101
|
Spindler SR, Ortiz I, Fung S, Takashima S, Hartenstein V. Drosophila cortex and neuropile glia influence secondary axon tract growth, pathfinding, and fasciculation in the developing larval brain. Dev Biol 2009; 334:355-68. [PMID: 19646433 PMCID: PMC2776086 DOI: 10.1016/j.ydbio.2009.07.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 07/23/2009] [Accepted: 07/23/2009] [Indexed: 01/09/2023]
Abstract
Glial cells play important roles in the developing brain during axon fasciculation, growth cone guidance, and neuron survival. In the Drosophila brain, three main classes of glia have been identified including surface, cortex, and neuropile glia. While surface glia ensheaths the brain and is involved in the formation of the blood-brain-barrier and the control of neuroblast proliferation, the range of functions for cortex and neuropile glia is less well understood. In this study, we use the nirvana2-GAL4 driver to visualize the association of cortex and neuropile glia with axon tracts formed by different brain lineages and selectively eliminate these glial populations via induced apoptosis. The larval central brain consists of approximately 100 lineages. Each lineage forms a cohesive axon bundle, the secondary axon tract (SAT). While entering and traversing the brain neuropile, SATs interact in a characteristic way with glial cells. Some SATs are completely invested with glial processes; others show no particular association with glia, and most fall somewhere in between these extremes. Our results demonstrate that the elimination of glia results in abnormalities in SAT fasciculation and trajectory. The most prevalent phenotype is truncation or misguidance of axon tracts, or abnormal fasciculation of tracts that normally form separate pathways. Importantly, the degree of glial association with a given lineage is positively correlated with the severity of the phenotype resulting from glial ablation. Previous studies have focused on the embryonic nerve cord or adult-specific compartments to establish the role of glia. Our study provides, for the first time, an analysis of glial function in the brain during axon formation and growth in larval development.
Collapse
Affiliation(s)
| | | | | | | | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
102
|
Abstract
Neurons and glial cells show mutual interdependence in many developmental and functional aspects of their biology. To establish their intricate relationships with neurons, glial cells must migrate over what are often long distances. In the CNS glial cells generally migrate as single cells, whereas PNS glial cells tend to migrate as cohorts of cells. How are their journeys initiated and directed, and what stops the migratory phase once glial cells are aligned with their neuronal counterparts? A deeper understanding of glial migration and the underlying neuron-glia interactions may contribute to the development of therapeutics for demyelinating diseases or glial tumours.
Collapse
|
103
|
Mayer F, Mayer N, Chinn L, Pinsonneault RL, Kroetz D, Bainton RJ. Evolutionary conservation of vertebrate blood-brain barrier chemoprotective mechanisms in Drosophila. J Neurosci 2009; 29:3538-50. [PMID: 19295159 PMCID: PMC3040577 DOI: 10.1523/jneurosci.5564-08.2009] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 01/27/2009] [Accepted: 02/05/2009] [Indexed: 12/12/2022] Open
Abstract
Pharmacologic remedy of many brain diseases is difficult because of the powerful drug exclusion properties of the blood-brain barrier (BBB). Chemical isolation of the vertebrate brain is achieved through the highly integrated, anatomically compact and functionally overlapping chemical isolation processes of the BBB. These include functions that need to be coordinated between tight diffusion junctions and unidirectionally acting xenobiotic transporters. Understanding of many of these processes has been hampered, because they are not well mimicked by ex vivo models of the BBB and have been experimentally difficult and expensive to disentangle in intact rodent models. Here we show that the Drosophila melanogaster (Dm) humoral/CNS barrier conserves the xenobiotic exclusion properties found in the vertebrate vascular endothelium. We characterize a fly ATP binding cassette (ABC) transporter, Mdr65, that functions similarly to mammalian xenobiotic BBB transporters and show that varying its levels solely in the Dm BBB changes the inherent sensitivity of the barrier to cytotoxic pharmaceuticals. Furthermore, we demonstrate orthologous function between Mdr65 and vertebrate ABC transporters by rescuing chemical protection of the Dm brain with human MDR1/Pgp. These data indicate that the ancient origins of CNS chemoprotection extend to both conserved molecular means and functionally analogous anatomic spaces that together promote CNS selective drug partition. Thus, Dm presents an experimentally tractable system for analyzing physiological properties of the BBB in an intact organism.
Collapse
Affiliation(s)
- Fahima Mayer
- Department of Anesthesia and Perioperative Care, San Francisco General Hospital, and
| | - Nasima Mayer
- Department of Anesthesia and Perioperative Care, San Francisco General Hospital, and
| | - Leslie Chinn
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94143
| | | | - Deanna Kroetz
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94143
| | - Roland J. Bainton
- Department of Anesthesia and Perioperative Care, San Francisco General Hospital, and
| |
Collapse
|
104
|
Read RD, Cavenee WK, Furnari FB, Thomas JB. A drosophila model for EGFR-Ras and PI3K-dependent human glioma. PLoS Genet 2009; 5:e1000374. [PMID: 19214224 PMCID: PMC2636203 DOI: 10.1371/journal.pgen.1000374] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 01/09/2009] [Indexed: 11/19/2022] Open
Abstract
Gliomas, the most common malignant tumors of the nervous system, frequently harbor mutations that activate the epidermal growth factor receptor (EGFR) and phosphatidylinositol-3 kinase (PI3K) signaling pathways. To investigate the genetic basis of this disease, we developed a glioma model in Drosophila. We found that constitutive coactivation of EGFR-Ras and PI3K pathways in Drosophila glia and glial precursors gives rise to neoplastic, invasive glial cells that create transplantable tumor-like growths, mimicking human glioma. Our model represents a robust organotypic and cell-type-specific Drosophila cancer model in which malignant cells are created by mutations in signature genes and pathways thought to be driving forces in a homologous human cancer. Genetic analyses demonstrated that EGFR and PI3K initiate malignant neoplastic transformation via a combinatorial genetic network composed primarily of other pathways commonly mutated or activated in human glioma, including the Tor, Myc, G1 Cyclins-Cdks, and Rb-E2F pathways. This network acts synergistically to coordinately stimulate cell cycle entry and progression, protein translation, and inappropriate cellular growth and migration. In particular, we found that the fly orthologs of CyclinE, Cdc25, and Myc are key rate-limiting genes required for glial neoplasia. Moreover, orthologs of Sin1, Rictor, and Cdk4 are genes required only for abnormal neoplastic glial proliferation but not for glial development. These and other genes within this network may represent important therapeutic targets in human glioma. Malignant gliomas, tumors composed of glial cells and their precursors, are the most common and deadly human brain tumors. These tumors infiltrate the brain and proliferate rapidly, properties that render them largely incurable even with current therapies. Mutations in genes within the EGFR-Ras and PI3K signaling pathways are common in malignant gliomas, although how these genes specifically control glial pathogenesis is unclear. To investigate the genetic basis of this disease, we developed a glioma model in the fruit fly, Drosophila melanogaster. We found that constitutive coactivation of the EGFR-Ras and PI3K pathways in Drosophila glia gives rise to highly proliferative and invasive neoplastic cells that create transplantable tumor-like growths, mimicking human glioma. This represents a robust cell-type-specific Drosophila cancer model in which malignant cells are created by mutations in genetic pathways thought to be driving forces in a homologous human cancer. Genetic analyses demonstrated that EGFR-Ras and PI3K induce fly glial neoplasia through activation of a combinatorial genetic network composed, in part, of other genetic pathways also commonly mutated in human glioma. This network acts synergistically to coordinately stimulate cellular proliferation, protein translation, and inappropriate migration. Rate-limiting genes within this network may represent important therapeutic targets in human glioma.
Collapse
Affiliation(s)
- Renee D. Read
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail: (RDR); (JBT)
| | - Webster K. Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, California, United States of America
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Cancer Center, University of California San Diego, La Jolla, California, United States of America
- Center for Molecular Genetics, University of California San Diego, La Jolla, California, United States of America
| | - Frank B. Furnari
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, California, United States of America
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - John B. Thomas
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail: (RDR); (JBT)
| |
Collapse
|
105
|
Ito K, Awasaki T. Clonal unit architecture of the adult fly brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 628:137-58. [PMID: 18683643 DOI: 10.1007/978-0-387-78261-4_9] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
During larval neurogenesis, neuroblasts repeat asymmetric cell divisions to generate clonally related progeny. When the progeny of a single neuroblast is visualized in the larval brain, their cell bodies form a duster and their neurites form a tight bundle. This structure persists in the adult brain. Neurites deriving from the cells in this duster form bundles to innervate distinct areas of the brain. Such clonal unit structure was first identified in the mushroom body, which is formed by four nearly identical clonal units each of which consists of diverse types of neurons. Organised structures in other areas of the brain, such as the central complex and the antennal lobe projection neurons, also consist of distinct clonal units. Many clonally related neural circuits are observed also in the rest of the brain, which is often called diffused neuropiles because of the apparent lack of dearly demarcated structures. Thus, it is likely that the clonal units are the building blocks of a significant portion of the adult brain circuits. Arborisations of the clonal units are not mutually exclusive, however. Rather, several clonal units contribute together to form distinct neural circuit units, to which other clones contribute relatively marginally. Construction of the brain by combining such groups of clonally related units would have been a simple and efficient strategy for building the complicated neural circuits during development as well as during evolution.
Collapse
Affiliation(s)
- Kei Ito
- Institute of Molecular and Cellular Biosciences, the University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan.
| | | |
Collapse
|
106
|
Hartenstein V, Spindler S, Pereanu W, Fung S. The development of the Drosophila larval brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 628:1-31. [PMID: 18683635 DOI: 10.1007/978-0-387-78261-4_1] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this chapter we will start out by describing in more detail the progenitors of the nervous system, the neuroblasts and ganglion mother cells. Subsequently we will survey the generic cell types that make up the developing Drosophila brain, namely neurons, glial cells and tracheal cells. Finally, we will attempt a synopsis of the neuronal connectivity of the larval brain that can be deduced from the analysis of neural lineages and their relationship to neuropile compartments.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
107
|
Oland LA, Biebelhausen JP, Tolbert LP. Glial investment of the adult and developing antennal lobe of Drosophila. J Comp Neurol 2008; 509:526-50. [PMID: 18537134 PMCID: PMC2767108 DOI: 10.1002/cne.21762] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In recent years the Drosophila olfactory system, with its unparalleled opportunities for genetic dissection of development and functional organization, has been used to study the development of central olfactory neurons and the molecular basis of olfactory coding. The results of these studies have been interpreted in the absence of a detailed understanding of the steps in maturation of glial cells in the antennal lobe. Here we present a high-resolution study of the glia associated with olfactory glomeruli in adult and developing antennal lobes. The study provides a basis for comparison of findings in Drosophila with those in the moth Manduca sexta that indicate a critical role for glia in antennal lobe development. Using flies expressing GFP under a Nervana2 driver to visualize glia for confocal microscopy, and probing at higher resolution with the electron microscope, we find that glial development in Drosophila differs markedly from that in moths: glial cell bodies remain in a rind around the glomerular neuropil; glial processes ensheathe axon bundles in the nerve layer but likely contribute little to axonal sorting; their processes insinuate between glomeruli only very late and then form only a sparse, open network around each glomerulus; and glial processes invade the synaptic neuropil. Taking our results in the context of previous studies, we conclude that glial cells in the developing Drosophila antennal lobe are unlikely to play a strong role in either axonal sorting or glomerulus stabilization and that in the adult, glial processes do not electrically isolate glomeruli from their neighbors.
Collapse
Affiliation(s)
- Lynne A Oland
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|
108
|
Regulation of glia number in Drosophila by Rap/Fzr, an activator of the anaphase-promoting complex, and Loco, an RGS protein. Genetics 2008; 178:2003-16. [PMID: 18430931 DOI: 10.1534/genetics.107.086397] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glia mediate a vast array of cellular processes and are critical for nervous system development and function. Despite their immense importance in neurobiology, glia remain understudied and the molecular mechanisms that direct their differentiation are poorly understood. Rap/Fzr is the Drosophila homolog of the mammalian Cdh1, a regulatory subunit of the anaphase-promoting complex/cyclosome (APC/C). APC/C is an E3 ubiquitin ligase complex well characterized for its role in cell cycle progression. In this study, we have uncovered a novel cellular role for Rap/Fzr. Loss of rap/fzr function leads to a marked increase in the number of glia in the nervous system of third instar larvae. Conversely, ectopic expression of UAS-rap/fzr, driven by repo-GAL4, results in the drastic reduction of glia. Data from clonal analyses using the MARCM technique show that Rap/Fzr regulates the differentiation of surface glia in the developing larval nervous system. Our genetic and biochemical data further indicate that Rap/Fzr regulates glial differentiation through its interaction with Loco, a regulator of G-protein signaling (RGS) protein and a known effector of glia specification. We propose that Rap/Fzr targets Loco for ubiquitination, thereby regulating glial differentiation in the developing nervous system.
Collapse
|
109
|
Abstract
The function of a complex nervous system depends on an intricate interplay between neuronal and glial cell types. One of the many functions of glial cells is to provide an efficient insulation of the nervous system and thereby allowing a fine tuned homeostasis of ions and other small molecules. Here, we present a detailed cellular analysis of the glial cell complement constituting the blood-brain barrier in Drosophila. Using electron microscopic analysis and single cell-labeling experiments, we characterize different glial cell layers at the surface of the nervous system, the perineurial glial layer, the subperineurial glial layer, the wrapping glial cell layer, and a thick layer of extracellular matrix, the neural lamella. To test the functional roles of these sheaths we performed a series of dye penetration experiments in the nervous systems of wild-type and mutant embryos. Comparing the kinetics of uptake of different sized fluorescently labeled dyes in different mutants allowed to conclude that most of the barrier function is mediated by the septate junctions formed by the subperineurial cells, whereas the perineurial glial cell layer and the neural lamella contribute to barrier selectivity against much larger particles (i.e., the size of proteins). We further compare the requirements of different septate junction components for the integrity of the blood-brain barrier and provide evidence that two of the six Claudin-like proteins found in Drosophila are needed for normal blood-brain barrier function.
Collapse
|
110
|
The tumor suppressor, vitamin D3 up-regulated protein 1 (VDUP1), functions downstream of REPO during Drosophila gliogenesis. Dev Biol 2008; 315:489-504. [PMID: 18262515 DOI: 10.1016/j.ydbio.2008.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 11/02/2007] [Accepted: 01/09/2008] [Indexed: 11/24/2022]
Abstract
The tumor suppressor, vitamin D(3) up-regulated protein 1 (VDUP1), regulates cell cycle progression by suppressing AP-1-dependent transcription. Loss of VDUP1 activity is associated with tumorigenesis but little is known about VDUP1 regulatory controls or developmental roles. Here we show that the Drosophila homolog of human VDUP1 (dVDUP1) is expressed throughout the nervous system at all stages of development, the first in vivo analysis of VDUP1 expression patterns in the brain. During neurogenesis dVDUP1 expression is transiently down-regulated coincident with neuroblast delamination. Subsequent to expression of the neuronal marker elav, dVDUP1 is up-regulated to varying degrees in developing neurons. In contrast, dVDUP1 expression is both robust and sustained during gliogenesis, and the cis-regulatory region of the dvdup1 gene contains consensus binding sites for the glial fate gene reversed polarity (repo). Expression of dVDUP1 in presumptive glia is lost in embryos deficient for the glial fate genes glial cells missing (gcm) and repo. Conversely, ectopic expression of gcm or repo was sufficient to induce dVDUP1 expression in the nervous system. Taken together, these data suggest a novel role for the dVDUP1 tumor suppressor during nervous system development as a regulatory target for REPO during gliogenesis.
Collapse
|
111
|
Soustelle L, Giangrande A. Novel gcm-dependent lineages in the postembryonic nervous system of Drosophila melanogaster. Dev Dyn 2007; 236:2101-8. [PMID: 17654713 DOI: 10.1002/dvdy.21232] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
glial cells missing genes (gcm and gcm2) act as the glial fate determinants in the Drosophila embryo. However, their requirement in the adult central nervous system (CNS) is at present not known, except for their role in lamina glia. This is particularly important with respect to two recent sets of data. Adult glial subpopulations differentiate through embryonic glia proliferation. Also, gcm-gcm2 are required for the differentiation of specific adult neurons. We here show that gcm is expressed in precursors and postmitotic, migrating, cells of the medulla neuropile glia (mng) lineage. It is also expressed in a thoracic glial lineage and in neurons of the ventral nerve cord (VNC). Finally, while gcm is required for gliogenesis in medulla and VNC, it does not seem to be required for the generation of VNC neurons.
Collapse
Affiliation(s)
- Laurent Soustelle
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Strasbourg, France
| | | |
Collapse
|
112
|
Pereanu W, Spindler S, Im E, Buu N, Hartenstein V. The emergence of patterned movement during late embryogenesis of Drosophila. Dev Neurobiol 2007; 67:1669-85. [PMID: 17577205 DOI: 10.1002/dneu.20538] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Larval behavioral patterns arise in a gradual fashion during late embryogenesis as the innervation of the somatic musculature and connectivity within the central nervous system develops. In this paper, we describe in a quantitative manner the maturation of behavioral patterns. Early movements are locally restricted "twitches" of the body wall, involving single segments or parts of segments. These twitches occur at a low frequency and have low amplitude, reflecting weak muscle contractions. Towards later stages twitches increase in frequency and amplitude and become integrated into coordinated movements of multiple segments. Most noticeable among these is the peristaltic wave of longitudinal segmental contractions by which the larva moves forward or backward. Besides becoming more complex as development proceeds, embryonic movements also acquire a pronounced rhythm. Thus, late embryonic movements occur in bursts, with phases of frequent movement separated by phases of no movement at all; early movements show no such periodicity. These data will serve as a baseline for future studies that address the function of embryonic lethal genes controlling neuronal connectivity and larval behavior. We have analyzed behavioral abnormalities in two embryonic lethal mutations with severe neural defects, tailless (tll), which lacks the protocerebrum, and glial cells missing (gcm), in which glial cells are absent. Our results reveal prominent alterations in embryonic motility for both of these mutations, indicating that the protocerebrum and glial cells play a crucial role in the neural mechanism controlling larval movement in Drosophila.
Collapse
Affiliation(s)
- Wayne Pereanu
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
113
|
Hofmeyer K, Kretzschmar D, Pflugfelder GO. Optomotor-blind expression in glial cells is required for correct axonal projection across the Drosophila inner optic chiasm. Dev Biol 2007; 315:28-41. [PMID: 18234176 DOI: 10.1016/j.ydbio.2007.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 10/10/2007] [Accepted: 10/12/2007] [Indexed: 11/26/2022]
Abstract
In the Drosophila adult visual system, photoreceptor axons and their connecting interneurons are tied into a retinotopic pattern throughout the consecutive neuropil regions: lamina, medulla and lobula complex. Lamina and medulla are joined by the first or outer optic chiasm (OOC). Medulla, lobula and lobula plate are connected by the second or inner optic chiasm (IOC). In the regulatory mutant In(1)omb(H31) of the T-box gene optomotor-blind (omb), fibers were found to cross aberrantly through the IOC into the neuropil of the lobula complex. Here, we show that In(1)omb(H31) causes selective loss of OMB expression from glial cells within the IOC previously identified as IOC giant glia (ICg-glia). In the absence of OMB, ICg-glia retain their glial cell identity and survive until the adult stage but tend to be displaced into the lobula complex neuropil leading to a misprojection of axons through the IOC. In addition, adult mutant glia show an aberrant increase in length and frequency of glial cell processes. We narrowed down the onset of the IOC defect to the interval between 48 h and 72 h of pupal development. Within the 40 kb of regulatory DNA lacking in In(1)omb(H31), we identified an enhancer element (ombC) with activity in the ICg-glia. ombC-driven expression of omb in ICg-glia restored proper axonal projection through the IOC in In(1)omb(H31) mutant flies, as well as proper glial cell positioning and morphology. These results indicate that expression of the transcription factor OMB in ICg-glial cells is autonomously required for glial cell migration and morphology and non-autonomously influences axonal pathfinding.
Collapse
Affiliation(s)
- Kerstin Hofmeyer
- Lehrstuhl fuer Genetik und Neurobiologie, Biozentrum, Universitaet Wuerzburg, 97074 Wuerzburg, Germany.
| | | | | |
Collapse
|
114
|
Colonques J, Ceron J, Tejedor FJ. Segregation of postembryonic neuronal and glial lineages inferred from a mosaic analysis of the Drosophila larval brain. Mech Dev 2007; 124:327-40. [PMID: 17344035 DOI: 10.1016/j.mod.2007.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 01/12/2007] [Accepted: 01/16/2007] [Indexed: 01/06/2023]
Abstract
Due to its intermediate complexity and its sophisticated genetic tools, the larval brain of Drosophila is a useful experimental system to study the mechanisms that control the generation of cell diversity in the CNS. In order to gain insight into the neuronal and glial lineage specificity of neural progenitor cells during postembryonic brain development, we have carried an extensive mosaic analysis throughout larval brain development. In contrast to embryonic CNS development, we have found that most postembryonic neurons and glial cells of the optic lobe and central brain originate from segregated progenitors. Our analysis also provides relevant information about the origin and proliferation patterns of several postembryonic lineages such as the superficial glia and the medial-anterior Medulla neuropile glia. Additionally, we have studied the spatio-temporal relationship between gcm expression and gliogenesis. We found that gcm expression is restricted to the post-mitotic cells of a few neuronal and glial lineages and it is mostly absent from postembryonic progenitors. Thus, in contrast to its major gliogenic role in the embryo, the function of gcm during postembryonic brain development seems to have evolved to the specification and differentiation of certain neuronal and glial lineages.
Collapse
Affiliation(s)
- J Colonques
- Instituto de Neurociencias, CSIC--Universidad Miguel Hernandez, Campus de San Juan, 03550 San Juan (Alicante), Spain
| | | | | |
Collapse
|
115
|
Chotard C, Salecker I. Glial cell development and function in the Drosophila visual system. NEURON GLIA BIOLOGY 2007; 3:17-25. [PMID: 18333286 PMCID: PMC2265801 DOI: 10.1017/s1740925x07000592] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the developing nervous system, building a functional neuronal network relies on coordinating the formation, specification and survival to diverse neuronal and glial cell subtypes. The establishment of neuronal connections further depends on sequential neuron-neuron and neuron-glia interactions that regulate cell-migration patterns and axon guidance. The visual system of Drosophila has a highly regular, retinotopic organization into reiterated interconnected synaptic circuits. It is therefore an excellent invertebrate model to investigate basic cellular strategies and molecular determinants regulating the different developmental processes that lead to network formation. Studies in the visual system have provided important insights into the mechanisms by which photoreceptor axons connect with their synaptic partners within the optic lobe. In this review, we highlight that this system is also well suited for uncovering general principles that underlie glial cell biology. We describe the glial cell subtypes in the visual system and discuss recent findings about their development and migration. Finally, we outline the pivotal roles of glial cells in mediating neural circuit assembly, boundary formation, neural proliferation and survival, as well as synaptic function.
Collapse
Affiliation(s)
- Carole Chotard
- MRC National Institute for Medical Research, Division of Molecular Neurobiology, The Ridgeway, London NW7 1AA, UK.
| | | |
Collapse
|
116
|
Abstract
The blood brain barrier (BBB) evolved to preserve the microenvironment of the highly excitable neuronal cells to allow for action potential generation and propagation. Intricate molecular interactions between two main cell types, the neurons and the glial cells, form the underlying basis of the critical functioning of the nervous system across species. In invertebrates, interactions between neurons and glial cells are central in establishing a functional BBB. However, in vertebrates, the BBB formation and function is coordinated by interactions between neurons, glial cells, and endothelial cells. Here we review the neuron-glial interaction-based blood barriers in invertebrates and vertebrates and provide an evolutionary perspective as to how a glial-barrier system in invertebrates evolved into an endothelial barrier system. We also summarize the clinical relevance of the BBB as this protective barrier becomes disadvantageous in the pharmacological treatment of various neurological disorders.
Collapse
Affiliation(s)
- Swati Banerjee
- Department of Cell and Molecular Physiology, Curriculum in Neurobiology, Neurodevelopmental Disorders Research Center, UNC-Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7545
| | - Manzoor A. Bhat
- Department of Cell and Molecular Physiology, Curriculum in Neurobiology, Neurodevelopmental Disorders Research Center, UNC-Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7545
| |
Collapse
|
117
|
Fung S, Wang F, Chase M, Godt D, Hartenstein V. Expression profile of the cadherin family in the developingDrosophila brain. J Comp Neurol 2007; 506:469-88. [DOI: 10.1002/cne.21539] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
118
|
Guenin L, Grosjean Y, Fraichard S, Acebes A, Baba-Aissa F, Ferveur JF. Spatio-temporal expression of Prospero is finely tuned to allow the correct development and function of the nervous system in Drosophila melanogaster. Dev Biol 2006; 304:62-74. [PMID: 17223099 DOI: 10.1016/j.ydbio.2006.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 12/05/2006] [Accepted: 12/08/2006] [Indexed: 11/19/2022]
Abstract
Adaptive animal behaviors depend upon the precise development of the nervous system that underlies them. In Drosophila melanogaster, the pan-neural prospero gene (pros), is involved in various aspects of neurogenesis including cell cycle control, axonal outgrowth, neuronal and glial cell differentiation. As these results have been generally obtained with null pros mutants inducing embryonic lethality, the role of pros during later development remains poorly known. Using several pros-Voila (prosV) alleles, that induce multiple developmental and behavioral anomalies in the larva and in adult, we explored the relationship between these phenotypes and the variation of pros expression in 5 different neural regions during pre-imaginal development. We found that the quantity of pros mRNA spliced variants and of Pros protein varied between these alleles in a tissue-specific and developmental way. Moreover, in prosV1 and prosV13 alleles, the respective decrease or increase of pros expression, affected (i) neuronal and glial cell composition, (ii) cell proliferation and death and (iii) axonal-dendritic outgrowth in a stage and cellular context dependant way. The various phenotypic consequences induced during development, related to more or less subtle differences in gene expression, indicate that Pros level needs a precise and specific adjustment in each neural organ to allow its proper function.
Collapse
Affiliation(s)
- Laure Guenin
- Unité Mixte de Recherche 5548 Associée au Centre National de la Recherche Scientifique, Université de Bourgogne, 6, Bd Gabriel, 21 000 Dijon, France
| | | | | | | | | | | |
Collapse
|
119
|
Pereanu W, Spindler S, Cruz L, Hartenstein V. Tracheal development in the Drosophila brain is constrained by glial cells. Dev Biol 2006; 302:169-80. [PMID: 17046740 PMCID: PMC1885555 DOI: 10.1016/j.ydbio.2006.09.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 09/07/2006] [Accepted: 09/08/2006] [Indexed: 01/24/2023]
Abstract
The Drosophila brain is tracheated by the cerebral trachea, a branch of the first segmental trachea of the embryo. During larval stages the cerebral trachea splits into several main (primary) branches that grow around the neuropile, forming a perineuropilar tracheal plexus (PNP) at the neuropile surface. Five primary tracheal branches whose spatial relationship to brain compartments is relatively invariant can be distinguished, although the exact trajectories and branching pattern of the brain tracheae are surprisingly variable. Immunohistochemical and electron microscopic studies demonstrate that all brain tracheae grow in direct contact with the glial cell processes that surround the neuropile. To investigate the effect of glia on tracheal development, embryos and larvae lacking glial cells as a result of a genetic mutation or a directed ablation were analyzed. In these animals, the tracheal branching pattern was highly abnormal. In particular, the number of secondary branches entering the central neuropile was increased. Wild-type larvae possess only two central tracheae, typically associated with the mushroom body and the antennocerebral tract. In larvae lacking glial cells, six to ten tracheal branches penetrate the neuropile in a variable pattern. This finding indicates that glia-derived signals constrained tracheal growth in the Drosophila brain and restrict the number of branches entering the neuropile.
Collapse
Affiliation(s)
- Wayne Pereanu
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
120
|
Strigini M, Cantera R, Morin X, Bastiani MJ, Bate M, Karagogeos D. The IgLON protein Lachesin is required for the blood-brain barrier in Drosophila. Mol Cell Neurosci 2006; 32:91-101. [PMID: 16682215 DOI: 10.1016/j.mcn.2006.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 03/05/2006] [Accepted: 03/09/2006] [Indexed: 10/24/2022] Open
Abstract
In the mammalian peripheral nervous system, nerve insulation depends on the integrity of paranodal junctions between axons and their ensheathing glia. Ultrastructurally, these junctions are similar to the septate junctions (SJ) of invertebrates. In Drosophila, SJ are found in epithelia and in the glia that form the blood-brain barrier (BBB). Drosophila NeurexinIV and Gliotactin, two components of SJ, play an important role in nerve ensheathment and insulation. Here, we report that Drosophila Lachesin (Lac), another SJ component, is also required for a functional BBB. In the developing nervous system, Lac is expressed in a dynamic pattern by surface glia and a subset of neurons. Ultrastructural analysis of Lac mutant embryos shows poorly developed SJ in surface glia and epithelia where Lac is expressed. Mutant embryos undergo a phase of hyperactivity, with unpatterned muscle contractions, and subsequently become paralyzed and fail to hatch. We propose that this phenotype reflects a failure in BBB function.
Collapse
Affiliation(s)
- Maura Strigini
- IMBB/FORTH, Vassilika Vouton, Iraklio, Crete GR-71110, Greece.
| | | | | | | | | | | |
Collapse
|
121
|
Freeman MR, Doherty J. Glial cell biology in Drosophila and vertebrates. Trends Neurosci 2006; 29:82-90. [PMID: 16377000 DOI: 10.1016/j.tins.2005.12.002] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 10/21/2005] [Accepted: 12/06/2005] [Indexed: 11/22/2022]
Abstract
Glia are the most abundant cell type in the mammalian nervous system and they have vital roles in neural development, function and health. However our understanding of the biology of glia is in its infancy. How do glia develop and interact with neurons? How diverse are glial populations? What are the primary functions of glia in the mature nervous system? These questions can be addressed incisively in the Drosophila nervous system--this contains relatively few glia, which are well-defined histologically and amenable to powerful molecular-genetic analyses. Here, we highlight several developmental, morphological and functional similarities between Drosophila and vertebrate glia. The striking parallels that emerge from this comparison argue that invertebrate model organisms such as Drosophila have excellent potential to add to our understanding of fundamental aspects of glial biology.
Collapse
Affiliation(s)
- Marc R Freeman
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA.
| | | |
Collapse
|
122
|
Iyengar BG, Chou CJ, Sharma A, Atwood HL. Modular neuropile organization in theDrosophila larval brain facilitates identification and mapping of central neurons. J Comp Neurol 2006; 499:583-602. [PMID: 17029252 DOI: 10.1002/cne.21133] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Elucidating how neuronal networks process information requires identification of critical individual neurons and their connectivity patterns. For this purpose, we used the third-instar Drosophila larval brain and applied reverse-genetic tools, immunolabeling procedures, and 3D digital reconstruction software. Consistent topological definition of neuropile compartments in the larval brain can be obtained through simple fluorescence-immunolabeling methods. The modular neuropiles can be used as a fiducial framework for mapping the projection patterns of individual neurons labeled with green fluorescent protein (GFP). GFP-labeled neurons often exhibit dendrite-like arbors as well as clustered varicose terminals on neurite branches that innervate identifiable neuropile compartments. We identified candidate cholinergic interneurons in genetic mosaic brains that overlap with the larval optic nerve terminus. By using the neuropile framework, we demonstrate that the candidate visual interneurons are not a subset of the previously identified circadian pacemaker neurons that also contact the larval optic nerve terminus; they may represent parallel pathways in the processing of visual inputs. Thus, in the Drosophila larval brain, modular neuropiles can be used as a framework for systematically identifying, mapping, and classifying interneurons; understanding their roles in behavior can then be pursued further.
Collapse
Affiliation(s)
- Balaji G Iyengar
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | | | | | | |
Collapse
|
123
|
Fan Y, Soller M, Flister S, Hollmann M, Müller M, Bello B, Egger B, White K, Schäfer MA, Reichert H. The egghead gene is required for compartmentalization in Drosophila optic lobe development. Dev Biol 2005; 287:61-73. [PMID: 16182276 DOI: 10.1016/j.ydbio.2005.08.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 08/15/2005] [Accepted: 08/16/2005] [Indexed: 11/18/2022]
Abstract
The correct targeting of photoreceptor neurons (R-cells) in the developing Drosophila visual system requires multiple guidance systems in the eye-brain complex as well as the precise organization of the target area. Here, we report that the egghead (egh) gene, encoding a glycosyltransferase, is required for a compartment boundary between lamina glia and lobula cortex, which is necessary for appropriate R1-R6 innervation of the lamina. In the absence of egh, R1-R6 axons form a disorganized lamina plexus and some R1-R6 axons project abnormally to the medulla instead of the lamina. Mosaic analysis demonstrates that this is not due to a loss of egh function in the eye or in the neurons and glia of the lamina. Rather, as indicated by clonal analysis and cell-specific genetic rescue experiments, egh is required in cells of the lobula complex primordium which transiently abuts the lamina and medulla in the developing larval brain. In the absence of egh, perturbation of sheath-like glial processes occurs at the boundary region delimiting lamina glia and lobula cortex, and inappropriate invasion of lobula cortex cells across this boundary region disrupts the pattern of lamina glia resulting in inappropriate R1-R6 innervation. This finding underscores the importance of the lamina/lobula compartment boundary in R1-R6 axon targeting.
Collapse
Affiliation(s)
- Yun Fan
- Biozentrum/Pharmazentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|