101
|
Saeki K, Watanabe M, Tsuboi M, Sugano S, Yoshitake R, Tanaka Y, Ong SM, Saito T, Matsumoto K, Fujita N, Nishimura R, Nakagawa T. Anti-tumour effect of metformin in canine mammary gland tumour cells. Vet J 2015; 205:297-304. [PMID: 25981932 DOI: 10.1016/j.tvjl.2015.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 04/07/2015] [Accepted: 04/19/2015] [Indexed: 01/06/2023]
Abstract
Metformin is an oral hypoglycaemic drug used in type 2 diabetes. Its pharmacological activity reportedly involves mitochondrial respiratory complex I, and mitochondrial respiratory complex inhibitors have a strong inhibitory effect on the growth of metastatic canine mammary gland tumour (CMGT) cell lines. It is hypothesised that metformin has selective anti-tumour effects on metastatic CMGT cells. The aim of this study was to investigate the in vitro effect of metformin on cell growth, production of ATP and reactive oxygen species (ROS), and the AMP-activated protein kinase (AMPK) mammalian target of rapamycin (mTOR) pathway in two CMGT clonal cell lines with different metastatic potential. In addition, transcriptome analysis was used to determine cellular processes disrupted by metformin and in vivo anti-tumour effects were examined in a mouse xenograft model. Metformin inhibited CMGT cell growth in vitro, with the metastatic clone (CHMp-5b) displaying greater sensitivity. ATP depletion and ROS elevation were observed to a similar extent in the metastatic and non-metastatic (CHMp-13a) cell lines after metformin exposure. However, subsequent AMPK activation and mTOR pathway inhibition were prominent only in metformin-insensitive non-metastatic cells. Microarray analysis revealed inhibition of cell cycle progression by metformin treatment in CHMp-5b cells, which was further confirmed by Western blotting and cell cycle analysis. Additionally, metformin significantly suppressed tumour growth in xenografted metastatic CMGT cells. In conclusion, metformin exhibited an anti-tumour effect in metastatic CMGT cells through AMPK-independent cell cycle arrest. Its mechanism of action differed in the non-metastatic clone, where AMPK activation and mTOR inhibition were observed.
Collapse
Affiliation(s)
- K Saeki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - M Watanabe
- Department of Medical Genome Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| | - M Tsuboi
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - S Sugano
- Department of Medical Genome Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| | - R Yoshitake
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Y Tanaka
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - S M Ong
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - T Saito
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - K Matsumoto
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - N Fujita
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - R Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - T Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
102
|
Barbieri F, Thellung S, Ratto A, Carra E, Marini V, Fucile C, Bajetto A, Pattarozzi A, Würth R, Gatti M, Campanella C, Vito G, Mattioli F, Pagano A, Daga A, Ferrari A, Florio T. In vitro and in vivo antiproliferative activity of metformin on stem-like cells isolated from spontaneous canine mammary carcinomas: translational implications for human tumors. BMC Cancer 2015; 15:228. [PMID: 25884842 PMCID: PMC4397725 DOI: 10.1186/s12885-015-1235-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 03/20/2015] [Indexed: 12/21/2022] Open
Abstract
Background Cancer stem cells (CSCs) are considered the cell subpopulation responsible for breast cancer (BC) initiation, growth, and relapse. CSCs are identified as self-renewing and tumor-initiating cells, conferring resistance to chemo- and radio-therapy to several neoplasias. Nowadays, th (about 10mM)e pharmacological targeting of CSCs is considered an ineludible therapeutic goal. The antidiabetic drug metformin was reported to suppress in vitro and in vivo CSC survival in different tumors and, in particular, in BC preclinical models. However, few studies are available on primary CSC cultures derived from human postsurgical BC samples, likely because of the limited amount of tissue available after surgery. In this context, comparative oncology is acquiring a relevant role in cancer research, allowing the analysis of larger samples from spontaneous pet tumors that represent optimal models for human cancer. Methods Isolation of primary canine mammary carcinoma (CMC) cells and enrichment in stem-like cell was carried out from fresh tumor specimens by culturing cells in stem-permissive conditions. Phenotypic and functional characterization of CMC-derived stem cells was performed in vitro, by assessment of self-renewal, long-lasting proliferation, marker expression, and drug sensitivity, and in vivo, by tumorigenicity experiments. Corresponding cultures of differentiated CMC cells were used as internal reference. Metformin efficacy on CMC stem cell viability was analyzed both in vitro and in vivo. Results We identified a subpopulation of CMC cells showing human breast CSC features, including expression of specific markers (i.e. CD44, CXCR4), growth as mammospheres, and tumor-initiation in mice. These cells show resistance to doxorubicin but were highly sensitive to metformin in vitro. Finally, in vivo metformin administration significantly impaired CMC growth in NOD-SCID mice, associated with a significant depletion of CSCs. Conclusions Similarly to the human counterpart, CMCs contain stem-like subpopulations representing, in a comparative oncology context, a valuable translational model for human BC, and, in particular, to predict the efficacy of antitumor drugs. Moreover, metformin represents a potential CSC-selective drug for BC, as effective (neo-)adjuvant therapy to eradicate CSC in mammary carcinomas of humans and animals. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1235-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Federica Barbieri
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy. .,Centro di Eccellenza per la Ricerca Biomedica (CEBR), University of Genova, Genoa, Italy.
| | - Stefano Thellung
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy. .,Centro di Eccellenza per la Ricerca Biomedica (CEBR), University of Genova, Genoa, Italy.
| | - Alessandra Ratto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, and National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Genoa, Italy.
| | - Elisa Carra
- Dipartimento di Medicina Sperimentale, University of Genova, Genoa, Italy.
| | - Valeria Marini
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy.
| | - Carmen Fucile
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy.
| | - Adriana Bajetto
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy.
| | - Alessandra Pattarozzi
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy.
| | - Roberto Würth
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy.
| | - Monica Gatti
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy.
| | - Chiara Campanella
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, and National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Genoa, Italy.
| | - Guendalina Vito
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, and National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Genoa, Italy.
| | - Francesca Mattioli
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy.
| | - Aldo Pagano
- Dipartimento di Medicina Sperimentale, University of Genova, Genoa, Italy. .,IRCCS AOU San Martino - IST, Genoa, Italy.
| | | | - Angelo Ferrari
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, and National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Genoa, Italy.
| | - Tullio Florio
- Dipartimento di Medicina Interna, Sezione di Farmacologia, University of Genova, Genoa, Italy. .,Centro di Eccellenza per la Ricerca Biomedica (CEBR), University of Genova, Genoa, Italy.
| |
Collapse
|
103
|
Kashi Z, Masoumi P, Mahrooz A, Hashemi-Soteh MB, Bahar A, Alizadeh A. The variant organic cation transporter 2 (OCT2)-T201M contribute to changes in insulin resistance in patients with type 2 diabetes treated with metformin. Diabetes Res Clin Pract 2015; 108:78-83. [PMID: 25662675 DOI: 10.1016/j.diabres.2015.01.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/30/2014] [Accepted: 01/13/2015] [Indexed: 12/26/2022]
Abstract
AIMS Insulin resistance is characterized by impaired biological response of peripheral tissues to the metabolic effects of insulin. Organic cation transporter 2 (OCT2) is responsible for 80% metformin clearance. Limited information is available on the potential relationship between genetic variants of OCT2 and insulin resistance. In this study, we examined the role of OCT2-T201M (602 C>T) variant in insulin resistance in patients with type 2 diabetes (T2D) who were treated with metformin. METHODS Serum concentrations of insulin and C-peptide were assessed using ELISA. Homeostasis model assessment for insulin resistance (HOMA-IR) and HOMA for beta cell function (HOMA-BCF) were determined. PCR-based restriction fragment length polymorphism was used to genotype the OCT2-T201M variant. RESULTS Patients with minor alleles had higher HbA1c concentrations (p=0.019), fasting glucose levels (p=0.023), HOMA-IR (p=0.03), and HOMA-BCF (p=0.26) than patients with common alleles. Multivariate analysis identified a significant association between the variables OCT2-T201M and gender, with HOMA-IR and HOMA-BCF (Wilks' λ=0.549, F=12.71, p<0.001 for OCT2-T201M and Wilks' λ=0.369, F=26.46, p<0.001 for gender. Changes in HOMA-BCF were inversely correlated with changes in fasting glucose levels (r=-0.412, p=0.008) and HbA1c (r=-0.257, p=0.114). CONCLUSIONS Our findings suggest that the loss-of-function variant OCT2-T201M (rs145450955) contribute to changes in insulin resistance and beta cell activity in patients with T2D treated with metformin. Moreover, gender as an independent variable has a significant relationship with HOMA-BCF.
Collapse
Affiliation(s)
- Zahra Kashi
- Diabetes Research Center, Imam Teaching Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Parisa Masoumi
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdolkarim Mahrooz
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Bagher Hashemi-Soteh
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Adele Bahar
- Diabetes Research Center, Imam Teaching Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahad Alizadeh
- Department of Epidemiology and Biostatistics, Faculty of Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
104
|
|
105
|
Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol 2015; 11:9-15. [PMID: 25517383 DOI: 10.1038/nchembio.1712] [Citation(s) in RCA: 1048] [Impact Index Per Article: 104.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 11/04/2014] [Indexed: 01/02/2023]
Abstract
Mitochondria have a well-recognized role in the production of ATP and the intermediates needed for macromolecule biosynthesis, such as nucleotides. Mitochondria also participate in the activation of signaling pathways. Overall, accumulating evidence now suggests that mitochondrial bioenergetics, biosynthesis and signaling are required for tumorigenesis. Thus, emerging studies have begun to demonstrate that mitochondrial metabolism is potentially a fruitful arena for cancer therapy. In this Perspective, we highlight recent developments in targeting mitochondrial metabolism for the treatment of cancer.
Collapse
|
106
|
Moon HS, Kim B, Gwak H, Suh DH, Song YS. Autophagy and protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2 alpha kinase (eIF2α) pathway protect ovarian cancer cells from metformin-induced apoptosis. Mol Carcinog 2015; 55:346-56. [DOI: 10.1002/mc.22284] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Hee-sun Moon
- Interdisciplinary Program in Cancer Biology; Seoul National University; College of Medicine; Seoul Korea
- Cancer Research Institute; Seoul National University; College of Medicine; Seoul Korea
| | - Boyun Kim
- Cancer Research Institute; Seoul National University; College of Medicine; Seoul Korea
- Biomodulation; Department of Agricultural Biotechnology; Seoul National University; Seoul Korea
| | - HyeRan Gwak
- Cancer Research Institute; Seoul National University; College of Medicine; Seoul Korea
- Biomodulation; Department of Agricultural Biotechnology; Seoul National University; Seoul Korea
| | - Dong Hoon Suh
- Department of Obstetrics and Gynecology; Seoul National University Bundang Hospital; Seongnam Korea
| | - Yong Sang Song
- Interdisciplinary Program in Cancer Biology; Seoul National University; College of Medicine; Seoul Korea
- Cancer Research Institute; Seoul National University; College of Medicine; Seoul Korea
- Biomodulation; Department of Agricultural Biotechnology; Seoul National University; Seoul Korea
- Department of Obstetrics and Gynecology; Seoul National University; College of Medicine; Seoul Korea
| |
Collapse
|
107
|
Emami-Riedmaier A, Schaeffeler E, Nies AT, Mörike K, Schwab M. Stratified medicine for the use of antidiabetic medication in treatment of type II diabetes and cancer: where do we go from here? J Intern Med 2015; 277:235-247. [PMID: 25418285 DOI: 10.1111/joim.12330] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
At present, the global diabetes epidemic is affecting 347 million individuals, 90% of whom are diagnosed with type II diabetes mellitus (T2DM). T2DM is commonly treated with more than one type of therapy, including oral antidiabetic drugs (OADs) and agents used in the treatment of diabetic complications. Several pharmacological classes of OADs are currently available for the treatment of T2DM, of which insulin secretagogues (i.e. sulphonylureas and meglitinides), insulin sensitizers [thiazolidinediones (TZDs)] and biguanides are the most commonly prescribed. Although many of these OADs have been used for more than half a century in the treatment of T2DM, the pharmacogenomic characteristics of these compounds have only recently been investigated, primarily in retrospective studies. Recent advances in pharmacogenomics have led to the identification of polymorphisms that affect the expression and function of drug-metabolizing enzymes and drug transporters, as well as drug targets and receptors. These polymorphisms have been shown to affect the therapeutic response to and side effects associated with OADs. The aim of this review was to provide an up-to-date summary of some of the pharmacogenomic data obtained from studies of T2DM treatment, with a focus on polymorphisms in genes affecting pharmacokinetics, pharmacodynamics and treatment outcome of the most commonly prescribed OADs. In addition, the implications of pharmacogenomics in the use of the OAD metformin in cancer will be briefly discussed. Finally, we will focus on recent advances in novel 'omics' technologies and discuss how these might aid in the personalized management of T2DM.
Collapse
Affiliation(s)
- A Emami-Riedmaier
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - E Schaeffeler
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - A T Nies
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - K Mörike
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - M Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
108
|
He ZX, Zhou ZW, Yang Y, Yang T, Pan SY, Qiu JX, Zhou SF. Overview of clinically approved oral antidiabetic agents for the treatment of type 2 diabetes mellitus. Clin Exp Pharmacol Physiol 2015; 42:125-38. [DOI: 10.1111/1440-1681.12332] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 09/22/2014] [Accepted: 10/14/2014] [Indexed: 01/14/2023]
Affiliation(s)
- Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine; Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences; Guiyang Medical University; Guiyang China
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences; College of Pharmacy; University of South Florida; Tampa FL USA
| | - Yinxue Yang
- Department of Colorectal Surgery; General Hospital of Ningxia Medical University; Yinchuan China
| | - Tianxin Yang
- Department of Internal Medicine; University of Utah and Salt Lake Veterans Affairs Medical Center; Salt Lake City UT USA
| | - Si-Yuan Pan
- Department of Chinese Medicinal Pharmacology; School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing China
| | - Jia-Xuan Qiu
- Department of Oral and Maxillofacial Surgery; The First Affiliated Hospital of Nanchang University; Nanchang China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences; College of Pharmacy; University of South Florida; Tampa FL USA
| |
Collapse
|
109
|
Schuler KM, Rambally BS, DiFurio MJ, Sampey BP, Gehrig PA, Makowski L, Bae-Jump VL. Antiproliferative and metabolic effects of metformin in a preoperative window clinical trial for endometrial cancer. Cancer Med 2014; 4:161-73. [PMID: 25417601 PMCID: PMC4329001 DOI: 10.1002/cam4.353] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 12/27/2022] Open
Abstract
We conducted a preoperative window study of metformin in endometrial cancer (EC) patients and evaluated its antiproliferative, molecular and metabolic effects. Twenty obese women with endometrioid EC were treated with metformin (850 mg) daily for up to 4 weeks prior to surgical staging. Expression of the proliferation marker Ki-67, estrogen receptor (ER), progesterone receptor (PR), adenosine monophosphate-activated protein kinase (AMPK), and downstream targets of the mammalian target of rapamycin (mTOR) pathway were measured by immunohistochemistry. Global, untargeted metabolomics analysis of serum pre- and postmetformin treatment, and matched tumor, was performed. Metformin reduced proliferation by 11.75% (P = 0.008) based on the comparison of pre- and posttreatment endometrial tumors. A total of 65% of patients responded to metformin as defined by a decrease in Ki-67 staining in their endometrial tumors post-treatment. Metformin decreased expression of phosphorylated (p)-AMPK (P = 0.00001), p-Akt (P = 0.0002), p-S6 (51.2%, P = 0.0002), p-4E-BP-1 (P = 0.001), and ER (P = 0.0002) but not PR expression. Metabolomic profiling of serum indicated that responders versus nonresponders to treatment were more sensitive to metformin's effects on induction of lipolysis, which correlated with increased fatty acid oxidation and glycogen metabolism in matched tumors. In conclusion, metformin reduced tumor proliferation in a pre-operative window study in obese EC patients, with dramatic effects on inhibition of the mTOR pathway. Metformin induced a shift in lipid and glycogen metabolism that was more pronounced in the serum and tumors of responders versus nonresponders to treatment.This study provides support for therapeutic clinical trials of metformin in obese patients with EC.
Collapse
Affiliation(s)
- Kevin M Schuler
- Division of Gynecologic Oncology, Good Samaritan Hospital, Cincinnati, Ohio
| | | | | | | | | | | | | |
Collapse
|
110
|
Zi FM, He JS, Li Y, Wu C, Yang L, Yang Y, Wang LJ, He DH, Zhao Y, Wu WJ, Zheng GF, Han XY, Huang H, Yi Q, Cai Z. Metformin displays anti-myeloma activity and synergistic effect with dexamethasone in in vitro and in vivo xenograft models. Cancer Lett 2014; 356:443-53. [PMID: 25305450 DOI: 10.1016/j.canlet.2014.09.050] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 09/17/2014] [Accepted: 09/21/2014] [Indexed: 12/29/2022]
Abstract
Epidemiologic studies and meta-analyses have suggested that patients with type 2 diabetes mellitus (T2DM) have a higher incidence of malignancies, including myeloma. Metformin is a widely prescribed antidiabetic drug. Recently, researchers have shown that metformin has direct anticancer activity against many tumor cell lines, mainly through activating AMP-activated protein kinase (AMPK) or reducing the blood insulin level. In the present study, we investigated whether metformin exerts an anti-myeloma effect in in vitro and in vivo xenograft models and explored the underlying mechanism. We found that metformin can inhibit proliferation of MM cells by inducing apoptosis and cell cycle arrest in the G0/G1 phase. Western blot showed that metformin activated caspase 3, caspase 9, PARP-1, Bak, and p21 and inactivated Mcl-1, HIAP-1, cyclin D1, CDK4, and CDK6. Metformin inhibited the expression of insulin growth factor-I receptor (IGF-IR), and phosphatidyl inositol 3-kinase (PI3K), protein kinase B (PKB/AKT) and the downstream mammalian target of rapamycin (mTOR). IGF-I blocked metformin-induced MM cell apoptosis and reactivation of the PI3K/AKT/mTOR signaling pathway. Metformin also demonstrated synergistic activity with dexamethasone but not bortezomib to eradicate MM cells in vitro and in vivo, especially in MM.1S cells. We conclude that metformin inhibits MM cell proliferation through the IGF-1R/PI3K/AKT/mTOR signaling pathway. Metformin and dexamethasone combination therapy may be an option for MM treatment.
Collapse
Affiliation(s)
- Fu-Ming Zi
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing-Song He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cai Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Yang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Yang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li-Juan Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dong-Hua He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wen-Jun Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gao-Feng Zheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Yan Han
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qing Yi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
111
|
Bobrovnikova-Marjon E, Hurov JB. Targeting metabolic changes in cancer: novel therapeutic approaches. Annu Rev Med 2014; 65:157-70. [PMID: 24422570 DOI: 10.1146/annurev-med-092012-112344] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Therapeutic strategies designed to target cancer metabolism are an area of intense research. Antimetabolites, first used to treat patients in the early twentieth century, served as an early proof of concept for such therapies. We highlight strategies that attempt to improve on the anti-metabolite approach as well as new metabolic drug targets. Some of these targets have the advantage of a strong genetic anchor to drive patient selection (isocitrate dehydrogenase 1/2, Enolase 2). Additional approaches described here derive from hypothesis-driven and systems biology efforts designed to exploit tumor cell metabolic dependencies (fatty acid oxidation, nicotinamide adenine dinucleotide synthesis, glutamine biology).
Collapse
|
112
|
Glioma Stem Cells: Markers, Hallmarks and Therapeutic Targeting by Metformin. Pathol Oncol Res 2014; 20:789-97. [DOI: 10.1007/s12253-014-9837-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/13/2014] [Indexed: 12/29/2022]
|
113
|
Zhang ZJ, Li S. The prognostic value of metformin for cancer patients with concurrent diabetes: a systematic review and meta-analysis. Diabetes Obes Metab 2014; 16:707-10. [PMID: 24460896 DOI: 10.1111/dom.12267] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/05/2014] [Accepted: 01/19/2014] [Indexed: 12/24/2022]
Abstract
AIM Emerging evidence from epidemiologic studies and basic science suggests a potential antitumour effect of metformin. However, whether metformin improves survival in cancer patients remains inconclusive. METHODS A literature search was performed using the PubMed, EMbase and SciVerse Scopus databases. Pooled effect estimates were derived using a random-effects meta-analysis model. RESULTS Of the 28 studies retrieved, the pooled effect estimates showed that metformin was associated with lower risk of all-cause mortality in cancer patients with concurrent diabetes, particularly for breast [pooled relative risk (RR) 0.70, 95% CI 0.55, 0.88; p = 0.003], colorectal (RR 0.70, 95% CI 0.59, 0.84; p < 0.001), ovarian (RR 0.44, 95% CI 0.30, 0.64; p < 0.001) and endometrial cancer (RR 0.49, 95% CI 0.32, 0.73; p = 0.001). In addition, metformin was associated with lower risks of cancer-specific mortality. CONCLUSIONS The findings of this study support the hypothesis that metformin improves the survival for cancer patients with concurrent diabetes, particularly for breast, colorectal, ovarian, and endometrial cancer. Further investigation is warranted.
Collapse
Affiliation(s)
- Z-J Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
| | | |
Collapse
|
114
|
Wu JW, Boudreau DM, Park Y, Simonds NI, Freedman AN. Commonly used diabetes and cardiovascular medications and cancer recurrence and cancer-specific mortality: a review of the literature. Expert Opin Drug Saf 2014; 13:1071-99. [PMID: 24999107 DOI: 10.1517/14740338.2014.926887] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Cancer most commonly arises in the elderly who are often burdened with comorbidities. Medications used for treating these comorbidities may alter cancer prognosis. Understanding the impact of these medications on cancer is important in order to make effective evidence-based decisions about managing comorbidities while improving cancer outcomes. AREAS COVERED The evidence on diabetes, statins, antihypertensive and anti-inflammatory medications and their association with cancer recurrence and cancer-specific mortality are reviewed. The strengths and limitations of the existing literature, the current state of the field and future directions are discussed. EXPERT OPINION Metformin and aspirin were associated with a reduced risk of cancer recurrence and cancer-specific mortality. The evidence for statins and antihypertensive medications on cancer survival was inconsistent. There were few studies to suggest that any of the medication classes of interest were associated with negative effects on cancer survival. Methodological shortcomings within observational studies, such as confounding, distinguishing between use of medications pre-cancer versus post-cancer diagnosis/treatment, misclassification of exposures/outcomes, informative censoring and competing risks, must be considered. New observational studies addressing these limitations are essential. Some clinical trials are underway to further investigate the beneficial effects of these drugs and completed trials have confirmed results demonstrated in observational studies.
Collapse
Affiliation(s)
- Jennifer W Wu
- McGill University, Epidemiology, Biostatistics, and Occupational Health , 1020 Pine Avenue, Montreal, Quebec, H3A 1A2 , Canada
| | | | | | | | | |
Collapse
|
115
|
Glossmann H, Reider N. A marriage of two "Methusalem" drugs for the treatment of psoriasis?: Arguments for a pilot trial with metformin as add-on for methotrexate. DERMATO-ENDOCRINOLOGY 2014; 5:252-63. [PMID: 24194965 PMCID: PMC3772913 DOI: 10.4161/derm.23874] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/04/2013] [Indexed: 02/06/2023]
Abstract
In this article we present arguments that the “antidiabetic” drug metformin could be useful as an add-on therapy to methotrexate for the treatment of psoriasis and, perhaps, for rheumatoid arthritis as well. Biochemical data suggest that both drugs may share a common cellular target, the AMP-activated protein kinase (AMPK). This enzyme is a master regulator of metabolism and controls a number of downstream targets, e.g., important for cellular growth or function in many tissues including T-lymphocytes. Clinical observations as well as experimental results argue for anti-inflammatory, antineoplastic and antiproliferative activities of metformin and a case-control study suggests that the drug reduces the risk for psoriasis.
Patients with psoriasis have higher risk of metabolic syndrome, type 2 diabetes and cardiovascular mortality. Metformin has proven efficacy in the treatment of prediabetes and leads to a pronounced and sustained weight loss in overweight individuals. We expect that addition of metformin to methotrexate can lead to positive effects with respect to the PASI score, reduction of the weekly methotrexate dose and of elevated cardiovascular risk factors in patients with metabolic syndrome and psoriasis. For reasons explained later we suggest that only male, overweight patients are to be included in a pilot trial. On the other side of the coin are concerns that the gastrointestinal side effects of metformin are intolerable for patients under low dose, intermittent methotrexate therapy. Metformin has another side effect, namely interference with vitamin B12 and folate metabolism, leading to elevated homocysteine serum levels. As patients must receive folate supplementation and will be controlled with respect to their B12 status increased hematological toxicity is unlikely to result.
Collapse
Affiliation(s)
- Hartmut Glossmann
- Institute for Biochemical Pharmacology; Department of Dermatology; Medical University of Innsbruck; Innsbruck, Austria
| | | |
Collapse
|
116
|
Wheaton WW, Weinberg SE, Hamanaka RB, Soberanes S, Sullivan LB, Anso E, Glasauer A, Dufour E, Mutlu GM, Budigner GS, Chandel NS. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife 2014. [PMID: 24843020 DOI: 10.7554/elife.02242.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent epidemiological and laboratory-based studies suggest that the anti-diabetic drug metformin prevents cancer progression. How metformin diminishes tumor growth is not fully understood. In this study, we report that in human cancer cells, metformin inhibits mitochondrial complex I (NADH dehydrogenase) activity and cellular respiration. Metformin inhibited cellular proliferation in the presence of glucose, but induced cell death upon glucose deprivation, indicating that cancer cells rely exclusively on glycolysis for survival in the presence of metformin. Metformin also reduced hypoxic activation of hypoxia-inducible factor 1 (HIF-1). All of these effects of metformin were reversed when the metformin-resistant Saccharomyces cerevisiae NADH dehydrogenase NDI1 was overexpressed. In vivo, the administration of metformin to mice inhibited the growth of control human cancer cells but not those expressing NDI1. Thus, we have demonstrated that metformin's inhibitory effects on cancer progression are cancer cell autonomous and depend on its ability to inhibit mitochondrial complex I.DOI: http://dx.doi.org/10.7554/eLife.02242.001.
Collapse
Affiliation(s)
- William W Wheaton
- Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Samuel E Weinberg
- Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Robert B Hamanaka
- Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Saul Soberanes
- Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Lucas B Sullivan
- Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Elena Anso
- Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Andrea Glasauer
- Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Eric Dufour
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | - Gokhan M Mutlu
- Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Gr Scott Budigner
- Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Navdeep S Chandel
- Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, United States
| |
Collapse
|
117
|
Wheaton WW, Weinberg SE, Hamanaka RB, Soberanes S, Sullivan LB, Anso E, Glasauer A, Dufour E, Mutlu GM, Budigner GS, Chandel NS. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife 2014; 3:e02242. [PMID: 24843020 PMCID: PMC4017650 DOI: 10.7554/elife.02242] [Citation(s) in RCA: 847] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent epidemiological and laboratory-based studies suggest that the anti-diabetic drug metformin prevents cancer progression. How metformin diminishes tumor growth is not fully understood. In this study, we report that in human cancer cells, metformin inhibits mitochondrial complex I (NADH dehydrogenase) activity and cellular respiration. Metformin inhibited cellular proliferation in the presence of glucose, but induced cell death upon glucose deprivation, indicating that cancer cells rely exclusively on glycolysis for survival in the presence of metformin. Metformin also reduced hypoxic activation of hypoxia-inducible factor 1 (HIF-1). All of these effects of metformin were reversed when the metformin-resistant Saccharomyces cerevisiae NADH dehydrogenase NDI1 was overexpressed. In vivo, the administration of metformin to mice inhibited the growth of control human cancer cells but not those expressing NDI1. Thus, we have demonstrated that metformin's inhibitory effects on cancer progression are cancer cell autonomous and depend on its ability to inhibit mitochondrial complex I.DOI: http://dx.doi.org/10.7554/eLife.02242.001.
Collapse
Affiliation(s)
- William W Wheaton
- Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Samuel E Weinberg
- Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Robert B Hamanaka
- Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Saul Soberanes
- Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Lucas B Sullivan
- Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Elena Anso
- Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Andrea Glasauer
- Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Eric Dufour
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | - Gokhan M Mutlu
- Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Gr Scott Budigner
- Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Navdeep S Chandel
- Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, United States
| |
Collapse
|
118
|
Kim TI. Chemopreventive drugs: Mechanisms via inhibition of cancer stem cells in colorectal cancer. World J Gastroenterol 2014; 20:3835-3846. [PMID: 24744576 PMCID: PMC3983440 DOI: 10.3748/wjg.v20.i14.3835] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/27/2013] [Accepted: 01/05/2014] [Indexed: 02/06/2023] Open
Abstract
Recent epidemiological studies, basic research and clinical trials on colorectal cancer (CRC) prevention have helped identify candidates for effective chemopreventive drugs. However, because of the conflicting results of clinical trials or side effects, the effective use of chemopreventive drugs has not been generalized, except for patients with a high-risk for developing hereditary CRC. Advances in genetic and molecular technologies have highlighted the greater complexity of carcinogenesis, especially the heterogeneity of tumors. We need to target cells and processes that are critical to carcinogenesis for chemoprevention and treatment of advanced cancer. Recent research has shown that intestinal stem cells may serve an important role in tumor initiation and formation of cancer stem cells. Moreover, studies have shown that the tumor microenvironment may play additional roles in dedifferentiation, to enable tumor cells to take on stem cell features and promote the formation of tumorigenic stem cells. Therefore, early tumorigenic changes of stem cells and signals for dedifferentiation may be good targets for chemoprevention. In this review, I focus on cancer stem cells in colorectal carcinogenesis and the effect of major chemopreventive drugs on stem cell-related pathways.
Collapse
|
119
|
Malaguarnera R, Sacco A, Morcavallo A, Squatrito S, Migliaccio A, Morrione A, Maggiolini M, Belfiore A. Metformin inhibits androgen-induced IGF-IR up-regulation in prostate cancer cells by disrupting membrane-initiated androgen signaling. Endocrinology 2014; 155:1207-21. [PMID: 24437490 PMCID: PMC3959597 DOI: 10.1210/en.2013-1925] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have previously demonstrated that, in prostate cancer cells, androgens up-regulate IGF-I receptor (IGF-IR) by inducing cAMP-response element-binding protein (CREB) activation and CREB-dependent IGF-IR gene transcription through androgen receptor (AR)-dependent membrane-initiated effects. This IGF-IR up-regulation is not blocked by classical antiandrogens and sensitizes cells to IGF-I-induced biological effects. Metformin exerts complex antitumoral functions in various models and may inhibit CREB activation in hepatocytes. We, therefore, evaluated whether metformin may affect androgen-dependent IGF-IR up-regulation. In the AR(+) LNCaP prostate cancer cells, we found that metformin inhibits androgen-induced CRE activity and IGF-IR gene transcription. CRE activity requires the formation of a CREB-CREB binding protein-CREB regulated transcription coactivator 2 (CRTC2) complex, which follows Ser133-CREB phosphorylation. Metformin inhibited Ser133-CREB phosphorylation and induced nuclear exclusion of CREB cofactor CRTC2, thus dissociating the CREB-CREB binding protein-CRTC2 complex and blocking its transcriptional activity. Similarly to metformin action, CRTC2 silencing inhibited IGF-IR promoter activity. Moreover, metformin blocked membrane-initiated signals of AR to the mammalian target of rapamycin/p70S6Kinase pathway by inhibiting AR phosphorylation and its association with c-Src. AMPK signals were also involved to some extent. By inhibiting androgen-dependent IGF-IR up-regulation, metformin reduced IGF-I-mediated proliferation of LNCaP cells. These results indicate that, in prostate cancer cells, metformin inhibits IGF-I-mediated biological effects by disrupting membrane-initiated AR action responsible for IGF-IR up-regulation and suggest that metformin could represent a useful adjunct to the classical antiandrogen therapy.
Collapse
Affiliation(s)
- Roberta Malaguarnera
- Endocrinology (R.M., A.S., A.Morc., A.B.), Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; Endocrinology (S.S.), Department of Clinical and Molecular Biomedicine, University of Catania, Garibaldi-Nesima Hospital, 95125 Catania, Italy; Department of General Pathology (A.Mi.), II University of Naples, Via L. De Crecchio, 7-80138 Naples, Italy; Department of Urology and Biology of Prostate Cancer Program (A.Morr.), Kimmel Cancer Center, Thomas Jefferson University, Philadelphia 19107; and Department of Pharmaco-Biology (M.M.), University of Calabria, 87030 Rende, Italy
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Izzotti A, Balansky R, D'Agostini F, Longobardi M, Cartiglia C, Micale RT, La Maestra S, Camoirano A, Ganchev G, Iltcheva M, Steele VE, De Flora S. Modulation by metformin of molecular and histopathological alterations in the lung of cigarette smoke-exposed mice. Cancer Med 2014; 3:719-30. [PMID: 24683044 PMCID: PMC4101764 DOI: 10.1002/cam4.234] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 12/22/2022] Open
Abstract
The anti-diabetic drug metformin is endowed with anti-cancer properties. Epidemiological and experimental studies, however, did not provide univocal results regarding its role in pulmonary carcinogenesis. We used Swiss H mice of both genders in order to detect early molecular alterations and tumors induced by mainstream cigarette smoke. Based on a subchronic toxicity study, oral metformin was used at a dose of 800 mg/kg diet, which is 3.2 times higher than the therapeutic dose in humans. Exposure of mice to smoke for 4 months, starting at birth, induced a systemic clastogenic damage, formation of DNA adducts, oxidative DNA damage, and extensive downregulation of microRNAs in lung after 10 weeks. Preneoplastic lesions were detectable after 7.5 months in both lung and urinary tract along with lung tumors, both benign and malignant. Modulation by metformin of 42 of 1281 pulmonary microRNAs in smoke-free mice highlighted a variety of mechanisms, including modulation of AMPK, stress response, inflammation, NFκB, Tlr9, Tgf, p53, cell cycle, apoptosis, antioxidant pathways, Ras, Myc, Dicer, angiogenesis, stem cell recruitment, and angiogenesis. In smoke-exposed mice, metformin considerably decreased DNA adduct levels and oxidative DNA damage, and normalized the expression of several microRNAs. It did not prevent smoke-induced lung tumors but inhibited preneoplastic lesions in both lung and kidney. In conclusion, metformin was able to protect the mouse lung from smoke-induced DNA and microRNA alterations and to inhibit preneoplastic lesions in lung and kidney but failed to prevent lung adenomas and malignant tumors induced by this complex mixture.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Abstract
Metformin has been the mainstay of therapy for diabetes mellitus for many years; however, the mechanistic aspects of metformin action remained ill-defined. Recent advances revealed that this drug, in addition to its glucose-lowering action, might be promising for specifically targeting metabolic differences between normal and abnormal metabolic signalling. The knowledge gained from dissecting the principal mechanisms by which metformin works can help us to develop novel treatments. The centre of metformin's mechanism of action is the alteration of the energy metabolism of the cell. Metformin exerts its prevailing, glucose-lowering effect by inhibiting hepatic gluconeogenesis and opposing the action of glucagon. The inhibition of mitochondrial complex I results in defective cAMP and protein kinase A signalling in response to glucagon. Stimulation of 5'-AMP-activated protein kinase, although dispensable for the glucose-lowering effect of metformin, confers insulin sensitivity, mainly by modulating lipid metabolism. Metformin might influence tumourigenesis, both indirectly, through the systemic reduction of insulin levels, and directly, via the induction of energetic stress; however, these effects require further investigation. Here, we discuss the updated understanding of the antigluconeogenic action of metformin in the liver and the implications of the discoveries of metformin targets for the treatment of diabetes mellitus and cancer.
Collapse
Affiliation(s)
- Ida Pernicova
- Department of Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1A 6BQ, UK
| | - Márta Korbonits
- Department of Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1A 6BQ, UK
| |
Collapse
|
122
|
|
123
|
Lee JH, Kim TI. Type II Diabetes, Metformin Use, and Colorectal Neoplasia: Mechanisms of Action and Implications for Future Research. CURRENT COLORECTAL CANCER REPORTS 2013. [DOI: 10.1007/s11888-013-0198-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
124
|
Pulito C, Sanli T, Rana P, Muti P, Blandino G, Strano S. Metformin: On Ongoing Journey across Diabetes, Cancer Therapy and Prevention. Metabolites 2013; 3:1051-75. [PMID: 24958265 PMCID: PMC3937831 DOI: 10.3390/metabo3041051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/27/2013] [Accepted: 10/31/2013] [Indexed: 02/08/2023] Open
Abstract
Cancer metabolism is the focus of intense research, which witnesses its key role in human tumors. Diabetic patients treated with metformin exhibit a reduced incidence of cancer and cancer-related mortality. This highlights the possibility that the tackling of metabolic alterations might also hold promising value for treating cancer patients. Here, we review the emerging role of metformin as a paradigmatic example of an old drug used worldwide to treat patients with type II diabetes which to date is gaining strong in vitro and in vivo anticancer activities to be included in clinical trials. Metformin is also becoming the focus of intense basic and clinical research on chemoprevention, thus suggesting that metabolic alteration is an early lesion along cancer transformation. Metabolic reprogramming might be a very efficient prevention strategy with a profound impact on public health worldwide.
Collapse
Affiliation(s)
- Claudio Pulito
- Molecular Chemoprevention Group, Molecular Medicine Area, Regina Elena National Institute, Rome 00144, Italy.
| | - Toran Sanli
- Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, ON L8V 5C2, Canada.
| | - Punam Rana
- Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, ON L8V 5C2, Canada.
| | - Paola Muti
- Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, ON L8V 5C2, Canada.
| | - Giovanni Blandino
- Translational Oncogenomics Unit-ROC, Molecular Medicine Area, Regina Elena National Institute, Rome 00144, Italy.
| | - Sabrina Strano
- Molecular Chemoprevention Group, Molecular Medicine Area, Regina Elena National Institute, Rome 00144, Italy.
| |
Collapse
|
125
|
Abstract
Oncogenic mutant K-Ras is highly prevalent in multiple human tumors. Despite significant efforts to directly target Ras activity, no K-Ras-specific inhibitors have been developed and taken into the clinic. Since Ras proteins must be anchored to the inner leaflet of the plasma membrane (PM) for full biological activity, we devised a high-content screen to identify molecules with ability to displace K-Ras from the PM. Here we summarize the biochemistry and biology of three classes of compound identified by this screening method that inhibit K-Ras PM targeting: staurosporine and analogs, fendiline, and metformin. All three classes of compound significantly abrogate cell proliferation and Ras signaling in K-Ras-transformed cancer cells. Taken together, these studies provide an important proof of concept that blocking PM localization of K-Ras is a tractable therapeutic target.
Collapse
Affiliation(s)
- Kwang-Jin Cho
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, Houston, Texas, USA
| | - Dharini van der Hoeven
- Department of Diagnostic and Biomedical Sciences, The University of Texas School of Dentistry at Houston, Houston, Texas, USA
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, Houston, Texas, USA.
| |
Collapse
|
126
|
Beck E, Scheen AJ. Quels bénéfices antitumoraux attendre de la metformine ? ANNALES D'ENDOCRINOLOGIE 2013; 74:137-47. [DOI: 10.1016/j.ando.2013.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|