101
|
Abstract
Whereas the C. elegans genome was sequenced many years ago, the role of small molecule signals in its biology is still poorly understood. A recent publication reports the identification of two steroidal signaling molecules that regulate C. elegans reproductive development and dauer diapause via the nuclear receptor DAF-12. The two compounds, named dafachronic acids, represent the first endogenous ligands identified for any of the 284 nuclear receptors in C. elegans.
Collapse
Affiliation(s)
- Frank C Schroeder
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
102
|
Hulsen T, Huynen MA, de Vlieg J, Groenen PMA. Benchmarking ortholog identification methods using functional genomics data. Genome Biol 2006; 7:R31. [PMID: 16613613 PMCID: PMC1557999 DOI: 10.1186/gb-2006-7-4-r31] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 12/06/2005] [Accepted: 03/14/2006] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The transfer of functional annotations from model organism proteins to human proteins is one of the main applications of comparative genomics. Various methods are used to analyze cross-species orthologous relationships according to an operational definition of orthology. Often the definition of orthology is incorrectly interpreted as a prediction of proteins that are functionally equivalent across species, while in fact it only defines the existence of a common ancestor for a gene in different species. However, it has been demonstrated that orthologs often reveal significant functional similarity. Therefore, the quality of the orthology prediction is an important factor in the transfer of functional annotations (and other related information). To identify protein pairs with the highest possible functional similarity, it is important to qualify ortholog identification methods. RESULTS To measure the similarity in function of proteins from different species we used functional genomics data, such as expression data and protein interaction data. We tested several of the most popular ortholog identification methods. In general, we observed a sensitivity/selectivity trade-off: the functional similarity scores per orthologous pair of sequences become higher when the number of proteins included in the ortholog groups decreases. CONCLUSION By combining the sensitivity and the selectivity into an overall score, we show that the InParanoid program is the best ortholog identification method in terms of identifying functionally equivalent proteins.
Collapse
Affiliation(s)
- Tim Hulsen
- Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Toernooiveld 1, Nijmegen, 6500 GL, The Netherlands
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Toernooiveld 1, Nijmegen, 6500 GL, The Netherlands
| | - Jacob de Vlieg
- Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Toernooiveld 1, Nijmegen, 6500 GL, The Netherlands
- NV Organon, Molenstraat 110, Oss, 5340 BH, The Netherlands
| | | |
Collapse
|
103
|
Motola DL, Cummins CL, Rottiers V, Sharma KK, Li T, Li Y, Suino-Powell K, Xu HE, Auchus RJ, Antebi A, Mangelsdorf DJ. Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell 2006; 124:1209-23. [PMID: 16529801 DOI: 10.1016/j.cell.2006.01.037] [Citation(s) in RCA: 374] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 01/24/2006] [Accepted: 01/31/2006] [Indexed: 11/22/2022]
Abstract
In response to environmental and dietary cues, the C. elegans orphan nuclear receptor, DAF-12, regulates dauer diapause, reproductive development, fat metabolism, and life span. Despite strong evidence for hormonal control, the identification of the DAF-12 ligand has remained elusive. In this work, we identified two distinct 3-keto-cholestenoic acid metabolites of DAF-9, a cytochrome P450 involved in hormone production, that function as ligands for DAF-12. At nanomolar concentrations, these steroidal ligands (called dafachronic acids) bind and transactivate DAF-12 and rescue the hormone deficiency of daf-9 mutants. Interestingly, DAF-9 has a biochemical activity similar to mammalian CYP27A1 catalyzing addition of a terminal acid to the side chain of sterol metabolites. Together, these results define the first steroid hormones in nematodes as ligands for an invertebrate orphan nuclear receptor and demonstrate that steroidal regulation of reproduction, from biology to molecular mechanism, is conserved from worms to humans.
Collapse
Affiliation(s)
- Daniel L Motola
- Howard Hughes Medical Institute and Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Kuo MW, Postlethwait J, Lee WC, Lou SW, Chan WK, Chung BC. Gene duplication, gene loss and evolution of expression domains in the vertebrate nuclear receptor NR5A (Ftz-F1) family. Biochem J 2005; 389:19-26. [PMID: 15725073 PMCID: PMC1184535 DOI: 10.1042/bj20050005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fushi tarazu factor 1 (Ftz-F1, NR5A) is a zinc-finger transcription factor that belongs to the nuclear receptor superfamily and regulates genes that are involved in sterol and steroid metabolism in gonads, adrenals, liver and other tissues. To understand the evolutionary origins and developmental genetic relationships of the Ftz-F1 genes, we have cloned four homologous Ftz-f1 genes in zebrafish, called ff1a, ff1b, ff1c and ff1d. These four genes have different temporal and spatial expression patterns during development, indicating that they have distinct mechanisms of genetic regulation. Among them, the ff1a expression pattern is similar to mammalian Nr5a2, while the ff1b pattern is similar to that of mammalian Nr5a1. Genetic mapping experiments show that these four ff1 genes are located on chromosome segments conserved between the zebrafish and human genomes, indicating a common ancestral origin. Phylogenetic and conserved synteny analysis show that ff1a is the orthologue of NR5A2, and that ff1b and ff1d genes are co-orthologues of NR5A1 that arose by a gene-duplication event, probably a whole-genome duplication, in the ray-fin lineage, and each gene is located next to an NR6A1 co-orthologue as in humans, showing that the tandem duplication occurred before the divergence of human and zebrafish lineages. ff1c does not have a mammalian counterpart. Thus we have characterized the phylogenetic relationships, expression patterns and chromosomal locations of these Ftz-F1 genes, and have demonstrated their identities as NR5A genes in relation to the orthologous genes in other species.
Collapse
Affiliation(s)
- Ming-Wei Kuo
- *Institute of Molecular Biology, Academia Sinica, 128 Academia Road Section 2, Nankang, Taipei, Taiwan 115
- †Institute of Fisheries Science, National Taiwan University, 1 Roosevelt Road Section 4, Taipei, Taiwan 106
| | - John Postlethwait
- ‡Institute of Neuroscience, University of Oregon, Eugene, OR 97403, U.S.A
| | - Wen-Chih Lee
- *Institute of Molecular Biology, Academia Sinica, 128 Academia Road Section 2, Nankang, Taipei, Taiwan 115
| | - Show-Wan Lou
- †Institute of Fisheries Science, National Taiwan University, 1 Roosevelt Road Section 4, Taipei, Taiwan 106
| | - Woon-Khiong Chan
- §Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore 119620
| | - Bon-chu Chung
- *Institute of Molecular Biology, Academia Sinica, 128 Academia Road Section 2, Nankang, Taipei, Taiwan 115
- To whom correspondence should be addressed (email )
| |
Collapse
|
105
|
Tennessen JM, Gardner HF, Volk ML, Rougvie AE. Novel heterochronic functions of the Caenorhabditis elegans period-related protein LIN-42. Dev Biol 2005; 289:30-43. [PMID: 16300753 DOI: 10.1016/j.ydbio.2005.09.044] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
LIN-42, the Caenorhabditis elegans homolog of the Period (Per) family of circadian rhythm proteins, functions as a member of the heterochronic pathway, regulating temporal cell identities. We demonstrate that lin-42 acts broadly, timing developmental events in the gonad, vulva, and sex myoblasts, in addition to its well-established role in timing terminal differentiation of the hypodermis. In the vulva, sex myoblasts, and hypodermis, lin-42 activity prevents stage-specific cell division patterns from occurring too early. This general function of timing stage-appropriate cell division patterns is shared by the majority of heterochronic genes; their mutation temporally alters stage-specific division patterns. In contrast, lin-42 function in timing gonad morphogenesis is unique among the known heterochronic genes: inactivation of lin-42 causes the elongating gonad arms to reflex too early, a phenotype which implicates lin-42 in temporal regulation of cell migration. Three additional isoforms of lin-42 are identified that expand our view of the lin-42 locus and significantly extend the homology between LIN-42 and other PER family members. We show that, similar to PER proteins, LIN-42 has a dynamic expression pattern; its levels oscillate relative to the molts during postembryonic development. Transformation rescue studies indicate lin-42 is bipartite with respect to function. Intriguingly, the hallmark PAS domain is dispensable for LIN-42 function in transgenic animals.
Collapse
Affiliation(s)
- Jason M Tennessen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, 55455, USA
| | | | | | | |
Collapse
|
106
|
Frand AR, Russel S, Ruvkun G. Functional genomic analysis of C. elegans molting. PLoS Biol 2005; 3:e312. [PMID: 16122351 PMCID: PMC1233573 DOI: 10.1371/journal.pbio.0030312] [Citation(s) in RCA: 238] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Accepted: 07/07/2005] [Indexed: 11/25/2022] Open
Abstract
Although the molting cycle is a hallmark of insects and nematodes, neither the endocrine control of molting via size, stage, and nutritional inputs nor the enzymatic mechanism for synthesis and release of the exoskeleton is well understood. Here, we identify endocrine and enzymatic regulators of molting in C. elegans through a genome-wide RNA-interference screen. Products of the 159 genes discovered include annotated transcription factors, secreted peptides, transmembrane proteins, and extracellular matrix enzymes essential for molting. Fusions between several genes and green fluorescent protein show a pulse of expression before each molt in epithelial cells that synthesize the exoskeleton, indicating that the corresponding proteins are made in the correct time and place to regulate molting. We show further that inactivation of particular genes abrogates expression of the green fluorescent protein reporter genes, revealing regulatory networks that might couple the expression of genes essential for molting to endocrine cues. Many molting genes are conserved in parasitic nematodes responsible for human disease, and thus represent attractive targets for pesticide and pharmaceutical development. The authors use a genome-wide RNA-interference screen to identify and characterize genes involved in C. elegans molting. They investigate regulatory networks involved in molting, lending important new insights into this complex process.
Collapse
Affiliation(s)
- Alison R Frand
- 1Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America, and Genetics Department, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sascha Russel
- 1Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America, and Genetics Department, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gary Ruvkun
- 1Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America, and Genetics Department, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
107
|
Silhánková M, Jindra M, Asahina M. Nuclear receptor NHR-25 is required for cell-shape dynamics during epidermal differentiation in Caenorhabditis elegans. J Cell Sci 2005; 118:223-32. [PMID: 15615786 DOI: 10.1242/jcs.01609] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epithelial cell shape changes underlie important events in animal development. During the postembryonic life of the nematode Caenorhabditis elegans, stem epidermal seam cells lose and actively renew mutual adherens junction contacts after each asymmetric division that separates them. The seam cell contacts are important for epidermal differentiation, but what regulates the cell-shape changes that restore them is unknown. Here, we show that NHR-25, a transcription factor of the nuclear receptor family, is expressed in the seam cells and is necessary for these cells to elongate and reach their neighbors after the asymmetric divisions. A failure to do so, caused by nhr-25 RNA interference, compromises the subsequent fate of seam-cell anterior daughters. Unexpectedly, the lack of cell-cell contacts does not prevent a unique seam cell to produce a neuroblast, even though a homeotic gene (mab-5) that normally prevents the neuroblast commitment is ectopically expressed in the absence of nhr-25 function. Seam cells lacking mutual contacts display reduced expression of a Fat-like cadherin marker cdh-3::gfp. Although some seam cells retain the ability to fuse at the final larval stage, the resulting syncytium shows gaps and bifurcations, translating into anomalies in cuticular ridges (alae) produced by the syncytium. nhr-25 RNAi markedly enhances branching of the alae caused by a mutant cuticular collagen gene rol-6. Silencing of nhr-25 also disturbs epidermal ultrastructure, which is probably the cause of compromised cuticle secretion and molting. Cell shape dynamics and molting thus represent distinct roles for NHR-25 in epidermal development.
Collapse
Affiliation(s)
- Marie Silhánková
- Department of Molecular Biology, Faculty of Biological Sciences, University of South Bohemia, CZ-370 05, Czech Republic
| | | | | |
Collapse
|
108
|
Entchev EV, Kurzchalia TV. Requirement of sterols in the life cycle of the nematode Caenorhabditis elegans. Semin Cell Dev Biol 2005; 16:175-82. [PMID: 15797828 DOI: 10.1016/j.semcdb.2005.01.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nematode Caenorhabditis elegans represents an excellent model for studying many aspects of sterol function on the level of a whole organism. Recent studies show that especially two processes in the life cycle of the worm, dauer larva formation and molting, depend on sterols. In both cases, cholesterol or its derivatives seem to act as hormones rather than being structural components of the membrane. Investigations on C. elegans could provide information on the etiology of human diseases that display defects in the transport or metabolism of sterols.
Collapse
Affiliation(s)
- Eugeni V Entchev
- MPI for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | |
Collapse
|
109
|
Fernandez AP, Gibbons J, Okkema PG. C. elegans peb-1 mutants exhibit pleiotropic defects in molting, feeding, and morphology. Dev Biol 2005; 276:352-66. [PMID: 15581870 DOI: 10.1016/j.ydbio.2004.08.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Revised: 08/16/2004] [Accepted: 08/27/2004] [Indexed: 11/16/2022]
Abstract
Caenorhabditis elegans PEB-1 is a novel DNA-binding protein expressed in most pharyngeal cell types and outside the pharynx in the hypodermis, hindgut, and vulva. Previous RNAi analyses indicated that PEB-1 is required for normal morphology of these tissues and growth; however, the peb-1 null phenotype was unknown. Here we describe the deletion mutant peb-1(cu9) that not only exhibits the morphological defects observed in peb-1(RNAi) animals, but also results in penetrant larval lethality characterized by defects in pharyngeal function and molting. Consistent with a function in molting, we found that PEB-1 was detectable in all hypodermal and hindgut cells underlying the cuticle. Comparison to molting-defective lrp-1(ku156) mutants revealed that the peb-1(cu9) mutants were particularly defective in shedding the pharyngeal cuticle, and this defect likely contributed to feeding defects and lethality. Most markers of pharyngeal cell differentiation examined were expressed normally in peb-1(cu9) mutants; however, g1 gland cell expression of a kel-1Colon, two colonsgfp reporter was reduced. As g1 gland cells have prominent functions during molting, we suggest defective gland cell differentiation contributes to peb-1(cu9) molting defects. In comparison, other peb-1 mutant phenotypes, including hindgut abnormalities, appeared independent of the molting defect. Similar phenotypes resulted from late loss of pha-4 function, suggesting that PEB-1 and PHA-4 have common functions in some tissues where they are co-expressed.
Collapse
Affiliation(s)
- Anthony P Fernandez
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | |
Collapse
|
110
|
Philippe H, Lartillot N, Brinkmann H. Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Mol Biol Evol 2005; 22:1246-53. [PMID: 15703236 DOI: 10.1093/molbev/msi111] [Citation(s) in RCA: 355] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Almost a decade ago, a new phylogeny of bilaterian animals was inferred from small-subunit ribosomal RNA (rRNA) that claimed the monophyly of two major groups of protostome animals: Ecdysozoa (e.g., arthropods, nematodes, onychophorans, and tardigrades) and Lophotrochozoa (e.g., annelids, molluscs, platyhelminths, brachiopods, and rotifers). However, it received little additional support. In fact, several multigene analyses strongly argued against this new phylogeny. These latter studies were based on a large amount of sequence data and therefore showed an apparently strong statistical support. Yet, they covered only a few taxa (those for which complete genomes were available), making systematic artifacts of tree reconstruction more probable. Here we expand this sparse taxonomic sampling and analyze a large data set (146 genes, 35,371 positions) from a diverse sample of animals (35 species). Our study demonstrates that the incongruences observed between rRNA and multigene analyses were indeed due to long-branch attraction artifacts, illustrating the enormous impact of systematic biases on phylogenomic studies. A refined analysis of our data set excluding the most biased genes provides strong support in favor of the new animal phylogeny and in addition suggests that urochordates are more closely related to vertebrates than are cephalochordates. These findings have important implications for the interpretation of morphological and genomic data.
Collapse
Affiliation(s)
- Hervé Philippe
- Canadian Institute for Advanced Research and Département de Biochimie, Université de Montréal, Montréal, Québec, Canada.
| | | | | |
Collapse
|
111
|
Gilst MRV, Hadjivassiliou H, Jolly A, Yamamoto KR. Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans. PLoS Biol 2005; 3:e53. [PMID: 15719061 PMCID: PMC547972 DOI: 10.1371/journal.pbio.0030053] [Citation(s) in RCA: 314] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 12/07/2004] [Indexed: 11/19/2022] Open
Abstract
Mammalian nuclear hormone receptors (NHRs), such as liver X receptor, farnesoid X receptor, and peroxisome proliferator-activated receptors (PPARs), precisely control energy metabolism. Consequently, these receptors are important targets for the treatment of metabolic diseases, including diabetes and obesity. A thorough understanding of NHR fat regulatory networks has been limited, however, by a lack of genetically tractable experimental systems. Here we show that deletion of the Caenorhabditis elegans NHR gene nhr-49 yielded worms with elevated fat content and shortened life span. Employing a quantitative RT-PCR screen, we found that nhr-49 influenced the expression of 13 genes involved in energy metabolism. Indeed, nhr-49 served as a key regulator of fat usage, modulating pathways that control the consumption of fat and maintain a normal balance of fatty acid saturation. We found that the two phenotypes of the nhr-49 knockout were linked to distinct pathways and were separable: The high-fat phenotype was due to reduced expression of enzymes in fatty acid beta-oxidation, and the shortened adult life span resulted from impaired expression of a stearoyl-CoA desaturase. Despite its sequence relationship with the mammalian hepatocyte nuclear factor 4 receptor, the biological activities of nhr-49 were most similar to those of the mammalian PPARs, implying an evolutionarily conserved role for NHRs in modulating fat consumption and composition. Our findings in C. elegans provide novel insights into how NHR regulatory networks are coordinated to govern fat metabolism.
Collapse
Affiliation(s)
- Marc R. Van Gilst
- 1Department of Cellular and Molecular Pharmacology, University of CaliforniaSan Francisco, CaliforniaUnited States of America
| | - Haralambos Hadjivassiliou
- 1Department of Cellular and Molecular Pharmacology, University of CaliforniaSan Francisco, CaliforniaUnited States of America
| | - Amber Jolly
- 1Department of Cellular and Molecular Pharmacology, University of CaliforniaSan Francisco, CaliforniaUnited States of America
| | - Keith R Yamamoto
- 1Department of Cellular and Molecular Pharmacology, University of CaliforniaSan Francisco, CaliforniaUnited States of America
| |
Collapse
|
112
|
Gill MS, Held JM, Fisher AL, Gibson BW, Lithgow GJ. Lipophilic regulator of a developmental switch in Caenorhabditis elegans. Aging Cell 2004; 3:413-21. [PMID: 15569358 DOI: 10.1111/j.1474-9728.2004.00126.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Abstract In Caenorhabditis elegans, the decision to develop into a reproductive adult or arrest as a dauer larva is influenced by multiple pathways including insulin-like and transforming growth factor beta (TGFbeta)-like signalling pathways. It has been proposed that lipophilic hormones act downstream of these pathways to regulate dauer formation. One likely target for such a hormone is DAF-12, an orphan nuclear hormone receptor that mediates these developmental decisions and also influences adult lifespan. In order to find lipophilic hormones we have generated lipophilic extracts from mass cultures of C. elegans and shown that they rescue the dauer constitutive phenotype of class 1 daf-2 insulin signalling mutants and the TGFbeta signalling mutant daf-7. These extracts are also able to rescue the lethal dauer phenotype of daf-9 mutants, which lack a P450 steroid hydroxylase thought to be involved in the synthesis of the DAF-12 ligand; extracts, however, have no effect on a DAF-12 ligand binding domain mutant that is predicted to be ligand insensitive. The production of this hormone appears to be DAF-9 dependent as extracts from a daf-9;daf-12 double mutant do not exhibit this activity. Preliminary fractionation of the lipophilic extracts shows that the activity is hydrophobic with some polar properties, consistent with a small lipophilic hormone. We propose that the dauer rescuing activity is a hormone synthesized by DAF-9 that acts through DAF-12.
Collapse
Affiliation(s)
- Matthew S Gill
- Buck Institute, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| | | | | | | | | |
Collapse
|
113
|
Li J, Brown G, Ailion M, Lee S, Thomas JH. NCR-1 and NCR-2, theC. eleganshomologs of the human Niemann-Pick type C1 disease protein, function upstream of DAF-9 in the dauer formation pathways. Development 2004; 131:5741-52. [PMID: 15509773 DOI: 10.1242/dev.01408] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mutations in the human NPC1 gene cause most cases of Niemann-Pick type C(NP-C) disease, a fatal autosomal recessive neurodegenerative disorder. NPC1 is implicated in intracellular trafficking of cholesterol and glycolipids, but its exact function remains unclear. The C. elegans genome contains two homologs of NPC1, ncr-1 and ncr-2, and an ncr-2;ncr-1 double deletion mutant forms dauer larvae constitutively (Daf-c). We have analyzed the phenotypes of ncr single and double mutants in detail, and determined the ncr gene expression patterns. We find that the ncr genes function in a hormonal branch of the dauer formation pathway upstream of daf-9 and daf-12, which encode a cytochrome P450 enzyme and a nuclear hormone receptor, respectively. ncr-1 is expressed broadly in tissues with high levels of cholesterol, whereas expression of ncr-2 is restricted to a few cells. Both Ncr genes are expressed in the XXX cells, which are implicated in regulating dauer formation via the daf-9 pathway. Only the ncr-1 mutant is hypersensitive to cholesterol deprivation and to progesterone, an inhibitor of intracellular cholesterol trafficking. Our results support the hypothesis that ncr-1 and ncr-2 are involved in intracellular cholesterol processing in C. elegans, and that a sterol-signaling defect is responsible for the Daf-c phenotype of the ncr-2; ncr-1 mutant.
Collapse
Affiliation(s)
- Jie Li
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
114
|
Zhao Z, Fang LL, Johnsen R, Baillie DL. ATP-binding cassette protein E is involved in gene transcription and translation in Caenorhabditis elegans. Biochem Biophys Res Commun 2004; 323:104-11. [PMID: 15351708 DOI: 10.1016/j.bbrc.2004.08.068] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Indexed: 01/05/2023]
Abstract
ATP-binding cassette protein E (ABCE) gene has been annotated as an RNase L inhibitor in eukaryotes. All eukaryotic species show the ubiquitous presence and high degree of conservation of ABCEs, however, RNase L is present only in mammals. This indicates that ABCEs may function not only as RNase L inhibitors, but also may have other functions that have yet to be determined. As an initial investigation into the novel functions of ABCE, we characterized the gene (Y39E4B.1) in Caenorhabditis elegans by a combination of data mining and functional assays. ABCE promoters drove GFP expressions in hypoderm, pharynx, vulvae, head, and tail neurons at all developmental stages. Three genes, rpl-4, nhr-91, and C07B5.3, were previously found to interact with ABCE. Our expression data showed overlapping expression patterns of ABCE and rpl-4 and nhr-91, but not C07B5.3. RNAi against ABCE resulted in embryonic lethality and slow growth. These data suggest that ABCE protein might be involved in the control of translation and transcription, work as shuttle protein between cytoplasm and nucleus, and possibly as a nucleocytoplasmic transporter. In addition, RNAi data suggest that ABCE and NHR-91 may function in vulvae development and molting pathways in C. elegans. Furthermore, our data suggest that ABCE, along with its interacting components, functions in a well-conserved pathway.
Collapse
Affiliation(s)
- Zhongying Zhao
- Department of Molecular Biology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6.
| | | | | | | |
Collapse
|
115
|
Bertrand S, Brunet FG, Escriva H, Parmentier G, Laudet V, Robinson-Rechavi M. Evolutionary Genomics of Nuclear Receptors: From Twenty-Five Ancestral Genes to Derived Endocrine Systems. Mol Biol Evol 2004; 21:1923-37. [PMID: 15229292 DOI: 10.1093/molbev/msh200] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bilaterian animals are notably characterized by complex endocrine systems. The receptors for many steroids, retinoids, and other hormones belong to the superfamily of nuclear receptors, which are transcription factors regulating many aspects of development and homeostasis. Despite a diversity of regulatory mechanisms and physiological roles, nuclear receptors share a common protein organization. To obtain the broad picture of bilaterian nuclear hormone receptor evolution, we have characterized the complete set of nuclear receptor genes from nine animal genome sequences and analyzed it in a phylogenetic framework. In addition, expressed sequence tags from key lineages with no available genome sequence were also searched. This allows us to date the evolutionary events that led from an ancestral nuclear receptor gene, in an early metazoan, to present day diversity. We show that there were approximately 25 nuclear receptor genes in Urbilateria, the ancestor of bilaterians, at which point the fundamental diversity of the subfamily was already established. Surprisingly, differential gene loss played an important role in the evolution of different nuclear receptor sets in bilaterian lineages. The nuclear receptor distribution was also shaped by periods of gene duplication, essentially in vertebrates, as well as a lineage-specific duplication burst in nematodes. Our results imply that the genes for major receptors such as steroid receptors or thyroid hormone receptors were present in Urbilateria.
Collapse
Affiliation(s)
- Stéphanie Bertrand
- Laboratoire de Biologie Moléculaire de la Cellule, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | | | | |
Collapse
|