ○Chemistry Modeling
and Informatics. Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Benjamin D. Stein
- Departments of †Medicinal Chemistry, ‡Infectious Diseases; §Immunology; ∥Drug Metabolism/Pharmacokinetics; ⊥Process Research; #Target Validation; ▽Information Technology; ○Chemistry Modeling
and Informatics. Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Lei Xia
- Departments of †Medicinal Chemistry, ‡Infectious Diseases; §Immunology; ∥Drug Metabolism/Pharmacokinetics; ⊥Process Research; #Target Validation; ▽Information Technology; ○Chemistry Modeling
and Informatics. Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Edward C. Sherer
- Departments of †Medicinal Chemistry, ‡Infectious Diseases; §Immunology; ∥Drug Metabolism/Pharmacokinetics; ⊥Process Research; #Target Validation; ▽Information Technology; ○Chemistry Modeling
and Informatics. Merck Research Laboratories, Rahway, New Jersey 07065, United States
| | - Jeffrey J. Hale
- Departments of †Medicinal Chemistry, ‡Infectious Diseases; §Immunology; ∥Drug Metabolism/Pharmacokinetics; ⊥Process Research; #Target Validation; ▽Information Technology; ○Chemistry Modeling
and Informatics. Merck Research Laboratories, Rahway, New Jersey 07065, United States
| |
Collapse
|
107
|
On the role of low-dose effects and epigenetics in toxicology. EXPERIENTIA SUPPLEMENTUM (2012) 2012; 101:499-550. [PMID: 22945581 DOI: 10.1007/978-3-7643-8340-4_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For a long time, scientists considered genotoxic effects as the major issue concerning the influence of environmental chemicals on human health. Over the last decades, a new layer superimposed the genome, i.e., the epigenome, tremendously changing this point of view. The term "epigenetics" comprises stable alterations in gene expression potential arising from variations in DNA methylation and a variety of histone modifications, without changing the underlying DNA sequence. Recently, also gene silencing by small noncoding RNAs (ncRNAs), in particular by microRNAs, was included in the list of epigenetic mechanisms. Multiple studies in vivo as well as in vitro have shown that a multitude of different environmental factors are capable of changing the epigenetic pattern as well as miRNA expression in certain cell types, leading to aberrant gene expression profiles in cells and tissues. These changes may have extensive effects concerning the proper gene expression necessary in a specified cell type and can even lead into a state of disease. Especially the roles of epigenetic modifications and miRNA alterations in tumorigenesis have been a major focus in research over the last years. This chapter will give an overview on epigenetic features and on the spectrum of epigenetic changes observed after exposure against environmental chemicals and pollutants.
Collapse
|
108
|
Melvin A, Rocha S. Chromatin as an oxygen sensor and active player in the hypoxia response. Cell Signal 2012; 24:35-43. [PMID: 21924352 PMCID: PMC3476533 DOI: 10.1016/j.cellsig.2011.08.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 08/29/2011] [Indexed: 12/28/2022]
Abstract
Changes in the availability or demand for oxygen induce dramatic changes at the cellular level. Primarily, activation of a family of oxygen labile transcription factors, Hypoxia Inducible Factor (HIF), initiates a variety of cellular processes required to re-instate oxygen homeostasis. Oxygen is sensed by molecular dioxygenases in cells, such as the prolyl-hydroxylases (PHDs), enzymes which are responsible for the oxygen-dependent regulation of HIF. As HIF is a transcription factor it must bind DNA sequences of its target genes possibly in the context of a complex chromatin structure. How chromatin structure changes in response to hypoxia is currently unknown. However, the identification of a novel class of histone demethylases as true dioxygenases suggests that chromatin can act as an oxygen sensor and plays an active role in the coordination of the cellular response to hypoxia. This review will discuss the current knowledge on how hypoxia engages with different proteins involved in chromatin organisation and dynamics.
Collapse
Key Words
- hif, hypoxia inducible factor
- arnt, aryl hydrocarbon nuclear translocator
- vhl, von hippel lindau
- phd, prolyl-hydroxylase
- fih, factor inhibiting hif
- chip, chromatin immunoprecipitation
- swi/snf, switch/sucrose nonfermentable
- iswi, imitation switch
- chd, chromodomain helicase dna-binding
- nurf, nucleosome remodelling factor
- chrac, chromatin remodelling and assembly complex
- acf, atp-utilising chromatin remodelling and assembly factor
- norc, nucleolar remodelling complex
- rsf, remodelling and spacing factor
- wich, wstf–iswi chromatin remodelling complex
- nurd, nucleosome remodelling and histone deacetylase
- srcap, snf2-related cbp activator protein
- trrap, transformation/transcription domain-associated protein/tip60
- hat, histone acetyl transferase
- hdac, histone deacetylase
- lsd1, lysine-specific demethylase-1
- jmjc, jumonji c domain
- hypoxia
- chromatin
- hif
- transcription
- chromatin remodellers
- jmjc demethylases
Collapse
Affiliation(s)
| | - Sonia Rocha
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee, DD1 5EH, Scotland, United Kingdom
| |
Collapse
|
109
|
Everett MV, Antal CE, Crawford DL. The effect of short-term hypoxic exposure on metabolic gene expression. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL GENETICS AND PHYSIOLOGY 2012; 317:9-23. [PMID: 22021243 PMCID: PMC3237964 DOI: 10.1002/jez.717] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 08/04/2011] [Accepted: 08/24/2011] [Indexed: 11/09/2022]
Abstract
The long-term effect of hypoxia is to decrease both the production and use of ATP and thus decrease the reliance on mitochondrial oxidative energy production. Yet, recent studies include more immediate affects of hypoxia on gene expression and these data suggest the maintenance of mitochondrial function. To better understand the short-term physiological response to hypoxia, we quantified metabolic mRNA expression in the heart ventricles and livers of the teleost fish Fundulus grandis exposed to partial oxygen pressure of 2.8 kPa (-13.5% air saturation).Twenty-eight individuals from a single population were exposed to hypoxia for 0, 4, 8, 12, 24, 48, and 96 hr. Liver and cardiac tissues were sampled from the same individuals at 0-48 hr. At 96 hr, only cardiac tissue was assayed. Gene expression was significantly different (ANOVA, P < 0.05) for 17 of 226 metabolic genes (7.5%) in cardiac tissue and for 20 of 256 (7.8%) metabolic genes in hepatic tissue. For the two tissues examined in this study, the maximum response occurred at different times. For cardiac tissue, using Dunnett's post hoc test, most of these significant differences occurred at 96 hr of exposure. For liver, all but one significant difference occurred at 4 hr. Surprisingly, too many (relative to random expectations) of the genes with significant increase in mRNA are involved in the oxidative phosphorylation pathway: 44% of the significant genes at 96 hr in the heart and 33% of the significant genes at 4 hr in the liver are involved in the oxidative phosphorylation pathway. These data indicate that there are tissue-specific differences in the timing of the response to hypoxia, yet both cardiac and hepatic tissues have increases in mRNA that code for enzyme in the oxidative phosphorylation pathway. If these changes in mRNA produce a similar change in protein, then these data suggest that the initial response to hypoxia involves an increase in the oxidative pathway potentially as a mechanism to maintain ATP production.
Collapse
Affiliation(s)
- Meredith V. Everett
- Marine Biology and Fisheries□Rosenstiel School of Marine and Atmospheric Science University of Miami 4600 Rickenbacker Causeway Miami, FL 33149-1098 USA
| | - Corina E. Antal
- Marine Biology and Fisheries□Rosenstiel School of Marine and Atmospheric Science University of Miami 4600 Rickenbacker Causeway Miami, FL 33149-1098 USA
| | - Douglas L. Crawford
- Marine Biology and Fisheries□Rosenstiel School of Marine and Atmospheric Science University of Miami 4600 Rickenbacker Causeway Miami, FL 33149-1098 USA
| |
Collapse
|
110
|
Goswami SK, Das DK. Oxygen Sensing, Cardiac Ischemia, HIF-1α and Some Emerging Concepts. Curr Cardiol Rev 2011; 6:265-73. [PMID: 22043202 PMCID: PMC3083807 DOI: 10.2174/157340310793566136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 09/03/2010] [Accepted: 09/15/2010] [Indexed: 11/22/2022] Open
Abstract
Oxygen plays a critical role in the perpetuation and propagation of almost all forms of life. The primary site of cellular oxygen consumption is the mitochondrial electron transport chain and in addition, oxygen is also used as a substrate for various enzymes involved in cellular homeostasis. Although our knowledge of the biochemistry and physiology of oxygen transport is century old, recent development of sophisticated tools of biophysical chemistry revealed that tissue oxygenation and oxygen sensing is a highly evolved process, especially in mammals. Perturbation of normal oxygen supply is associated with diseases like tumorigenesis, myocardial infarction and stroke. Available information suggests that when tissue oxygen supply is limited, mitochondria emanate signals involving reactive oxygen species generation which in turn stabilizes oxygen sensing transcription factor HIF-1. Upon stabilization, HIF-1 elicits necessary genetic response to cope with the diminished oxygen level. In view of such critical role of HIF-1 in cellular oxygen sensing, recently there has been a heightened interest in understanding the biology of HIF-1 in the context of cardiovascular system. The following review describes some of the recent advances in this regard.
Collapse
Affiliation(s)
- Shyamal K Goswami
- Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, Connecticut, CT 06030- 1110, USA
| | | |
Collapse
|
111
|
Geiger K, Leiherer A, Muendlein A, Stark N, Geller-Rhomberg S, Saely CH, Wabitsch M, Fraunberger P, Drexel H. Identification of hypoxia-induced genes in human SGBS adipocytes by microarray analysis. PLoS One 2011; 6:e26465. [PMID: 22039494 PMCID: PMC3198480 DOI: 10.1371/journal.pone.0026465] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 09/27/2011] [Indexed: 01/04/2023] Open
Abstract
Hypoxia in adipose tissue is suggested to be involved in the development of a chronic mild inflammation, which in obesity can further lead to insulin resistance. The effect of hypoxia on gene expression in adipocytes appears to play a central role in this inflammatory response observed in obesity. However, the global impact of hypoxia on transcriptional changes in human adipocytes is unclear. Therefore, we compared gene expression profiles of human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes under normoxic or hypoxic conditions to detect hypoxia-responsive genes in adipocytes by using whole human genome microarrays. Microarray analysis showed more than 500 significantly differentially regulated mRNAs after incubation of the cells under low oxygen levels. To gain further insight into the biological processes, hypoxia-regulated genes after 16 hours of hypoxia were classified according to their function. We identified an enrichment of genes involved in important biological processes such as glycolysis, response to hypoxia, regulation of cellular component movement, response to nutrient levels, regulation of cell migration, and transcription regulator activity. Real-time PCR confirmed eight genes to be consistently upregulated in response to 3, 6 and 16 hours of hypoxia. For adipocytes the hypoxia-induced regulation of these genes is shown here for the first time. Moreover in six of these eight genes we identified HIF response elements in the proximal promoters, specific for the HIF transcription factor family members HIF1A and HIF2A. In the present study, we demonstrated that hypoxia has an extensive effect on gene expression of SGBS adipocytes. In addition, the identified hypoxia-regulated genes are likely involved in the regulation of obesity, the incidence of type 2 diabetes, and the metabolic syndrome.
Collapse
Affiliation(s)
- Kathrin Geiger
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
| | - Andreas Leiherer
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
- Medical Central Laboratories, Feldkirch, Austria
| | - Axel Muendlein
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
| | - Nicole Stark
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
| | - Simone Geller-Rhomberg
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
| | - Christoph H. Saely
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Department of Medicine and Cardiology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, University of Ulm, Ulm, Germany
| | | | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Department of Medicine and Cardiology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
- Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
112
|
Wei L, Wu RB, Yang CM, Zheng SY, Yu XY. Polymerised placenta haemoglobin attenuates cold ischaemia/reperfusion injury in isolated rat heart. Microvasc Res 2011; 82:430-8. [PMID: 21907723 DOI: 10.1016/j.mvr.2011.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 07/28/2011] [Accepted: 08/25/2011] [Indexed: 12/14/2022]
Abstract
Ischaemia/reperfusion (I/R) injury is harmful to the cardiovascular system and is responsible for the inflammatory response, which, in turn, aggravates cardiac dysfunction. This study was designed to investigate the protective effect and potential mechanism of a haemoglobin-based oxygen carrier on cold I/R-injured hearts. Isolated Sprague-Dawley rat hearts were perfused in Langendorff mode. After a 30-min basal perfusion, rat hearts were arrested and hypothermically stored at 4°C for 12h followed by a 2-h reperfusion. Compared with histidine-tryptophan-ketoglutarate solution (HTKs), polymerised placenta haemoglobin (PolyPHb) in HTKs greatly improved heart contraction and decreased infarction size, necrosis, and apoptosis, which was related to reduced expression of TLR2, TLR4, TNF-α, and IL-1β, and NF-κB activation. Our results demonstrate the cardioprotective effect of PolyPHb on cold I/R-injured hearts and revealed that this protection was mediated in large part by attenuation of TLR2 and -4/NF-κB signalling pathway and could possibly down-regulate the inflammatory response.
Collapse
Affiliation(s)
- Li Wei
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 96 Dongchuan Road, Guangzhou 510080, China
| | | | | | | | | |
Collapse
|
113
|
Melvin A, Mudie S, Rocha S. The chromatin remodeler ISWI regulates the cellular response to hypoxia: role of FIH. Mol Biol Cell 2011; 22:4171-81. [PMID: 21900490 PMCID: PMC3204077 DOI: 10.1091/mbc.e11-02-0163] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The hypoxia-inducible factor (HIF) is a master regulator of the cellular response to hypoxia. Study of the role of imitation switch (ISWI) in the cellular response to hypoxia shows that ISWI depletion alters a subset of HIF target genes by regulating factor inhibiting HIF. ISWI depletion alters the cellular response to hypoxia by reducing autophagy and increasing apoptosis. The hypoxia-inducible factor (HIF) is a master regulator of the cellular response to hypoxia. Its levels and activity are controlled by dioxygenases called prolyl-hydroxylases and factor inhibiting HIF (FIH). To activate genes, HIF has to access sequences in DNA that are integrated in chromatin. It is known that the chromatin-remodeling complex switch/sucrose nonfermentable (SWI/SNF) is essential for HIF activity. However, no additional information exists about the role of other chromatin-remodeling enzymes in hypoxia. Here we describe the role of imitation switch (ISWI) in the cellular response to hypoxia. We find that unlike SWI/SNF, ISWI depletion enhances HIF activity without altering its levels. Furthermore, ISWI knockdown only alters a subset of HIF target genes. Mechanistically, we find that ISWI is required for full expression of FIH mRNA and protein levels by changing RNA polymerase II loading to the FIH promoter. Of interest, exogenous FIH can rescue the ISWI-mediated upregulation of CA9 but not BNIP3, suggesting that FIH-independent mechanisms are also involved. Of importance, ISWI depletion alters the cellular response to hypoxia by reducing autophagy and increasing apoptosis. These results demonstrate a novel role for ISWI as a survival factor during the cellular response to hypoxia.
Collapse
Affiliation(s)
- Andrew Melvin
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | |
Collapse
|
114
|
Davis MR, Shawron KM, Rendina E, Peterson SK, Lucas EA, Smith BJ, Clarke SL. Hypoxia inducible factor-2 α is translationally repressed in response to dietary iron deficiency in Sprague-Dawley rats. J Nutr 2011; 141:1590-6. [PMID: 21753061 PMCID: PMC3735917 DOI: 10.3945/jn.111.144105] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Iron regulatory proteins (IRP) regulate cellular iron metabolism by binding to iron-responsive elements (IRE) located in untranslated regions of mRNA-encoding proteins of iron metabolism. Recently, IRE have been identified in mRNA-encoding proteins with previously uncharacterized roles in iron metabolism, thus expanding the role of IRP beyond the regulation of cellular iron homeostasis. The mRNA for HIF 2-α contains an IRE and undergoes iron-dependent regulation in vitro, though the translational regulation of HIF-2α in vivo remains unknown. To examine HIF-2α translational regulation in vivo, we evaluated the effects of iron deficiency on the regulation of hepatic IRP activity and HIF-2α translation. Rats were fed either a control (C; 50 mg Fe/kg diet) or iron-deficient (ID; <5 mg Fe/kg diet) diet or were pair-fed (PF) the C diet for 21 d. In ID rats, there was a 2-fold increase in IRP activity compared to the PF group (P < 0.05), which was reflected by a 30-40% increase in HIF-2α repression (P < 0.05). In agreement with a decrease in translation, the levels of HIF-2α proteins were also decreased. The relative abundance of HIF-2α mRNA did not differ between treatment groups. Taken together, these results suggest that the translation of HIF-2α in the liver is regulated in part by the action of IRP in response to dietary iron deficiency and provide evidence that IRP may assist in coordinating the cellular response to alterations in iron and oxygen status associated with iron deficiency anemia.
Collapse
|
115
|
Mangala LS, Zhang Y, He Z, Emami K, Ramesh GT, Story M, Rohde LH, Wu H. Effects of simulated microgravity on expression profile of microRNA in human lymphoblastoid cells. J Biol Chem 2011; 286:32483-90. [PMID: 21775437 DOI: 10.1074/jbc.m111.267765] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This study explores the changes in expression of microRNA (miRNA) and related genes under simulated microgravity conditions. In comparison with static 1 × g, microgravity has been shown to alter global gene expression patterns and protein levels in cultured cells or animals. miRNA has recently emerged as an important regulator of gene expression, possibly regulating as many as one-third of all human genes. However, very little is known about the effect of altered gravity on miRNA expression. To test the hypothesis that the miRNA expression profile would be altered in zero gravity resulting in altered regulation of gene expression leading to metabolic or functional changes in cells, we cultured TK6 human lymphoblastoid cells in a high aspect ratio vessel (bioreactor) for 72 h either in the rotating condition to model microgravity in space or in the static condition as a control. Expression of several miRNAs was changed significantly in the simulated microgravity condition including miR-150, miR-34a, miR-423-5p, miR-22, miR-141, miR-618, and miR-222. To confirm whether this altered miRNA expression correlates with gene expression and functional changes of the cells, we performed DNA microarray and validated the related genes using quantitative RT-PCR. Expression of several transcription factors including EGR2, ETS1, and c-REL was altered in simulated microgravity conditions. Taken together, the results reported here indicate that simulated microgravity alters the expression of miRNAs and genes in TK6 cells. To our knowledge, this study is the first to report the effects of simulated microgravity on the expression of miRNA and related genes.
Collapse
Affiliation(s)
- Lingegowda S Mangala
- Radiation Biophysics Laboratory, NASA Johnson Space Center, Houston, TX 77058, USA.
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Kenney S, Vistica DT, Stockwin LH, Burkett S, Hollingshead MG, Borgel SD, Butcher DO, Schrump DS, Shoemaker RH. ASPS-1, a novel cell line manifesting key features of alveolar soft part sarcoma. J Pediatr Hematol Oncol 2011; 33:360-8. [PMID: 21552147 PMCID: PMC7518051 DOI: 10.1097/mph.0b013e3182002f9f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In vitro growth of alveolar soft part sarcoma (ASPS) and establishment of an ASPS cell line, ASPS-1, are described in this study. Using a recently developed xenograft model of ASPS derived from a lymph node metastasis, organoid nests consisting of 15 to 25 ASPS cells were isolated from ASPS xenograft tumors by capture on 70 μm filters and plated in vitro. After attachment to the substratum, these nests deposited small aggregates of ASPS cells. These cells grew slowly and were expanded over a period of 3 years and have maintained characteristics consistent with those of both the original ASPS tumor from the patient and the xenograft tumor including (1) presence of the alveolar soft part locus-transcription factor E3 type 1 fusion transcript and nuclear expression of the alveolar soft part locus-transcription factor E3 type 1 fusion protein; (2) maintenance of the t(X;17)(p11;q25) translocation characteristic of ASPS; and (3) expression of upregulated ASPS transcripts involved in angiogenesis (ANGPTL2, HIF-1-α, MDK, c-MET, VEGF, and TIMP-2), cell proliferation (PRL, PCSK1), metastasis (ADAM9), as well as the transcription factor BHLHB3 and the muscle-specific transcripts TRIM63 and ITGβ1BP3. This ASPS cell line forms colonies in soft agar and retains the ability to produce highly vascularized ASPS tumors in NOD.SCID/NCr mice. Immunohistochemistry of selected ASPS markers on these tumors indicated similarity to those of the original patient tumor as well as to the xenografted ASPS tumor. We anticipate that this ASPS cell line will accelerate investigations into the biology of ASPS including identification of new therapeutic approaches for treatment of this slow growing soft tissue sarcoma.
Collapse
Affiliation(s)
- Susan Kenney
- Screening Technologies Branch, National Cancer Institute, Bethesda, MD
| | - David T. Vistica
- Screening Technologies Branch, National Cancer Institute, Bethesda, MD
| | - Luke H. Stockwin
- Developmental Therapeutics Program, National Cancer Institute, Bethesda, MD
| | - Sandra Burkett
- Comparative Molecular Cytogenetics Core Facility, Center for Cancer Research, National Cancer Institute at Frederick, Frederick
| | - Melinda G. Hollingshead
- Biological Testing Branch, Developmental Therapeutics Program, National Cancer Institute, Bethesda, MD
| | - Suzanne D. Borgel
- Developmental Therapeutics Program, National Cancer Institute, Bethesda, MD
| | - Donna O. Butcher
- Pathology/Histotechnology Laboratory, SAIC-Frederick Inc, National Cancer Institute, Bethesda, MD
| | - David S. Schrump
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | | |
Collapse
|
117
|
Wood IS, Stezhka T, Trayhurn P. Modulation of adipokine production, glucose uptake and lactate release in human adipocytes by small changes in oxygen tension. Pflugers Arch 2011; 462:469-77. [DOI: 10.1007/s00424-011-0985-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 04/20/2011] [Accepted: 06/08/2011] [Indexed: 01/15/2023]
|
118
|
Tamama K, Kawasaki H, Kerpedjieva SS, Guan J, Ganju RK, Sen CK. Differential roles of hypoxia inducible factor subunits in multipotential stromal cells under hypoxic condition. J Cell Biochem 2011; 112:804-17. [PMID: 21328454 DOI: 10.1002/jcb.22961] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell therapy with bone marrow multipotential stromal cells (MSCs) represents a promising approach to promote wound healing and tissue regeneration. MSCs expanded in vitro lose early progenitors with differentiation and therapeutic potentials under normoxic condition, whereas hypoxic condition promotes MSC self-renewal through preserving colony forming early progenitors and maintaining undifferentiated phenotypes. Hypoxia inducible factor (HIF) pathway is a crucial signaling pathway activated in hypoxic condition. We evaluated the roles of HIFs in MSC differentiation, colony formation, and paracrine activity under hypoxic condition. Hypoxic condition reversibly decreased osteogenic and adipogenic differentiation. Decrease of osteogenic differentiation depended on HIF pathway; whereas decrease of adipogenic differentiation depended on the activation of unfolded protein response (UPR), but not HIFs. Hypoxia-mediated increase of MSC colony formation was not HIF-dependent also. Hypoxic exposure increased secretion of VEGF, HGF, and basic FGF in a HIF-dependent manner. These findings suggest that HIF has a limited, but pivotal role in enhancing MSC self-renewal and growth factor secretions under hypoxic condition.
Collapse
Affiliation(s)
- Kenichi Tamama
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | | | | | |
Collapse
|
119
|
Geiger K, Muendlein A, Stark N, Saely CH, Wabitsch M, Fraunberger P, Drexel H. Hypoxia induces apelin expression in human adipocytes. Horm Metab Res 2011; 43:380-5. [PMID: 21448846 PMCID: PMC3108882 DOI: 10.1055/s-0031-1273767] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Adipokines play a central role in the development of diseases associated with insulin resistance and obesity. Hypoxia in adipose tissue leads to a dysregulation of the expression of adipokines. The effect of hypoxia on the more recently identified adipokine apelin in human adipocytes is unclear. Therefore, we aimed at investigating the role of hypoxia on the expression of the adipokine apelin. Differentiated human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes were cultured under hypoxic conditions for varying time periods. A modular incubator chamber was used to create a hypoxic tissue culture environment (defined as 1% O(2), 94% N, and 5% CO(2)). In addition, hypoxic conditions were mimicked by using CoCl(2). The effect of hypoxia on the expression of the investigated adipokines was measured by real-time PCR and the secretion of apelin was quantified by ELISA. Induction of hypoxia significantly induced mRNA expression of leptin and apelin in differentiated SGBS adipocytes compared with the normoxic control condition. Expression of adiponectin was significantly decreased by hypoxia. In addition, the amount of secreted apelin protein in response to hypoxia was elevated compared to untreated cells. Furthermore, we could demonstrate that the observed hypoxia-induced induction of apelin mRNA expression is in the first phase dependent on HIF-1α. In our study, we could demonstrate for the first time that apelin expression and secretion by human adipocytes are strongly induced under hypoxic conditions and that the early response on hypoxia with apelin induction is dependent on HIF-1α.
Collapse
Affiliation(s)
- K. Geiger
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
| | - A. Muendlein
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
| | - N. Stark
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
| | - C. H. Saely
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Department of Medicine and Cardiology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
| | - M. Wabitsch
- Division of Pediatric Endocrinology and Diabetes, University of Ulm, Ulm, Germany
| | | | - H. Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Department of Medicine and Cardiology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
- Drexel University College of Medicine, Philadelphia, USA
| |
Collapse
|
120
|
Abstract
Most colorectal cancers have mutations in the tumor suppressor APC. The best-understood function of APC is its participation in a protein complex that regulates the availability of β-catenin. Solid tumors are characterized by the presence of hypoxia as well as inflammation, which leads to the upregulation of Hypoxia Inducible Factors like HIF-1α. We recently demonstrated a novel antagonistic link between APC and HIF-1α. We found that hypoxia results in reduced levels of APC mRNA and protein via a direct HIF-1α-dependent mechanism. Similarly, APC mediates the repression of HIF-1α. However, this requires wild-type APC, low levels of β-catenin and NFκB activity. These results reveal the downregulation of APC as a novel mechanism that contributes to the survival advantage induced by hypoxia and cytokines such as TNFα. Our data indicate that loss-of-function mutations in APC result in the engagement of the hypoxia response. Importantly, this suggests that other stimuli that induce HIF, such as inflammatory cytokines and oncogenes, alter APC function.
Collapse
Affiliation(s)
- Inke Näthke
- Division of Cell and Developmental Biology; University of Dundee; Dundee, Scotland UK
| | - Sonia Rocha
- Wellcome Trust Centre for Gene Regulation and Expression; College of Life Sciences; University of Dundee; Dundee, Scotland UK
| |
Collapse
|
121
|
Melvin A, Mudie S, Rocha S. Further insights into the mechanism of hypoxia-induced NFκB. [corrected]. Cell Cycle 2011; 10:879-82. [PMID: 21325892 PMCID: PMC3100871 DOI: 10.4161/cc.10.6.15157] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 01/21/2011] [Indexed: 11/19/2022] Open
Abstract
The cellular response to hypoxia relies on the activation of a specific transcriptional program. Although, most of the attention is focused on the transcription factor HIF, other transcription factors are also activated in hypoxia. We have recently described the mechanism for hypoxia induced NFκB. We have demonstrated the crucial dependency on the IKK complex as well as in the upstream IKK kinase TAK1. TAK1 and IKK activation is dependent upon the calcium calmodulin kinase, CaMK2 and requires Ubc13 as the E2 ubiquitin conjugation enzyme. We report a role for XIAP as the possible E3-ubiquitin ligase for this system. Interestingly, hypoxia induced IKK mediated phosphorylation of IκBα, does not lead to degradation. Hypoxia prevents IκBα de-sumoylation of Sumo-2/3 chains on critical lysine residues, normally required for K-48 linked polyubiquitination. Our results define a novel pathway regulating NFκB activation.
Collapse
Affiliation(s)
- Andrew Melvin
- College of Life Sciences, Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee, Scotland, UK
| | | | | |
Collapse
|
122
|
Melvin A, Mudie S, Rocha S. Further insights into the mechanism of hypoxia-induced NFκB. [corrected]. Cell Cycle 2011. [PMID: 21325892 DOI: 10.4161/cc.10.6.14910] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The cellular response to hypoxia relies on the activation of a specific transcriptional program. Although, most of the attention is focused on the transcription factor HIF, other transcription factors are also activated in hypoxia. We have recently described the mechanism for hypoxia induced NFκB. We have demonstrated the crucial dependency on the IKK complex as well as in the upstream IKK kinase TAK1. TAK1 and IKK activation is dependent upon the calcium calmodulin kinase, CaMK2 and requires Ubc13 as the E2 ubiquitin conjugation enzyme. We report a role for XIAP as the possible E3-ubiquitin ligase for this system. Interestingly, hypoxia induced IKK mediated phosphorylation of IκBα, does not lead to degradation. Hypoxia prevents IκBα de-sumoylation of Sumo-2/3 chains on critical lysine residues, normally required for K-48 linked polyubiquitination. Our results define a novel pathway regulating NFκB activation.
Collapse
Affiliation(s)
- Andrew Melvin
- College of Life Sciences, Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dundee, Scotland, UK
| | | | | |
Collapse
|
123
|
Abstract
Iron deficiency (ID) is the most common nutrient deficiency, affecting 2 billion people and 30% of pregnant women and their offspring. Early life ID affects at least 3 major neurobehavioral domains, including speed of processing, affect, and learning and memory, the latter being particularly prominent. The learning and memory deficits occur while the infants are iron deficient and persist despite iron repletion. The neural mechanisms underlying the short- and long-term deficits are being elucidated. Early ID alters the transcriptome, metabolome, structure, intracellular signaling pathways, and electrophysiology of the developing hippocampus, the brain region responsible for recognition learning and memory. Until recently, it was unclear whether these effects are directly due to a lack of iron interacting with important transcriptional, translational, or post-translational processes or to indirect effects such as hypoxia due to anemia or stress. Nonanemic genetic mouse models generated by conditionally altering expression of iron transport proteins specifically in hippocampal neurons in late gestation have led to a greater understanding of iron's role in learning and memory. The learning deficits in adulthood likely result from interactions between direct and indirect effects that contribute to abnormal hippocampal structure and plasticity.
Collapse
Affiliation(s)
- Stephanie J. B. Fretham
- Department of Pediatrics Neonatology Division, University of Minnesota, Minneapolis, MN 55455,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455,Center for Neurodevelopment, University of Minnesota, Minneapolis, MN 55455
| | - Erik S. Carlson
- Department of Pediatrics Neonatology Division, University of Minnesota, Minneapolis, MN 55455,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455,Center for Neurodevelopment, University of Minnesota, Minneapolis, MN 55455,Medical Scientist Training Program, University of Minnesota, Minneapolis, MN 55455
| | - Michael K. Georgieff
- Department of Pediatrics Neonatology Division, University of Minnesota, Minneapolis, MN 55455,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455,Center for Neurodevelopment, University of Minnesota, Minneapolis, MN 55455,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
124
|
van Uden P, Kenneth NS, Webster R, Müller HA, Mudie S, Rocha S. Evolutionary conserved regulation of HIF-1β by NF-κB. PLoS Genet 2011; 7:e1001285. [PMID: 21298084 PMCID: PMC3029248 DOI: 10.1371/journal.pgen.1001285] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 12/22/2010] [Indexed: 01/06/2023] Open
Abstract
Hypoxia Inducible Factor-1 (HIF-1) is essential for mammalian development and is the principal transcription factor activated by low oxygen tensions. HIF-α subunit quantities and their associated activity are regulated in a post-translational manner, through the concerted action of a class of enzymes called Prolyl Hydroxylases (PHDs) and Factor Inhibiting HIF (FIH) respectively. However, alternative modes of HIF-α regulation such as translation or transcription are under-investigated, and their importance has not been firmly established. Here, we demonstrate that NF-κB regulates the HIF pathway in a significant and evolutionary conserved manner. We demonstrate that NF-κB directly regulates HIF-1β mRNA and protein. In addition, we found that NF-κB-mediated changes in HIF-1β result in modulation of HIF-2α protein. HIF-1β overexpression can rescue HIF-2α protein levels following NF-κB depletion. Significantly, NF-κB regulates HIF-1β (tango) and HIF-α (sima) levels and activity (Hph/fatiga, ImpL3/ldha) in Drosophila, both in normoxia and hypoxia, indicating an evolutionary conserved mode of regulation. These results reveal a novel mechanism of HIF regulation, with impact in the development of novel therapeutic strategies for HIF-related pathologies including ageing, ischemia, and cancer.
Collapse
Affiliation(s)
- Patrick van Uden
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Niall S. Kenneth
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ryan Webster
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - H. Arno Müller
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sharon Mudie
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sonia Rocha
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
125
|
Culver C, Sundqvist A, Mudie S, Melvin A, Xirodimas D, Rocha S. Mechanism of hypoxia-induced NF-kappaB. Mol Cell Biol 2010; 30:4901-21. [PMID: 20696840 PMCID: PMC2950552 DOI: 10.1128/mcb.00409-10] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/01/2010] [Accepted: 07/13/2010] [Indexed: 12/14/2022] Open
Abstract
NF-κB activation is a critical component in the transcriptional response to hypoxia. However, the underlying mechanisms that control its activity under these conditions are unknown. Here we report that under hypoxic conditions, IκB kinase (IKK) activity is induced through a calcium/calmodulin-dependent kinase 2 (CaMK2)-dependent pathway distinct from that for other common inducers of NF-κB. This process still requires IKK and the IKK kinase TAK1, like that for inflammatory inducers of NF-κB, but the TAK1-associated proteins TAB1 and TAB2 are not essential. IKK complex activation following hypoxia requires Ubc13 but not the recently identified LUBAC (linear ubiquitin chain assembly complex) ubiquitin conjugation system. In contrast to the action of other NF-κB inducers, IKK-mediated phosphorylation of IκBα does not result in its degradation. We show that this results from IκBα sumoylation by Sumo-2/3 on critical lysine residues, normally required for K-48-linked polyubiquitination. Furthermore, inhibition of specific Sumo proteases is sufficient to release RelA from IκBα and activate NF-κB target genes. These results define a novel pathway regulating NF-κB activation, important to its physiological role in human health and disease.
Collapse
Affiliation(s)
- Carolyn Culver
- College of Life Sciences, Wellcome Trust Centre for Gene Regulation and Expression, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, Ludwig Institute for Cancer Research, Uppsala University, S-751 24 Uppsala, Sweden
| | - Anders Sundqvist
- College of Life Sciences, Wellcome Trust Centre for Gene Regulation and Expression, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, Ludwig Institute for Cancer Research, Uppsala University, S-751 24 Uppsala, Sweden
| | - Sharon Mudie
- College of Life Sciences, Wellcome Trust Centre for Gene Regulation and Expression, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, Ludwig Institute for Cancer Research, Uppsala University, S-751 24 Uppsala, Sweden
| | - Andrew Melvin
- College of Life Sciences, Wellcome Trust Centre for Gene Regulation and Expression, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, Ludwig Institute for Cancer Research, Uppsala University, S-751 24 Uppsala, Sweden
| | - Dimitris Xirodimas
- College of Life Sciences, Wellcome Trust Centre for Gene Regulation and Expression, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, Ludwig Institute for Cancer Research, Uppsala University, S-751 24 Uppsala, Sweden
| | - Sonia Rocha
- College of Life Sciences, Wellcome Trust Centre for Gene Regulation and Expression, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, Ludwig Institute for Cancer Research, Uppsala University, S-751 24 Uppsala, Sweden
| |
Collapse
|
126
|
Improved transplantation outcome by epigenetic changes. Transpl Immunol 2010; 23:104-10. [DOI: 10.1016/j.trim.2010.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 05/01/2010] [Accepted: 05/04/2010] [Indexed: 01/31/2023]
|
127
|
Wilker EH, Baccarelli A, Suh H, Vokonas P, Wright RO, Schwartz J. Black carbon exposures, blood pressure, and interactions with single nucleotide polymorphisms in MicroRNA processing genes. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:943-8. [PMID: 20211803 PMCID: PMC2920913 DOI: 10.1289/ehp.0901440] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 03/05/2010] [Indexed: 05/03/2023]
Abstract
BACKGROUND Black carbon (BC) is a marker of traffic pollution that has been associated with blood pressure (BP), but findings have been inconsistent. MicroRNAs (miRNAs) are emerging as key regulators of gene expression, but whether polymorphisms in genes involved in processing of miRNAs to maturity influence susceptibility to BC has not been elucidated. OBJECTIVES We investigated the association between BC and BP, as well as potential effect modification by single nucleotide polymorphisms (SNPs) in miRNA processing genes. METHODS Repeated measures analyses were performed using data from the VA Normative Aging Study. Complete covariate data were available for 789 participants with one to six study visits between 1995 and 2008. In models of systolic and diastolic BP, we examined SNP-by-BC interactions with 19 miRNA-related variants under recessive models of inheritance. Mixed-effects models were adjusted for potential confounders including clinical characteristics, lifestyle, and meteorologic factors. RESULTS A 1-SD increase in BC (0.415 microg/m(3)) was associated with 3.04 mmHg higher systolic (95% confidence interval (CI), 2.29-3.79) and 2.28 mmHg higher diastolic BP (95% CI, 1.88-2.67). Interactions modifying BC associations were observed with SNPs in the DICER, GEMIN4, and DiGeorge critical region-8 (DGCR8) genes, and in GEMIN3 and GEMIN4, predicting diastolic and systolic BP, respectively. CONCLUSIONS We observed evidence of effect modification of the association between BP and 7-day BC moving averages by SNPs associated with miRNA processing. Although the mechanisms underlying these associations are not well understood, they suggest a role for miRNA genesis and processing in influencing BC effects.
Collapse
Affiliation(s)
- Elissa H Wilker
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
128
|
Solaini G, Baracca A, Lenaz G, Sgarbi G. Hypoxia and mitochondrial oxidative metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1797:1171-7. [PMID: 20153717 DOI: 10.1016/j.bbabio.2010.02.011] [Citation(s) in RCA: 427] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/02/2010] [Accepted: 02/07/2010] [Indexed: 12/20/2022]
Abstract
It is now clear that mitochondrial defects are associated with a large variety of clinical phenotypes. This is the result of the mitochondria's central role in energy production, reactive oxygen species homeostasis, and cell death. These processes are interdependent and may occur under various stressing conditions, among which low oxygen levels (hypoxia) are certainly prominent. Cells exposed to hypoxia respond acutely with endogenous metabolites and proteins promptly regulating metabolic pathways, but if low oxygen levels are prolonged, cells activate adapting mechanisms, the master switch being the hypoxia-inducible factor 1 (HIF-1). Activation of this factor is strictly bound to the mitochondrial function, which in turn is related with the oxygen level. Therefore in hypoxia, mitochondria act as [O2] sensors, convey signals to HIF-1 directly or indirectly, and contribute to the cell redox potential, ion homeostasis, and energy production. Although over the last two decades cellular responses to low oxygen tension have been studied extensively, mechanisms underlying these functions are still indefinite. Here we review current knowledge of the mitochondrial role in hypoxia, focusing mainly on their role in cellular energy and reactive oxygen species homeostasis in relation with HIF-1 stabilization. In addition, we address the involvement of HIF-1 and the inhibitor protein of F1F0 ATPase in the hypoxia-induced mitochondrial autophagy.
Collapse
Affiliation(s)
- Giancarlo Solaini
- Department of Biochemistry G. Moruzzi, University of Bologna, Bologna, Italy.
| | | | | | | |
Collapse
|
129
|
Systemic inflammation in chronic obstructive pulmonary disease: may adipose tissue play a role? Review of the literature and future perspectives. Mediators Inflamm 2010; 2010:585989. [PMID: 20414465 PMCID: PMC2857618 DOI: 10.1155/2010/585989] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 01/09/2010] [Accepted: 02/09/2010] [Indexed: 01/22/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide. Low-grade systemic inflammation is considered a hallmark of COPD that potentially links COPD to increased rate of systemic manifestations of the disease. Obesity with/without the metabolic syndrome and cachexia represent two poles of metabolic abnormalities that may relate to systemic inflammation. On one hand systemic inflammatory syndrome likely reflects inflammation in the lungs, i.e. results from lung-to plasma spillover of inflammatory mediators. On the other hand, obesity-related hypoxia results in local inflammatory response within adipose tissue per se, and may contribute to elevations in circulatory mediators by spillover from the adipose tissue to the systemic compartment. The extent to which systemic hypoxia contributes to the adipose tissue inflammation remains unknown. We assume that in patients with COPD and concurrent obesity at least three factors play a role in the systemic inflammatory syndrome: the severity of pulmonary impairment, the degree of obesity-related adipose tissue hypoxia, and the severity of systemic hypoxia due to reduced pulmonary functions. The present review summarizes the epidemiological and clinical evidence linking COPD to obesity, the role of adipose tissue as an endocrine organ, and the role of hypoxia in adipose tissue inflammation.
Collapse
|
130
|
Teppema LJ, Dahan A. The Ventilatory Response to Hypoxia in Mammals: Mechanisms, Measurement, and Analysis. Physiol Rev 2010; 90:675-754. [DOI: 10.1152/physrev.00012.2009] [Citation(s) in RCA: 281] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The respiratory response to hypoxia in mammals develops from an inhibition of breathing movements in utero into a sustained increase in ventilation in the adult. This ventilatory response to hypoxia (HVR) in mammals is the subject of this review. The period immediately after birth contains a critical time window in which environmental factors can cause long-term changes in the structural and functional properties of the respiratory system, resulting in an altered HVR phenotype. Both neonatal chronic and chronic intermittent hypoxia, but also chronic hyperoxia, can induce such plastic changes, the nature of which depends on the time pattern and duration of the exposure (acute or chronic, episodic or not, etc.). At adult age, exposure to chronic hypoxic paradigms induces adjustments in the HVR that seem reversible when the respiratory system is fully matured. These changes are orchestrated by transcription factors of which hypoxia-inducible factor 1 has been identified as the master regulator. We discuss the mechanisms underlying the HVR and its adaptations to chronic changes in ambient oxygen concentration, with emphasis on the carotid bodies that contain oxygen sensors and initiate the response, and on the contribution of central neurotransmitters and brain stem regions. We also briefly summarize the techniques used in small animals and in humans to measure the HVR and discuss the specific difficulties encountered in its measurement and analysis.
Collapse
Affiliation(s)
- Luc J. Teppema
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
131
|
Thioredoxin and Cancer: A Role for Thioredoxin in all States of Tumor Oxygenation. Cancers (Basel) 2010; 2:209-32. [PMID: 24281068 PMCID: PMC3835076 DOI: 10.3390/cancers2020209] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 03/23/2010] [Accepted: 03/24/2010] [Indexed: 02/06/2023] Open
Abstract
Thioredoxin is a small redox-regulating protein, which plays crucial roles in maintaining cellular redox homeostasis and cell survival and is highly expressed in many cancers. The tumor environment is usually under either oxidative or hypoxic stress and both stresses are known up-regulators of thioredoxin expression. These environments exist in tumors because their abnormal vascular networks result in an unstable oxygen delivery. Therefore, the oxygenation patterns in human tumors are complex, leading to hypoxia/re-oxygenation cycling. During carcinogenesis, tumor cells often become more resistant to hypoxia or oxidative stress-induced cell death and most studies on tumor oxygenation have focused on these two tumor environments. However, recent investigations suggest that the hypoxic cycling occurring within tumors plays a larger role in the contribution to tumor cell survival than either oxidative stress or hypoxia alone. Thioredoxin is known to have important roles in both these cellular responses and several studies implicate thioredoxin as a contributor to cancer progression. However, only a few studies exist that investigate the regulation of thioredoxin in the hypoxic and cycling hypoxic response in cancers. This review focuses on the role of thioredoxin in the various states of tumor oxygenation.
Collapse
|
132
|
Mechanism of de novo branched-chain amino acid synthesis as an alternative electron sink in hypoxic Aspergillus nidulans cells. Appl Environ Microbiol 2010; 76:1507-15. [PMID: 20081005 DOI: 10.1128/aem.02135-09] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although branched-chain amino acids are synthesized as building blocks of proteins, we found that the fungus Aspergillus nidulans excretes them into the culture medium under hypoxia. The transcription of predicted genes for synthesizing branched-chain amino acids was upregulated by hypoxia. A knockout strain of the gene encoding the large subunit of acetohydroxy acid synthase (AHAS), which catalyzes the initial reaction of the synthesis, required branched-chain amino acids for growth and excreted very little of them. Pyruvate, a substrate for AHAS, increased the amount of hypoxic excretion in the wild-type strain. These results indicated that the fungus responds to hypoxia by synthesizing branched-chain amino acids via a de novo mechanism. We also found that the small subunit of AHAS regulated hypoxic branched-chain amino acid production as well as cellular AHAS activity. The AHAS knockout resulted in higher ratios of NADH/NAD(+) and NADPH/NADP(+) under hypoxia, indicating that the branched-chain amino acid synthesis contributed to NAD(+) and NADP(+) regeneration. The production of branched-chain amino acids and the hypoxic induction of involved genes were partly repressed in the presence of glucose, where cells produced ethanol and lactate and increased levels of lactate dehydrogenase activity. These indicated that hypoxic branched-chain amino acid synthesis is a unique alternative mechanism that functions in the absence of glucose-to-ethanol/lactate fermentation and oxygen respiration.
Collapse
|
133
|
The Role of Hypoxia in Adipocyte Function and Dysfunction. RESEARCH AND PERSPECTIVES IN ENDOCRINE INTERACTIONS 2010. [DOI: 10.1007/978-3-642-13517-0_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
134
|
Dose-dependent modulation of HIF-1alpha/sima controls the rate of cell migration and invasion in Drosophila ovary border cells. Oncogene 2009; 29:1123-34. [PMID: 19966858 DOI: 10.1038/onc.2009.407] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The role of the hypoxic response during metastasis was analysed in migrating border cells of the Drosophila ovary. Acute exposure to 1% O(2) delayed or blocked border cell migration (BCM), whereas prolonged exposure resulted in the first documented accelerated BCM phenotype. Similarly, manipulating the expression levels of sima, the Drosophila hypoxia-inducible factor (HIF)-1alpha ortholog, revealed that Sima can either block or restore BCM in a dose-dependent manner. In contrast, over-expression of Vhl (Drosophila von Hippel-Lindau) generated a range of phenotypes, including blocked, delayed and accelerated BCM, whereas over-expression of hph (Drosophila HIF prolyl hydroxylase) only accelerated BCM. Mosaic clone analysis of sima or tango (HIF-1beta ortholog) mutants revealed that cells lacking Hif-1 transcriptional activity were preferentially detected in the leading cell position of the cluster, resulting in either a delay or acceleration of BCM. Moreover, in sima mutant cell clones, there was reduced expression of nuclear slow border cells (Slbo) and basolateral DE-cadherin, proteins essential for proper BCM. These results show that Sima levels define the rate of BCM in part through regulation of Slbo and DE-cadherin, and suggest that dynamic regulation of Hif-1 activity is necessary to maintain invasive potential of migrating epithelial cells.
Collapse
|
135
|
Pringle KG, Kind KL, Sferruzzi-Perri AN, Thompson JG, Roberts CT. Beyond oxygen: complex regulation and activity of hypoxia inducible factors in pregnancy. Hum Reprod Update 2009; 16:415-31. [PMID: 19926662 PMCID: PMC2880912 DOI: 10.1093/humupd/dmp046] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the first trimester the extravillous cytotrophoblast cells occlude the uterine spiral arterioles creating a low oxygen environment early in pregnancy, which is essential for pregnancy success. Paradoxically, shallow trophoblast invasion and defective vascular remodelling of the uterine spiral arteries in the first trimester may result in impaired placental perfusion and chronic placental ischemia and hypoxia later in gestation leading to adverse pregnancy outcomes. The hypoxia inducible factors (HIFs) are key mediators of the response to low oxygen. We aimed to elucidate mechanisms of regulation of HIFs and the role these may play in the control of placental differentiation, growth and function in both normal and pathological pregnancies. The Pubmed database was consulted for identification of the most relevant published articles. Search terms used were oxygen, placenta, trophoblast, pregnancy, HIF and hypoxia. The HIFs are able to function throughout all aspects of normal and abnormal placental differentiation, growth and function; during the first trimester (physiologically low oxygen), during mid-late gestation (where there is adequate supply of blood and oxygen to the placenta) and in pathological pregnancies complicated by placental hypoxia/ischemia. During normal pregnancy HIFs may respond to complex alterations in oxygen, hormones, cytokines and growth factors to regulate placental invasion, differentiation, transport and vascularization. In the ever-changing environment created during pregnancy, the HIFs appear to act as key mediators of placental development and function and thereby are likely to be important contributors to both normal and adverse pregnancy outcomes.
Collapse
Affiliation(s)
- K G Pringle
- Research Centre for Reproductive Health, Discipline of Obstetrics and Gynaecology, University of Adelaide, Adelaide, SA 5005, Australia
| | | | | | | | | |
Collapse
|
136
|
Xia M, Huang R, Sun Y, Semenza GL, Aldred SF, Witt KL, Inglese J, Tice RR, Austin CP. Identification of chemical compounds that induce HIF-1alpha activity. Toxicol Sci 2009; 112:153-63. [PMID: 19502547 PMCID: PMC2910898 DOI: 10.1093/toxsci/kfp123] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 05/29/2009] [Indexed: 11/12/2022] Open
Abstract
Cellular metabolism depends on the availability of oxygen and the major regulator of oxygen homeostasis is hypoxia-inducible factor 1 (HIF-1), a highly conserved transcription factor that plays an essential role in cellular and systemic homeostatic responses to hypoxia. HIF-1 is a heterodimeric transcription factor composed of hypoxia-inducible HIF-1alpha and constitutively expressed HIF-1beta. Under hypoxic conditions, the two subunits dimerize, allowing translocation of the HIF-1 complex to the nucleus where it binds to hypoxia-response elements (HREs) and activates expression of target genes implicated in angiogenesis, cell growth, and survival. The HIF-1 pathway is essential to normal growth and development, and is involved in the pathophysiology of cancer, inflammation, and ischemia. Thus, there is considerable interest in identifying compounds that modulate the HIF-1 signaling pathway. To assess the ability of environmental chemicals to stimulate the HIF-1 signaling pathway, we screened a National Toxicology Program collection of 1408 compounds using a cell-based beta-lactamase HRE reporter gene assay in a quantitative high-throughput screening (qHTS) format. Twelve active compounds were identified. These compounds were tested in a confirmatory assay for induction of vascular endothelial growth factor, a known hypoxia target gene, and confirmed compounds were further tested for their ability to mimic the effect of a reduced-oxygen environment on hypoxia-regulated promoter activity. Based on this testing strategy, three compounds (o-phenanthroline, iodochlorohydroxyquinoline, cobalt sulfate heptahydrate) were confirmed as hypoxia mimetics, whereas two compounds (7-diethylamino-4-methylcoumarin and 7,12-dimethylbenz(a)anthracence) were found to interact with HIF-1 in a manner different from hypoxia. These results demonstrate the effectiveness of qHTS in combination with secondary assays for identification of HIF-1alpha inducers and for distinguishing among inducers based on their pattern of activated hypoxic target genes. Identification of environmental compounds having HIF-1alpha activation activity in cell-based assays may be useful for prioritizing chemicals for further testing as hypoxia-response inducers in vivo.
Collapse
Affiliation(s)
- Menghang Xia
- NIH Chemical Genomics Center, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Hypoxia stimulates lactate release and modulates monocarboxylate transporter (MCT1, MCT2, and MCT4) expression in human adipocytes. Pflugers Arch 2009; 459:509-18. [PMID: 19876643 DOI: 10.1007/s00424-009-0750-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 10/06/2009] [Accepted: 10/16/2009] [Indexed: 12/17/2022]
Abstract
Hypoxia modulates white adipose tissue function, and this includes stimulating glucose uptake and the expression of facilitative glucose transporters (particularly GLUT1) in adipocytes. This study has examined the effect of hypoxia on lactate release from adipocytes and whether the monocarboxylate transporters that mediate lactate transport (MCTs1-4) are expressed in human adipocytes and are induced by low O(2) tension. Exposure of human Simpson-Golabi-Behmel syndrome adipocytes to 1% O(2) for 24 h resulted in increased lactate release (2.3-fold) compared with cells in normoxia (21% O(2)). Screening by reverse transcription polymerase chain reaction indicated that the genes encoding MCT1, MCT2, and MCT4 are expressed in human adipose tissue, and in adipocytes and preadipocytes in culture. Hypoxia (48 h) increased MCT1 (8.5-fold) and MCT4 (14.3-fold) messenger RNA (mRNA) levels in human adipocytes, but decreased MCT2 mRNA (fourfold). MCT1 protein level was also increased (2.7-fold at 48 h) by hypoxia, but there was no change in MCT4 protein. The changes in MCT gene expression induced by hypoxia were reversed on return to normoxia. Treatment with the hypoxia mimetic CoCl(2) resulted in up-regulation of MCT1 (up to twofold) and MCT4 (fivefold) mRNA level, but there was no significant effect on MCT2 expression. It is concluded that hypoxia increases lactate release from adipocytes and modulates MCT expression in a type-specific manner, with MCT1 and MCT4 expression being hypoxia-inducible transcription factor-1 (HIF-1) dependent. Increased lactate production and monocarboxylate transporter expression are likely to be key components of the adaptive response of adipocytes to low O(2) tension as adipose tissue mass expands in obesity.
Collapse
|
138
|
Vistica DT, Hollingshead M, Borgel SD, Kenney S, Stockwin LH, Raffeld M, Schrump DS, Burkett S, Stone G, Butcher DO, Shoemaker RH. Therapeutic vulnerability of an in vivo model of alveolar soft part sarcoma (ASPS) to antiangiogenic therapy. J Pediatr Hematol Oncol 2009; 31:561-70. [PMID: 19636271 PMCID: PMC2784654 DOI: 10.1097/mph.0b013e3181a6e043] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In vivo growth of alveolar soft part sarcoma (ASPS) was achieved using subcutaneous xenografts in sex-matched nonobese diabetic severe combined immunodeficiency mice. One tumor, currently at passage 6, has been maintained in vivo for 32 months and has maintained characteristics consistent with those of the original ASPS tumor including (1) tumor histology and staining with periodic acid Schiff/diastase, (2) the presence of the ASPL-TFE3 type 1 fusion transcript, (3) nuclear staining with antibodies to the ASPL-TFE3 type 1 fusion protein, (4) maintenance of the t(X;17)(p11;q25) translocation characteristic of ASPS, (5) stable expression of signature ASPS gene transcripts and finally, the development and maintenance of a functional vascular network, a hallmark of ASPS. The ASPS xenograft tumor vasculature encompassing nests of ASPS cells is highly reactive to antibodies against the endothelial antigen CD34 and is readily accessible to intravenously administered fluorescein isothiocyanate-dextran. The therapeutic vulnerability of this tumor model to antiangiogenic therapy, targeting vascular endothelial growth factor and hypoxia-inducible factor-1 alpha, was examined using bevacizumab and topotecan alone and in combination. Together, the 2 drugs produced a 70% growth delay accompanied by a 0.7 net log cell kill that was superior to the antitumor effect produced by either drug alone. In summary, this study describes a preclinical in vivo model for ASPS which will facilitate investigation into the biology of this slow growing soft tissue sarcoma and demonstrates the feasibility of using an antiangiogenic approach in the treatment of ASPS.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized
- Antigens, CD34
- Antineoplastic Agents/pharmacology
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
- Bevacizumab
- Chromosomes, Human, Pair 17/genetics
- Chromosomes, Human, Pair 17/metabolism
- Chromosomes, Human, X/genetics
- Chromosomes, Human, X/metabolism
- Disease Models, Animal
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Intracellular Signaling Peptides and Proteins
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Transplantation
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Sarcoma/drug therapy
- Sarcoma/genetics
- Sarcoma/metabolism
- Sarcoma/pathology
- Topotecan/pharmacology
- Translocation, Genetic/genetics
- Transplantation, Heterologous
- Vascular Endothelial Growth Factor A/antagonists & inhibitors
- Vascular Endothelial Growth Factor A/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- David T Vistica
- Screening Technologies Branch, Developmental Therapeutics Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Simmons SO, Fan CY, Ramabhadran R. Cellular stress response pathway system as a sentinel ensemble in toxicological screening. Toxicol Sci 2009; 111:202-25. [PMID: 19567883 DOI: 10.1093/toxsci/kfp140] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
High costs, long test times, and societal concerns related to animal use have required the development of in vitro assays for the rapid and cost-effective toxicological evaluation and characterization of compounds in both the pharmaceutical and environmental arenas. Although the pharmaceutical industry has developed very effective, high-throughput in vitro assays for determining the therapeutic potential of compounds, the application of this approach to toxicological screening has been limited. A primary reason for this is that while drug candidate screens are directed to a specific target/mechanism, xenobiotics can cause toxicity through any of a myriad of undefined interactions with cellular components and processes. Given that it is not practical to design assays that can interrogate each potential toxicological target, an integrative approach is required if there is to be a rapid and low-cost toxicological evaluation of chemicals. Cellular stress response pathways offer a viable solution to the creation of a set of integrative assays as there is a limited and hence manageable set (a small ensemble of 10 or less) of major cellular stress response pathways through which cells mount a homoeostatic response to toxicants and which also participate in cell fate/death decisions. Further, over the past decades, these pathways have been well characterized at a molecular level thereby enabling the development of high-throughput cell-based assays using the components of the pathways. Utilization of the set of cellular stress response pathway-based assays as indicators of toxic interactions of chemicals with basic cellular machinery will potentially permit the clustering of chemicals based on biological response profiles of common mode of action (MOA) and also the inference of the specific MOA of a toxicant. This article reviews the biochemical characteristics of the stress response pathways, their common architecture that enables rapid activation during stress, their participation in cell fate decisions, the essential nature of these pathways to the organism, and the biochemical basis of their cross-talk that permits an assay ensemble screening approach. Subsequent sections describe how the stress pathway ensemble assay approach could be applied to screening potentially toxic compounds and discuss how this approach may be used to derive toxicant MOA from the biological activity profiles that the ensemble strategy provides. The article concludes with a review of the application of the stress assay concept to noninvasive in vivo assessments of chemical toxicants.
Collapse
Affiliation(s)
- Steven O Simmons
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, North Carolina 27711, USA
| | | | | |
Collapse
|
140
|
Rees BB, Figueroa YG, Wiese TE, Beckman BS, Schulte PM. A novel hypoxia-response element in the lactate dehydrogenase-B gene of the killifish Fundulus heteroclitus. Comp Biochem Physiol A Mol Integr Physiol 2009; 154:70-7. [PMID: 19439190 DOI: 10.1016/j.cbpa.2009.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 05/04/2009] [Accepted: 05/05/2009] [Indexed: 12/11/2022]
Abstract
Previous studies have suggested that the lactate dehydrogenase-B gene (Ldh-B) of the Atlantic killifish, Fundulus heteroclitus, is a hypoxia-responsive gene. Here, we demonstrate that the F. heteroclitus Ldh-B promoter confers hypoxia-dependence upon reporter gene expression in transiently transfected mammalian (Hep3B) and fish (RTG-2 and RTH-149) cells in culture. Mutation and deletion analyses identified a putative hypoxia-response element (HRE) between 109 and 90 nucleotides upstream of the major start site. This HRE is characterized by the sequence 5'-GATGTG-3' spaced by 8 nucleotides from a perfect inverted repeat, and both sites are necessary for hypoxic induction of reporter gene expression in mammalian and fish cells. This HRE differs from the canonical sequence at one nucleotide position that is invariant among HREs from a wide range of hypoxia-sensitive genes. In fish cells, maximal induction of reporter gene expression driven by this HRE occurred at the lowest oxygen level tested (0.5%), took 48 h to 96 h, and was independent of glucose concentration (between 5.6 and 25 mM). Under all conditions tested, hypoxic induction of gene expression was lower in RTH-149 cells than in RTG-2, suggesting a potential defect in hypoxia signaling in RTH-149 cells. These results demonstrate that the F. heteroclitus Ldh-B promoter contains a novel HRE that is capable of driving reporter gene expression in a sequence-specific and oxygen-, time-, and cell line-dependent manner.
Collapse
Affiliation(s)
- Bernard B Rees
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA.
| | | | | | | | | |
Collapse
|
141
|
Milagro FI, Campión J, García-Díaz DF, Goyenechea E, Paternain L, Martínez JA. High fat diet-induced obesity modifies the methylation pattern of leptin promoter in rats. J Physiol Biochem 2009; 65:1-9. [DOI: 10.1007/bf03165964] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
142
|
Hambrecht VS, Vlisides PE, Row BW, Gozal D, Baghdoyan HA, Lydic R. G proteins in rat prefrontal cortex (PFC) are differentially activated as a function of oxygen status and PFC region. J Chem Neuroanat 2009; 37:112-7. [PMID: 19118621 PMCID: PMC2776058 DOI: 10.1016/j.jchemneu.2008.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 12/02/2008] [Accepted: 12/03/2008] [Indexed: 11/20/2022]
Abstract
This study tested the hypothesis that activation of guanine nucleotide binding (G) proteins in rat prefrontal cortex (PFC) is altered by hypoxia. G protein activation by the cholinergic agonist carbachol and the opioid agonist DAMGO was quantified using [(35)S]GTPgammaS autoradiography. G protein activation was expressed as nCi/g tissue in the PFC of 18 rats exposed for 14 consecutive days to sustained hypoxia (10% O(2)), intermittent hypoxia (10% and 21% O(2) alternating every 90 s), or room air (21% O(2)). Relative to basal levels of G protein activation, carbachol and DAMGO increased G protein activation by approximately 70% across all oxygen concentrations. Compared to the room air condition, sustained hypoxia caused a significant increase in G protein activation in frontal association (FrA) region of the PFC. Region-specific comparisons revealed that intermittent and sustained hypoxia caused greater DAMGO-stimulated G protein activation in the FrA than in the pre-limbic (PrL). The data show for the first time that hypoxia increased G protein activation in PFC. The results suggest the potential for hypoxia-induced enhancements in G protein activation to alter PFC function.
Collapse
Affiliation(s)
- V S Hambrecht
- Department of Anesthesiology, University of Michigan, 7433 Medical Sciences Bldg. I, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-5615, USA
| | | | | | | | | | | |
Collapse
|
143
|
Kenneth NS, Mudie S, van Uden P, Rocha S. SWI/SNF regulates the cellular response to hypoxia. J Biol Chem 2009; 284:4123-31. [PMID: 19097995 DOI: 10.1074/jbc.m808491200] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hypoxia induces a variety of cellular responses such as cell cycle arrest, apoptosis, and autophagy. Most of these responses are mediated by the hypoxia-inducible factor-1alpha. To induce target genes, hypoxia-inducible factor-1alpha requires a chromatin environment conducive to allow binding to specific sequences. Here, we have studied the role of the chromatin-remodeling complex SWI/SNF in the cellular response to hypoxia. We find that SWI/SNF is required for several of the cellular responses induced by hypoxia. Surprisingly, hypoxia-inducible factor-1alpha is a direct target of the SWI/SNF chromatin-remodeling complex. SWI/SNF components are found associated with the hypoxia-inducible factor-1alpha promoter and modulation of SWI/SNF levels results in pronounced changes in hypoxia-inducible factor-1alpha expression and its ability to transactivate target genes. Furthermore, impairment of SWI/SNF function renders cells resistant to hypoxia-induced cell cycle arrest. These results reveal a previously uncharacterized dependence of hypoxia signaling on the SWI/SNF complex and demonstrate a new level of control over the hypoxia-inducible factor-1alpha system.
Collapse
Affiliation(s)
- Niall S Kenneth
- College of Life Sciences, Wellcome Trust Centre for Gene Regulation and Expression, MSI/WTB/JBC Complex, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | | | |
Collapse
|
144
|
Shimizu M, Fujii T, Masuo S, Fujita K, Takaya N. Proteomic analysis of Aspergillus nidulans cultured under hypoxic conditions. Proteomics 2009; 9:7-19. [PMID: 19053082 DOI: 10.1002/pmic.200701163] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The fungus Aspergillus nidulans reduces nitrate to ammonium and simultaneously oxidizes ethanol to acetate to generate ATP under hypoxic conditions in a mechanism called ammonia fermentation (Takasaki, K. et al.. J. Biol. Chem. 2004, 279, 12414-12420). To elucidate the mechanism, the fungus was cultured under normoxic and hypoxic (ammonia fermenting) conditions, intracellular proteins were resolved by 2-DE, and 332 protein spots were identified using MALDI MS after tryptic digestion. Alcohol and aldehyde dehydrogenases that play key roles in oxidizing ethanol were produced at the basal level under hypoxic conditions but were obviously provoked by ethanol under normoxic conditions. Enzymes involved in gluconeogenesis, as well as the tricarboxylic and glyoxylate cycles, were downregulated. These results indicate that the mechanism of fungal energy conservation is altered under hypoxic conditions. The results also showed that proteins in the pentose phosphate pathway as well as the metabolism of both nucleotide and thiamine were upregulated under hypoxic conditions. Levels of xanthine and hypoxanthine, deamination products of guanine and adenine were increased in DNA from hypoxic cells, indicating an association between hypoxia and intracellular DNA base damage. This study is the first proteomic comparison of the hypoxic responses of A. nidulans.
Collapse
Affiliation(s)
- Motoyuki Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
145
|
Forsyth NR, Kay A, Hampson K, Downing A, Talbot R, McWhir J. Transcriptome alterations due to physiological normoxic (2% O2) culture of human embryonic stem cells. Regen Med 2009; 3:817-33. [PMID: 18947306 DOI: 10.2217/17460751.3.6.817] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Human embryonic stem cells (hESCs) hold great promise therapeutically. In order to deliver on this promise the correct defined conditions for long-term propagation must first be established. Researchers have now provided reports describing the benefits of culturing hESCs in physiologically approximate levels of oxygen. These physiological values fall in the range of 2 to 5% O2. Benefits include reduced spontaneous differentiation, enhanced chromosomal stability and increased clonality. AIMS The aim of our study was to examine the transcriptional consequences of culturing hESCs in physiological normoxia (2% O2) using microarray technology. METHODS Three karyoptically normal hESC lines (H1, H9 and RH1) were examined. At the initiation of this experiment, established hESC lines were redesignated as passage (p) 0 in 21% O2, then bifurcated into 21% O2 and 2% O2, and maintained for a further ten passages at which time samples were again collected. RNA was extracted from all sample points and subjected to microarray analysis using the Affymetrix U133 Plus 2.0 platform. Bioinformatic analysis was performed using dChip and GoStat. RESULTS We performed grouped analyses of gene expression of early (p0) versus late (p10) air-cultured cells. This revealed relative stability with six (air p0 baseline vs p10 experimental) and one (air p10 baseline vs p0 experimental) gene(s) displaying both greater than twofold and statistically significant upregulation. Conversely, we identified 302 gene upregulations and 56 downregulations when comparing 21% O(2) (p0p10) with 2% O2 (p10). These significantly upregulated changes clustered into 82 over-represented and 9 under-represented ontology terms. These terms were indicative of signaling pathways, developmental potential and metabolism. Hierarchical clustering indicated a trend for 2% O2 cultured cells to cluster collectively with reduced heterogeneity when compared with 21% O2 cultured cells. CONCLUSIONS The gene changes associated with 2% O2 culture may be predictive of novel cellular requirements for stable self-renewal, maintenance of pluripotency, and a reduction of hESC-line heterogeneity.
Collapse
Affiliation(s)
- Nicholas R Forsyth
- The Guy Hilton Research Centre, Keele University Medical School, Stoke-on-Trent, ST4 7QB, UK.
| | | | | | | | | | | |
Collapse
|
146
|
Cytoplasmic polyadenylation-element-binding protein (CPEB)1 and 2 bind to the HIF-1alpha mRNA 3'-UTR and modulate HIF-1alpha protein expression. Biochem J 2009; 417:235-46. [PMID: 18752464 DOI: 10.1042/bj20081353] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The heterodimeric HIF (hypoxia-inducible factor)-1 is a transcriptional master regulator of several genes involved in mammalian oxygen homoeostasis. Besides the well described regulation of the HIF-1alpha subunit via hydroxylation-mediated protein stability in hypoxia, there are several indications of an additional translational control of the HIF-1alpha mRNA, especially after growth factor stimulation. We identified an interaction of CPEB (cytoplasmic polyadenylation-element-binding protein) 1 and CPEB2 with the 3'-UTR (untranslated region) of HIF-1alpha mRNA. Overexpression of CPEB1 and CPEB2 affected HIF-1alpha protein levels mediated by the 3'-UTR of HIF-1alpha mRNA. Stimulation of neuroblastoma SK-N-MC cells with insulin and thus activation of endogenous CPEBs increased the expression of a luciferase reporter gene fused to the 3'-UTR of HIF-1alpha as well as endogenous HIF-1alpha protein levels. This could be abrogated by treating the cells with CPEB1 or CPEB2 siRNAs (short interfering RNAs). Injection of HIF-1alpha cRNA into Xenopus oocytes verified the elongation of the poly(A)+ (polyadenylated) tail by cytoplasmic polyadenylation. Thus CPEB1 and CPEB2 are involved in the regulation of HIF-1alpha following insulin stimulation.
Collapse
|
147
|
Abstract
White adipose tissue is a major endocrine and signalling organ. It secretes multiple protein hormones and factors, termed adipokines (such as adiponectin, leptin, IL-6, MCP-1, TNFalpha) which engage in extensive cross-talk within adipose tissue and with other tissues. Many adipokines are linked to inflammation and immunity and these include cytokines, chemokines and acute phase proteins. In obesity, adipose tissue exhibits a major inflammatory response with increased production of inflammation-related adipokines. It has been proposed that hypoxia may underlie the inflammatory response in adipose tissue and evidence that the tissue is hypoxic in obesity has been obtained in animal models. Cell culture studies have demonstrated that the expression and secretion of key adipokines, including leptin, IL-6 and VEGF, are stimulated by hypoxia, while adiponectin (with an anti-inflammatory action) production falls. Hypoxia also stimulates glucose transport by adipocytes and may have a pervasive effect on cell function within adipose tissue.
Collapse
Affiliation(s)
- Paul Trayhurn
- Obesity Biology Research Unit, School of Clinical Sciences, University of Liverpool, University Clinical Departments, Liverpool, UK.
| | | | | |
Collapse
|
148
|
Hong MG, Myers AJ, Magnusson PKE, Prince JA. Transcriptome-wide assessment of human brain and lymphocyte senescence. PLoS One 2008; 3:e3024. [PMID: 18714388 PMCID: PMC2515343 DOI: 10.1371/journal.pone.0003024] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 08/01/2008] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Identifying biological pathways that vary across the age spectrum can provide insight into fundamental mechanisms that impact disease and frailty in the elderly. Few methodological approaches offer the means to explore this question on as broad a scale as gene expression profiling. Here, we have evaluated mRNA expression profiles as a function of age in two populations; one consisting of 191 individuals with ages-at-death ranging from 65-100 years and with post-mortem brain mRNA measurements of 13,216 genes and a second with 1240 individuals ages 15-94 and lymphocyte mRNA estimates for 18,519 genes. PRINCIPAL FINDINGS Among negatively correlated transcripts, an enrichment of mitochondrial genes was evident in both populations, providing a replication of previous studies indicating this as a common signature of aging. Sample differences were prominent, the most significant being a decrease in expression of genes involved in translation in lymphocytes and an increase in genes involved in transcription in brain, suggesting that apart from energy metabolism other basic cell processes are affected by age but in a tissue-specific manner. In assessing genomic architecture, intron/exon sequence length ratios were larger among negatively regulated genes in both samples, suggesting that a decrease in the expression of non-compact genes may also be a general effect of aging. Variance in gene expression itself has been theorized to change with age due to accumulation of somatic mutations and/or increasingly heterogeneous environmental exposures, but we found no evidence for such a trend here. SIGNIFICANCE Results affirm that deteriorating mitochondrial gene expression is a common theme in senescence, but also highlight novel pathways and features of gene architecture that may be important for understanding the molecular consequences of aging.
Collapse
Affiliation(s)
- Mun-Gwan Hong
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Amanda J. Myers
- Department of Psychiatry, University of Miami, Miller School of Medicine, Miami, Florida, United States of America
| | - Patrik K. E. Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan A. Prince
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
149
|
Abstract
Hypoxia induces profound changes in the cellular gene expression profile. The discovery of a major transcription factor family activated by hypoxia, HIF (hypoxia-inducible factor), and the factors that contribute to HIF regulation have greatly enhanced our knowledge of the molecular aspects of the hypoxic response. However, in addition to HIF, other transcription factors and cellular pathways are activated by exposure to reduced oxygen. In the present review, we summarize the current knowledge of how additional hypoxia-responsive transcription factors integrate with HIF and how other cellular pathways such as chromatin remodelling, translation regulation and microRNA induction, contribute to the co-ordinated cellular response observed following hypoxic stress.
Collapse
Affiliation(s)
- Niall Steven Kenneth
- College of Life Sciences, Wellcome Trust Centre for Gene Regulation and Expression, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | |
Collapse
|
150
|
Guo ZS, Li Q, Bartlett DL, Yang JY, Fang B. Gene transfer: the challenge of regulated gene expression. Trends Mol Med 2008; 14:410-8. [PMID: 18692441 DOI: 10.1016/j.molmed.2008.07.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 07/04/2008] [Accepted: 07/04/2008] [Indexed: 01/04/2023]
Abstract
Gene therapy is expected to have a major impact on human healthcare in the future. However, precise regulation of therapeutic gene expression in vivo is still a challenge. Natural and synthetic enhancer-promoters (EPs) can be utilized to drive gene transcription in a temporal, spatial or environmental signal-inducible manner in response to heat shock, hypoxia, radiation, chemotherapy, epigenetic agents or viral infection. To allow tightly regulated expression, a regulatable gene-expression system can also be implemented. Most of these systems are based on small molecule (drug)-responsive artificial transactivators. In this review, we aim to provide a brief overview of the classes of EPs and regulatable systems, along with lessons learned from these studies. We highlight the potential applications in gene transfer, gene therapy for cancer and genetic disease and the future challenges for clinical applications.
Collapse
Affiliation(s)
- Z Sheng Guo
- Division of Surgical Oncology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|