101
|
Bartok A, Toth A, Somodi S, Szanto TG, Hajdu P, Panyi G, Varga Z. Margatoxin is a non-selective inhibitor of human Kv1.3 K+ channels. Toxicon 2014; 87:6-16. [PMID: 24878374 DOI: 10.1016/j.toxicon.2014.05.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/07/2014] [Accepted: 05/12/2014] [Indexed: 11/28/2022]
Abstract
Margatoxin (MgTx), an alpha-KTx scorpion toxin, is considered a selective inhibitor of the Kv1.3K + channel. This peptide is widely used in ion channel research; however, a comprehensive study of its selectivity with electrophysiological methods has not been published yet. The lack of selectivity might lead to undesired side effects upon therapeutic application or may lead to incorrect conclusion regarding the role of a particular ion channel in a physiological or pathophysiological response either in vitro or in vivo. Using the patch-clamp technique we characterized the selectivity profile of MgTx using L929 cells expressing mKv1.1 channels, human peripheral lymphocytes expressing Kv1.3 channels and transiently transfected tsA201 cells expressing hKv1.1, hKv1.2, hKv1.3, hKv1.4-IR, hKv1.5, hKv1.6, hKv1.7, rKv2.1, Shaker-IR, hERG, hKCa1.1, hKCa3.1 and hNav1.5 channels. MgTx is indeed a high affinity inhibitor of Kv1.3 (Kd = 11.7 pM) but is not selective, it inhibits the Kv1.2 channel with similar affinity (Kd = 6.4 pM) and Kv1.1 in the nanomolar range (Kd = 4.2 nM). Based on our comprehensive data MgTX has to be considered a non-selective Kv1.3 inhibitor, and thus, experiments aiming at elucidating the significance of Kv1.3 in in vitro or in vivo physiological responses have to be carefully evaluated.
Collapse
Affiliation(s)
- Adam Bartok
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine, 98 Nagyerdei krt., Debrecen 4032, Hungary.
| | - Agnes Toth
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine, 98 Nagyerdei krt., Debrecen 4032, Hungary.
| | - Sandor Somodi
- Division of Metabolic Diseases, Department of Internal Medicine, University of Debrecen, 98 Nagyerdei krt., Debrecen 4032, Hungary.
| | - Tibor G Szanto
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine, 98 Nagyerdei krt., Debrecen 4032, Hungary.
| | - Peter Hajdu
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Dentistry, 98 Nagyerdei krt., Debrecen 4032, Hungary.
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine, 98 Nagyerdei krt., Debrecen 4032, Hungary; MTA-DE Cell Biology and Signaling Research Group, 4032 Debrecen, Egyetem tér 1, Hungary. http://biophys.med.unideb.hu/en/node/311
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine, 98 Nagyerdei krt., Debrecen 4032, Hungary.
| |
Collapse
|
102
|
Yang Y, Zeng XC, Zhang L, Nie Y, Shi W, Liu Y. Androcin, a novel type of cysteine-rich venom peptide fromAndroctonus bicolor, induces akinesia and anxiety-like symptoms in mice. IUBMB Life 2014; 66:277-85. [DOI: 10.1002/iub.1261] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 03/02/2014] [Accepted: 03/07/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Ye Yang
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology; School of Environmental Studies, China University of Geosciences (Wuhan); Wuhan 430074 People's Republic of China
| | - Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology; School of Environmental Studies, China University of Geosciences (Wuhan); Wuhan 430074 People's Republic of China
| | - Lei Zhang
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology; School of Environmental Studies, China University of Geosciences (Wuhan); Wuhan 430074 People's Republic of China
| | - Yao Nie
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology; School of Environmental Studies, China University of Geosciences (Wuhan); Wuhan 430074 People's Republic of China
| | - Wanxia Shi
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology; School of Environmental Studies, China University of Geosciences (Wuhan); Wuhan 430074 People's Republic of China
| | - Yichen Liu
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology; School of Environmental Studies, China University of Geosciences (Wuhan); Wuhan 430074 People's Republic of China
| |
Collapse
|
103
|
Xu X, Duan Z, Di Z, He Y, Li J, Li Z, Xie C, Zeng X, Cao Z, Wu Y, Liang S, Li W. Proteomic analysis of the venom from the scorpion Mesobuthus martensii. J Proteomics 2014; 106:162-80. [PMID: 24780724 DOI: 10.1016/j.jprot.2014.04.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 12/27/2022]
Abstract
UNLABELLED The scorpion Mesobuthus martensii is the most populous species in eastern Asian countries, and several toxic components have been identified from their venoms. Nevertheless, a complete proteomic profile of the venom of M. martensii is still not available. In this study, the venom of M. martensii was analyzed by comprehensive proteomic approaches. 153 fractions were isolated from the M. martensii venom by 2-DE, SDS-PAGE and RP-HPLC. The ESI-Q-TOF MS results of all fractions were used to search the scorpion genomic and transcriptomic databases. Totally, 227 non-redundant protein sequences were unambiguously identified, composed of 134 previously known and 93 previously unknown proteins. Among 134 previously known proteins, 115 proteins were firstly confirmed from the M. martensii crude venom and 19 toxins were confirmed once again, involving 43 typical toxins, 7 atypical toxins, 12 venom enzymes and 72 cell associated proteins. In typical toxins, 7 novel-toxin sequences were identified, including 3 Na(+)-channel toxins, 3K(+)-channel toxins and 1 no-annotation toxin. These results increased 230% (115/50) venom components compared with previous studies from the M. martensii venom, especially 50% (24/48) typical toxins. Additionally, a mass fingerprint obtained by MALDI-TOF MS indicated that the scorpion venom contained more than 200 different molecular mass components. BIOLOGICAL SIGNIFICANCE This work firstly gave a systematic investigation of the M. martensii venom by combined proteomics strategy coupled with genomics and transcriptomics. A large number of protein components were unambiguously identified from the venom of M. martensii, most of which were confirmed for the first time. We also contributed 7 novel-toxin sequences and 93 protein sequences previously unknown to be part of the venom, for which we assigned potential biological functions. Besides, we obtained a mass fingerprint of the M. martensii venom. Together, our study not only provides the most comprehensive catalog of the molecular diversity of the M. martensii venom at the proteomic level, but also enriches the composition information of scorpion venom.
Collapse
Affiliation(s)
- Xiaobo Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Zhigui Duan
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Zhiyong Di
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yawen He
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Jianglin Li
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Zhongjie Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Chunliang Xie
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Xiongzhi Zeng
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Songping Liang
- Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha 410081, PR China.
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
104
|
Diego-García E, Caliskan F, Tytgat J. The Mediterranean scorpion Mesobuthus gibbosus (Scorpiones, Buthidae): transcriptome analysis and organization of the genome encoding chlorotoxin-like peptides. BMC Genomics 2014; 15:295. [PMID: 24746279 PMCID: PMC4234519 DOI: 10.1186/1471-2164-15-295] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 04/09/2014] [Indexed: 11/29/2022] Open
Abstract
Background Transcrof toxin genes of scorpion species have been published. Up to this moment, no information on the gene characterization of M. gibbosus is available. Results This study provides the first insight into gene expression in venom glands from M. gibbosus scorpion. A cDNA library was generated from the venom glands and subsequently analyzed (301 clones). Sequences from 177 high-quality ESTs were grouped as 48 Mgib sequences, of those 48 sequences, 40 (29 “singletons” and 11 “contigs”) correspond with one or more ESTs. We identified putative precursor sequences and were grouped them in different categories (39 unique transcripts, one with alternative reading frames), resulting in the identification of 12 new toxin-like and 5 antimicrobial precursors (transcripts). The analysis of the gene families revealed several new components categorized among various toxin families with effect on ion channels. Sequence analysis of a new KTx precursor provides evidence to validate a new KTx subfamily (α-KTx 27.x). A second part of this work involves the genomic organization of three Meg-chlorotoxin-like genes (ClTxs). Genomic DNA sequence reveals close similarities (presence of one same-phase intron) with the sole genomic organization of chlorotoxins ever reported (from M. martensii). Conclusions Transcriptome analysis is a powerful strategy that provides complete information of the gene expression and molecular diversity of the venom glands (telson). In this work, we generated the first catalogue of the gene expression and genomic organization of toxins from M. gibbosus. Our result represents a relevant contribution to the knowledge of toxin transcripts and complementary information related with other cell function proteins and venom peptide transcripts. The genomic organization of the chlorotoxin genes may help to understand the diversity of this gene family.
Collapse
Affiliation(s)
| | | | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, Campus Gasthuisberg O& N2,PO Box 922, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
105
|
Unusual binding mode of scorpion toxin BmKTX onto potassium channels relies on its distribution of acidic residues. Biochem Biophys Res Commun 2014; 447:70-6. [DOI: 10.1016/j.bbrc.2014.03.101] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 03/20/2014] [Indexed: 01/12/2023]
|
106
|
Zeng XC, Liu Y, Shi W, Zhang L, Luo X, Nie Y, Yang Y. Genome-wide search and comparative genomic analysis of the trypsin inhibitor-like cysteine-rich domain-containing peptides. Peptides 2014; 53:106-14. [PMID: 23973966 DOI: 10.1016/j.peptides.2013.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 11/24/2022]
Abstract
It was shown that peptides containing trypsin inhibitor-like cysteine-rich (TIL) domain are able to inhibit proteinase activities, and thus play important roles in various biological processes, such as immune response and anticoagulation. However, only a limited number of the TIL peptides have been identified and characterized so far; and little has been known about the evolutionary relationships of the genes encoding the TIL peptides. BmKAPi is a TIL domain-containing peptide that was identified from Mesobuthus martensii Karsch. Here, we conducted genome-wide searches for new peptides that are homologous to BmKAPi or possess a cysteine pattern similar to that of BmKAPi. As a result, we identified a total of 80 different TIL peptides from 34 species of arthropods. We found that these peptides can be classified into seven evolutionarily distinct groups. Furthermore, we cloned the genomic sequence of BmKAPi; the genomic sequences of the majority of other TIL peptides were also identified from the GenBank database using bioinformatical approaches. Through phylogenetic and comparative genomic analysis, we found 26 cases of intron gain events occurred in the genes of the TIL peptides; however, no instances of intron loss were observed. Moreover, we found that alternative splicing contributes to the diversification of the TIL peptides. It is interesting to see that four genes of the TIL domain-containing peptides overlap in a DNA region located on the chromosome LG B15 of Bombus terretris. These data suggest that the evolution of the TIL peptide genes are dynamic, which was dominated by intron gain.
Collapse
Affiliation(s)
- Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China.
| | - Yichen Liu
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Wanxia Shi
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Lei Zhang
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Xuesong Luo
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Yao Nie
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Ye Yang
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| |
Collapse
|
107
|
Rodríguez-Ravelo R, Restano-Cassulini R, Zamudio FZ, Coronas FIV, Espinosa-López G, Possani LD. A K⁺ channel blocking peptide from the Cuban scorpion Rhopalurus garridoi. Peptides 2014; 53:42-7. [PMID: 24512947 DOI: 10.1016/j.peptides.2013.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 11/25/2022]
Abstract
A proteomic analysis of the venom obtained from the Cuban scorpion Rhopalurus garridoi was performed. Venom was obtained by electrical stimulation, separated by high performance liquid chromatography, and the molecular masses of their 50 protein components were identified by mass spectrometry. A peptide of 3940 Da molecular mass was obtained in pure form and its primary structure determined. It contains 37 amino acid residues, including three disulfide bridges. Electrophysiological experiments showed that this peptide is capable of blocking reversibly K(+)-channels hKv1.1 with a Kd close to 1 μM, but is not effective against hKv1.4, hERG1 and EAG currents, at the same concentration. This is the first protein component ever isolated from this species of scorpion and was assigned the systematic number α-KTx 2.14.
Collapse
Affiliation(s)
- Rodolfo Rodríguez-Ravelo
- Center for Mountain Development, Ministry of Science, Technology and, Environment, Limonar de Monte Roux, El Salvador Guantánamo, Cuba.
| | - Rita Restano-Cassulini
- Department of Molecular Medicine and Bioprocesses, Biotechnology, Institute, National Autonomous University of Mexico, Avenida Universidad 2001, Colonia Chamilpa, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
| | - Fernando Z Zamudio
- Department of Molecular Medicine and Bioprocesses, Biotechnology, Institute, National Autonomous University of Mexico, Avenida Universidad 2001, Colonia Chamilpa, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
| | - Fredy I V Coronas
- Department of Molecular Medicine and Bioprocesses, Biotechnology, Institute, National Autonomous University of Mexico, Avenida Universidad 2001, Colonia Chamilpa, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
| | | | - Lourival D Possani
- Department of Molecular Medicine and Bioprocesses, Biotechnology, Institute, National Autonomous University of Mexico, Avenida Universidad 2001, Colonia Chamilpa, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
| |
Collapse
|
108
|
Electrophysiological characterization of Ts6 and Ts7, K⁺ channel toxins isolated through an improved Tityus serrulatus venom purification procedure. Toxins (Basel) 2014; 6:892-913. [PMID: 24590385 PMCID: PMC3968367 DOI: 10.3390/toxins6030892] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/24/2014] [Accepted: 02/17/2014] [Indexed: 01/09/2023] Open
Abstract
In Brazil, Tityus serrulatus (Ts) is the species responsible for most of the scorpion related accidents. Among the Ts toxins, the neurotoxins with action on potassium channels (α-KTx) present high interest, due to their effect in the envenoming process and the ion channel specificity they display. The α-KTx toxins family is the most relevant because its toxins can be used as therapeutic tools for specific target cells. The improved isolation method provided toxins with high resolution, obtaining pure Ts6 and Ts7 in two chromatographic steps. The effects of Ts6 and Ts7 toxins were evaluated in 14 different types of potassium channels using the voltage-clamp technique with two-microelectrodes. Ts6 toxin shows high affinity for Kv1.2, Kv1.3 and Shaker IR, blocking these channels in low concentrations. Moreover, Ts6 blocks the Kv1.3 channel in picomolar concentrations with an IC50 of 0.55 nM and therefore could be of valuable assistance to further designing immunosuppressive therapeutics. Ts7 toxin blocks multiple subtypes channels, showing low selectivity among the channels analyzed. This work also stands out in its attempt to elucidate the residues important for interacting with each channel and, in the near future, to model a desired drug.
Collapse
|
109
|
Horta CCR, Magalhães BDF, Oliveira-Mendes BBR, do Carmo AO, Duarte CG, Felicori LF, Machado-de-Ávila RA, Chávez-Olórtegui C, Kalapothakis E. Molecular, immunological, and biological characterization of Tityus serrulatus venom hyaluronidase: new insights into its role in envenomation. PLoS Negl Trop Dis 2014; 8:e2693. [PMID: 24551256 PMCID: PMC3923731 DOI: 10.1371/journal.pntd.0002693] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/28/2013] [Indexed: 12/15/2022] Open
Abstract
Background Scorpionism is a public health problem in Brazil, and Tityus serrulatus (Ts) is primarily responsible for severe accidents. The main toxic components of Ts venom are low-molecular-weight neurotoxins; however, the venom also contains poorly characterized high-molecular-weight enzymes. Hyaluronidase is one such enzyme that has been poorly characterized. Methods and principal findings We examined clones from a cDNA library of the Ts venom gland and described two novel isoforms of hyaluronidase, TsHyal-1 and TsHyal-2. The isoforms are 83% identical, and alignment of their predicted amino acid sequences with other hyaluronidases showed conserved residues between evolutionarily distant organisms. We performed gel filtration followed by reversed-phase chromatography to purify native hyaluronidase from Ts venom. Purified native Ts hyaluronidase was used to produce anti-hyaluronidase serum in rabbits. As little as 0.94 µl of anti-hyaluronidase serum neutralized 1 LD50 (13.2 µg) of Ts venom hyaluronidase activity in vitro. In vivo neutralization assays showed that 121.6 µl of anti-hyaluronidase serum inhibited mouse death 100%, whereas 60.8 µl and 15.2 µl of serum delayed mouse death. Inhibition of death was also achieved by using the hyaluronidase pharmacological inhibitor aristolochic acid. Addition of native Ts hyaluronidase (0.418 µg) to pre-neutralized Ts venom (13.2 µg venom+0.94 µl anti-hyaluronidase serum) reversed mouse survival. We used the SPOT method to map TsHyal-1 and TsHyal-2 epitopes. More peptides were recognized by anti-hyaluronidase serum in TsHyal-1 than in TsHyal-2. Epitopes common to both isoforms included active site residues. Conclusions Hyaluronidase inhibition and immunoneutralization reduced the toxic effects of Ts venom. Our results have implications in scorpionism therapy and challenge the notion that only neurotoxins are important to the envenoming process. In Brazil, accidents with scorpion stings have been a serious public health problem, and Tityus serrulatus (Ts) is primarily responsible for severe accidents. Therefore, efforts have been made to understand the characteristics of the molecules present in scorpion venoms. These venoms are complex mixtures, in which neurotoxins are the main toxic components. Ts venom also contains enzymes, such as hyaluronidase, that have not been well characterized. In this study, we described for the first time two sequences of Ts hyaluronidase isoforms: TsHyal-1 and TsHyal-2. We purified native hyaluronidase from Ts venom and produced anti-hyaluronidase serum in rabbits. This serum neutralized hyaluronidase activity present in Ts venom. In vivo neutralization assays showed that anti-hyaluronidase serum inhibited and delayed mouse death after injection of a lethal dose (50% lethal dose, LD50) of Ts venom. This work confirms the influence of hyaluronidase in Ts venom lethality and paves the way for the development of new strategies for scorpionism therapy.
Collapse
Affiliation(s)
- Carolina Campolina Rebello Horta
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bárbara de Freitas Magalhães
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Anderson Oliveira do Carmo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Guerra Duarte
- Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Liza Figueiredo Felicori
- Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Andrez Machado-de-Ávila
- Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Evanguedes Kalapothakis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
110
|
Dorce ALC, Dorce VA, Nencioni ALA. Mild reproductive effects of the Tityus bahiensis scorpion venom in rats. J Venom Anim Toxins Incl Trop Dis 2014; 20:4. [PMID: 24521392 PMCID: PMC3927621 DOI: 10.1186/1678-9199-20-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/06/2014] [Indexed: 05/11/2023] Open
Abstract
Background Scorpion envenoming is a public health problem in Brazil, where Tityus serrulatus and T. bahiensis are considered the most dangerous scorpions. They are well adapted to urbanized environments, and there is an increasing probability of human exposure to these venoms, including during pregnancy. Not much is known about the effects of prenatal exposure to the venom, and no information is available to aid in the rational treatment of victims stung during pregnancy. Thus, this study aimed to investigate whether venom from the scorpion T. bahiensis administered once to pregnant female rats at a dose that causes a moderate envenomation may lead to deleterious effects on the reproductive performance of the dams and on the development of their offspring. This is the first work demonstrating that T. bahiensis venom, when administered experimentally to rats, alters maternal reproductive performance and the morphological development of fetuses. The venom was given to dams on the 5th (GD5) or on the 10th (GD10) gestational day. After laparotomy, on GD21, fetuses and placentas were counted, weighed and externally analyzed. The corpora lutea were counted. The sex and vitality of fetuses were evaluated, and each litter was then randomly divided for visceral or skeletal analyses. Data were analyzed by ANOVA followed by the Tukey-Kramer test and Fisher’s exact test. The significance level for all tests was set at p < 0.05. Results GD5 group presented an increased number of pre-implantation losses. Weight gains in fetuses and placentas were observed in the GD5 and GD10 groups. Weights of the heart and lungs were elevated in GD5 and GD10 and liver weight in GD10. Conclusions Moderate envenomation by T. bahiensis scorpion venom alters maternal reproductive performance and fetal development. However, these are preliminary results whose causes should be investigated more carefully in future studies.
Collapse
Affiliation(s)
| | | | - Ana Leonor A Nencioni
- Laboratory of Pharmacology, Butantan Institute, Avenue Dr, Vital Brasil, 1500, São Paulo, SP CEP 05503-900, Brazil.
| |
Collapse
|
111
|
Zhu S, Peigneur S, Gao B, Umetsu Y, Ohki S, Tytgat J. Experimental conversion of a defensin into a neurotoxin: implications for origin of toxic function. Mol Biol Evol 2014; 31:546-59. [PMID: 24425781 DOI: 10.1093/molbev/msu038] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Scorpion K(+) channel toxins and insect defensins share a conserved three-dimensional structure and related biological activities (defense against competitors or invasive microbes by disrupting their membrane functions), which provides an ideal system to study how functional evolution occurs in a conserved structural scaffold. Using an experimental approach, we show that the deletion of a small loop of a parasitoid venom defensin possessing the "scorpion toxin signature" (STS) can remove steric hindrance of peptide-channel interactions and result in a neurotoxin selectively inhibiting K(+) channels with high affinities. This insect defensin-derived toxin adopts a hallmark scorpion toxin fold with a common cysteine-stabilized α-helical and β-sheet motif, as determined by nuclear magnetic resonance analysis. Mutations of two key residues located in STS completely diminish or significantly decrease the affinity of the toxin on the channels, demonstrating that this toxin binds to K(+) channels in the same manner as scorpion toxins. Taken together, these results provide new structural and functional evidence supporting the predictability of toxin evolution. The experimental strategy is the first employed to establish an evolutionary relationship of two distantly related protein families.
Collapse
Affiliation(s)
- Shunyi Zhu
- Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | | | | | | | | | | |
Collapse
|
112
|
Lowery CA, Adler M, Borrell A, Janda KD. Scorpion toxins for the reversal of BoNT-induced paralysis. Bioorg Med Chem Lett 2013; 23:6743-6. [PMID: 24252544 DOI: 10.1016/j.bmcl.2013.10.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 11/15/2022]
Abstract
The botulinum neurotoxins, characterized by their neuromuscular paralytic effects, are the most toxic proteins known to man. Due to their extreme potency, ease of production, and duration of activity, the BoNT proteins have been classified by the Centers for Disease Control as high threat agents for bioterrorism. In an attempt to discover effective BoNT therapeutics, we have pursued a strategy in which we leverage the blockade of K(+) channels that ultimately results in the reversal of neuromuscular paralysis. Towards this end, we utilized peptides derived from scorpion venom that are highly potent K(+) channel blockers. Herein, we report the synthesis of charybdotoxin, a 37 amino acid peptide, and detail its activity, along with iberiotoxin and margatoxin, in a mouse phrenic nerve hemidiaphragm assay in the absence and the presence of BoNT/A.
Collapse
Affiliation(s)
- Colin A Lowery
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Immunology and Microbial Sciences, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
113
|
Quintero-Hernández V, Jiménez-Vargas J, Gurrola G, Valdivia H, Possani L. Scorpion venom components that affect ion-channels function. Toxicon 2013; 76:328-42. [PMID: 23891887 PMCID: PMC4089097 DOI: 10.1016/j.toxicon.2013.07.012] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/16/2013] [Indexed: 12/31/2022]
Abstract
The number and types of venom components that affect ion-channel function are reviewed. These are the most important venom components responsible for human intoxication, deserving medical attention, often requiring the use of specific anti-venoms. Special emphasis is given to peptides that recognize Na(+)-, K(+)- and Ca(++)-channels of excitable cells. Knowledge generated by direct isolation of peptides from venom and components deduced from cloned genes, whose amino acid sequences are deposited into databanks are nowadays in the order of 1.5 thousands, out of an estimate biodiversity closed to 300,000. Here the diversity of components is briefly reviewed with mention to specific references. Structural characteristic are discussed with examples taken from published work. The principal mechanisms of action of the three different types of peptides are also reviewed. Na(+)-channel specific venom components usually are modifier of the open and closing kinetic mechanisms of the ion-channels, whereas peptides affecting K(+)-channels are normally pore blocking agents. The Ryanodine Ca(++)-channel specific peptides are known for causing sub-conducting stages of the channels conductance and some were shown to be able to internalize penetrating inside the muscle cells.
Collapse
Affiliation(s)
- V. Quintero-Hernández
- Department of Molecular Medicine and Bioprocesses, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Avenida Universidad, 2001, Apartado Postal 510-3, Cuernavaca 62210, Morelos, Mexico
| | - J.M. Jiménez-Vargas
- Department of Molecular Medicine and Bioprocesses, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Avenida Universidad, 2001, Apartado Postal 510-3, Cuernavaca 62210, Morelos, Mexico
| | - G.B. Gurrola
- Department of Molecular Medicine and Bioprocesses, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Avenida Universidad, 2001, Apartado Postal 510-3, Cuernavaca 62210, Morelos, Mexico
- Cardiovascular Center 2139, Michigan University, Ann Arbor, MI 48109-5644, U.S.A
| | - H.H.F. Valdivia
- Cardiovascular Center 2139, Michigan University, Ann Arbor, MI 48109-5644, U.S.A
| | - L.D. Possani
- Department of Molecular Medicine and Bioprocesses, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Avenida Universidad, 2001, Apartado Postal 510-3, Cuernavaca 62210, Morelos, Mexico
| |
Collapse
|
114
|
Landoulsi Z, Miceli F, Palmese A, Amoresano A, Marino G, El Ayeb M, Taglialatela M, Benkhalifa R. Subtype-selective activation of K(v)7 channels by AaTXKβ₂₋₆₄, a novel toxin variant from the Androctonus australis scorpion venom. Mol Pharmacol 2013; 84:763-73. [PMID: 24019223 DOI: 10.1124/mol.113.088971] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
K(v)7.4 channel subunits are expressed in central auditory pathways and in inner ear sensory hair cells and skeletal and smooth muscle cells. Openers of K(v)7.4 channels have been suggested to improve hearing loss, systemic or pulmonary arterial hypertension, urinary incontinence, gastrointestinal and neuropsychiatric diseases, and skeletal muscle disorders. Scorpion venoms are a large source of peptides active on K⁺ channels. Therefore, we have optimized a combined purification/screening procedure to identify specific modulator(s) of K(v)7.4 channels from the venom of the North African scorpion Androctonus australis (Aa). We report the isolation and functional characterization of AaTXKβ₂₋₆₄, a novel variant of AaTXKβ₁₋₆₄, in a high-performance liquid chromatography fraction from Aa venom (named P8), which acts as the first peptide activator of K(v)7.4 channels. In particular, in both Xenopus oocytes and mammalian Chinese hamster ovary cells, AaTXKβ₂₋₆₄, but not AaTXKβ₁₋₆₄, hyperpolarized the threshold voltage of current activation and increased the maximal currents of heterologously expressed K(v)7.4 channels. AaTXKβ₂₋₆₄ also activated K(v)7.3, K(v)7.2/3, and K(v)7.5/3 channels, whereas homomeric K(v)1.1, K(v)7.1, and K(v)7.2 channels were unaffected. We anticipate that these results may prove useful in unraveling the novel biologic roles of AaTXKβ₂₋₆₄-sensitive K(v)7 channels and developing novel pharmacologic tools that allow subtype-selective targeting of K(v)7 channels.
Collapse
Affiliation(s)
- Zied Landoulsi
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis, Université Tunis-El Manar, Tunis-Belvédère, Tunisia (Z.L., M.E.A., R.B.); Division of Pharmacology, Department of Neuroscience, University of Naples Federico II, Naples, Italy (F.M., M.T.); Department of Chemical Sciences, University of Naples Federico II, Naples, Italy (A.P., A.A., G.M.); Department of Medicine and Health Science, University of Molise, Campobasso, Italy (M.T.); and Unidad de Biofísica, Consejo Superior de Investigaciones Cientificas, Universidad del Pais Vasco, Leioa, Spain (M.T.)
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Smith JJ, Herzig V, King GF, Alewood PF. The insecticidal potential of venom peptides. Cell Mol Life Sci 2013; 70:3665-93. [PMID: 23525661 PMCID: PMC11114029 DOI: 10.1007/s00018-013-1315-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 12/19/2022]
Abstract
Pest insect species are a burden to humans as they destroy crops and serve as vectors for a wide range of diseases including malaria and dengue. Chemical insecticides are currently the dominant approach for combating these pests. However, the de-registration of key classes of chemical insecticides due to their perceived ecological and human health risks in combination with the development of insecticide resistance in many pest insect populations has created an urgent need for improved methods of insect pest control. The venoms of arthropod predators such as spiders and scorpions are a promising source of novel insecticidal peptides that often have different modes of action to extant chemical insecticides. These peptides have been optimized via a prey-predator arms race spanning hundreds of millions of years to target specific types of insect ion channels and receptors. Here we review the current literature on insecticidal venom peptides, with a particular focus on their structural and pharmacological diversity, and discuss their potential for deployment as insecticides.
Collapse
Affiliation(s)
- Jennifer J. Smith
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| | - Paul F. Alewood
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072 Australia
| |
Collapse
|
116
|
Peigneur S, Yamaguchi Y, Goto H, Srinivasan KN, Gopalakrishnakone P, Tytgat J, Sato K. Synthesis and characterization of amino acid deletion analogs of κ-hefutoxin 1, a scorpion toxin on potassium channels. Toxicon 2013; 71:25-30. [DOI: 10.1016/j.toxicon.2013.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/15/2013] [Indexed: 10/26/2022]
|
117
|
Ali SA, Alam M, Abbasi A, Kalbacher H, Schaechinger TJ, Hu Y, Zhijian C, Li W, Voelter W. Structure–Activity Relationship of a Highly Selective Peptidyl Inhibitor of Kv1.3 Voltage-Gated K+-Channel from Scorpion (B. sindicus) Venom. Int J Pept Res Ther 2013. [DOI: 10.1007/s10989-013-9362-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
118
|
Schwartz EF, Bartok A, Schwartz CA, Papp F, Gómez-Lagunas F, Panyi G, Possani LD. OcyKTx2, a new K⁺-channel toxin characterized from the venom of the scorpion Opisthacanthus cayaporum. Peptides 2013; 46:40-6. [PMID: 23684923 DOI: 10.1016/j.peptides.2013.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/25/2013] [Accepted: 04/27/2013] [Indexed: 11/26/2022]
Abstract
Opisthacanthus cayaporum belongs to the Liochelidae family, and the scorpions from this genus occur in southern Africa, Central America and South America and, therefore, can be considered a true Gondwana heritage. In this communication, the isolation, primary structure characterization, and K⁺-channel blocking activity of new peptide from this scorpion venom are reported. OcyKTx2 is a 34 amino acid long peptide with four disulfide bridges and molecular mass of 3807 Da. Electrophysiological assays conducted with pure OcyKTx2 showed that this toxin reversibly blocks Shaker B K⁺-channels with a Kd of 82 nM, and presents an even better affinity toward hKv1.3, blocking it with a Kd of ∼18 nM. OcyKTx2 shares high sequence identity with peptides belonging to subfamily 6 of α-KTxs that clustered very closely in the phylogenetic tree included here. Sequence comparison, chain length and number of disulfide bridges analysis classify OcyKTx2 into subfamily 6 of the α-KTx scorpion toxins (systematic name, α-KTx6.17).
Collapse
Affiliation(s)
- Elisabeth F Schwartz
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, 70910-900 DF, Brazil.
| | | | | | | | | | | | | |
Collapse
|
119
|
He Y, Zhao R, Di Z, Li Z, Xu X, Hong W, Wu Y, Zhao H, Li W, Cao Z. Molecular diversity of Chaerilidae venom peptides reveals the dynamic evolution of scorpion venom components from Buthidae to non-Buthidae. J Proteomics 2013; 89:1-14. [DOI: 10.1016/j.jprot.2013.06.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 06/04/2013] [Accepted: 06/09/2013] [Indexed: 11/16/2022]
|
120
|
Valdez-Velázquez LL, Quintero-Hernández V, Romero-Gutiérrez MT, Coronas FIV, Possani LD. Mass fingerprinting of the venom and transcriptome of venom gland of scorpion Centruroides tecomanus. PLoS One 2013; 8:e66486. [PMID: 23840487 PMCID: PMC3688770 DOI: 10.1371/journal.pone.0066486] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/06/2013] [Indexed: 01/02/2023] Open
Abstract
Centruroides tecomanus is a Mexican scorpion endemic of the State of Colima, that causes human fatalities. This communication describes a proteome analysis obtained from milked venom and a transcriptome analysis from a cDNA library constructed from two pairs of venom glands of this scorpion. High perfomance liquid chromatography separation of soluble venom produced 80 fractions, from which at least 104 individual components were identified by mass spectrometry analysis, showing to contain molecular masses from 259 to 44,392 Da. Most of these components are within the expected molecular masses for Na+- and K+-channel specific toxic peptides, supporting the clinical findings of intoxication, when humans are stung by this scorpion. From the cDNA library 162 clones were randomly chosen, from which 130 sequences of good quality were identified and were clustered in 28 contigs containing, each, two or more expressed sequence tags (EST) and 49 singlets with only one EST. Deduced amino acid sequence analysis from 53% of the total ESTs showed that 81% (24 sequences) are similar to known toxic peptides that affect Na+-channel activity, and 19% (7 unique sequences) are similar to K+-channel especific toxins. Out of the 31 sequences, at least 8 peptides were confirmed by direct Edman degradation, using components isolated directly from the venom. The remaining 19%, 4%, 4%, 15% and 5% of the ESTs correspond respectively to proteins involved in cellular processes, antimicrobial peptides, venom components, proteins without defined function and sequences without similarity in databases. Among the cloned genes are those similar to metalloproteinases.
Collapse
Affiliation(s)
| | | | | | - Fredy I. V. Coronas
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Lourival D. Possani
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- * E-mail:
| |
Collapse
|
121
|
Hmed B, Serria HT, Mounir ZK. Scorpion peptides: potential use for new drug development. J Toxicol 2013; 2013:958797. [PMID: 23843786 PMCID: PMC3697785 DOI: 10.1155/2013/958797] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 05/19/2013] [Accepted: 05/20/2013] [Indexed: 12/13/2022] Open
Abstract
Several peptides contained in scorpion fluids showed diverse array of biological activities with high specificities to their targeted sites. Many investigations outlined their potent effects against microbes and showed their potential to modulate various biological mechanisms that are involved in immune, nervous, cardiovascular, and neoplastic diseases. Because of their important structural and functional diversity, it is projected that scorpion-derived peptides could be used to develop new specific drugs. This review summarizes relevant findings improving their use as valuable tools for new drugs development.
Collapse
Affiliation(s)
- BenNasr Hmed
- Laboratory of Pharmacology, Medicine Faculty of Sfax, Street of Majida Boulila, 3029 Sfax, Tunisia
| | - Hammami Turky Serria
- Laboratory of Pharmacology, Medicine Faculty of Sfax, Street of Majida Boulila, 3029 Sfax, Tunisia
| | - Zeghal Khaled Mounir
- Laboratory of Pharmacology, Medicine Faculty of Sfax, Street of Majida Boulila, 3029 Sfax, Tunisia
| |
Collapse
|
122
|
Protease inhibitors from marine venomous animals and their counterparts in terrestrial venomous animals. Mar Drugs 2013; 11:2069-112. [PMID: 23771044 PMCID: PMC3721222 DOI: 10.3390/md11062069] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/28/2013] [Accepted: 05/30/2013] [Indexed: 01/04/2023] Open
Abstract
The Kunitz-type protease inhibitors are the best-characterized family of serine protease inhibitors, probably due to their abundance in several organisms. These inhibitors consist of a chain of ~60 amino acid residues stabilized by three disulfide bridges, and was first observed in the bovine pancreatic trypsin inhibitor (BPTI)-like protease inhibitors, which strongly inhibit trypsin and chymotrypsin. In this review we present the protease inhibitors (PIs) described to date from marine venomous animals, such as from sea anemone extracts and Conus venom, as well as their counterparts in terrestrial venomous animals, such as snakes, scorpions, spiders, Anurans, and Hymenopterans. More emphasis was given to the Kunitz-type inhibitors, once they are found in all these organisms. Their biological sources, specificity against different proteases, and other molecular blanks (being also K+ channel blockers) are presented, followed by their molecular diversity. Whereas sea anemone, snakes and other venomous animals present mainly Kunitz-type inhibitors, PIs from Anurans present the major variety in structure length and number of Cys residues, with at least six distinguishable classes. A representative alignment of PIs from these venomous animals shows that, despite eventual differences in Cys assignment, the key-residues for the protease inhibitory activity in all of them occupy similar positions in primary sequence. The key-residues for the K+ channel blocking activity was also compared.
Collapse
|
123
|
Verano-Braga T, Dutra AAA, León IR, Melo-Braga MN, Roepstorff P, Pimenta AMC, Kjeldsen F. Moving Pieces in a Venomic Puzzle: Unveiling Post-translationally Modified Toxins from Tityus serrulatus. J Proteome Res 2013; 12:3460-70. [DOI: 10.1021/pr4003068] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thiago Verano-Braga
- Department of Biochemistry and
Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Alexandre A. A. Dutra
- Department
of Biochemistry and
Immunology, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Ileana R. León
- Department of Biochemistry and
Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Marcella N. Melo-Braga
- Department of Biochemistry and
Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Peter Roepstorff
- Department of Biochemistry and
Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Adriano M. C. Pimenta
- Department
of Biochemistry and
Immunology, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| | - Frank Kjeldsen
- Department of Biochemistry and
Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
124
|
Rodríguez-Ravelo R, Coronas FIV, Zamudio FZ, González-Morales L, López GE, Urquiola AR, Possani LD. The Cuban scorpion Rhopalurus junceus (Scorpiones, Buthidae): component variations in venom samples collected in different geographical areas. J Venom Anim Toxins Incl Trop Dis 2013; 19:13. [PMID: 23849540 PMCID: PMC3710086 DOI: 10.1186/1678-9199-19-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/12/2012] [Indexed: 12/31/2022] Open
Abstract
Backgound The venom of the Cuban scorpion Rhopalurus junceus is poorly study from the point of view of their components at molecular level and the functions associated. The purpose of this article was to conduct a proteomic analysis of venom components from scorpions collected in different geographical areas of the country. Results Venom from the blue scorpion, as it is called, was collected separately from specimens of five distinct Cuban towns (Moa, La Poa, Limonar, El Chote and Farallones) of the Nipe-Sagua-Baracoa mountain massif and fractionated by high performance liquid chromatography (HPLC); the molecular masses of each fraction were ascertained by mass spectrometry analysis. At least 153 different molecular mass components were identified among the five samples analyzed. Molecular masses varied from 466 to 19755 Da. Scorpion HPLC profiles differed among these different geographical locations and the predominant molecular masses of their components. The most evident differences are in the relative concentration of the venom components. The most abundant components presented molecular weights around 4 kDa, known to be K+-channel specific peptides, and 7 kDa, known to be Na+-channel specific peptides, but with small molecular weight differences. Approximately 30 peptides found in venom samples from the different geographical areas are identical, supporting the idea that they all probably belong to the same species, with some interpopulational variations. Differences were also found in the presence of phospholipase, found in venoms from the Poa area (molecular weights on the order of 14 to 19 kDa). The only ubiquitous enzyme identified in the venoms from all five localities studied (hyaluronidase) presented the same 45 kD molecular mass, identified by gel electrophoresis analysis. Conclusions The venom of these scorpions from different geographical areas seem to be similar, and are rich in peptides that have of the same molecular masses of the peptides purified from other scorpions that affect ion-channel functions.
Collapse
Affiliation(s)
- Rodolfo Rodríguez-Ravelo
- Department of Molecular Medicine and Bioprocesses, Biotechnology Institute, National Autonomous University of Mexico, Cuernavaca, Mexico.
| | | | | | | | | | | | | |
Collapse
|
125
|
Genomic and structural characterization of Kunitz-type peptide LmKTT-1a highlights diversity and evolution of scorpion potassium channel toxins. PLoS One 2013; 8:e60201. [PMID: 23573241 PMCID: PMC3616063 DOI: 10.1371/journal.pone.0060201] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 02/21/2013] [Indexed: 01/31/2023] Open
Abstract
Background Recently, a new subfamily of long-chain toxins with a Kunitz-type fold was found in scorpion venom glands. Functionally, these toxins inhibit protease activity and block potassium channels. However, the genomic organization and three-dimensional (3-D) structure of this kind of scorpion toxin has not been reported. Principal Findings Here, we characterized the genomic organization and 3-D nuclear magnetic resonance structure of the scorpion Kunitz-type toxin, LmKTT-1a, which has a unique cysteine pattern. The LmKTT-1a gene contained three exons, which were interrupted by two introns located in the mature peptide region. Despite little similarity to other Kunitz-type toxins and a unique pattern of disulfide bridges, LmKTT-1a possessed a conserved Kunitz-type structural fold with one α-helix and two β-sheets. Comparison of the genomic organization, 3-D structure, and functional data of known toxins from the α-KTx, β-KTx, γ-KTx, and κ-KTx subfamily suggested that scorpion Kunitz-type potassium channel toxins might have evolved from a new ancestor that is completely different from the common ancestor of scorpion toxins with a CSα/β fold. Thus, these analyses provide evidence of a new scorpion potassium channel toxin subfamily, which we have named δ-KTx. Conclusions/Significance Our results highlight the genomic, structural, and evolutionary diversity of scorpion potassium channel toxins. These findings may accelerate the design and development of diagnostic and therapeutic peptide agents for human potassium channelopathies.
Collapse
|
126
|
Feng J, Hu Y, Yi H, Yin S, Han S, Hu J, Chen Z, Yang W, Cao Z, De Waard M, Sabatier JM, Li W, Wu Y. Two conserved arginine residues from the SK3 potassium channel outer vestibule control selectivity of recognition by scorpion toxins. J Biol Chem 2013; 288:12544-53. [PMID: 23511633 DOI: 10.1074/jbc.m112.433888] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Potassium channel functions are often deciphered by using selective and potent scorpion toxins. Among these toxins, only a limited subset is capable of selectively blocking small conductance Ca(2+)-activated K(+) (SK) channels. The structural bases of this selective SK channel recognition remain unclear. In this work, we demonstrate the key role of the electric charges of two conserved arginine residues (Arg-485 and Arg-489) from the SK3 channel outer vestibule in the selective recognition by the SK3-blocking BmP05 toxin. Indeed, individually substituting these residues with histidyl or lysyl (maintaining the positive electric charge partially or fully), although decreasing BmP05 affinity, still preserved the toxin sensitivity profile of the SK3 channel (as evidenced by the lack of recognition by many other types of potassium channel-sensitive charybdotoxin). In contrast, when Arg-485 or Arg-489 of the SK3 channel was mutated to an acidic (Glu) or alcoholic (Ser) amino acid residue, the channel lost its sensitivity to BmP05 and became susceptible to the "new" blocking activity by charybdotoxin. In addition to these SK3 channel basic residues important for sensitivity, two acidic residues, Asp-492 and Asp-518, also located in the SK3 channel outer vestibule, were identified as being critical for toxin affinity. Furthermore, molecular modeling data indicate the existence of a compact SK3 channel turret conformation (like a peptide screener), where the basic rings of Arg-485 and Arg-489 are stabilized by strong ionic interactions with Asp-492 and Asp-518. In conclusion, the unique properties of Arg-485 and Arg-489 (spatial orientations and molecular interactions) in the SK3 channel account for its toxin sensitivity profile.
Collapse
Affiliation(s)
- Jing Feng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Computational studies of marine toxins targeting ion channels. Mar Drugs 2013; 11:848-69. [PMID: 23528952 PMCID: PMC3705375 DOI: 10.3390/md11030848] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/30/2013] [Accepted: 02/07/2013] [Indexed: 12/18/2022] Open
Abstract
Toxins from marine animals offer novel drug leads for treatment of diseases involving ion channels. Computational methods could be very helpful in this endeavour in several ways, e.g., (i) constructing accurate models of the channel-toxin complexes using docking and molecular dynamics (MD) simulations; (ii) determining the binding free energies of toxins from umbrella sampling MD simulations; (iii) predicting the effect of mutations from free energy MD simulations. Using these methods, one can design new analogs of toxins with improved affinity and selectivity properties. Here we present a review of the computational methods and discuss their applications to marine toxins targeting potassium and sodium channels. Detailed examples from the potassium channel toxins—ShK from sea anemone and κ-conotoxin PVIIA—are provided to demonstrate capabilities of the computational methods to give accurate descriptions of the channel-toxin complexes and the energetics of their binding. An example is also given from sodium channel toxins (µ-conotoxin GIIIA) to illustrate the differences between the toxin binding modes in potassium and sodium channels.
Collapse
|
128
|
Orts DJB, Peigneur S, Madio B, Cassoli JS, Montandon GG, Pimenta AMC, Bicudo JEPW, Freitas JC, Zaharenko AJ, Tytgat J. Biochemical and electrophysiological characterization of two sea anemone type 1 potassium toxins from a geographically distant population of Bunodosoma caissarum. Mar Drugs 2013; 11:655-79. [PMID: 23466933 PMCID: PMC3705364 DOI: 10.3390/md11030655] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/23/2013] [Accepted: 02/15/2013] [Indexed: 12/12/2022] Open
Abstract
Sea anemone (Cnidaria, Anthozoa) venom is an important source of bioactive compounds used as tools to study the pharmacology and structure-function of voltage-gated K+ channels (KV). These neurotoxins can be divided into four different types, according to their structure and mode of action. In this work, for the first time, two toxins were purified from the venom of Bunodosoma caissarum population from Saint Peter and Saint Paul Archipelago, Brazil. Sequence alignment and phylogenetic analysis reveals that BcsTx1 and BcsTx2 are the newest members of the sea anemone type 1 potassium channel toxins. Their functional characterization was performed by means of a wide electrophysiological screening on 12 different subtypes of KV channels (KV1.1-KV1.6; KV2.1; KV3.1; KV4.2; KV4.3; hERG and Shaker IR). BcsTx1 shows a high affinity for rKv1.2 over rKv1.6, hKv1.3, Shaker IR and rKv1.1, while Bcstx2 potently blocked rKv1.6 over hKv1.3, rKv1.1, Shaker IR and rKv1.2. Furthermore, we also report for the first time a venom composition and biological activity comparison between two geographically distant populations of sea anemones.
Collapse
Affiliation(s)
- Diego J. B. Orts
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, SP, 05508-090, Brazil; E-Mails: (D.J.B.O.); (B.M.); (J.E.P.W.B.); (J.C.F.)
- Center of Marine Biology, University of São Paulo, São Sebastião, SP, 11600-000, Brazil
| | - Steve Peigneur
- Laboratory of Toxicology, University of Leuven (K.U. Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium; E-Mail:
| | - Bruno Madio
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, SP, 05508-090, Brazil; E-Mails: (D.J.B.O.); (B.M.); (J.E.P.W.B.); (J.C.F.)
| | - Juliana S. Cassoli
- Laboratory of Venoms and Animals Toxins, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil; E-Mails: (J.S.C.); (G.G.M.); (A.M.C.P.)
| | - Gabriela G. Montandon
- Laboratory of Venoms and Animals Toxins, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil; E-Mails: (J.S.C.); (G.G.M.); (A.M.C.P.)
| | - Adriano M. C. Pimenta
- Laboratory of Venoms and Animals Toxins, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil; E-Mails: (J.S.C.); (G.G.M.); (A.M.C.P.)
| | - José E. P. W. Bicudo
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, SP, 05508-090, Brazil; E-Mails: (D.J.B.O.); (B.M.); (J.E.P.W.B.); (J.C.F.)
| | - José C. Freitas
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, SP, 05508-090, Brazil; E-Mails: (D.J.B.O.); (B.M.); (J.E.P.W.B.); (J.C.F.)
| | - André J. Zaharenko
- Laboratorio de Genetica, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Jan Tytgat
- Laboratory of Toxicology, University of Leuven (K.U. Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium; E-Mail:
| |
Collapse
|
129
|
Luna-Ramírez K, Quintero-Hernández V, Vargas-Jaimes L, Batista CV, Winkel KD, Possani LD. Characterization of the venom from the Australian scorpion Urodacus yaschenkoi: Molecular mass analysis of components, cDNA sequences and peptides with antimicrobial activity. Toxicon 2013. [DOI: 10.1016/j.toxicon.2012.11.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
130
|
Zeng XC, Nie Y, Luo X, Wu S, Shi W, Zhang L, Liu Y, Cao H, Yang Y, Zhou J. Molecular and bioinformatical characterization of a novel superfamily of cysteine-rich peptides from arthropods. Peptides 2013; 41:45-58. [PMID: 23099316 DOI: 10.1016/j.peptides.2012.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/05/2012] [Accepted: 10/05/2012] [Indexed: 12/17/2022]
Abstract
The full-length cDNA sequences of two novel cysteine-rich peptides (referred to as HsVx1 and MmKTx1) were obtained from scorpions. The two peptides represent a novel class of cysteine-rich peptides with a unique cysteine pattern. The genomic sequence of HsVx1 is composed of three exons interrupted by two introns that are localized in the mature peptide encoding region and inserted in phase 1 and phase 2, respectively. Such a genomic organization markedly differs from those of other peptides from scorpions described previously. Genome-wide search for the orthologs of HsVx1 identified 59 novel cysteine-rich peptides from arthropods. These peptides share a consistent cysteine pattern with HsVx1. Genomic comparison revealed extensive intron length differences and intronic number and position polymorphisms among the genes of these peptides. Further analysis identified 30 cases of intron sliding, 1 case of intron gain and 22 cases of intron loss occurred with the genes of the HsVx1 and HsVx1-like peptides. It is interesting to see that three HsVx1-like peptides XP_001658928, XP_001658929 and XP_001658930 were derived from a single gene (XP gene): the former two were generated from alternative splicing; the third one was encoded by a DNA region in the reverse complementary strand of the third intron of the XP gene. These findings strongly suggest that the genes of these cysteine-rich peptides were evolved by intron sliding, intron gain/loss, gene recombination and alternative splicing events in response to selective forces without changing their cysteine pattern. The evolution of these genes is dominated by intron sliding and intron loss.
Collapse
Affiliation(s)
- Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Mahdavi S, Kuyucak S. Why the Drosophila Shaker K+ channel is not a good model for ligand binding to voltage-gated Kv1 channels. Biochemistry 2013; 52:1631-40. [PMID: 23398369 DOI: 10.1021/bi301257p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Drosophila Shaker K(+) channel is the first cloned voltage-gated potassium channel and has, therefore, played an important role in structural and functional studies of those channels. While such a role is well justified for ion permeation, it is not clear whether this also extends to ligand binding. Despite the high degree of homology among Shaker and Kv1 channels, κ-conotoxin PVIIA (κ-PVIIA) binds to Shaker with high affinity but not to Kv1 channels. Here we address this issue by studying binding of κ-PVIIA to Shaker and Kv1 channels using molecular dynamics (MD) simulations. The structures of the channel-toxin complexes are constructed via docking and refinement with MD. The binding mode of each complex is characterized and compared to available mutagenesis data to validate the complex models. The potential of mean force for dissociation of the Shaker-κ-PVIIA complex is calculated from umbrella sampling MD simulations, and the corresponding binding free energy is determined, which provides further validation of the complex structure. Comparison of the Shaker and Kv1 complex models shows that a few mutations in the turret and extended regions are sufficient to abolish the observed sensitivity of Shaker to κ-PVIIA. This study demonstrates that Shaker is not always a good model for Kv1 channels for ligand binding. It also provides insights into the binding of the toxin to potassium channels that will be useful for improving affinity and selectivity properties of Kv1 channels.
Collapse
Affiliation(s)
- Somayeh Mahdavi
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | | |
Collapse
|
132
|
Fluorescent system based on bacterial expression of hybrid KcsA channels designed for Kv1.3 ligand screening and study. Anal Bioanal Chem 2013; 405:2379-89. [DOI: 10.1007/s00216-012-6655-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/22/2012] [Accepted: 12/12/2012] [Indexed: 10/27/2022]
|
133
|
Anangi R, Koshy S, Huq R, Beeton C, Chuang WJ, King GF. Recombinant expression of margatoxin and agitoxin-2 in Pichia pastoris: an efficient method for production of KV1.3 channel blockers. PLoS One 2012; 7:e52965. [PMID: 23300835 PMCID: PMC3530466 DOI: 10.1371/journal.pone.0052965] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 11/26/2012] [Indexed: 02/03/2023] Open
Abstract
The K(v)1.3 voltage-gated potassium channel regulates membrane potential and calcium signaling in human effector memory T cells that are key mediators of autoimmune diseases such as multiple sclerosis, type 1 diabetes, and rheumatoid arthritis. Thus, subtype-specific K(v)1.3 blockers have potential for treatment of autoimmune diseases. Several K(v)1.3 channel blockers have been characterized from scorpion venom, all of which have an α/β scaffold stabilized by 3-4 intramolecular disulfide bridges. Chemical synthesis is commonly used for producing these disulfide-rich peptides but this approach is time consuming and not cost effective for production of mutants, fusion proteins, fluorescently tagged toxins, or isotopically labelled peptides for NMR studies. Recombinant production of K(v)1.3 blockers in the cytoplasm of E. coli generally necessitates oxidative refolding of the peptides in order to form their native disulfide architecture. An alternative approach that avoids the need for refolding is expression of peptides in the periplasm of E. coli but this often produces low yields. Thus, we developed an efficient Pichia pastoris expression system for production of K(v)1.3 blockers using margatoxin (MgTx) and agitoxin-2 (AgTx2) as prototypic examples. The Pichia system enabled these toxins to be obtained in high yield (12-18 mg/L). NMR experiments revealed that the recombinant toxins adopt their native fold without the need for refolding, and electrophysiological recordings demonstrated that they are almost equipotent with the native toxins in blocking K(V)1.3 (IC(50) values of 201±39 pM and 97 ± 3 pM for recombinant AgTx2 and MgTx, respectively). Furthermore, both recombinant toxins inhibited T-lymphocyte proliferation. A MgTx mutant in which the key pharmacophore residue K28 was mutated to alanine was ineffective at blocking K(V)1.3 and it failed to inhibit T-lymphocyte proliferation. Thus, the approach described here provides an efficient method of producing toxin mutants with a view to engineering K(v)1.3 blockers with therapeutic potential.
Collapse
Affiliation(s)
- Raveendra Anangi
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
- * E-mail: (RA); (GK)
| | - Shyny Koshy
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Redwan Huq
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Woei-Jer Chuang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
- * E-mail: (RA); (GK)
| |
Collapse
|
134
|
Feng J, Yu C, Wang M, Li Z, Wu Y, Cao Z, Li W, He X, Han S. Expression and characterization of a novel scorpine-like peptide Ev37, from the scorpion Euscorpiops validus. Protein Expr Purif 2012; 88:127-33. [PMID: 23262394 DOI: 10.1016/j.pep.2012.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 11/17/2022]
Abstract
Scorpion venom contains a group of two-domain peptides that function to block potassium channels or have cytolytic activities. These peptides, whose functions are poorly studied, are named β-KTx or scorpine-like peptides. Ev37, the first identified gene in the Euscorpiidae family, which encoded a novel scorpine-like peptide, was cloned from the venom cDNA library of scorpion Euscorpiops validus. Sequence analysis showed that the mature Ev37 peptide contained 78 amino acid residues, which formed two structural domains: a putative α-helical N-terminus and a C-terminus with the cysteine-stabilized α/β motif. The peptide rEv37 and two truncated peptides representing the individual structural domains (Ev37-N and Ev37-C) were expressed in Escherichia coli and purified for functional study. Unlike classic scorpine-like peptides, rEv37 and truncated peptides showed no cytolytic activity against bacteria or eukaryotic cells. Interestingly, rEv37 selectively inhibited Kv1.3 channel without effectively blocking Kv1.1 and Kv1.2 channels. Neither Ev37-N nor Ev37-C blocked Kv1.3 channel, suggesting that both the N-terminal and C-terminal domain of Ev37 are likely involved in the interaction with Kv1.3 channel. These results not only enrich our knowledge of scorpion toxins from scorpine-like subfamily but also provide a novel template with unique structure for designing new types of selective Kv1.3 blockers.
Collapse
Affiliation(s)
- Jing Feng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Almeida DD, Torres TM, Barbosa EG, Lima JPMS, de Freitas Fernandes-Pedrosa M. Molecular approaches for structural characterization of a new potassium channel blocker from Tityus stigmurus venom: cDNA cloning, homology modeling, dynamic simulations and docking. Biochem Biophys Res Commun 2012. [PMID: 23200836 DOI: 10.1016/j.bbrc.2012.11.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Potassium channels are involved in the maintenance of resting membrane potential, control of cardiac and neuronal excitability, neurotransmitters release, muscle contractility and hormone secretion. The Tityus stigmurus scorpion is widely distributed in Northeastern Brazil and known to cause severe human envenomations, inducing pain, hypoesthesia, edema, erythema, paresthesia, headaches and vomiting. Most potassium channel blocking peptides that have been purified from scorpion venoms contain 30-40 amino acids with three or four disulfide bridges. These peptides belong to α-KTx subfamily. On the other hand, the β-KTx subfamily is poorly characterized, though it is very representative in some scorpion venoms. A transcriptomic approach of T.stigmurus scorpions developed by our group revealed the repertoire of possible molecules present in the venom, including many toxins of the β-KTx subfamily. One of the ESTs found, named TSTI0003C has a cDNA sequence of 538 bp codifying a mature protein with 47 amino acid residues, corresponding to 5299 Da. This β-KTx peptide is a new member of the BmTXKβ-related toxins, and was here named TstKMK. The three-dimensional structure of this potassium channel toxin of the T. stigmurus scorpion was obtained by computational modeling and refined by molecular dynamic simulations. Furthermore, we have made docking simulations using a Shaker kV-1.2 potassium channel from rats as receptor model and proposed which amino acid residues and interactions could be involved in its blockade.
Collapse
Affiliation(s)
- Diego Dantas Almeida
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | | | | | | |
Collapse
|
136
|
Diego-García E, Peigneur S, Debaveye S, Gheldof E, Tytgat J, Caliskan F. Novel potassium channel blocker venom peptides from Mesobuthus gibbosus (Scorpiones: Buthidae). Toxicon 2012; 61:72-82. [PMID: 23142506 DOI: 10.1016/j.toxicon.2012.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 09/27/2012] [Accepted: 10/23/2012] [Indexed: 11/19/2022]
Abstract
In the present study, we report for the first time, the molecular, biochemical and electrophysiological characterization of the components present in the soluble venom from Mesobuthus gibbosus (Brullé, 1832). According to the epidemiological and clinical situation of scorpion envenomation cases M. gibbosus scorpion is one of the most important health-threatening species of Turkey. Despite the medical importance reported for M. gibbosus, there is no additional information on toxin peptides and venom components to clarify the toxic effect of the M. gibbosus sting. Biochemical characterization of the venom was performed using different protocols and techniques following a bioassay-guided strategy (HPLC, mass spectrometry and Edman degradation sequencing). Venom fractions were tested in electrophysiological assays on a panel of six K(+) channels (K(v)1.1-1.6) by using the two-electrode voltage clamp technique. Three new α-KTx peptides were found and called MegKTx1, MegKTx2 and MegKTx3 (M. gibbosus, K(+) channel toxin number 1-3). A cDNA library from the telson was constructed and specific screening of transcripts was performed. Biochemical and molecular characterization of MegKTx peptides and transcripts shows a relation with toxins of three different α-KTx subfamilies (α-KTx3.x, α-KTx9.x and α-KTx16.x).
Collapse
Affiliation(s)
- Elia Diego-García
- Laboratory of Toxicology, University of Leuven (KULeuven), Campus Gasthuisberg, O&N 2, PO Box 922, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
137
|
Accelerated evolution and functional divergence of scorpion short-chain K+ channel toxins after speciation. Comp Biochem Physiol B Biochem Mol Biol 2012; 163:238-45. [DOI: 10.1016/j.cbpb.2012.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/18/2012] [Accepted: 06/20/2012] [Indexed: 11/17/2022]
|
138
|
Niu M, Li X, Gong Q, Wang C, Qin C, Wang W, Chen P. Expression of 4kD scorpion defensin and its in vitro synergistic activity with conventional antibiotics. World J Microbiol Biotechnol 2012; 29:281-8. [PMID: 23054701 DOI: 10.1007/s11274-012-1181-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/25/2012] [Indexed: 01/09/2023]
Abstract
The 4kD scorpion defensin (SD) is a potent disulfide-linked peptide. In this study, we expressed it in methylotrophic yeast Pichia pastoris and purified it using Ni-NTA His Bind Resin. We investigated its in vitro antibacterial activity and effect in combination with several conventional antibiotics. We first examined its antibacterial activity towards several Gram-positive and Gram-negative bacteria. Then we used the broth microdilution method to test drugs alone and in combination and used the fractional inhibitory concentration (FIC index) to classify the drug interactions. Our study showed the expressed SD peptide has antibacterial activity against Salmonella typhimurium, E. coli and S. aureus etc. Synergy or additive interaction was observed between SD and Norfloxacin, Polymyxin B and Ampicillin. Cell growth tests showed that combination of SD and Norfloxacin can improve their activity against bacteria. This result maybe permit lower using of the conventional antibiotic agents more effectively and safely.
Collapse
Affiliation(s)
- Mingfu Niu
- Food and Bioengineering College, He'nan University of Science and Technology, Luoyang, 471003 He'nan, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
139
|
Caliskan F, García BI, Coronas FIV, Restano-Cassulini R, Korkmaz F, Sahin Y, Corzo G, Possani LD. Purification and cDNA cloning of a novel neurotoxic peptide (Acra3) from the scorpion Androctonus crassicauda. Peptides 2012; 37:106-12. [PMID: 22819772 DOI: 10.1016/j.peptides.2012.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/10/2012] [Accepted: 07/10/2012] [Indexed: 01/13/2023]
Abstract
Androctonus crassicauda is one of the Southeastern Anatolian scorpions of Turkey with ethno-medical and toxicological importance. Two toxic peptides (Acra1 and Acra2) were isolated and characterized from the venom of this scorpion. In this communication, the isolation of an additional toxin (Acra3) by chromatographic separations (HPLC and TSK-gel sulfopropyl) and its chemical and functional characterization is reported. Acra3 is a 7620Da molecular weight peptide, with 66 amino acid residues crosslinked by four disulfide bridges. The gene coding for this peptide was cloned and sequenced. Acra3 is anticipated to undergo post-translational modifications at the C-terminal region, having an amidated serine as last residue. Injection of Acra3 induces severe neurotoxic events in mice, such as: excitability and convulsions, leading to the death of the animals within a few minutes after injection. Electrophysiological assays conducted with pure Acra3, using cells that specifically expressed sodium channels (Nav1.1-Nav1.6) showed no clear effect. The exact molecular target of Acra3 remained undiscovered, similar to three other scorpion peptides that clustered very closely in the phylogenetic tree included here. The exact target of these four peptides is not very clear.
Collapse
Affiliation(s)
- Figen Caliskan
- Department of Biology, Faculty of Science and Art, Eskisehir Osmangazi University, 26480 Eskisehir, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Nie Y, Zeng XC, Luo X, Wu S, Zhang L, Cao H, Zhou J, Zhou L. Tremendous intron length differences of the BmKBT and a novel BmKBT-like peptide genes provide a mechanical basis for the rapid or constitutive expression of the peptides. Peptides 2012; 37:150-6. [PMID: 22705625 DOI: 10.1016/j.peptides.2012.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/07/2012] [Accepted: 06/07/2012] [Indexed: 11/17/2022]
Abstract
The cDNA sequence encoding a novel BmKBT-like peptide (referred to as BmKBy) was cloned and sequenced from the scorpion Mesobuthus martensii Karsch. Functional analysis indicated that both BmKBT and BmKBy possess strong toxicity in mice, but very weak toxicity in cotton bollworm. Phylogenetic analysis showed that BmKBy and BmKBT represent evolutionary intermediates between the α- and β-toxins from scorpions. The genomic sequences of BmKBT and BmKBy were also obtained. It is interesting to see that two genes, which contain an intron of 225 and 1529bp, respectively, exactly code for the BmKBT peptide. One gene, which contains an intron of 1312bp, codes for BmKBy. Given that genes with long introns favor constitutive expression, whereas those with short introns are rapidly regulated in response to stimulations, the BmKBT_a and BmKBT_b genes provide a mechanical basis for either constitutive expression or rapid generation of the toxic peptides in response to different signals.
Collapse
Affiliation(s)
- Yao Nie
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Liu W, Luo F, He J, Cao Z, Miao L. Molecular cloning and characterization of a new cDNA sequence encoding a venom peptide from the centipede Scolopendra subspinipes mutilans. Mol Biol 2012. [DOI: 10.1134/s0026893312030132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
142
|
Profiling the resting venom gland of the scorpion Tityus stigmurus through a transcriptomic survey. BMC Genomics 2012; 13:362. [PMID: 22853446 PMCID: PMC3444934 DOI: 10.1186/1471-2164-13-362] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 06/27/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The scorpion Tityus stigmurus is widely distributed in Northeastern Brazil and known to cause severe human envenoming, inducing pain, hyposthesia, edema, erythema, paresthesia, headaches and vomiting. The present study uses a transcriptomic approach to characterize the gene expression profile from the non-stimulated venom gland of Tityus stigmurus scorpion. RESULTS A cDNA library was constructed and 540 clones were sequenced and grouped into 153 clusters, with one or more ESTs (expressed sequence tags). Forty-one percent of ESTs belong to recognized toxin-coding sequences, with transcripts encoding antimicrobial toxins (AMP-like) being the most abundant, followed by alfa KTx- like, beta KTx-like, beta NaTx-like and alfa NaTx-like. Our analysis indicated that 34% of the transcripts encode "other possible venom molecules", which correspond to anionic peptides, hypothetical secreted peptides, metalloproteinases, cystein-rich peptides and lectins. Fifteen percent of ESTs are similar to cellular transcripts. Sequences without good matches corresponded to 11%. CONCLUSIONS This investigation provides the first global view of gene expression of the venom gland from Tityus stigmurus under resting conditions. This approach enables characterization of a large number of venom gland component molecules, which belong either to known or non yet described types of venom peptides and proteins from the Buthidae family.
Collapse
|
143
|
Abstract
Scorpion stings are common in many tropical countries. Although most scorpion stings cause only localized pain without life-threatening envenoming, about one third of stings cause systemic envenoming which can result in death. Children are particularly sensitive to scorpion envenoming. The severity of scorpion stings is related to the presence of neurotoxins in the venom that cause a sudden release of neurotransmitters from the autonomic nervous system, predominantly sympathetic. There is also a strong inflammatory response that worsens symptoms, including those of a respiratory nature. Several vital functions may be directly affected, including the cardiovascular, respiratory, and neuromuscular systems. Hypertension is constant at the beginning of systemic envenoming and sometimes has a severe cardiac and respiratory impact. Although controversial, immunotherapy is the only etiological treatment. Administered early, it prevents many complications and improves the outcome. New antivenoms are highly purified immunoglobulin fragments, the efficacy and safety of which are excellent. As a consequence, adverse reactions to antivenoms are now very rare and usually mild, which should limit any reluctance regarding their routine use. Symptomatic treatment is still necessary to support immunotherapy, especially in cases of delayed arrival at hospital. A combination of both approaches should be considered, based on local resources and constraints.
Collapse
Affiliation(s)
- Jean-Philippe Chippaux
- UMR 216 (Institute of Research for Development and University Paris Descartes, Sorbonne Paris Cité), Cotonou, Bénin, France.
| |
Collapse
|
144
|
Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP. hERG K+ Channels: Structure, Function, and Clinical Significance. Physiol Rev 2012; 92:1393-478. [DOI: 10.1152/physrev.00036.2011] [Citation(s) in RCA: 463] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The human ether-a-go-go related gene (hERG) encodes the pore-forming subunit of the rapid component of the delayed rectifier K+ channel, Kv11.1, which are expressed in the heart, various brain regions, smooth muscle cells, endocrine cells, and a wide range of tumor cell lines. However, it is the role that Kv11.1 channels play in the heart that has been best characterized, for two main reasons. First, it is the gene product involved in chromosome 7-associated long QT syndrome (LQTS), an inherited disorder associated with a markedly increased risk of ventricular arrhythmias and sudden cardiac death. Second, blockade of Kv11.1, by a wide range of prescription medications, causes drug-induced QT prolongation with an increase in risk of sudden cardiac arrest. In the first part of this review, the properties of Kv11.1 channels, including biogenesis, trafficking, gating, and pharmacology are discussed, while the second part focuses on the pathophysiology of Kv11.1 channels.
Collapse
Affiliation(s)
- Jamie I. Vandenberg
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Matthew D. Perry
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Mark J. Perrin
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Stefan A. Mann
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Ying Ke
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Adam P. Hill
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| |
Collapse
|
145
|
Xie S, Feng J, Yu C, Li Z, Wu Y, Cao Z, Li W, He X, Xiang M, Han S. Identification of a new specific Kv1.3 channel blocker, Ctri9577, from the scorpion Chaerilus tricostatus. Peptides 2012; 36:94-9. [PMID: 22580271 DOI: 10.1016/j.peptides.2012.04.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 01/04/2023]
Abstract
Scorpion toxins are valuable resources for discovering new ion channel modulators and drug candidates. Potassium channel Kv1.3 is an important pharmacological target of T cell-mediated autoimmune diseases, which are encouraging the screening and design of the specific peptide blockers for Kv1.3 channel. Ctri9577, the first neurotoxin gene of Chaerilidae family was cloned from the venom of the scorpion Chaerilus tricostatus through the constructing its cDNA library. The sequence analysis showed that the mature peptide of Ctri9577 contained 39 amino acid residues including six conserved cysteines, whose low sequence similarity indicated that it was a new member of α-KTx15 subfamily. By using expression and purification technology, the recombinant peptide was obtained. Subsequently, the electrophysiological experiments indicated that the Ctri9577 peptide selectively inhibited Kv1.3 channel current with an IC(50) of 0.49±0.45 nM without effectively blocking potassium channels Kv1.1, Kv1.2, hERG and SK3. All these findings not only enrich the knowledge of toxins from the Chaerilidae family, but also present a novel potential drug candidate targeting Kv1.3 channels for the therapy of autoimmune diseases.
Collapse
Affiliation(s)
- Shujun Xie
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Towards therapeutic applications of arthropod venom k(+)-channel blockers in CNS neurologic diseases involving memory acquisition and storage. J Toxicol 2012; 2012:756358. [PMID: 22701481 PMCID: PMC3373146 DOI: 10.1155/2012/756358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 02/08/2012] [Indexed: 12/31/2022] Open
Abstract
Potassium channels are the most heterogeneous and widely distributed group of ion channels and play important functions in all cells, in both normal and pathological mechanisms, including learning and memory processes. Being fundamental for many diverse physiological processes, K+-channels are recognized as potential therapeutic targets in the treatment of several Central Nervous System (CNS) diseases, such as multiple sclerosis, Parkinson's and Alzheimer's diseases, schizophrenia, HIV-1-associated dementia, and epilepsy. Blockers of these channels are therefore potential candidates for the symptomatic treatment of these neuropathies, through their neurological effects. Venomous animals have evolved a wide set of toxins for prey capture and defense. These compounds, mainly peptides, act on various pharmacological targets, making them an innumerable source of ligands for answering experimental paradigms, as well as for therapeutic application. This paper provides an overview of CNS K+-channels involved in memory acquisition and storage and aims at evaluating the use of highly selective K+-channel blockers derived from arthropod venoms as potential therapeutic agents for CNS diseases involving learning and memory mechanisms.
Collapse
|
147
|
Yang S, Liu Z, Xiao Y, Li Y, Rong M, Liang S, Zhang Z, Yu H, King GF, Lai R. Chemical punch packed in venoms makes centipedes excellent predators. Mol Cell Proteomics 2012; 11:640-50. [PMID: 22595790 DOI: 10.1074/mcp.m112.018853] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Centipedes are excellent predatory arthropods that inject venom to kill or immobilize their prey. Although centipedes have long been known to be venomous, their venoms remain largely unexplored. The chemical components responsible for centipede predation and the functional mechanisms are unknown. Twenty-six neurotoxin-like peptides belonging to ten groups were identified from the centipede venoms, Scolopendra subspinipes mutilans L. Koch by peptidomics combined with transcriptome analysis, revealing the diversity of neurotoxins. These neurotoxins each contain two to four intramolecular disulfide bridges, and in most cases the disulfide framework is different from that found in neurotoxins from the venoms of spiders, scorpions, marine cone snails, sea anemones, and snakes (5S animals). Several neurotoxins contain potential insecticidal abilities, and they are found to act on voltage-gated sodium, potassium, and calcium channels, respectively. Although these neurotoxins are functionally similar to the disulfide-rich neurotoxins found in the venoms of 5S animals in that they modulate the activity of voltage-gated ion channels, in almost all cases the primary structures of the centipede venom peptides are unique. This represents an interesting case of convergent evolution in which different venomous animals have evolved different molecular strategies for targeting the same ion channels in prey and predators. Moreover, the high level of biochemical diversity revealed in this study suggests that centipede venoms might be attractive subjects for prospecting and screening for peptide candidates with potential pharmaceutical or agrochemical applications.
Collapse
Affiliation(s)
- Shilong Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Gurrola GB, Hernández-López RA, Rodríguez de la Vega RC, Varga Z, Batista CVF, Salas-Castillo SP, Panyi G, del Río-Portilla F, Possani LD. Structure, function, and chemical synthesis of Vaejovis mexicanus peptide 24: a novel potent blocker of Kv1.3 potassium channels of human T lymphocytes. Biochemistry 2012; 51:4049-61. [PMID: 22540187 DOI: 10.1021/bi300060n] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Animal venoms are rich sources of ligands for studying ion channels and other pharmacological targets. Proteomic analyses of the soluble venom from the Mexican scorpion Vaejovis mexicanus smithi showed that it contains more than 200 different components. Among them, a 36-residue peptide with a molecular mass of 3864 Da (named Vm24) was shown to be a potent blocker of Kv1.3 of human lymphocytes (K(d) ∼ 3 pM). The three-dimensional solution structure of Vm24 was determined by nuclear magnetic resonance, showing the peptide folds into a distorted cystine-stabilized α/β motif consisting of a single-turn α-helix and a three-stranded antiparallel β-sheet, stabilized by four disulfide bridges. The disulfide pairs are formed between Cys6 and Cys26, Cys12 and Cys31, Cys16 and Cys33, and Cys21 and Cys36. Sequence analyses identified Vm24 as the first example of a new subfamily of α-type K(+) channel blockers (systematic number α-KTx 23.1). Comparison with other Kv1.3 blockers isolated from scorpions suggests a number of structural features that could explain the remarkable affinity and specificity of Vm24 toward Kv1.3 channels of lymphocytes.
Collapse
Affiliation(s)
- Georgina B Gurrola
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad, 2001 Cuernavaca, Mor. 62210, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Vandendriessche T, Kopljar I, Wulff H, Diego-Garcia E, Abdel-Mottaleb Y, Vermassen E, Clynen E, Schoofs L, Snyders D, Tytgat J. Purification, molecular cloning and functional characterization of HelaTx1 (Heterometrus laoticus): the first member of a new κ-KTX subfamily. Biochem Pharmacol 2012; 83:1307-17. [PMID: 22305749 PMCID: PMC3644210 DOI: 10.1016/j.bcp.2012.01.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/14/2012] [Accepted: 01/17/2012] [Indexed: 10/14/2022]
Abstract
Given their medical importance, most attention has been paid toward the venom composition of scorpions of the Buthidae family. Nevertheless, research has shown that the venom of scorpions of other families is also a remarkable source of unique peptidyl toxins. The κ-KTx family of voltage-gated potassium channel (VGPC) scorpion toxins is hereof an example. From the telson of the scorpion Heterometrus laoticus (Scorpionidae), a peptide, HelaTx1, with unique primary sequence was purified through HPLC and sequenced by Edman degradation. Based on the amino acid sequence, the peptide could be cloned and the cDNA sequence revealed. HelaTx1 was chemically synthesized and functionally characterized on VGPCs of the Shaker-related, Shab-related, Shaw-related and Shal-related subfamilies. Furthermore, the toxin was also tested on small- and intermediate conductance Ca(2+)-activated K(+) channels. From the channels studied, K(v)1.1 and K(v)1.6 were found to be the most sensitive (K(v)1.1 EC(50)=9.9±1.6 μM). The toxin did not alter the activation of the channels. Competition experiments with TEA showed that the toxin is a pore blocker. Mutational studies showed that the residues E353 and Y379 in the pore of K(v)1.1 act as major interaction points for binding of the toxin. Given the amino acid sequence, the predicted secondary structure and the biological activity on VGPCs, HelaTx1 should be included in the κ-KTX family. Based on a phylogenetic study, we rearranged this family of VGPC toxins into five subfamilies and suggest that HelaTx1 is the first member of the new κ-KTx5 subfamily.
Collapse
Affiliation(s)
- Thomas Vandendriessche
- Laboratory of Toxicology, Katholieke Universiteit Leuven, Onderwijs & Navorsing II, P.O Box 922, Herestraat 49, 3000 Leuven, Belgium
| | - Ivan Kopljar
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Universiteit Antwerpen, 2610 Antwerpen, Belgium
| | - Heike Wulff
- Department of Pharmacology, University of California, 451 Health Sciences Drive, GBSF 3502, Davis, CA 95616, USA
| | - Elia Diego-Garcia
- Laboratory of Toxicology, Katholieke Universiteit Leuven, Onderwijs & Navorsing II, P.O Box 922, Herestraat 49, 3000 Leuven, Belgium
| | - Yousra Abdel-Mottaleb
- Laboratory of Toxicology, Katholieke Universiteit Leuven, Onderwijs & Navorsing II, P.O Box 922, Herestraat 49, 3000 Leuven, Belgium
| | - Elke Vermassen
- Laboratory of Toxicology, Katholieke Universiteit Leuven, Onderwijs & Navorsing II, P.O Box 922, Herestraat 49, 3000 Leuven, Belgium
| | - Elke Clynen
- Research Group Functional Genomics and Proteomics, Katholieke Universiteit Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Liliane Schoofs
- Research Group Functional Genomics and Proteomics, Katholieke Universiteit Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Dirk Snyders
- Laboratory for Molecular Biophysics, Physiology and Pharmacology, Universiteit Antwerpen, 2610 Antwerpen, Belgium
| | - Jan Tytgat
- Laboratory of Toxicology, Katholieke Universiteit Leuven, Onderwijs & Navorsing II, P.O Box 922, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
150
|
Nisani Z, Boskovic DS, Dunbar SG, Kelln W, Hayes WK. Investigating the chemical profile of regenerated scorpion (Parabuthus transvaalicus) venom in relation to metabolic cost and toxicity. Toxicon 2012; 60:315-23. [PMID: 22564718 DOI: 10.1016/j.toxicon.2012.04.343] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 04/11/2012] [Accepted: 04/18/2012] [Indexed: 01/08/2023]
Abstract
We investigated the biochemical profile of regenerated venom of the scorpion Parabuthus transvaalicus in relation to its metabolic cost and toxicity. Using a closed-system respirometer, we compared oxygen consumption between milked and unmilked scorpions to determine the metabolic costs associated with the first 192 h of subsequent venom synthesis. Milked scorpions had a substantially (21%) higher mean metabolic rate than unmilked scorpions, with the largest increases in oxygen consumption occurring at approximately 120 h, 162 h, and 186 h post-milking. Lethality tests in crickets indicated that toxicity of the regenerated venom returned to normal levels within 4 d after milking. However, the chemical profile of the regenerated venom, as evaluated by FPLC and MALDI-TOF mass spectrometry, suggested that regeneration of different venom components was asynchronous. Some peptides regenerated quickly, particularly those associated with the scorpion's "prevenom," whereas others required much or all of this time period for regeneration. This asynchrony could explain the different spikes detected in oxygen consumption of milked scorpions as various peptides and other venom components were resynthesized. These observations confirm the relatively high metabolic cost of venom regeneration and suggest that greater venom complexity can be associated with higher costs of venom production.
Collapse
Affiliation(s)
- Zia Nisani
- Department of Earth and Biological Sciences, School of Science & Technology, Loma Linda University, Loma Linda, CA 92350, USA.
| | | | | | | | | |
Collapse
|