101
|
Flavonoid dimers are highly potent killers of multidrug resistant cancer cells overexpressing MRP1. Biochem Pharmacol 2016; 124:10-18. [PMID: 27984000 DOI: 10.1016/j.bcp.2016.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/26/2016] [Indexed: 11/23/2022]
Abstract
MRP1 overexpression in multidrug-resistant cancer cells has been shown to be responsible for collateral sensitivity to some flavonoids that stimulate a huge MRP1-mediated GSH efflux. This massive GSH depletion triggers the death of these cancer cells. We describe here that bivalent flavonoid dimers strikingly stimulate such MRP1-mediated GSH efflux and trigger a 50-100 fold more potent cell death than their corresponding monomers. This selective and massive cell death of MRP1-overexpressing cells (both transfected and drug-selected cell lines) is no longer observed either upon catalytic inactivation of MRP1 or its knockdown by siRNA. The best flavonoid dimer, 4e, kills MRP1-overexpressing cells with a selective ratio higher than 1000 compared to control cells and an EC50 value of 0.1 μM, so far unequaled as a collateral sensitivity agent targeting ABC transporters. This result portends the flavonoid dimer 4e as a very promising compound to appraise in vivo the therapeutic potential of collateral sensitivity for eradication of MRP1-overexpressing chemoresistant cancer cells in tumors.
Collapse
|
102
|
Padiadpu J, Baloni P, Anand K, Munshi M, Thakur C, Mohan A, Singh A, Chandra N. Identifying and Tackling Emergent Vulnerability in Drug-Resistant Mycobacteria. ACS Infect Dis 2016; 2:592-607. [PMID: 27759382 DOI: 10.1021/acsinfecdis.6b00004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The global mechanisms and associated molecular alterations that occur in drug-resistant mycobacteria are poorly understood. To address this, we obtain genomics data and then construct a genome-scale response network in isoniazid-resistant Mycobacterium smegmatis and apply a network-mining algorithm. Through this, we decipher global alterations in an unbiased manner and identify emergent vulnerabilities in resistant bacilli, of which redox response was prominent. Using phenotypic profiling, we find that resistant bacilli exhibit collateral sensitivity to several compounds that block antioxidant responses. We find that nanogram/milliliter concentrations of ebselen, vancomycin, and phenylarsine oxide, in combination with isoniazid, are highly effective against Mycobacterium tuberculosis H37Rv and three clinical drug-resistant strains. Dynamic measurements of cytoplasmic redox potential revealed a surprisingly diminished capacity of clinical drug-resistant strains to counteract oxidative stress, providing a mechanistic basis for efficient and synergistic mycobactericidal activity of the drug combinations. Ebselen and vancomycin appear to be promising repurposable drugs.
Collapse
Affiliation(s)
- Jyothi Padiadpu
- Department of Biochemistry, ‡Supercomputer Education and Research Centre, #Molecular Biophysics Unit, ΔMicrobiology and
Cellular Biology, and ⊥Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Priyanka Baloni
- Department of Biochemistry, ‡Supercomputer Education and Research Centre, #Molecular Biophysics Unit, ΔMicrobiology and
Cellular Biology, and ⊥Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Kushi Anand
- Department of Biochemistry, ‡Supercomputer Education and Research Centre, #Molecular Biophysics Unit, ΔMicrobiology and
Cellular Biology, and ⊥Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - MohamedHusen Munshi
- Department of Biochemistry, ‡Supercomputer Education and Research Centre, #Molecular Biophysics Unit, ΔMicrobiology and
Cellular Biology, and ⊥Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Chandrani Thakur
- Department of Biochemistry, ‡Supercomputer Education and Research Centre, #Molecular Biophysics Unit, ΔMicrobiology and
Cellular Biology, and ⊥Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Abhilash Mohan
- Department of Biochemistry, ‡Supercomputer Education and Research Centre, #Molecular Biophysics Unit, ΔMicrobiology and
Cellular Biology, and ⊥Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Amit Singh
- Department of Biochemistry, ‡Supercomputer Education and Research Centre, #Molecular Biophysics Unit, ΔMicrobiology and
Cellular Biology, and ⊥Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Nagasuma Chandra
- Department of Biochemistry, ‡Supercomputer Education and Research Centre, #Molecular Biophysics Unit, ΔMicrobiology and
Cellular Biology, and ⊥Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
103
|
Reis MA, Ahmed OB, Spengler G, Molnár J, Lage H, Ferreira MJU. Jatrophane diterpenes and cancer multidrug resistance - ABCB1 efflux modulation and selective cell death induction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:968-978. [PMID: 27387405 DOI: 10.1016/j.phymed.2016.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/04/2016] [Accepted: 05/21/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Modulation of P-glycoprotein (ABCB1) and evaluation of the collateral sensitivity effect are among the most promising approaches to overcome multidrug resistance (MDR) in cancer. In a previous study, two rare 12,17-cyclojatrophanes (1-2) and other novel jatrophanes (3-4), isolated from Euphorbia welwitschii, were screened for collateral sensitivity effect. Herein, the isolation of another jatrophane (5) is presented, being the broader goal of this work to investigate the role of euphowelwitschines A (1) and B (2), welwitschene (3), epoxywelwitschene (4) and esulatin M (5) as ABCB1 modulators and/or collateral sensitivity agents. METHODS Compounds 1-5 were evaluated for ABCB1 modulation ability through combination of transport and chemosensitivity assays, using a mouse T-lymphoma MDR1-transfected cell model. Moreover, the nature of interaction of compound 4 with ABCB1 was studied, using an ATPase assay. The MDR-selective antiproliferative activity of compound 5 was evaluated against gastric (EPG85-257) and pancreatic (EPP85-181) human cancer cells and their drug-selected counterparts (EPG85-257RDB, EPG85-257RNOV, EPP85-181RDB, EPP85-181RNOV). The drug induced cell death was investigated for compounds 4 and 5, using the annexin V/PI staining and the active caspase-3 assay. RESULTS The jatrophanes 1-5 were able to modulate the efflux activity of ABCB1, and at 2µM, 3-5 maintained the strong modulator profile. Structure activity results indicated that high conformational flexibility of the twelve-membered ring of compounds 3-5 favored ABCB1 modulation, in contrast to the tetracyclic scaffold of compounds 1 and 2. The effects of epoxywelwitschene (4) on the ATPase activity of ABCB1 showed it to interact with the transporter and to be able to reduce the transport of a second subtrate. Drug combination experiments also corroborated the anti-MDR potential of these diterpenes due to their synergistic interaction with doxorubicin (combination index <0.7). Esulatin M (5) showed a strong MDR-selective antiproliferative activity against EPG85-257RDB and EPP85-181RDB cells, with IC50 of 1.8 and 4.8 µM, respectively. Compounds 4 and 5 induced apoptosis via caspase-3 activation. A significant discrimination was observed between the resistant cell lines and parental cells. CONCLUSIONS This study strengthens the role of jatrophane diterpenes as lead candidates for the development of MDR reversal agents, higlighting the action of compounds 4 and 5.
Collapse
Affiliation(s)
- Mariana Alves Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenue Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| | - Omar Bauomy Ahmed
- Institute of Pathology, University Hospital Charité, 10117 Berlin, Germany.
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| | - Joseph Molnár
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| | - Hermann Lage
- Institute of Pathology, University Hospital Charité, 10117 Berlin, Germany; Department of Pathology, Vivantes Clinics, Berlin, Germany.
| | - Maria-José U Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenue Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| |
Collapse
|
104
|
Sadowska-Bartosz I, Grębowski J, Kępka E, Studzian M, Bartosz G, Pułaski Ł. ABCB1-overexpressing MDCK-II cells are hypersensitive to 3-bromopyruvic acid. Life Sci 2016; 162:138-44. [PMID: 27534909 DOI: 10.1016/j.lfs.2016.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/05/2016] [Accepted: 08/12/2016] [Indexed: 01/19/2023]
Abstract
AIMS Cancer cells, due to the Warburg effect, are more dependent on glycolysis than normal cells, so glycolytic inhibitor 3-bromopyruvic acid (3-BP) was proposed as a promising candidate for anticancer therapy. Overexpression of multidrug transporters is the main reason of resistance of cancer cells to chemotherapy. As the activity of multidrug transporters imposes an energetic burden on the cells, it can be expected that inhibition of ATP generation may exert a selective cytotoxicity to cells overexpressing multidrug transporters. The aim of this study was to compare the effect of 3-BP on the survival and ATP level in MDCK-II cells and MDCK-II cells overexpressing ABCB1 (Pgp) or ABCG2 (BCRP). MAIN METHODS Cell survival was measured with resazurin and with neutral red. ATP level was assayed with luciferin/luciferase kit. Luteolin transport was measured by an original method described in the paper. KEY FINDINGS 3-BP (10-200μM) induced a decrease of ATP level after 1-h incubation in all cell lines studied, more drastically in ABCB1-overexpressing cells. 50 and 200μM 3-BP significantly decreased cell viability; the effect was more pronounced for ABCB1-overexpressing cells. PSC833, inhibitor of ABCB1, ameliorated the toxic effect of 3-BP on MDCK-II ABCB1 cells and MDCK-II cells. 3-BP inhibited luteolin transport in MDCK-II ABCG2 cells. SIGNIFICANCE These results indicate that 3-BP shows selective toxicity against ABCB1- but not ABCG2-overexpressing cells, apparently due to enhanced ATP depletion but in a manner independent of the transport activity of Pgp, suggesting a novel mechanism of hypersensitivity of ABCB1-overexpressing cells to 3-BP.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszów, Zelwerowicza 4, 35-601 Rzeszów, Poland.
| | - Jacek Grębowski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Ewa Kępka
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Maciej Studzian
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Grzegorz Bartosz
- Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszów, Zelwerowicza 4, 35-601 Rzeszów, Poland; Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Łukasz Pułaski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; Laboratory of Transcriptional Regulation, Institute of Medical Biology of the Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| |
Collapse
|
105
|
Ho TT, He X, Mo YY, Beck WT. Transient resistance to DNA damaging agents is associated with expression of microRNAs-135b and -196b in human leukemia cell lines. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 7:27-47. [PMID: 27570640 PMCID: PMC4981649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/22/2016] [Indexed: 06/06/2023]
Abstract
The acquisition of resistance to anticancer drugs is widely viewed as a key obstacle to successful cancer therapy. However, detailed knowledge of the initial molecular events in the response of cancer cells to these chemotherapeutic and stress responses, and how these lead to the development of chemoresistance, remains incompletely understood. Using microRNA array and washout and rechallenge experiments, we found that short term treatment of leukemia cells with etoposide led a few days later to transient resistance that was associated with a corresponding transient increase in expression of ABCB1 mRNA, as well as microRNA (miR)-135b and miR-196b. This phenomenon was associated with short-term exposure to genotoxic agents, such as etoposide, topotecan, doxorubicin and ionizing radiation, but not agents that do not directly damage DNA. Further, this appeared to be histiotype-specific, and was seen in leukemic cells, but not in cell lines derived from solid tumors. Treatment of leukemic cells with either 5-aza-deoxycytidine or tricostatin A produced similar increased expression of ABCB1, miR-135b, and miR-196b, suggesting a role for epigenetic regulation of this phenomenon. Bioinformatics analyses revealed that CACNA1E, ARHGEF2, PTK2, SIAH1, ARHGAP6, and NME4 may be involved in the initial events in the development of drug resistance following the upregulation of ABCB1, miR-135b and miR-196b. In summary, we report herein that short-term exposure of cells to DNA damaging agents leads to transient drug resistance, which is associated with elevations in ABCB1, miR-135b and miR-196b, and suggests novel components that may be involved in the development of anticancer drug resistance.
Collapse
Affiliation(s)
- Tsui-Ting Ho
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at ChicagoChicago 60612, IL, USA
- Cancer Institute, University of Mississippi Medical CenterJackson, 39216, MS, USA
- Department of Radiation Oncology, University of Mississippi Medical CenterJackson, 39216, MS, USA
| | - Xiaolong He
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at ChicagoChicago 60612, IL, USA
- Cancer Center, University of Illinois at ChicagoChicago 60612, IL, USA
| | - Yin-Yuan Mo
- Cancer Institute, University of Mississippi Medical CenterJackson, 39216, MS, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical CenterJackson, 39216, MS, USA
| | - William T Beck
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at ChicagoChicago 60612, IL, USA
- Cancer Center, University of Illinois at ChicagoChicago 60612, IL, USA
| |
Collapse
|
106
|
Brandt AP, Gozzi GJ, Pires ADRA, Martinez GR, Dos Santos Canuto AV, Echevarria A, Di Pietro A, Cadena SMSC. Impairment of oxidative phosphorylation increases the toxicity of SYD-1 on hepatocarcinoma cells (HepG2). Chem Biol Interact 2016; 256:154-60. [PMID: 27417255 DOI: 10.1016/j.cbi.2016.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/22/2016] [Accepted: 07/07/2016] [Indexed: 12/11/2022]
Abstract
Toxicity of the SYD-1 mesoionic compound (3-[4-chloro-3-nitrophenyl]-1,2,3-oxadiazolium-5-olate) was evaluated on human liver cancer cells (HepG2) grown in either high glucose (HG) or galactose (GAL) medium, and also on suspended cells kept in HG medium. SYD-1 was able to decrease the viability of cultured HepG2 cells in a dose-dependent manner, as assessed by MTT, LDH release and dye with crystal violet assays, but no effect was observed on suspended cells after 1-40 min of treatment. Respiration analysis was performed after 2 min (suspended cells) or 24 h (cultured cells) of treatment: no change was observed in suspended cells, whereas SYD-1 inhibited as well basal, leak and uncoupled states of the respiration in cultured cells with HG medium. These inhibitions were consistent with the decrease in pyruvate level and increase in lactate level. Even more extended results were obtained with HepG2 cells grown in GAL medium where, additionally, the ATP amount was reduced. Furthermore, SYD-1 appears not to be transported by the main ABC multidrug transporters. These results show that SYD-1 is able to change the metabolism of HepG2 cells, and suggest that its cytotoxicity is related to impairment of mitochondrial metabolism. Therefore, we may propose that SYD-1 is a potential candidate for hepatocarcinoma treatment.
Collapse
Affiliation(s)
- Anna Paula Brandt
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Gustavo Jabor Gozzi
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | | - Glaucia Regina Martinez
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | | - Aurea Echevarria
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
107
|
Seebacher N, Lane DJR, Richardson DR, Jansson PJ. Turning the gun on cancer: Utilizing lysosomal P-glycoprotein as a new strategy to overcome multi-drug resistance. Free Radic Biol Med 2016; 96:432-45. [PMID: 27154979 DOI: 10.1016/j.freeradbiomed.2016.04.201] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/01/2016] [Accepted: 04/29/2016] [Indexed: 01/02/2023]
Abstract
Oxidative stress plays a role in the development of drug resistance in cancer cells. Cancer cells must constantly and rapidly adapt to changes in the tumor microenvironment, due to alterations in the availability of nutrients, such as glucose, oxygen and key transition metals (e.g., iron and copper). This nutrient flux is typically a consequence of rapid growth, poor vascularization and necrosis. It has been demonstrated that stress factors, such as hypoxia and glucose deprivation up-regulate master transcription factors, namely hypoxia inducible factor-1α (HIF-1α), which transcriptionally regulate the multi-drug resistance (MDR), transmembrane drug efflux transporter, P-glycoprotein (Pgp). Interestingly, in addition to the established role of plasma membrane Pgp in MDR, a new paradigm of intracellular resistance has emerged that is premised on the ability of lysosomal Pgp to transport cytotoxic agents into this organelle. This mechanism is enabled by the topological inversion of Pgp via endocytosis resulting in the transporter actively pumping agents into the lysosome. In this way, classical Pgp substrates, such as doxorubicin (DOX), can be actively transported into this organelle. Within the lysosome, DOX becomes protonated upon acidification of the lysosomal lumen, causing its accumulation. This mechanism efficiently traps DOX, preventing its cytotoxic interaction with nuclear DNA. This review discusses these effects and highlights a novel mechanism by which redox-active and protonatable Pgp substrates can utilize lysosomal Pgp to gain access to this compartment, resulting in catastrophic lysosomal membrane permeabilization and cell death. Hence, a key MDR mechanism that utilizes Pgp (the "gun") to sequester protonatable drug substrates safely within lysosomes can be "turned on" MDR cancer cells to destroy them from within.
Collapse
Affiliation(s)
- Nicole Seebacher
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Blackburn Building (D06), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Darius J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Blackburn Building (D06), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Blackburn Building (D06), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Blackburn Building (D06), University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
108
|
Pape VF, Tóth S, Füredi A, Szebényi K, Lovrics A, Szabó P, Wiese M, Szakács G. Design, synthesis and biological evaluation of thiosemicarbazones, hydrazinobenzothiazoles and arylhydrazones as anticancer agents with a potential to overcome multidrug resistance. Eur J Med Chem 2016; 117:335-54. [DOI: 10.1016/j.ejmech.2016.03.078] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/22/2016] [Accepted: 03/25/2016] [Indexed: 12/16/2022]
|
109
|
Saeed MEM, Meyer M, Hussein A, Efferth T. Cytotoxicity of South-African medicinal plants towards sensitive and multidrug-resistant cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2016; 186:209-223. [PMID: 27058630 DOI: 10.1016/j.jep.2016.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/03/2016] [Accepted: 04/04/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional medicine plays a major role for primary health care worldwide. Cancer belongs to the leading disease burden in industrialized and developing countries. Successful cancer therapy is hampered by the development of resistance towards established anticancer drugs. AIM In the present study, we investigated the cytotoxicity of 29 extracts from 26 medicinal plants of South-Africa against leukemia cell lines, most of which are used traditionally to treat cancer and related symptoms. MATERIAL AND METHODS We have investigated the plant extracts for their cytotoxic activity towards drug-sensitive parental CCRF-CEM leukemia cells and their multidrug-resistant P-glycoprotein-overexpressing subline, CEM/ADR5000 by means of the resazurin assay. A panel of 60 NCI tumor cell lines have been investigated for correlations between selected phytochemicals from medicinal plants and the expression of resistance-conferring genes (ABC-transporters, oncogenes, tumor suppressor genes). RESULTS Seven extracts inhibited both cell lines (Acokanthera oppositifolia, Hypoestes aristata, Laurus nobilis, Leonotis leonurus, Plectranthus barbatus, Plectranthus ciliates, Salvia apiana). CEM/ADR5000 cells exhibited a low degree of cross-resistance (3.35-fold) towards the L. leonurus extract, while no cross-resistance was observed to other plant extracts, although CEM/ADR5000 cells were highly resistant to clinically established drugs. The log10IC50 values for two out of 14 selected phytochemicals from these plants (acovenoside A and ouabain) of 60 tumor cell lines were correlated to the expression of ABC-transporters (ABCB1, ABCB5, ABCC1, ABCG2), oncogenes (EGFR, RAS) and tumor suppressors (TP53). Sensitivity or resistance of the cell lines were not statistically associated with the expression of these genes, indicating that multidrug-resistant, refractory tumors expressing these genes may still respond to acovenoside A and ouabain. CONCLUSION The bioactivity of South African medicinal plants may represent a basis for the development of strategies to treat multidrug-resistant tumors either by phytotherapeutic approaches with whole plant preparations or by classical drug development with isolated compounds such as acovenoside A or ouabain.
Collapse
Affiliation(s)
- Mohamed E M Saeed
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Marion Meyer
- Plant Science Department, University of Pretoria, 002 Pretoria, South Africa
| | - Ahmed Hussein
- Chemistry Department, University of Western Cape, Private Bag X17, Belleville 7535, South Africa
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
110
|
Ooko E, Alsalim T, Saeed B, Saeed MEM, Kadioglu O, Abbo HS, Titinchi SJJ, Efferth T. Modulation of P-glycoprotein activity by novel synthetic curcumin derivatives in sensitive and multidrug-resistant T-cell acute lymphoblastic leukemia cell lines. Toxicol Appl Pharmacol 2016; 305:216-233. [PMID: 27318188 DOI: 10.1016/j.taap.2016.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/25/2016] [Accepted: 06/03/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Multidrug resistance (MDR) and drug transporter P-glycoprotein (P-gp) represent major obstacles in cancer chemotherapy. We investigated 19 synthetic curcumin derivatives in drug-sensitive acute lymphoblastic CCRF-CEM leukemia cells and their multidrug-resistant P-gp-overexpressing subline, CEM/ADR5000. MATERIAL AND METHODS Cytotoxicity was tested by resazurin assays. Doxorubicin uptake was assessed by flow cytometry. Binding modes of compounds to P-gp were analyzed by molecular docking. Chemical features responsible for bioactivity were studied by quantitative structure activity relationship (QSAR) analyses. A 7-descriptor QSAR model was correlated with doxorubicin uptake values, IC50 values and binding energies. RESULTS The compounds displayed IC50 values between 0.7±0.03 and 20.2±0.25μM. CEM/ADR5000 cells exhibited cross-resistance to 10 compounds, collateral sensitivity to three compounds and regular sensitivity to the remaining six curcumins. Molecular docking studies at the intra-channel transmembrane domain of human P-gp resulted in lowest binding energies ranging from -9.00±0.10 to -6.20±0.02kcal/mol and pKi values from 0.24±0.04 to 29.17±0.88μM. At the ATP-binding site of P-gp, lowest binding energies ranged from -9.78±0.17 to -6.79±0.01kcal/mol and pKi values from 0.07±0.02 to 0.03±0.03μM. CEM/ADR5000 cells accumulated approximately 4-fold less doxorubicin than CCRF-CEM cells. The control P-gp inhibitor, verapamil, partially increased doxorubicin uptake in CEM/ADR5000 cells. Six curcumins increased doxorubicin uptake in resistant cells or even exceeded uptake levels compared to sensitive one. QSAR yielded good activity prediction (R=0.797 and R=0.794 for training and test sets). CONCLUSION Selected derivatives may serve to guide future design of novel P-gp inhibitors and collateral sensitive drugs to combat MDR.
Collapse
Affiliation(s)
- Edna Ooko
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Tahseen Alsalim
- Department of Chemistry, College of Education for Pure Sciences, University of Basrah, P.O. Box 49 Basrah, Al Basrah, Iraq
| | - Bahjat Saeed
- Department of Chemistry, College of Education for Pure Sciences, University of Basrah, P.O. Box 49 Basrah, Al Basrah, Iraq
| | - Mohamed E M Saeed
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Hanna S Abbo
- Department of Chemistry, University of the Western Cape, P/B X17, Bellville, 7535 Cape Town, South Africa
| | - Salam J J Titinchi
- Department of Chemistry, University of the Western Cape, P/B X17, Bellville, 7535 Cape Town, South Africa.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
111
|
McIntosh K, Balch C, Tiwari AK. Tackling multidrug resistance mediated by efflux transporters in tumor-initiating cells. Expert Opin Drug Metab Toxicol 2016; 12:633-44. [DOI: 10.1080/17425255.2016.1179280] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kyle McIntosh
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Curt Balch
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
112
|
Żesławska E, Kincses A, Spengler G, Nitek W, Wyrzuc K, Kieć-Kononowicz K, Handzlik J. The 5-aromatic hydantoin-3-acetate derivatives as inhibitors of the tumour multidrug resistance efflux pump P-glycoprotein (ABCB1): Synthesis, crystallographic and biological studies. Bioorg Med Chem 2016; 24:2815-22. [PMID: 27160056 DOI: 10.1016/j.bmc.2016.04.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/14/2016] [Accepted: 04/25/2016] [Indexed: 11/25/2022]
Abstract
A series of arylpiperazine derivatives of hydantoin-3-acetate, including previously obtained 5,5-diphenylhydantoin (1-7) and new-synthesized spirofluorene-hydantoin derivatives (8-12), were investigated in the search for new inhibitors of the tumour multidrug resistance (MDR) efflux pump P-glycoprotein (P-gp, ABCB1) overexpressed in mouse T-lymphoma cells. Synthesis of new compounds (8-12) was performed. Crystal structures of two compounds (8 and 11) were determined by X-ray diffraction method. The conformations of the investigated molecules (8 and 11) in the crystalline samples are different. The bent conformation seems to be more favourable for biological activity than the extended one. The efflux pump inhibitory properties of the compounds 1-12 were evaluated in the fluorescence uptake assay using rhodamine 123 dye in mouse T-lymphoma model in vitro. Their cytotoxic action was examined, too. All compounds with methyl acetate moiety displayed high potency to inhibit the MDR efflux pump. The most active compound, methyl 2-(1-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)butyl)-5,5-diphenylhydantoin-3-yl)acetate (5), tested at 1/10 of verapamil concentration displayed the 9-fold higher P-gp inhibitory action.
Collapse
Affiliation(s)
- Ewa Żesławska
- Department of Chemistry, Institute of Biology, Pedagogical University of Cracow, ul. Podchorążych 2, 30-084 Kraków, Poland.
| | - Annamária Kincses
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Wojciech Nitek
- Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Kraków, Poland
| | - Karolina Wyrzuc
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| |
Collapse
|
113
|
Wu CF, Bohnert S, Thines E, Efferth T. Cytotoxicity of Salvia miltiorrhizaAgainst Multidrug-Resistant Cancer Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:871-894. [DOI: 10.1142/s0192415x16500488] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Salvia miltiorrhiza Bunge (Lamiaceae) is a well-known Chinese herb that possesses numerous therapeutic activities, including anticancer effects. In this study, the cytotoxicity and the biological mechanisms of S. miltiorrhiza (SM) root extract on diverse resistant and sensitive cancer cell lines were investigated. CEM/ADR5000 cells were 1.68-fold resistant to CCRF-CEM cells, while HCT116 (p53[Formula: see text] and U87.MG[Formula: see text]EGFR cells were hypersensitive (collateral sensitive) compared to their parental cells. SM root extract stimulated ROS generation, cell cycle S phase arrest and apoptosis. The induction of the intrinsic apoptotic pathway was validated by increased cleavage of caspase 3, 7, 9 and poly ADP-ribose polymerase (PARP). MAP kinases including JNK, ERK1/2 and p38 were obviously phosphorylated and nuclear P65 was downregulated upon SM treatment. Transcriptome-wide COMPARE analysis revealed that the expression of encoding genes with diverse functions were associated with the cellular response to cryptotanshinone, one of the main constituents of SM root extract. In conclusion, SM root extract exerted profound cytotoxicity towards various sensitive and resistant cancer cells and induced the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Ching-Fen Wu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Stefan Bohnert
- Institute of Biotechnology and Drug Research, Kaiserslautern, Germany
| | - Eckhard Thines
- Institute of Biotechnology and Drug Research, Kaiserslautern, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
114
|
Reis MA, André V, Duarte MT, Lage H, Ferreira MJU. 12,17-Cyclojatrophane and Jatrophane Constituents of Euphorbia welwitschii. JOURNAL OF NATURAL PRODUCTS 2015; 78:2684-2690. [PMID: 26561962 DOI: 10.1021/acs.jnatprod.5b00631] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Euphowelwitschines A (1) and B (2), isolated from a methanolic extract of Euphorbia welwitschii, exhibit a rare combination of structural features in having a 5/8/8 fused-ring system and a 12,15-ether bridge. Moreover, the isolation of the additional new compounds welwitschene (3) and epoxywelwitschene (4) has provided insights into the biogenetic pathway of 12,17-cyclojatrophanes. The structures of 1-4 were determined by spectroscopic methods inclusive of 1D and 2D NMR experiments and X-ray crystallography for compounds 1 and 2. Preliminary information on the selective antiproliferative activity of compounds 1-4 is also described.
Collapse
Affiliation(s)
- Mariana A Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa , Avenue Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Vânia André
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa , Avenue Rovisco Pais, 1049-001 Lisbon, Portugal
| | - M Teresa Duarte
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa , Avenue Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Hermann Lage
- Charité Campus Mitte, Institute of Pathology , D-10117 Berlin, Germany
| | - Maria-José U Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa , Avenue Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
115
|
Overcoming Multidrug Resistance in Cancer Stem Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:635745. [PMID: 26649310 PMCID: PMC4663294 DOI: 10.1155/2015/635745] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/09/2015] [Accepted: 10/19/2015] [Indexed: 01/03/2023]
Abstract
The principle mechanism of protection of stem cells is through the expression of ATP-binding cassette (ABC) transporters. These transporters serve as the guardians of the stem cell population in the body. Unfortunately these very same ABC efflux pumps afford protection to cancer stem cells in tumors, shielding them from the adverse effects of chemotherapy. A number of strategies to circumvent the function of these transporters in cancer stem cells are currently under investigation. These strategies include the development of competitive and allosteric modulators, nanoparticle mediated delivery of inhibitors, targeted transcriptional regulation of ABC transporters, miRNA mediated inhibition, and targeting of signaling pathways that modulate ABC transporters. The role of ABC transporters in cancer stem cells will be explored in this paper and strategies aimed at overcoming drug resistance caused by these particular transporters will also be discussed.
Collapse
|
116
|
Selective amino acid restriction therapy (SAART): a non-pharmacological strategy against all types of cancer cells. Oncoscience 2015; 2:857-66. [PMID: 26682277 PMCID: PMC4671952 DOI: 10.18632/oncoscience.258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/09/2015] [Indexed: 02/07/2023] Open
Abstract
Metastasis will continue to be an incurable disease for most patients until we develop highly selective anticancer therapies. The development of these therapies requires finding and exploiting major differences between cancer cells and normal cells. Although the sum of the many DNA alterations of cancer cells makes up such a major difference, there is currently no way of exploiting these alterations as a whole. Here I propose a non-pharmacological strategy to selectively kill any type of cancer cell, including cancer stem cells, by exploiting their complete set of DNA alterations. It is based on creating challenging environmental conditions that only cells with undamaged DNAs can overcome. Cell survival requires continuous protein synthesis, which in turn requires adequate levels of 20 amino acids (AAs). If we temporarily restrict specific AAs and keep high levels of others whose deficit triggers proteolysis, we will force cells to activate a variety of genetic programs to obtain adequate levels of each of the 20 proteinogenic AAs. Because cancer cells have an extremely altered DNA that has evolved under particular environmental conditions, they may be unable to activate the genetic programs required to adapt to and survive the new environment. Cancer patients may be successfully treated with a protein-free artificial diet in which the levels of specific AAs are manipulated. Practical considerations for testing and implementing this cheap and universal anticancer strategy are discussed.
Collapse
|
117
|
Saeed M, Jacob S, Sandjo LP, Sugimoto Y, Khalid HE, Opatz T, Thines E, Efferth T. Cytotoxicity of the Sesquiterpene Lactones Neoambrosin and Damsin from Ambrosia maritima Against Multidrug-Resistant Cancer Cells. Front Pharmacol 2015; 6:267. [PMID: 26617519 PMCID: PMC4637410 DOI: 10.3389/fphar.2015.00267] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/26/2015] [Indexed: 12/26/2022] Open
Abstract
Multidrug resistance is a prevailing phenomenon leading to chemotherapy treatment failure in cancer patients. In the current study two known cytotoxic pseudoguaianolide sesquiterpene lactones; neoambrosin (1) and damsin (2) that circumvent MDR were identified. The two cytotoxic compounds were isolated using column chromatography, characterized using 1D and 2D NMR, MS, and compared with literature values. The isolated compounds were investigated for their cytotoxic potential using resazurin assays and thereafter confirmed with immunoblotting and in silico studies. MDR cells overexpressing ABC transporters (P-glycoprotein, BCRP, ABCB5) did not confer cross-resistance toward (1) and (2), indicating that these compounds are not appropriate substrates for any of the three ABC transporters analyzed. Resistance mechanisms investigated also included; the loss of the functions of the TP53 and the mutated EGFR. The HCT116 p53-/- cells were sensitive to 1 but resistant to 2. It was interesting to note that resistant cells transfected with oncogenic ΔEGFR exhibited hypersensitivity CS toward (1) and (2) (degrees of resistances were 0.18 and 0.15 for (1) and (2), respectively). Immunoblotting and in silico analyses revealed that 1 and 2 silenced c-Src kinase activity. It was hypothesized that inhibition of c-Src kinase activity may explain CS in EGFR-transfected cells. In conclusion, the significant cytotoxicity of 1 and 2 against different drug-resistant tumor cell lines indicate that they may be promising candidates to treat refractory tumors.
Collapse
Affiliation(s)
- Mohamed Saeed
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz Mainz, Germany
| | - Stefan Jacob
- Institut für Biotechnologie und Wirkstoff-Forschung Kaiserslautern, Germany
| | - Louis P Sandjo
- Department of Pharmaceutical Sciences, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina Florianópolis, Brazil ; Institute of Organic Chemistry, Johannes Gutenberg University of Mainz Mainz, Germany
| | - Yoshikazu Sugimoto
- Division of Chemotherapy, Faculty of Pharmacy, Keio University Tokyo, Japan
| | - Hassan E Khalid
- Department of Pharmacognosy, University of Khartoum Khartoum, Sudan
| | - Till Opatz
- Institute of Organic Chemistry, Johannes Gutenberg University of Mainz Mainz, Germany
| | - Eckhard Thines
- Institut für Biotechnologie und Wirkstoff-Forschung Kaiserslautern, Germany ; Institute of Biotechnology and Drug Research, Johannes Gutenberg University of Mainz Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz Mainz, Germany
| |
Collapse
|
118
|
Pinto-Almeida A, Mendes T, Armada A, Belo S, Carrilho E, Viveiros M, Afonso A. The Role of Efflux Pumps in Schistosoma mansoni Praziquantel Resistant Phenotype. PLoS One 2015; 10:e0140147. [PMID: 26445012 PMCID: PMC4596880 DOI: 10.1371/journal.pone.0140147] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/21/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Schistosomiasis is a neglected disease caused by a trematode of the genus Schistosoma that is second only to malaria in public health significance in Africa, South America, and Asia. Praziquantel (PZQ) is the drug of choice to treat this disease due to its high cure rates and no significant side effects. However, in the last years increasingly cases of tolerance to PZQ have been reported, which has caused growing concerns regarding the emergency of resistance to this drug. METHODOLOGY/PRINCIPAL FINDINGS Here we describe the selection of a parasitic strain that has a stable resistance phenotype to PZQ. It has been reported that drug resistance in helminths might involve efflux pumps such as members of ATP-binding cassette transport proteins, including P-glycoprotein and multidrug resistance-associated protein families. Here we evaluate the role of efflux pumps in Schistosoma mansoni resistance to PZQ, by comparing the efflux pumps activity in susceptible and resistant strains. The evaluation of the efflux activity was performed by an ethidium bromide accumulation assay in presence and absence of Verapamil. The role of efflux pumps in resistance to PZQ was further investigated comparing the response of susceptible and resistant parasites in the absence and presence of different doses of Verapamil, in an ex vivo assay, and these results were further reinforced through the comparison of the expression levels of SmMDR2 RNA by RT-PCR. CONCLUSIONS/SIGNIFICANCE This work strongly suggests the involvement of Pgp-like transporters SMDR2 in Praziquantel drug resistance in S. mansoni. Low doses of Verapamil successfully reverted drug resistance. Our results might give an indication that a combination therapy with PZQ and natural or synthetic Pgp modulators can be an effective strategy for the treatment of confirmed cases of resistance to PZQ in S. mansoni.
Collapse
Affiliation(s)
- António Pinto-Almeida
- Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Medical Parasitology Unit, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
- Universidade de São Paulo, Instituto de Química de São Carlos, São Carlos, SP, Brazil
| | - Tiago Mendes
- Medical Parasitology Unit, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
- Institute of Biology, Universidade de Campinas, Campinas, SP, Brazil
| | - Ana Armada
- Medical Microbiology Unit, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
| | - Silvana Belo
- Medical Parasitology Unit, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
| | - Emanuel Carrilho
- Universidade de São Paulo, Instituto de Química de São Carlos, São Carlos, SP, Brazil
| | - Miguel Viveiros
- Medical Microbiology Unit, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
| | - Ana Afonso
- Medical Parasitology Unit, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
- Universidade de São Paulo, Instituto de Química de São Carlos, São Carlos, SP, Brazil
- Laboratory of Parasitology, Departamento de Morfologia e Patologia, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| |
Collapse
|
119
|
Ravindranath AK, Kaur S, Wernyj RP, Kumaran MN, Miletti-Gonzalez KE, Chan R, Lim E, Madura K, Rodriguez-Rodriguez L. CD44 promotes multi-drug resistance by protecting P-glycoprotein from FBXO21-mediated ubiquitination. Oncotarget 2015; 6:26308-21. [PMID: 26299618 PMCID: PMC4694903 DOI: 10.18632/oncotarget.4763] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 06/25/2015] [Indexed: 12/29/2022] Open
Abstract
Here we demonstrate that a ubiquitin E3-ligase, FBXO21, targets the multidrug resistance transporter, ABCB1, also known as P-glycoprotein (P-gp), for proteasomal degradation. We also show that the Ser291-phosphorylated form of the multifunctional protein and stem cell marker, CD44, inhibits FBXO21-directed degradation of P-gp. Thus, CD44 increases P-gp mediated drug resistance and represents a potential therapeutic target in P-gp-positive cells.
Collapse
Affiliation(s)
| | - Swayamjot Kaur
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Roman P. Wernyj
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | | | - Karl E. Miletti-Gonzalez
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Present address: Delaware State University, Dover, DE, USA
| | - Rigel Chan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Elaine Lim
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Kiran Madura
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Lorna Rodriguez-Rodriguez
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Obstetrics and Gynecology, New Brunswick, Rutgers Cancer Institute of New Jersey, NJ, USA
| |
Collapse
|
120
|
Lower antioxidative capacity of multidrug-resistant cancer cells confers collateral sensitivity to protoflavone derivatives. Cancer Chemother Pharmacol 2015. [DOI: 10.1007/s00280-015-2821-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
121
|
Gozzi GJ, Bouaziz Z, Winter E, Daflon-Yunes N, Honorat M, Guragossian N, Marminon C, Valdameri G, Bollacke A, Guillon J, Pinaud N, Marchivie M, Cadena SM, Jose J, Le Borgne M, Di Pietro A. Phenolic indeno[1,2-b]indoles as ABCG2-selective potent and non-toxic inhibitors stimulating basal ATPase activity. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3481-95. [PMID: 26170632 PMCID: PMC4498724 DOI: 10.2147/dddt.s84982] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ketonic indeno[1,2-b]indole-9,10-dione derivatives, initially designed as human casein kinase II (CK2) inhibitors, were recently shown to be converted into efficient inhibitors of drug efflux by the breast cancer resistance protein ABCG2 upon suited substitutions including a N5-phenethyl on C-ring and hydrophobic groups on D-ring. A series of ten phenolic and seven p-quinonic derivatives were synthesized and screened for inhibition of both CK2 and ABCG2 activities. The best phenolic inhibitors were about threefold more potent against ABCG2 than the corresponding ketonic derivatives, and showed low cytotoxicity. They were selective for ABCG2 over both P-glycoprotein and MRP1 (multidrug resistance protein 1), whereas the ketonic derivatives also interacted with MRP1, and they additionally displayed a lower interaction with CK2. Quite interestingly, they strongly stimulated ABCG2 ATPase activity, in contrast to ketonic derivatives, suggesting distinct binding sites. In contrast, the p-quinonic indenoindoles were cytotoxic and poor ABCG2 inhibitors, whereas a partial inhibition recovery could be reached upon hydrophobic substitutions on D-ring, similarly to the ketonic derivatives.
Collapse
Affiliation(s)
- Gustavo Jabor Gozzi
- Equipe Labellisée Ligue 2014, BMSSI UMR5086 CNRS/Lyon I University, IBCP, Lyon, France ; Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Zouhair Bouaziz
- Faculty of Pharmacy - ISPB, EA 4446 Biomolecules, Cancer and Chemoresistance, Health SFR of East Lyon CNRS UMS3453 - INSERM US7, University of Lyon, Lyon I University, Lyon Cedex 8, France
| | - Evelyn Winter
- Equipe Labellisée Ligue 2014, BMSSI UMR5086 CNRS/Lyon I University, IBCP, Lyon, France ; Department of Pharmaceutical Sciences, PGFAR, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Nathalia Daflon-Yunes
- Equipe Labellisée Ligue 2014, BMSSI UMR5086 CNRS/Lyon I University, IBCP, Lyon, France
| | - Mylène Honorat
- Equipe Labellisée Ligue 2014, BMSSI UMR5086 CNRS/Lyon I University, IBCP, Lyon, France
| | - Nathalie Guragossian
- Faculty of Pharmacy - ISPB, EA 4446 Biomolecules, Cancer and Chemoresistance, Health SFR of East Lyon CNRS UMS3453 - INSERM US7, University of Lyon, Lyon I University, Lyon Cedex 8, France
| | - Christelle Marminon
- Faculty of Pharmacy - ISPB, EA 4446 Biomolecules, Cancer and Chemoresistance, Health SFR of East Lyon CNRS UMS3453 - INSERM US7, University of Lyon, Lyon I University, Lyon Cedex 8, France
| | - Glaucio Valdameri
- Equipe Labellisée Ligue 2014, BMSSI UMR5086 CNRS/Lyon I University, IBCP, Lyon, France ; Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Andre Bollacke
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Jean Guillon
- ARNA Laboratory, Pharmaceutical Sciences UFR, INSERM U869, University of Bordeaux, Bordeaux Cedex, France
| | - Noël Pinaud
- ISM - CNRS UMR 5255, University of Bordeaux Cedex, France
| | | | - Silvia M Cadena
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Marc Le Borgne
- Faculty of Pharmacy - ISPB, EA 4446 Biomolecules, Cancer and Chemoresistance, Health SFR of East Lyon CNRS UMS3453 - INSERM US7, University of Lyon, Lyon I University, Lyon Cedex 8, France
| | - Attilio Di Pietro
- Equipe Labellisée Ligue 2014, BMSSI UMR5086 CNRS/Lyon I University, IBCP, Lyon, France
| |
Collapse
|
122
|
Gozzi GJ, Pires ADRA, Valdameri G, Rocha MEM, Martinez GR, Noleto GR, Acco A, Alves de Souza CE, Echevarria A, Moretto dos Reis C, Di Pietro A, Suter Correia Cadena SM. Selective Cytotoxicity of 1,3,4-Thiadiazolium Mesoionic Derivatives on Hepatocarcinoma Cells (HepG2). PLoS One 2015; 10:e0130046. [PMID: 26083249 PMCID: PMC4470815 DOI: 10.1371/journal.pone.0130046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/15/2015] [Indexed: 12/26/2022] Open
Abstract
In this work, we evaluated the cytotoxicity of mesoionic 4-phenyl-5-(2-Y, 4-X or 4-X-cinnamoyl)-1,3,4-thiadiazolium-2-phenylamine chloride derivatives (MI-J: X=OH, Y=H; MI-D: X=NO2, Y=H; MI-4F: X=F, Y=H; MI-2,4diF: X=Y=F) on human hepatocellular carcinoma (HepG2), and non-tumor cells (rat hepatocytes) for comparison. MI-J, M-4F and MI-2,4diF reduced HepG2 viability by ~ 50% at 25 μM after 24-h treatment, whereas MI-D required a 50 μM concentration, as shown by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. The cytotoxicity was confirmed with lactate dehydrogenase assay, of which activity was increased by 55, 24 and 16% for MI-J, MI-4F and MI-2,4diF respectively (at 25 μM after 24 h). To identify the death pathway related to cytotoxicity, the HepG2 cells treated by mesoionic compounds were labeled with both annexin V and PI, and analyzed by flow cytometry. All compounds increased the number of doubly-stained cells at 25 μM after 24 h: by 76% for MI-J, 25% for MI-4F and MI-2,4diF, and 11% for MI-D. It was also verified that increased DNA fragmentation occurred upon MI-J, MI-4F and MI-2,4diF treatments (by 12%, 9% and 8%, respectively, at 25 μM after 24 h). These compounds were only weakly, or not at all, transported by the main multidrug transporters, P-glycoprotein, ABCG2 and MRP1, and were able to slightly inhibit their drug-transport activity. It may be concluded that 1,3,4-thiadiazolium compounds, especially the hydroxy derivative MI-J, constitute promising candidates for future investigations on in-vivo treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Gustavo Jabor Gozzi
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | | - Glaucio Valdameri
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Maria Eliane Merlin Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Glaucia Regina Martinez
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | | - Alexandra Acco
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | | - Aurea Echevarria
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Attilio Di Pietro
- Equipe Labellisée Ligue 2014, BMSSI UMR 5086 CNRS/Université Lyon 1, IBCP, Lyon, France
| | | |
Collapse
|
123
|
Zeino M, Brenk R, Gruber L, Zehl M, Urban E, Kopp B, Efferth T. Cytotoxicity of cardiotonic steroids in sensitive and multidrug-resistant leukemia cells and the link with Na(+)/K(+)-ATPase. J Steroid Biochem Mol Biol 2015; 150:97-111. [PMID: 25797029 DOI: 10.1016/j.jsbmb.2015.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 03/04/2015] [Accepted: 03/17/2015] [Indexed: 12/12/2022]
Abstract
Cardiotonic steroids have long been in clinical use for treatment of heart failure and are now emerging as promising agents in various diseases, especially cancer. Their main target is Na(+)/K(+)-ATPase, a membrane protein involved in cellular ion homeostasis. Na(+)/K(+)-ATPase has been implicated in cancer biology by affecting several cellular events and signaling pathways in both sensitive and drug-resistant cancer cells. Hence, we investigated the cytotoxic activities of 66 cardiotonic steroids and cardiotonic steroid derivatives in sensitive CCRF-CEM and multidrug-resistant CEM/ADR5000 leukemia cells. Data were then subjected to quantitative structure-activity relationship analysis (QSAR) and molecular docking into Na(+)/K(+)-ATPase, which both indicated a possible differential expression of the pump in the mentioned cell lines. This finding was confirmed by western blotting, intracellular potassium labeling and next generation sequencing which showed that Na(+)/K(+)-ATPase was less expressed in multidrug-resistant than in sensitive cells.
Collapse
Affiliation(s)
- Maen Zeino
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Ruth Brenk
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Lisa Gruber
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Martin Zehl
- Department of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Ernst Urban
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Brigitte Kopp
- Department of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
124
|
Morad SAF, Cabot MC. Tamoxifen regulation of sphingolipid metabolism--Therapeutic implications. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1134-45. [PMID: 25964209 DOI: 10.1016/j.bbalip.2015.05.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/23/2015] [Accepted: 05/04/2015] [Indexed: 12/25/2022]
Abstract
Tamoxifen, a triphenylethylene antiestrogen and one of the first-line endocrine therapies used to treat estrogen receptor-positive breast cancer, has a number of interesting, off-target effects, and among these is the inhibition of sphingolipid metabolism. More specifically, tamoxifen inhibits ceramide glycosylation, and enzymatic step that can adventitiously support the influential tumor-suppressor properties of ceramide, the aliphatic backbone of sphingolipids. Additionally, tamoxifen and metabolites N-desmethyltamoxifen and 4-hydroxytamoxifen, have been shown to inhibit ceramide hydrolysis by the enzyme acid ceramidase. This particular intervention slows ceramide destruction and thereby depresses formation of sphingosine 1-phosphate, a mitogenic sphingolipid with cancer growth-promoting properties. As ceramide-centric therapies are becoming appealing clinical interventions in the treatment of cancer, agents like tamoxifen that can retard the generation of mitogenic sphingolipids and buffer ceramide clearance via inhibition of glycosylation, take on new importance. In this review, we present an abridged, lay introduction to sphingolipid metabolism, briefly chronicle tamoxifen's history in the clinic, examine studies that demonstrate the impact of triphenylethylenes on sphingolipid metabolism in cancer cells, and canvass works relevant to the use of tamoxifen as adjuvant to drive ceramide-centric therapies in cancer treatment. The objective is to inform the readership of what could be a novel, off-label indication of tamoxifen and structurally-related triphenylethylenes, an indication divorced from estrogen receptor status and one with application in drug resistance.
Collapse
Affiliation(s)
- Samy A F Morad
- Department of Biochemistry and Molecular Biology, East Carolina University, Brody School of Medicine, Greenville, NC 27834, USA; East Carolina Diabetes and Obesity Institute, 115 Heart Drive, Greenville, NC 27834, USA; Department of Pharmacology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Myles C Cabot
- Department of Biochemistry and Molecular Biology, East Carolina University, Brody School of Medicine, Greenville, NC 27834, USA; East Carolina Diabetes and Obesity Institute, 115 Heart Drive, Greenville, NC 27834, USA.
| |
Collapse
|
125
|
Fabbro D. 25 years of small molecular weight kinase inhibitors: potentials and limitations. Mol Pharmacol 2015; 87:766-75. [PMID: 25549667 DOI: 10.1124/mol.114.095489] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Deregulation of protein and lipid kinase activities leads to a variety of pathologies, ranging from cancer inflammatory diseases, diabetes, infectious diseases, and cardiovascular disorders. Protein kinases and lipid kinases represent, therefore, an important target for the pharmaceutical industry. In fact, approximately one-third of all protein targets under investigation in the pharmaceutical industry are protein or lipid kinases. To date, 30 kinase inhibitors have been approved, which, with few exceptions, are mainly for oncological indications and directed against only a handful of protein and lipid kinases, leaving 70% of the kinome untapped. Despite these successes in kinase drug discovery, the development of kinase inhibitors with outstanding selectivity, identification and validation of driver kinase(s) in diseases, and the emerging problem of resistance to the inhibition of key target kinases remain major challenges. This minireview provides an insight into protein and lipid kinase drug discovery with respect to achievements, binding modes of inhibitors, and novel avenues for the generation of second-generation kinase inhibitors to treat cancers.
Collapse
|
126
|
Saab AM, Guerrini A, Zeino M, Wiench B, Rossi D, Gambari R, Sacchetti G, Greten HJ, Efferth T. Laurus nobilisL. Seed Extract Reveals Collateral Sensitivity in Multidrug-Resistant P-Glycoprotein-Expressing Tumor Cells. Nutr Cancer 2015; 67:664-75. [DOI: 10.1080/01635581.2015.1019632] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
127
|
Fabbro D, Cowan-Jacob SW, Moebitz H. Ten things you should know about protein kinases: IUPHAR Review 14. Br J Pharmacol 2015; 172:2675-700. [PMID: 25630872 DOI: 10.1111/bph.13096] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 12/31/2014] [Accepted: 01/20/2015] [Indexed: 12/12/2022] Open
Abstract
Many human malignancies are associated with aberrant regulation of protein or lipid kinases due to mutations, chromosomal rearrangements and/or gene amplification. Protein and lipid kinases represent an important target class for treating human disorders. This review focus on 'the 10 things you should know about protein kinases and their inhibitors', including a short introduction on the history of protein kinases and their inhibitors and ending with a perspective on kinase drug discovery. Although the '10 things' have been, to a certain extent, chosen arbitrarily, they cover in a comprehensive way the past and present efforts in kinase drug discovery and summarize the status quo of the current kinase inhibitors as well as knowledge about kinase structure and binding modes. Besides describing the potentials of protein kinase inhibitors as drugs, this review also focus on their limitations, particularly on how to circumvent emerging resistance against kinase inhibitors in oncological indications.
Collapse
Affiliation(s)
| | | | - Henrik Moebitz
- Novartis Institutes of Biomedical Research, Basel, Switzerland
| |
Collapse
|
128
|
Thyroid hormone and P-glycoprotein in tumor cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:168427. [PMID: 25866761 PMCID: PMC4383522 DOI: 10.1155/2015/168427] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 09/04/2014] [Indexed: 12/18/2022]
Abstract
P-glycoprotein (P-gp; multidrug resistance pump 1, MDR1; ABCB1) is a plasma membrane efflux pump that when activated in cancer cells exports chemotherapeutic agents. Transcription of the P-gp gene (MDR1) and activity of the P-gp protein are known to be affected by thyroid hormone. A cell surface receptor for thyroid hormone on integrin αvβ3 also binds tetraiodothyroacetic acid (tetrac), a derivative of L-thyroxine (T4) that blocks nongenomic actions of T4 and of 3,5,3′-triiodo-L-thyronine (T3) at αvβ3. Covalently bound to a nanoparticle, tetrac as nanotetrac acts at the integrin to increase intracellular residence time of chemotherapeutic agents such as doxorubicin and etoposide that are substrates of P-gp. This action chemosensitizes cancer cells. In this review, we examine possible molecular mechanisms for the inhibitory effect of nanotetrac on P-gp activity. Mechanisms for consideration include cancer cell acidification via action of tetrac/nanotetrac on the Na+/H+ exchanger (NHE1) and hormone analogue effects on calmodulin-dependent processes and on interactions of P-gp with epidermal growth factor (EGF) and osteopontin (OPN), apparently via αvβ3. Intracellular acidification and decreased H+ efflux induced by tetrac/nanotetrac via NHE1 is the most attractive explanation for the actions on P-gp and consequent increase in cancer cell retention of chemotherapeutic agent-ligands of MDR1 protein.
Collapse
|
129
|
Abdelfatah SAA, Efferth T. Cytotoxicity of the indole alkaloid reserpine from Rauwolfia serpentina against drug-resistant tumor cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:308-318. [PMID: 25765838 DOI: 10.1016/j.phymed.2015.01.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/07/2014] [Accepted: 01/12/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND The antihypertensive reserpine is an indole alkaloid from Rauwolfia serpentina and exerts also profound activity against cancer cells in vitro and in vivo. The present investigation was undertaken to investigate possible modes of action to explain its activity toward drug-resistant tumor cells. MATERIAL AND METHODS Sensitive and drug-resistant tumor cell lines overexpressing P-glycoprotein (ABCB1/MDR1), breast cancer resistance protein (ABCG2/BCRP), mutation-activated epidermal growth factor receptor (EGFR), wild-type and p53-knockout cells as well as the NCI panel of cell lines from different tumor origin were analyzed. Reserpine's cytotoxicity was investigated by resazurin and sulforhodamine assays, flow cytometry, and COMPARE and hierarchical cluster analyses of transcriptome-wide microarray-based RNA expressions. RESULTS P-glycoprotein- or BCRP overexpressing tumor cells did not reveal cross-resistance to reserpine. EGFR-overexpressing cells were collateral sensitive and p53- Knockout cells cross-resistant to this drug compared to their wild-type parental cell lines. Reserpine increased the uptake of doxorubicin in P-glycoprotein-overexpressing cells, indicating that reserpine inhibited the efflux function of P-glycoprotein. Using molecular docking, we found that reserpine bound with even higher binding energy to P-glycoprotein and EGFR than the control drugs verapamil (P-glycoprotein inhibitor) and erlotinib (EGFR inhibitor). COMPARE and cluster analyses of microarray data showed that the mRNA expression of a panel of genes predicted the sensitivity or resistance of the NCI tumor cell line panel with statistical significance. The genes belonged to diverse pathways and biological functions, e.g. cell survival and apoptosis, EGFR activation, regulation of angiogenesis, cell mobility, cell adhesion, immunological functions, mTOR signaling, and Wnt signaling. CONCLUSION The lack of cross-resistance to most resistance mechanisms and the collateral sensitivity in EGFR-transfectants compared to wild-type cells speak for a promising role of reserpine in cancer chemotherapy. Reserpine deserves further consideration for cancer therapy in the clinical setting.
Collapse
Affiliation(s)
- Sara A A Abdelfatah
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
130
|
Acquired resistance to gemcitabine and cross-resistance in human pancreatic cancer clones. Anticancer Drugs 2015; 26:90-100. [DOI: 10.1097/cad.0000000000000165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
131
|
Cerezo D, Cánovas M, García-Peñarrubia P, Martín-Orozco E. Collateral sensitivity to cold stress and differential BCL-2 family expression in new daunomycin-resistant lymphoblastoid cell lines. Exp Cell Res 2014; 331:11-20. [PMID: 25498972 DOI: 10.1016/j.yexcr.2014.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 11/12/2014] [Accepted: 11/24/2014] [Indexed: 01/02/2023]
Abstract
The acquisition of a multidrug-resistant (MDR) phenotype by tumor cells is one of the main causes of chemotherapy failure in cancer, and, usually, is due to the increased expression of P-glycoprotein (MDR-1, P-gp, ABCB1), a pump that expels chemotherapeutics from the cell and/or regulates apoptosis. Thus, it is fundamental to find drugs or stress stimuli with a capacity to induce apoptosis in such cells and to identify the mechanisms involved. We address this matter in human cells and establish new daunomycin (DNM)-resistant cell lines (IM-9R) by exposing the parental lymphoblastic cells (IM-9) to increasing doses of the anti-neoplastic drug, daunomycin. The resistance level of IM-9R cell lines, MDR-1 expression and functionality, collateral sensitivity and Bcl-2 and caspases protein expression are analyzed. As a result, we show for the first time that, unlike the parental cells, human lymphoblastic resistant cells exhibit collateral sensitivity to cold stress, confirming that this phenomenon is not exclusive to murine leukemic cells, but a broader one associated with the acquisition of drug resistance. Furthermore, the new resistant cell lines undergo a significant increase in active caspase-3 and -9 levels and drastic changes in Bcl-2 family protein expression during the process of MDR phenotype acquisition.
Collapse
Affiliation(s)
- David Cerezo
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
| | - Manuel Cánovas
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
| | - Pilar García-Peñarrubia
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain
| | - Elena Martín-Orozco
- Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain.
| |
Collapse
|
132
|
Zeino M, Paulsen MS, Zehl M, Urban E, Kopp B, Efferth T. Identification of new P-glycoprotein inhibitors derived from cardiotonic steroids. Biochem Pharmacol 2014; 93:11-24. [PMID: 25451686 DOI: 10.1016/j.bcp.2014.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 12/27/2022]
Abstract
P-glycoprotein (ABCB1, MDR1) is capable of extruding chemotherapeutics outside the cell and its overexpression in certain cancer cells may cause failure of chemotherapy. Many attempts were carried out to identify potent inhibitors of this transporter and numerous compounds were shown to exert inhibitory effects in vitro, but so far none were able to make their way to the clinic due to serious complications. Natural compounds represent a great source of therapeutics, which are believed to be safe and effective. Therefore, we have screened a large library of naturally occurring cardiotonic steroids and their derivatives using high throughput flow cytometry. We were able to identify six compounds capable of modulating P-glycoprotein activity. By using P-glycoprotein ATPase assays, molecular docking in silico studies and resazurin reduction assays, the outcome of this high throughput screening platform has been validated. These novel compounds may serve as candidates to reverse doxorubicin resistance in leukemia cells.
Collapse
Affiliation(s)
- Maen Zeino
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Malte S Paulsen
- St. Mary's, Respiratory Infections NHLI, Flow Cytometry Core Facility, Imperial College, London, Great Britain
| | - Martin Zehl
- Department of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; Departments of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Ernst Urban
- Departments of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Brigitte Kopp
- Department of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
133
|
Xia M, Yu H, Gu S, Xu Y, Su J, Li H, Kang J, Cui M. p62/SQSTM1 is involved in cisplatin resistance in human ovarian cancer cells via the Keap1-Nrf2-ARE system. Int J Oncol 2014; 45:2341-8. [PMID: 25269472 DOI: 10.3892/ijo.2014.2669] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/07/2014] [Indexed: 11/05/2022] Open
Abstract
The mechanisms underlying cisplatin resistance in tumors are not fully understood. Previous studies have reported that cellular resistance to oxidative stress is accompanied by resistance to cisplatin. However, the relationship between the resistance to oxidative stress and cisplatin drug resistance in human ovarian cancer cells (HOCCs) is not clear. Here, we reveal a critical role for the multifunctional protein p62/SQSTM1 in cisplatin resistance in human ovarian cancer cells (HOCCs). p62/SQSTM1 (sequestosome 1) plays important roles in cell differentiation, proliferation and as an antiapoptotic molecule. We found that cisplatin-resistant SKOV3/DDP cells express much higher levels of p62 than do cisplatin-sensitive SKOV3 cells. The protein p62 can activate the Keap1-Nrf2-ARE signaling pathway and induce the expression of antioxidant genes in SKOV3/DDP cells. Knockdown of p62 resensitizes SKOV3/DDP cells to cisplatin. Collectively, our data indicate that cisplatin resistance in HOCCs is partially attributable to their high expression of p62, which plays an important role in preventing ROS stress-induced apoptosis by regulating the Keap1-Nrf2-ARE signaling pathway.
Collapse
Affiliation(s)
- Meihui Xia
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Huimei Yu
- Department of Pathophysiology, School of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shuang Gu
- Department of Thoracic Surgery, The People's Hospital of Jilin Province, Changchun, Jilin 130021, P.R. China
| | - Ye Xu
- Medical Research Lab, Jilin Medical College, Jilin 132013, P.R. China
| | - Jing Su
- Department of Pathophysiology, School of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hongyan Li
- Department of Pathophysiology, School of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jinsong Kang
- Department of Pathophysiology, School of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Manhua Cui
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
134
|
Wang YH, Goto M, Wang LT, Hsieh KY, Morris-Natschke SL, Tang GH, Long CL, Lee KH. Multidrug resistance-selective antiproliferative activity of Piper amide alkaloids and synthetic analogues. Bioorg Med Chem Lett 2014; 24:4818-21. [PMID: 25241925 DOI: 10.1016/j.bmcl.2014.08.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/28/2014] [Indexed: 11/27/2022]
Abstract
Twenty-five amide alkaloids (1-25) from Piper boehmeriifolium and 10 synthetic amide alkaloid derivatives (39-48) were evaluated for antiproliferative activity against eight human tumor cell lines, including chemosensitive and multidrug-resistant (MDR) cell lines. The results suggested tumor type-selectivity. 1-[7-(3,4,5-Trimethoxyphenyl)heptanoyl]piperidine (46) exhibited the best inhibitory activity (IC50=4.94 μM) against the P-glycoprotein (P-gp)-overexpressing KBvin MDR sub-line, while it and all other tested compounds, except 9, were inactive (IC50 >40 μM) against MDA-MB-231 and SK-BR-3. Structure-activity relationships (SARs) indicated that (i) 3,4,5-trimethoxy phenyl substitution is critical for selectivity against KBvin, (ii) the 4-methoxy group in this pattern is crucial for antiproliferative activity, (iii) double bonds in the side chain are not needed for activity, and (iv), in arylalkenylacyl amide alkaloids, replacement of an isobutylamino group with pyrrolidin-1-yl or piperidin-1-yl significantly improved activity. Further study on Piper amides is warranted, particularly whether side chain length affects the ability to overcome the MDR cancer phenotype.
Collapse
Affiliation(s)
- Yue-Hu Wang
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States; Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China.
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Li-Ting Wang
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Kan-Yen Hsieh
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Gui-Hua Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Chun-Lin Long
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, People's Republic of China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States; Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 40447, Taiwan.
| |
Collapse
|
135
|
Lorendeau D, Dury L, Genoux-Bastide E, Lecerf-Schmidt F, Simões-Pires C, Carrupt PA, Terreux R, Magnard S, Di Pietro A, Boumendjel A, Baubichon-Cortay H. Collateral sensitivity of resistant MRP1-overexpressing cells to flavonoids and derivatives through GSH efflux. Biochem Pharmacol 2014; 90:235-45. [DOI: 10.1016/j.bcp.2014.05.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 10/25/2022]
|
136
|
Macrocyclic diterpenes resensitizing multidrug resistant phenotypes. Bioorg Med Chem 2014; 22:3696-702. [DOI: 10.1016/j.bmc.2014.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/29/2014] [Accepted: 05/05/2014] [Indexed: 01/08/2023]
|
137
|
Fung KL, Tepede AK, Pluchino KM, Pouliot LM, Pixley JN, Hall MD, Gottesman MM. Uptake of compounds that selectively kill multidrug-resistant cells: the copper transporter SLC31A1 (CTR1) increases cellular accumulation of the thiosemicarbazone NSC73306. Mol Pharm 2014; 11:2692-702. [PMID: 24800945 PMCID: PMC4137994 DOI: 10.1021/mp500114e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acquired drug resistance in cancer continues to be a challenge in cancer therapy, in part due to overexpression of the drug efflux transporter P-glycoprotein (P-gp, MDR1, ABCB1). NSC73306 is a thiosemicarbazone compound that displays greater toxicity against cells expressing functional P-gp than against other cells. Here, we investigate the cellular uptake of NSC73306, and examine its interaction with P-gp and copper transporter 1 (CTR1, SLC31A1). Overexpression of P-gp sensitizes LLC-PK1 cells to NSC73306. Cisplatin (IC50 = 77 μM), cyclosporin A (IC50 = 500 μM), and verapamil (IC50 = 700 μM) inhibited cellular accumulation of [(3)H]NSC73306. Cellular hypertoxicity of NSC73306 to P-gp-expressing cells was inhibited by cisplatin in a dose-dependent manner. Cells transiently expressing the cisplatin uptake transporter CTR1 (SLC31A1) showed increased [(3)H]NSC73306 accumulation. In contrast, CTR1 knockdown decreased [(3)H]NSC73306 accumulation. The presence of NSC73306 reduced CTR1 levels, similar to the negative feedback of CTR1 levels by copper or cisplatin. Surprisingly, although cisplatin is a substrate of CTR1, we found that CTR1 protein was overexpressed in high-level cisplatin-resistant KB-CP20 and BEL7404-CP20 cell lines. We confirmed that the CTR1 protein was functional, as uptake of NSC73306 was increased in KB-CP20 cells compared to their drug-sensitive parental cells, and downregulation of CTR1 in KB-CP20 cells reduced [(3)H]NSC73306 accumulation. These results suggest that NSC73306 is a transport substrate of CTR1.
Collapse
Affiliation(s)
- King Leung Fung
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | | | | | | | | | | | | |
Collapse
|
138
|
Hall MD, Marshall TS, Kwit ADT, Miller Jenkins LM, Dulcey AE, Madigan JP, Pluchino KM, Goldsborough AS, Brimacombe KR, Griffiths GL, Gottesman MM. Inhibition of glutathione peroxidase mediates the collateral sensitivity of multidrug-resistant cells to tiopronin. J Biol Chem 2014; 289:21473-89. [PMID: 24930045 DOI: 10.1074/jbc.m114.581702] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Multidrug resistance (MDR) is a major obstacle to the successful chemotherapy of cancer. MDR is often the result of overexpression of ATP-binding cassette transporters following chemotherapy. A common ATP-binding cassette transporter that is overexpressed in MDR cancer cells is P-glycoprotein, which actively effluxes drugs against a concentration gradient, producing an MDR phenotype. Collateral sensitivity (CS), a phenomenon of drug hypersensitivity, is defined as the ability of certain compounds to selectively target MDR cells, but not the drug-sensitive parent cells from which they were derived. The drug tiopronin has been previously shown to elicit CS. However, unlike other CS agents, the mechanism of action was not dependent on the expression of P-glycoprotein in MDR cells. We have determined that the CS activity of tiopronin is mediated by the generation of reactive oxygen species (ROS) and that CS can be reversed by a variety of ROS-scavenging compounds. Specifically, selective toxicity of tiopronin toward MDR cells is achieved by inhibition of glutathione peroxidase (GPx), and the mode of inhibition of GPx1 by tiopronin is shown in this report. Why MDR cells are particularly sensitive to ROS is discussed, as is the difficulty in exploiting this hypersensitivity to tiopronin in the clinic.
Collapse
Affiliation(s)
- Matthew D Hall
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Travis S Marshall
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Alexandra D T Kwit
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Lisa M Miller Jenkins
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Andrés E Dulcey
- the Imaging Probe Development Center, NHLBI, National Institutes of Health, Rockville, Maryland 20850
| | - James P Madigan
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Kristen M Pluchino
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Andrew S Goldsborough
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Kyle R Brimacombe
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Gary L Griffiths
- the Imaging Probe Development Center, NHLBI, National Institutes of Health, Rockville, Maryland 20850
| | - Michael M Gottesman
- From the Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892 and
| |
Collapse
|
139
|
Feng C, Huang SX, Gao XM, Xu HX, Luo KQ. Characterization of proapoptotic compounds from the bark of Garcinia oblongifolia. JOURNAL OF NATURAL PRODUCTS 2014; 77:1111-1116. [PMID: 24754786 DOI: 10.1021/np4007316] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Twenty compounds from Garcinia oblongifolia were screened for proapoptotic activity using FRET-based HeLa-C3 sensor cells. Among them, oblongifolins F and G (1 and 2), 1,3,5-trihydroxy-13,13-dimethyl-2H-pyran[7,6-b]xanthone (3), nigrolineaxanthone T (4), and garcicowin B (5) showed significant proapoptotic activity at a concentration of 10 μM. Bioassessments were then performed to evaluate the potential of these compounds for therapeutic application. All five compounds showed significant cytotoxicity and caspase-3-activating ability in cervical cancer HeLa cells, with compounds 1 and 2 having the highest potencies. All five compounds specifically induced caspase-dependent apoptosis, which could be prevented by the pan-caspase inhibitor zVAD-fmk. In particular, 3 induced apoptosis through mitotic arrest. Compounds 1-5 displayed similar IC50 values (3.9-16.5 μM) against the three cancer cell lines HeLa, MDA-MB-435, and HepG2. In addition, compounds 1, 2, and 4 exhibited similar and potent IC50 values (2.4-5.1 μM) against several breast and colon cancer cell lines, including those overexpressing either HER2 or P-glycoprotein. HER2 and P-glycoprotein are known factors that confer resistance to anticancer drugs in cancer cells. This is the first study on the cytotoxicity, caspase-3-activing ability, and specificity of proapoptotic compounds isolated from G. oblongifolia in HeLa cells. The potential application of these compounds against HER2- or P-glycoprotein-overexpressing cancer cells was investigated.
Collapse
Affiliation(s)
- Chao Feng
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology , Clear Water Bay, Hong Kong
| | | | | | | | | |
Collapse
|
140
|
Dos Santos SC, Teixeira MC, Dias PJ, Sá-Correia I. MFS transporters required for multidrug/multixenobiotic (MD/MX) resistance in the model yeast: understanding their physiological function through post-genomic approaches. Front Physiol 2014; 5:180. [PMID: 24847282 PMCID: PMC4021133 DOI: 10.3389/fphys.2014.00180] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 04/19/2014] [Indexed: 12/03/2022] Open
Abstract
Multidrug/Multixenobiotic resistance (MDR/MXR) is a widespread phenomenon with clinical, agricultural and biotechnological implications, where MDR/MXR transporters that are presumably able to catalyze the efflux of multiple cytotoxic compounds play a key role in the acquisition of resistance. However, although these proteins have been traditionally considered drug exporters, the physiological function of MDR/MXR transporters and the exact mechanism of their involvement in resistance to cytotoxic compounds are still open to debate. In fact, the wide range of structurally and functionally unrelated substrates that these transporters are presumably able to export has puzzled researchers for years. The discussion has now shifted toward the possibility of at least some MDR/MXR transporters exerting their effect as the result of a natural physiological role in the cell, rather than through the direct export of cytotoxic compounds, while the hypothesis that MDR/MXR transporters may have evolved in nature for other purposes than conferring chemoprotection has been gaining momentum in recent years. This review focuses on the drug transporters of the Major Facilitator Superfamily (MFS; drug:H+ antiporters) in the model yeast Saccharomyces cerevisiae. New insights into the natural roles of these transporters are described and discussed, focusing on the knowledge obtained or suggested by post-genomic research. The new information reviewed here provides clues into the unexpectedly complex roles of these transporters, including a proposed indirect regulation of the stress response machinery and control of membrane potential and/or internal pH, with a special emphasis on a genome-wide view of the regulation and evolution of MDR/MXR-MFS transporters.
Collapse
Affiliation(s)
- Sandra C Dos Santos
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa Lisbon, Portugal
| | - Miguel C Teixeira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa Lisbon, Portugal
| | - Paulo J Dias
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa Lisbon, Portugal
| | - Isabel Sá-Correia
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa Lisbon, Portugal
| |
Collapse
|
141
|
Hall MD, Telma KA, Chang KE, Lee TD, Madigan JP, Lloyd JR, Goldlust IS, Hoeschele JD, Gottesman MM. Say no to DMSO: dimethylsulfoxide inactivates cisplatin, carboplatin, and other platinum complexes. Cancer Res 2014; 74:3913-22. [PMID: 24812268 DOI: 10.1158/0008-5472.can-14-0247] [Citation(s) in RCA: 266] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The platinum drugs cisplatin, carboplatin, and oxaliplatin are highly utilized in the clinic and as a consequence are extensively studied in the laboratory setting. In this study, we examined the literature and found a significant number of studies (11%-34%) in prominent cancer journals utilizing cisplatin dissolved in DMSO. However, dissolving cisplatin in DMSO for laboratory-based studies results in ligand displacement and changes to the structure of the complex. We examined the effect of DMSO on platinum complexes, including cisplatin, carboplatin, and oxaliplatin, finding that DMSO reacted with the complexes, inhibited their cytotoxicity and their ability to initiate cell death. These results render a substantial portion of the literature on cisplatin uninterpretable. Raising awareness of this significant issue in the cancer biology community is critical, and we make recommendations on appropriate solvation of platinum drugs for research.
Collapse
Affiliation(s)
- Matthew D Hall
- Authors' Affiliations: Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute
| | - Katherine A Telma
- Authors' Affiliations: Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute
| | - Ki-Eun Chang
- Authors' Affiliations: Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute
| | - Tobie D Lee
- Authors' Affiliations: Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute
| | - James P Madigan
- Authors' Affiliations: Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute
| | - John R Lloyd
- Advanced Mass Spectrometry Facility, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Bethesda
| | - Ian S Goldlust
- Division of Preclinical Innovation, National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, Rockville, Maryland; and
| | - James D Hoeschele
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan
| | - Michael M Gottesman
- Authors' Affiliations: Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute;
| |
Collapse
|
142
|
Laberge RM, Ambadipudi R, Georges E. P-glycoprotein mediates the collateral sensitivity of multidrug resistant cells to steroid hormones. Biochem Biophys Res Commun 2014; 447:574-9. [DOI: 10.1016/j.bbrc.2014.04.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/08/2014] [Indexed: 10/25/2022]
|
143
|
Condello M, Cosentino D, Corinti S, Di Felice G, Multari G, Gallo FR, Arancia G, Meschini S. Voacamine modulates the sensitivity to doxorubicin of resistant osteosarcoma and melanoma cells and does not induce toxicity in normal fibroblasts. JOURNAL OF NATURAL PRODUCTS 2014; 77:855-862. [PMID: 24720452 PMCID: PMC4010292 DOI: 10.1021/np400950h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Indexed: 06/03/2023]
Abstract
In previous studies it has been demonstrated that the plant alkaloid voacamine (1), used at noncytotoxic concentrations, enhanced the cytotoxicity of doxorubicin and exerted a chemosensitizing effect on cultured multidrug-resistant (MDR) U-2 OS-DX osteosarcoma cells. The in vitro investigations reported herein gave the following results: (i) the chemosensitizing effect of 1, in terms of drug accumulation and cell survival, was confirmed using SAOS-2-DX cells, another MDR osteosarcoma cell line; (ii) compound 1 enhanced the cytotoxic effect of doxorubicin also on the melanoma cell line Me30966, intrinsically drug resistant and P-glycoprotein-negative; (iii) at the concentrations used to sensitize tumor cells, 1 was not cytotoxic to normal cells (human fibroblasts). These findings suggest possible applications of voacamine (1) in integrative oncologic therapies against resistant tumors.
Collapse
Affiliation(s)
- Maria Condello
- Department
of Technology and Health, Italian National
Institute of Health, Rome, Italy
- Institute
of Chemical Methodologies, National Research
Council (CNR), Rome, Italy
| | - Dario Cosentino
- Department
of Technology and Health, Italian National
Institute of Health, Rome, Italy
| | - Silvia Corinti
- Department
of Infectious, Parasitic and Immune-Mediated Diseases, Italian National Institute of Health, Rome, Italy
| | - Gabriella Di Felice
- Department
of Infectious, Parasitic and Immune-Mediated Diseases, Italian National Institute of Health, Rome, Italy
| | - Giuseppina Multari
- Department
of Therapeutic Research and Medicines Evaluation, Italian National Institute of Health, Rome, Italy
| | - Francesca Romana Gallo
- Department
of Therapeutic Research and Medicines Evaluation, Italian National Institute of Health, Rome, Italy
| | - Giuseppe Arancia
- Department
of Technology and Health, Italian National
Institute of Health, Rome, Italy
| | - Stefania Meschini
- Department
of Technology and Health, Italian National
Institute of Health, Rome, Italy
| |
Collapse
|
144
|
Szakács G, Hall MD, Gottesman MM, Boumendjel A, Kachadourian R, Day BJ, Baubichon-Cortay H, Di Pietro A. Targeting the Achilles heel of multidrug-resistant cancer by exploiting the fitness cost of resistance. Chem Rev 2014; 114:5753-74. [PMID: 24758331 PMCID: PMC4059772 DOI: 10.1021/cr4006236] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Gergely Szakács
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok körútja 2, Budapest 1117, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
145
|
von Manstein V, Yang CM, Richter D, Delis N, Vafaizadeh V, Groner B. Resistance of Cancer Cells to Targeted Therapies Through the Activation of Compensating Signaling Loops. ACTA ACUST UNITED AC 2014; 8:193-202. [PMID: 25045345 PMCID: PMC4095943 DOI: 10.2174/1574362409666140206221931] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/21/2014] [Accepted: 01/29/2014] [Indexed: 01/05/2023]
Abstract
The emergence of low molecular weight kinase inhibitors as “targeted” drugs has led to remarkable advances in the treatment of cancer patients. The clinical benefits of these tumor therapies, however, vary widely in patient populations and with duration of treatment. Intrinsic and acquired resistance against such drugs limits their efficacy. In addition to the well studied mechanisms of resistance based upon drug transport and metabolism, genetic alterations in drug target structures and the activation of compensatory cell signaling have received recent attention. Adaptive responses can be triggered which counteract the initial dependence of tumor cells upon a particular signaling molecule and allow only a transient inhibition of tumor cell growth. These compensating signaling mechanisms are often based upon the relief of repression of regulatory feedback loops. They might involve cell autonomous, intracellular events or they can be mediated via the secretion of growth factor receptor ligands into the tumor microenvironment and signal induction in an auto- or paracrine fashion. The transcription factors Stat3 and Stat5 mediate the biological functions of cytokines, interleukins and growth factors and can be considered as endpoints of multiple signaling pathways. In normal cells this activation is transient and the Stat molecules return to their non-phosphorylated state within a short time period. In tumor cells the balance between activating and de-activating signals is disturbed resulting in the persistent activation of Stat3 or Stat5. The constant activation of Stat3 induces the expression of target genes, which cause the proliferation and survival of cancer cells, as well as their migration and invasive behavior. Activating components of the Jak-Stat pathway have been recognized as potentially valuable drug targets and important principles of compensatory signaling circuit induction during targeted drug treatment have been discovered in the context of kinase inhibition studies in HNSCC cells [1]. The treatment of HNSCC with a specific inhibitor of c-Src, initially resulted in reduced Stat3 and Stat5 activation and subsequently an arrest of cell proliferation and increased apoptosis. However, the inhibition of c-Src only caused a persistent inhibition of Stat5, whereas the inhibition of Stat3 was only transient. The activation of Stat3 was restored within a short time period in the presence of the c-Src inhibitor. This process is mediated through the suppression of P-Stat5 activity and the decrease in the expression of the Stat5 dependent target gene SOCS2, a negative regulator of Jak2. Jak2 activity is enhanced upon SOCS2 downregulation and causes the reactivation of Stat3. A similar observation has been made upon inhibition of Bmx, bone marrow kinase x-linked, activated in the murine glioma cell lines Tu-2449 and Tu-9648. Its inhibition resulted in a transient decrease of P-Stat3 and the induction of a compensatory Stat3 activation mechanism, possibly through the relief of negative feedback inhibition and Jak2 activation. These observations indicate that the inhibition of a single tyrosine kinase might not be sufficient to induce lasting therapeutic effects in cancer patients. Compensatory kinases and pathways might become activated and maintain the growth and survival of tumor cells. The definition of these escape pathways and their preemptive inhibition will suggest effective new combination therapies for cancer.
Collapse
Affiliation(s)
| | - Chul Min Yang
- Georg Speyer Haus, Institute for Biomedical Research, Frankfurt am Main, Germany
| | - Diane Richter
- Georg Speyer Haus, Institute for Biomedical Research, Frankfurt am Main, Germany
| | - Natalia Delis
- Georg Speyer Haus, Institute for Biomedical Research, Frankfurt am Main, Germany
| | - Vida Vafaizadeh
- Georg Speyer Haus, Institute for Biomedical Research, Frankfurt am Main, Germany
| | - Bernd Groner
- Georg Speyer Haus, Institute for Biomedical Research, Frankfurt am Main, Germany
| |
Collapse
|
146
|
Gatouillat G, Magid AA, Bertin E, Okiemy-Akeli MG, Morjani H, Lavaud C, Madoulet C. Cytotoxicity and apoptosis induced by alfalfa (Medicago sativa) leaf extracts in sensitive and multidrug-resistant tumor cells. Nutr Cancer 2014; 66:483-91. [PMID: 24628411 DOI: 10.1080/01635581.2014.884228] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Alfalfa (Medicago sativa) has been used to cure a wide variety of ailments. However, only a few studies have reported its anticancer effects. In this study, extracts were obtained from alfalfa leaves and their cytotoxic effects were assessed on several sensitive and multidrug-resistant tumor cells lines. Using the mouse leukaemia P388 cell line and its doxorubicin-resistant counterpart (P388/DOX), we showed that the inhibition of cell growth induced by alfalfa leaf extracts was mediated through the induction of apoptosis, as evidenced by DNA fragmentation analysis. The execution of programmed cell death was achieved via the activation of caspase-3, leading to PARP cleavage. Fractionation of toluene extract (To-1), the most active extract obtained from crude extract, led to the identification of 3 terpene derivatives and 5 flavonoids. Among them, (-)-medicarpin, (-)-melilotocarpan E, millepurpan, tricin, and chrysoeriol showed cytotoxic effects in P388 as well as P388/DOX cells. These results demonstrate that alfalfa leaf extract may have interesting potential in cancer chemoprevention and therapy.
Collapse
Affiliation(s)
- Grégory Gatouillat
- a Laboratoire de Biochimie et Biologie Moléculaire , Faculté de Pharmacie, URCA , Reims , France
| | | | | | | | | | | | | |
Collapse
|
147
|
Zinzi L, Capparelli E, Cantore M, Contino M, Leopoldo M, Colabufo NA. Small and Innovative Molecules as New Strategy to Revert MDR. Front Oncol 2014; 4:2. [PMID: 24478983 PMCID: PMC3896858 DOI: 10.3389/fonc.2014.00002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/03/2014] [Indexed: 12/26/2022] Open
Abstract
Multidrug resistance (MDR) is a complex phenomenon principally due to the overexpression of some transmembrane proteins belonging to the ATP binding cassette (ABC) transporter family. Among these transporters, P-glycoprotein (P-gp) is mostly involved in MDR and its overexpression is the major cause of cancer therapy failure. The classical approach used to overcome MDR is the co-administration of a P-gp inhibitor and the classic antineoplastic drugs, although the results were often unsatisfactory. Different classes of P-gp ligands have been developed and, among them, Tariquidar has been extensively studied both in vitro and in vivo. Although Tariquidar has been considered for several years as the lead compound for the development of P-gp inhibitors, recent studies demonstrated it to be a substrate and inhibitor, in a dose-dependent manner. Moreover, Tariquidar structure-activity relationship studies were difficult to carry out because of the complexity of the structure that does not allow establishing the role of each moiety for P-gp activity. For this purpose, SMALL molecules bearing different scaffolds such as tetralin, biphenyl, arylthiazole, furoxane, furazan have been developed. Many of these ligands have been tested both in in vitro assays and in in vivo PET studies. These preliminary evaluations lead to obtain a library of P-gp interacting agents useful to conjugate chemotherapeutic agents displaying reduced pharmacological activity and appropriate small molecules. These molecules could get over the limits due to the antineoplastic-P-gp inhibitor co-administration since pharmacokinetic and pharmacodynamic profiles are related to a dual innovative drug.
Collapse
Affiliation(s)
- Laura Zinzi
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari "A. Moro" , Bari , Italy
| | - Elena Capparelli
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari "A. Moro" , Bari , Italy
| | - Mariangela Cantore
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari "A. Moro" , Bari , Italy
| | - Marialessandra Contino
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari "A. Moro" , Bari , Italy
| | - Marcello Leopoldo
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari "A. Moro" , Bari , Italy
| | - Nicola Antonio Colabufo
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari "A. Moro" , Bari , Italy
| |
Collapse
|
148
|
Investigation of the mechanism involved in the As2O3-regulated decrease in MDR1 expression in leukemia cells. Oncol Rep 2013; 31:926-32. [PMID: 24337533 DOI: 10.3892/or.2013.2930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 11/26/2013] [Indexed: 11/05/2022] Open
Abstract
Arsenic trioxide (As2O3) inhibits the expression of P-glycoprotein (P-gp) in leukemia cells; however, the mechanism behind this inhibition is unclear. The present study aimed to explore the effect of As2O3 on the expression and regulation of P-gp in leukemia cells, and elucidate the mechanism of the reversal of drug resistance. In the present study, electrophoretic mobility shift assay results indicated that p65 binds to the NF-κB binding site of MDR1, specifically in K562/D cells. Expression of p65 and phosphorylated IκB was reduced, while the expression of IκB was increased in K562/D cells treated with As2O3. The activity of luciferase increased up to 9-fold with 40 ng/ml TNF-α, and it was suppressed by ~25% following treatment with 1 µM As2O3. These findings suggest that As2O3 reverses the P-gp-induced drug resistance of leukemia cells through the NF-κB pathway. As2O3 may inhibit the activity of phosphorylase to inhibit IκB phosphorylation, thereby inhibiting NF-κB activity and MDR1 gene expression, leading to reversal of drug resistance.
Collapse
|
149
|
Gauthier C, Ozvegy-Laczka C, Szakacs G, Sarkadi B, Di Pietro A. ABCG2 is not able to catalyze glutathione efflux and does not contribute to GSH-dependent collateral sensitivity. Front Pharmacol 2013; 4:138. [PMID: 24312054 PMCID: PMC3819521 DOI: 10.3389/fphar.2013.00138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/17/2013] [Indexed: 11/13/2022] Open
Abstract
ABCG2 is a key human ATP-binding cassette (ABC) transporter mediating cancer cell chemoresistance. In the case of ABCC1, another multidrug transporter, earlier findings documented that certain modulators greatly increase ABCC1-mediated glutathione (GSH) efflux and, upon depletion of intracellular GSH, induce "collateral sensitivity" leading to the apoptosis of multidrug resistant cells. Recently, it has been suggested that ABCG2 may mediate an active GSH transport. In order to explore if ABCG2-overexpressing cells may be similarly targeted, we first looked for the effects of ABCG2 expression on cellular GSH levels, and for an ABCG2-dependent GSH transport in HEK293 and MCF7 cells. We found that, while ABCG2 overexpression altered intracellular GSH levels in these transfected or drug-selected cells, ABCG2 inhibitors or transport modulators did not influence GSH efflux. We then performed direct measurements of drug-stimulated ATPase activity and (3)H-GSH transport in inside-out membrane vesicles of human ABC transporter-overexpressing Sf9 insect cells. Our results indicate that ABCG2-ATPase is not modulated by GSH and, in contrast to ABCC1, ABCG2 does not catalyze any significant GSH transport. Our data suggest no direct interaction between the ABCG2 transporter and GSH, although a long-term modulation of cellular GSH by ABCG2 cannot be excluded.
Collapse
Affiliation(s)
- Charlotte Gauthier
- Drug Resistance Mechanism and Modulation Group, Ligue 2013 Certified, Bases Moléculaires et Structurales des Systèmes Infectieux, UMR5086, Centre National de la Recherche Scientifique, Université de Lyon, Institut de Biologie et Chimie des Protéines, University of Lyon Lyon, France
| | | | | | | | | |
Collapse
|
150
|
Cole BJ, Hamdoun A, Epel D. Cost, effectiveness and environmental relevance of multidrug transporters in sea urchin embryos. ACTA ACUST UNITED AC 2013; 216:3896-905. [PMID: 23913944 DOI: 10.1242/jeb.090522] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
ATP-binding cassette transporters protect cells via efflux of xenobiotics and endogenous byproducts of detoxification. While the cost of this ATP-dependent extrusion is known at the molecular level, i.e. the ATP used for each efflux event, the overall cost to a cell or organism of operating this defense is unclear, especially as the cost of efflux changes depending on environmental conditions. During prolonged exposure to xenobiotics, multidrug transporter activity could be costly and ineffective because effluxed substrate molecules are not modified in the process and could thus undergo repeated cycles of efflux and re-entry. Here we use embryos of the purple sea urchin, Strongylocentrotus purpuratus, as a model to determine transport costs and benefits under environmentally relevant xenobiotic concentrations. Strikingly, our results show that efflux transporter activity costs less than 0.2% of total ATP usage, as a proportion of oxygen consumption. The benefits of transport, defined as the reduction in substrate accumulation due to transporter activity, depended largely, but not entirely, on the rate of passive flux of each substrate across the plasma membrane. One of the substrates tested exhibited rapid membrane permeation coupled with high rates of efflux, thus inducing rapid and futile cycles of efflux followed by re-entry of the substrate. This combination significantly reduced transporter effectiveness as a defense and increased costs even at relatively low substrate concentrations. Despite these effects with certain substrates, our results show that efflux transporters are a remarkably effective and low-cost first line of defense against exposure to environmentally relevant concentrations of xenobiotics.
Collapse
Affiliation(s)
- Bryan J Cole
- Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA 94923, USA
| | | | | |
Collapse
|