101
|
Artini PG, Obino MER, Carletti E, Pinelli S, Ruggiero M, Di Emidio G, Cela V, Tatone C. Conventional IVF as a laboratory strategy to rescue fertility potential in severe poor responder patients: the impact of reproductive aging. Gynecol Endocrinol 2013; 29:997-1001. [PMID: 23909592 DOI: 10.3109/09513590.2013.822063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE To investigate whether laboratory strategies can improve in vitro fertilization (IVF) outcome in poor responder patients. We compared the effectiveness of conventional IVF and intra cytoplasmic sperm injection (ICSI) in assisted reproductive technologies cycles in which only one or two oocytes were retrieved at ovarian pick up, in the absence of male infertility. DESIGN Retrospective analysis of 425 cycles in 386 poor responder patients. INTERVENTION(S) Standard stimulation protocol with gonadotropins and gonadotropin releasing hormone (GnRH) antagonist. MAIN OUTCOME MEASURE(S) Fertilization rate, cleavage rate, good-quality embryo rate, implantation rate, clinical pregnancy rate (PR) and miscarriage rate. RESULTS IVF was found to be more advantageous for implantation and PR, especially in patients under 35 years and in women aged between 35 and 38 years. No differences were noted in the other parameter evaluated. Patients aged over 38 years showed no difference using the two techniques. CONCLUSION The employment of ICSI in the absence of a male factor can reduce reproductive outcome in poor responder. Probably because of aging-related defects overcoming the advantage of sperm selection, the choice of IVF technique is not relevant to reproductive success when oocyte quality is compromised by reproductive aging. Although further randomized trials are needed to confirm our results, we propose that, in absence of male infertility, conventional IVF might be the technique of choice in young patients, especially in those aged below 35 years.
Collapse
Affiliation(s)
- Paolo Giovanni Artini
- Division of Obstetrics and Gynaecology, Department of Clinical and Experimental Medicine, University of Pisa , Pisa , Italy and
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Nomikos M, Kashir J, Swann K, Lai FA. Sperm PLCζ: from structure to Ca2+ oscillations, egg activation and therapeutic potential. FEBS Lett 2013; 587:3609-16. [PMID: 24157362 DOI: 10.1016/j.febslet.2013.10.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/12/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
Abstract
Significant evidence now supports the assertion that cytosolic calcium oscillations during fertilization in mammalian eggs are mediated by a testis-specific phospholipase C (PLC), termed PLC-zeta (PLCζ) that is released into the egg following gamete fusion. Herein, we describe the current paradigm of PLCζ in this fundamental biological process, summarizing recent important advances in our knowledge of the biochemical and physiological properties of this enzyme. We describe the data suggesting that PLCζ has distinct features amongst PLCs enabling the hydrolysis of its substrate, phosphatidylinositol 4,5-bisphosphate (PIP2) at low Ca(2+) levels. PLCζ appears to be unique in its ability to target PIP2 that is present on intracellular vesicles. We also discuss evidence that PLCζ may be a significant factor in human fertility with potential therapeutic capacity.
Collapse
Affiliation(s)
- Michail Nomikos
- Institute of Molecular and Experimental Medicine, WHRI, Cardiff University School of Medicine, Heath Park, CF144XN Cardiff, UK.
| | | | | | | |
Collapse
|
103
|
Ajduk A, Zernicka-Goetz M. Quality control of embryo development. Mol Aspects Med 2013; 34:903-18. [DOI: 10.1016/j.mam.2013.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 03/05/2013] [Accepted: 03/19/2013] [Indexed: 11/28/2022]
|
104
|
Kim GA, Oh HJ, Park JE, Kim MJ, Park EJ, Jo YK, Jang G, Kim MK, Kim HJ, Lee BC. Species-specific challenges in dog cloning. Reprod Domest Anim 2013; 47 Suppl 6:80-3. [PMID: 23279471 DOI: 10.1111/rda.12035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/06/2012] [Indexed: 11/28/2022]
Abstract
Somatic cell nuclear transfer (SCNT) is now an established procedure used in cloning of several species. SCNT in dogs involves multiple steps including the removal of the nuclear material, injection of a donor cell, fusion, activation of the reconstructed oocytes and finally transfer to a synchronized female recipient. There are therefore many factors that contribute to cloning efficiency. By performing a retrospective analysis of 2005-2012 published papers regarding dog cloning, we define the optimum procedure and summarize the specific feature for dog cloning.
Collapse
Affiliation(s)
- G A Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Kashir J, Deguchi R, Jones C, Coward K, Stricker SA. Comparative biology of sperm factors and fertilization-induced calcium signals across the animal kingdom. Mol Reprod Dev 2013; 80:787-815. [PMID: 23900730 DOI: 10.1002/mrd.22222] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/23/2013] [Indexed: 11/08/2022]
Abstract
Fertilization causes mature oocytes or eggs to increase their concentrations of intracellular calcium ions (Ca²⁺) in all animals that have been examined, and such Ca²⁺ elevations, in turn, provide key activating signals that are required for non-parthenogenetic development. Several lines of evidence indicate that the Ca²⁺ transients produced during fertilization in mammals and other taxa are triggered by soluble factors that sperm deliver into oocytes after gamete fusion. Thus, for a broad-based analysis of Ca²⁺ dynamics during fertilization in animals, this article begins by summarizing data on soluble sperm factors in non-mammalian species, and subsequently reviews various topics related to a sperm-specific phospholipase C, called PLCζ, which is believed to be the predominant activator of mammalian oocytes. After characterizing initiation processes that involve sperm factors or alternative triggering mechanisms, the spatiotemporal patterns of Ca²⁺ signals in fertilized oocytes or eggs are compared in a taxon-by-taxon manner, and broadly classified as either a single major transient or a series of repetitive oscillations. Both solitary and oscillatory types of fertilization-induced Ca²⁺ signals are typically propagated as global waves that depend on Ca²⁺ release from the endoplasmic reticulum in response to increased concentrations of inositol 1,4,5-trisphosphate (IP₃). Thus, for taxa where relevant data are available, upstream pathways that elevate intraoocytic IP3 levels during fertilization are described, while other less-common modes of producing Ca²⁺ transients are also examined. In addition, the importance of fertilization-induced Ca²⁺ signals for activating development is underscored by noting some major downstream effects of these signals in various animals.
Collapse
Affiliation(s)
- Junaid Kashir
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, UK
| | | | | | | | | |
Collapse
|
106
|
Incubation of sperm heads impairs fertilization and early embryo development following intracytoplasmic sperm injection (ICSI) by decreasing oocyte activation in mice. Biotechnol Lett 2013; 35:1823-9. [DOI: 10.1007/s10529-013-1287-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/24/2013] [Indexed: 11/26/2022]
|
107
|
Takahashi T, Igarashi H, Amita M, Hara S, Matsuo K, Kurachi H. Molecular mechanism of poor embryo development in postovulatory aged oocytes: mini review. J Obstet Gynaecol Res 2013; 39:1431-9. [PMID: 23876057 DOI: 10.1111/jog.12111] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 02/27/2013] [Indexed: 11/29/2022]
Abstract
Oocyte quality is a key factor in determining embryo development; however, we have a poor understanding of what constitutes oocyte quality or the mechanisms governing it. Postovulatory aging of oocytes that have not been fertilized for a prolonged time after ovulation is known to significantly impair oocyte quality and subsequent embryo development after fertilization. Embryos derived from postovulatory-aged oocytes are prone to undergo apoptosis due to the decreased Bcl-2 expression. Postovulatory aging of oocytes changes the patterns of Ca(2+) oscillations at fertilization as a result of impaired Ca(2+) regulation in the endoplasmic reticulum. Moreover, postovulatory aging of oocytes impairs mitochondrial adenosine triphosphate production as a result of increasing oxidative stresses. Oxidative stresses also affect intracellular Ca(2+) regulation and impair embryo development after fertilization. Collectively, the mechanism of postovulatory oocyte aging might be involved in reactive oxygen species-induced mitochondrial injury followed by abnormal intracellular Ca(2+) regulation in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Toshifumi Takahashi
- Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | | | | | | | | | | |
Collapse
|
108
|
Kohda T, Ishino F. Embryo manipulation via assisted reproductive technology and epigenetic asymmetry in mammalian early development. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120353. [PMID: 23166403 PMCID: PMC3539368 DOI: 10.1098/rstb.2012.0353] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The early stage of mammalian development from fertilization to implantation is a period when global and differential changes in the epigenetic landscape occur in paternally and maternally derived genomes, respectively. The sperm and egg DNA methylation profiles are very different from each other, and just after fertilization, only the paternally derived genome is subjected to genome-wide hydroxylation of 5-methylcytosine, resulting in an epigenetic asymmetry in parentally derived genomes. Although most of these differences are not present by the blastocyst stage, presumably due to passive demethylation, the maintenance of genomic imprinting memory and X chromosome inactivation in this stage are of critical importance for post-implantation development. Zygotic gene activation from paternally or maternally derived genomes also starts around the two-cell stage, presumably in a different manner in each of them. It is during this period that embryo manipulation, including assisted reproductive technology, is normally performed; so it is critically important to determine whether embryo manipulation procedures increase developmental risks by disturbing subsequent gene expression during the embryonic and/or neonatal development stages. In this review, we discuss the effects of various embryo manipulation procedures applied at the fertilization stage in relation to the epigenetic asymmetry in pre-implantation development. In particular, we focus on the effects of intracytoplasmic sperm injection that can result in long-lasting transcriptome disturbances, at least in mice.
Collapse
Affiliation(s)
- Takashi Kohda
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | |
Collapse
|
109
|
Vanden Meerschaut F, Nikiforaki D, De Roo C, Lierman S, Qian C, Schmitt-John T, De Sutter P, Heindryckx B. Comparison of pre- and post-implantation development following the application of three artificial activating stimuli in a mouse model with round-headed sperm cells deficient for oocyte activation. Hum Reprod 2013; 28:1190-8. [DOI: 10.1093/humrep/det038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
110
|
Systems genetics implicates cytoskeletal genes in oocyte control of cloned embryo quality. Genetics 2013; 193:877-96. [PMID: 23307892 DOI: 10.1534/genetics.112.148866] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cloning by somatic cell nuclear transfer is an important technology, but remains limited due to poor rates of success. Identifying genes supporting clone development would enhance our understanding of basic embryology, improve applications of the technology, support greater understanding of establishing pluripotent stem cells, and provide new insight into clinically important determinants of oocyte quality. For the first time, a systems genetics approach was taken to discover genes contributing to the ability of an oocyte to support early cloned embryo development. This identified a primary locus on mouse chromosome 17 and potential loci on chromosomes 1 and 4. A combination of oocyte transcriptome profiling data, expression correlation analysis, and functional and network analyses yielded a short list of likely candidate genes in two categories. The major category-including two genes with the strongest genetic associations with the traits (Epb4.1l3 and Dlgap1)-encodes proteins associated with the subcortical cytoskeleton and other cytoskeletal elements such as the spindle. The second category encodes chromatin and transcription regulators (Runx1t1, Smchd1, and Chd7). Smchd1 promotes X chromosome inactivation, whereas Chd7 regulates expression of pluripotency genes. Runx1t1 has not been associated with these processes, but acts as a transcriptional repressor. The finding that cytoskeleton-associated proteins may be key determinants of early clone development highlights potential roles for cytoplasmic components of the oocyte in supporting nuclear reprogramming. The transcriptional regulators identified may contribute to the overall process as downstream effectors.
Collapse
|
111
|
Abstract
Egg activation is the final transition that an oocyte goes through to become a developmentally competent egg. This transition is usually triggered by a calcium-based signal that is often, but not always, initiated by fertilization. Activation encompasses a number of changes within the egg. These include changes to the egg's membranes and outer coverings to prevent polyspermy and to support the developing embryo, as well as resumption and completion of the meiotic cell cycle, mRNA polyadenylation, translation of new proteins, and the degradation of specific maternal mRNAs and proteins. The transition from an arrested, highly differentiated cell, the oocyte, to a developmentally active, totipotent cell, the activated egg or embryo, represents a complete change in cellular state. This is accomplished by altering ion concentrations and by widespread changes in both the proteome and the suite of mRNAs present in the cell. Here, we review the role of calcium and zinc in the events of egg activation, and the importance of macromolecular changes during this transition. The latter include the degradation and translation of proteins, protein posttranslational regulation through phosphorylation, and the degradation, of maternal mRNAs.
Collapse
Affiliation(s)
- Amber R Krauchunas
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | | |
Collapse
|
112
|
Nomikos M, Yu Y, Elgmati K, Theodoridou M, Campbell K, Vassilakopoulou V, Zikos C, Livaniou E, Amso N, Nounesis G, Swann K, Lai FA. Phospholipase Cζ rescues failed oocyte activation in a prototype of male factor infertility. Fertil Steril 2013; 99:76-85. [PMID: 22999959 PMCID: PMC3540263 DOI: 10.1016/j.fertnstert.2012.08.035] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 08/15/2012] [Accepted: 08/20/2012] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To determine the effect of infertility-linked sperm phospholipase Cζ (PLCζ) mutations on their ability to trigger oocyte Ca(2+) oscillations and development, and also to evaluate the potential therapeutic utility of wild-type, recombinant PLCζ protein for rescuing failed oocyte activation and embryo development. DESIGN Test of a novel therapeutic approach to male factor infertility. SETTING University medical school research laboratory. PATIENT(S) Donated unfertilized human oocytes from follicle reduction. INTERVENTION(S) Microinjection of oocytes with recombinant human PLCζ protein or PLCζ cRNA and a Ca(2+)-sensitive fluorescent dye. MAIN OUTCOME MEASURE(S) Measurement of the efficacy of mutant and wild-type PLCζ-mediated enzyme activity, oocyte Ca(2+) oscillations, activation, and early embryo development. RESULT(S) In contrast to the wild-type protein, mutant forms of human sperm PLCζ display aberrant enzyme activity and a total failure to activate unfertilized oocytes. Subsequent microinjection of recombinant human PLCζ protein reliably triggers the characteristic pattern of cytoplasmic Ca(2+) oscillations at fertilization, which are required for normal oocyte activation and successful embryo development to the blastocyst stage. CONCLUSION(S) Dysfunctional sperm PLCζ cannot trigger oocyte activation and results in male factor infertility, so a potential therapeutic approach is oocyte microinjection of active, wild-type PLCζ protein. We have demonstrated that recombinant human PLCζ can phenotypically rescue failed activation in oocytes that express dysfunctional PLCζ, and that this intervention culminates in efficient blastocyst formation.
Collapse
Affiliation(s)
- Michail Nomikos
- Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom; National Center for Scientific Research "Demokritos," Aghia Paraskevi, Greece.
| | - Yuansong Yu
- Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Khalil Elgmati
- Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Maria Theodoridou
- Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom; National Center for Scientific Research "Demokritos," Aghia Paraskevi, Greece
| | - Karen Campbell
- IVF Wales, University Hospital of Wales, Heath Park, Cardiff, United Kingdom
| | | | - Christos Zikos
- National Center for Scientific Research "Demokritos," Aghia Paraskevi, Greece
| | - Evangelia Livaniou
- National Center for Scientific Research "Demokritos," Aghia Paraskevi, Greece
| | - Nazar Amso
- Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - George Nounesis
- National Center for Scientific Research "Demokritos," Aghia Paraskevi, Greece
| | - Karl Swann
- Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - F Anthony Lai
- Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom.
| |
Collapse
|
113
|
Gonzalez-Garcia JR, Machaty Z, Lai FA, Swann K. The dynamics of PKC-induced phosphorylation triggered by Ca2+ oscillations in mouse eggs. J Cell Physiol 2013; 228:110-9. [PMID: 22566126 PMCID: PMC3746124 DOI: 10.1002/jcp.24110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 04/25/2012] [Indexed: 12/31/2022]
Abstract
Fertilization of mammalian eggs is characterized by a series of Ca(2+) oscillations triggered by a phospholipase C activity. These Ca(2+) increases and the parallel generation of diacylglycerol (DAG) stimulate protein kinase C (PKC). However, the dynamics of PKC activity have not been directly measured in living eggs. Here, we have monitored the dynamics of PKC-induced phosphorylation in mouse eggs, alongside Ca(2+) oscillations, using fluorescent C-kinase activity reporter (CKAR) probes. Ca(2+) oscillations triggered either by sperm, phospholipase C zeta (PLCζ) or Sr(2+) all caused repetitive increases in PKC-induced phosphorylation, as detected by CKAR in the cytoplasm or plasma membrane. The CKAR responses lasted for several minutes in both the cytoplasm and plasma membrane then returned to baseline values before subsequent Ca(2+) transients. High frequency oscillations caused by PLCζ led to an integration of PKC-induced phosphorylation. The conventional PKC inhibitor, Gö6976, could inhibit CKAR increases in response to thapsigargin or ionomycin, but not the repetitive responses seen at fertilization. Repetitive increases in PKCδ activity were also detected during Ca(2+) oscillations using an isoform-specific δCKAR. However, PKCδ may already be mostly active in unfertilized eggs, since phorbol esters were effective at stimulating δCKAR only after fertilization, and the PKCδ-specific inhibitor, rottlerin, decreased the CKAR signals in unfertilized eggs. These data show that PKC-induced phosphorylation outlasts each Ca(2+) increase in mouse eggs but that signal integration only occurs at a non-physiological, high Ca(2+) oscillation frequency. The results also suggest that Ca(2+) -induced DAG formation on intracellular membranes may stimulate PKC activity oscillations at fertilization.
Collapse
Affiliation(s)
| | - Zoltan Machaty
- Department of Animal Sciences, Purdue UniversityWest Lafayette, Indiana
| | - F Anthony Lai
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff UniversityCardiff, UK
| | - Karl Swann
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff UniversityCardiff, UK
| |
Collapse
|
114
|
Uniparental embryos in the study of genomic imprinting. Methods Mol Biol 2012; 925:3-19. [PMID: 22907487 DOI: 10.1007/978-1-62703-011-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Nuclear transplantation has been used to study genomic imprinting. Available nuclear transfer methods include pronuclear transfer (PNT), intracytoplasmic sperm injection, and round spermatid injection. By generating uniparental embryos that have exclusively paternal or maternal genomes, it is possible to study the functions of the parental genomes separately. It is possible to compare functions in haploid and diploid states. In addition, nuclear transfer allows the effects of the ooplasm, including mitochondria, to be distinguished from effects of the maternally inherited chromosomes. PNTs can also be used to study epigenetic modifications of the parental genomes by the ooplasm. This chapter reviews the methods employed to generate uniparental embryonic constructs for these purposes.
Collapse
|
115
|
Piotrowska-Nitsche K, Chan AWS. Effect of sperm entry on blastocyst development after in vitro fertilization and intracytoplasmic sperm injection - mouse model. J Assist Reprod Genet 2012; 30:81-9. [PMID: 23224695 DOI: 10.1007/s10815-012-9896-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 11/18/2012] [Indexed: 12/29/2022] Open
Abstract
PURPOSE To investigate whether in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), influence the embryo's development and its quality using the mouse as a model. METHODS Assisted fertilization was performed using ICSI and IVF. Fluorescent beads were adhered to the fertilization cone or place of previous sperm injection in the natural mated (NM), IVF and ICSI embryos, respectively. Embryo examination was carried out at the two-cell and blastocyst stage to determine the position of fluorescent bead. Protein expression was detected by fluorescence immunocytochemical staining and confocal microscopic imaging of blastocysts. RESULTS IVF and ICSI embryos developed at rates comparable to NM group. Embryos show similar expression patterns of two transcription factors, Oct4 and Cdx2. The most preferred place for spermatozoa attachment was the equatorial site of the egg, whether fertilization occurred in vitro or under natural conditions. We also link the sperm entry position (SEP) to embryo morphology and the number of cells at the blastocyst stage, with no influence of the method of fertilization. CONCLUSIONS IVF and ICSI, do not compromise in vitro pre-implantation development. Additional data, related to sperm entry, could offer further criteria to predict embryos that will implant successfully. Based on embryo morphology, developmental rate and protein expression level of key transcription factors, our results support the view that ART techniques, such as IVF and ICSI, do not perturb embryonic development or quality.
Collapse
|
116
|
Vanden Meerschaut F, Leybaert L, Nikiforaki D, Qian C, Heindryckx B, De Sutter P. Diagnostic and prognostic value of calcium oscillatory pattern analysis for patients with ICSI fertilization failure. Hum Reprod 2012; 28:87-98. [DOI: 10.1093/humrep/des368] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
117
|
Kato Y, Nagao Y. Effect of polyvinylpyrrolidone on sperm function and early embryonic development following intracytoplasmic sperm injection in human assisted reproduction. Reprod Med Biol 2012; 11:165-176. [PMID: 23483084 PMCID: PMC3588556 DOI: 10.1007/s12522-012-0126-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 03/13/2012] [Indexed: 12/27/2022] Open
Abstract
The objective here was to review the effects of polyvinylpyrrolidone (PVP) upon sperm function and embryonic development in humans. PVP has been used successfully in intracytoplasmic sperm injection (ICSI) to facilitate the handling and immobilization of sperm for both domestic animals and humans. In our previous reports, PVP solution exists locally in embryos injected during the early developmental period, and also exerts influence over the developmental capacity of such embryos. In other reports, PVP causes significant damage to sperm membranes that can be detected by transmission electron microscopy, and has been associated with chromosomal abnormalities in pregnancy derived from ICSI embryos. In some Japanese clinics, PVP-free media has been used for sperm immobilization in order to optimise safety. Consequently, it is strongly suggested that the success rate of fertilization and clinical pregnancy could be improved by using PVP-free solution for human ICSI. In conclusion, our interpretation of the available data is to perform ICSI without PVP or select a lower concentration of PVP solution in order to reduce safety for pregnancy and children born via ICSI.
Collapse
Affiliation(s)
- Yoku Kato
- Department of Animal Production Science, United Graduate School of Agricultural ScienceTokyo University of Agriculture and Technology183‐8509FuchuJapan
- University Farm, Faculty of AgricultureUtsunomiya UniversityShimokomoriya 443321‐4415MohkaTochigiJapan
| | - Yoshikazu Nagao
- Department of Animal Production Science, United Graduate School of Agricultural ScienceTokyo University of Agriculture and Technology183‐8509FuchuJapan
- University Farm, Faculty of AgricultureUtsunomiya UniversityShimokomoriya 443321‐4415MohkaTochigiJapan
| |
Collapse
|
118
|
Miao YL, Williams CJ. Calcium signaling in mammalian egg activation and embryo development: the influence of subcellular localization. Mol Reprod Dev 2012; 79:742-56. [PMID: 22888043 DOI: 10.1002/mrd.22078] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 07/27/2012] [Indexed: 11/07/2022]
Abstract
Calcium (Ca(2+) ) signals drive the fundamental events surrounding fertilization and the activation of development in all species examined to date. Initial studies of Ca(2+) signaling at fertilization in marine animals were tightly linked to new discoveries of bioluminescent proteins and their use as fluorescent Ca(2+) sensors. Since that time, there has been rapid progress in our understanding of the key functions for Ca(2+) in many cell types and of the impact of cellular localization on Ca(2+) signaling pathways. In this review, which focuses on mammalian egg activation, we consider how Ca(2+) is regulated and stored at different stages of oocyte development and examine the functions of molecules that serve as both regulators of Ca(2+) release and effectors of Ca(2+) signals. We then summarize studies exploring how Ca(2+) directs downstream effectors mediating both egg activation and later signaling events required for successful preimplantation embryo development. Throughout this review, we focus attention on how localization of Ca(2+) signals influences downstream signaling events, and attempt to highlight gaps in our knowledge that are ripe for future research.
Collapse
Affiliation(s)
- Yi-Liang Miao
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
119
|
|
120
|
Ramadan WM, Kashir J, Jones C, Coward K. Oocyte activation and phospholipase C zeta (PLCζ): diagnostic and therapeutic implications for assisted reproductive technology. Cell Commun Signal 2012; 10:12. [PMID: 22591604 PMCID: PMC3393615 DOI: 10.1186/1478-811x-10-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/16/2012] [Indexed: 12/18/2022] Open
Abstract
Infertility affects one in seven couples globally and has recently been classified as a disease by the World Health Organisation (WHO). While in-vitro fertilisation (IVF) offers effective treatment for many infertile couples, cases exhibiting severe male infertility (19-57%) often remain difficult, if not impossible to treat. In such cases, intracytoplasmic sperm injection (ICSI), a technique in which a single sperm is microinjected into the oocyte, is implemented. However, 1-5% of ICSI cycles still fail to fertilise, affecting over 1000 couples per year in the UK alone. Pregnancy and delivery rates for IVF and ICSI rarely exceed 30% and 23% respectively. It is therefore imperative that Assisted Reproductive Technology (ART) protocols are constantly modified by associated research programmes, in order to provide patients with the best chances of conception. Prior to fertilisation, mature oocytes are arrested in the metaphase stage of the second meiotic division (MII), which must be alleviated to allow the cell cycle, and subsequent embryogenesis, to proceed. Alleviation occurs through a series of concurrent events, collectively termed 'oocyte activation'. In mammals, oocytes are activated by a series of intracellular calcium (Ca2+) oscillations following gamete fusion. Recent evidence implicates a sperm-specific phospholipase C, PLCzeta (PLCζ), introduced into the oocyte following membrane fusion as the factor responsible. This review summarises our current understanding of oocyte activation failure in human males, and describes recent advances in our knowledge linking certain cases of male infertility with defects in PLCζ expression and activity. Systematic literature searches were performed using PubMed and the ISI-Web of Knowledge. Databases compiled by the United Nations and World Health Organisation databases (UNWHO), and the Human Fertilization and Embryology Authority (HFEA) were also scrutinised. It is clear that PLCζ plays a fundamental role in the activation of mammalian oocytes, and that genetic, molecular, or biochemical perturbation of this key enzyme is strongly linked to human infertility where oocyte activation is deficient. Consequently, there is significant scope for our understanding of PLCζ to be translated to the ART clinic, both as a novel therapeutic agent with which to rescue oocyte activation deficiency (OAD), or as a prognostic/diagnostic biomarker of oocyte activation ability in target sperm samples.
Collapse
Affiliation(s)
- Walaa M Ramadan
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women’s Centre, John Radcliffe Hospital, Headington, Oxford, OX3, 9DU, UK
| | - Junaid Kashir
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women’s Centre, John Radcliffe Hospital, Headington, Oxford, OX3, 9DU, UK
| | - Celine Jones
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women’s Centre, John Radcliffe Hospital, Headington, Oxford, OX3, 9DU, UK
| | - Kevin Coward
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women’s Centre, John Radcliffe Hospital, Headington, Oxford, OX3, 9DU, UK
| |
Collapse
|
121
|
Zhang N, Wakai T, Fissore RA. Caffeine alleviates the deterioration of Ca(2+) release mechanisms and fragmentation of in vitro-aged mouse eggs. Mol Reprod Dev 2012; 78:684-701. [PMID: 22095868 DOI: 10.1002/mrd.21366] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The developmental competence of mammalian eggs is compromised by postovulatory aging. We and others have found that in these eggs, the intracellular calcium ([Ca(2+)](i)) responses required for egg activation and initiation of development are altered. Nevertheless, the mechanism(s) underlying this defective Ca(2+) release is not well known. Here, we investigated if the function of IP(3)R1, the major Ca(2+) release channel at fertilization, was undermined in in vitro-aged mouse eggs. We found that in aged eggs, IP(3)R1 displayed reduced function as many of the changes acquired during maturation that enhance IP(3)R1 Ca(2+) conductivity, such as phosphorylation, receptor reorganization and increased Ca(2+) store content ([Ca(2+)](ER)), were lost with increasing postovulatory time. IP(3)R1 fragmentation, possibly associated with the activation of caspase-3, was also observed in these eggs. Many of these changes were prevented when the postovulatory aging of eggs was carried out in the presence of caffeine, which minimized the decline in IP(3)R(1) function and maintained [Ca(2+)](ER) content. Caffeine also maintained mitochondrial membrane potential, as measured by JC-1 fluorescence. We therefore conclude that [Ca(2+)](i) responses in aged eggs are undermined by reduced IP(3)R1 sensitivity, decreased [Ca(2+)](ER) , and compromised mitochondrial function, and that addition of caffeine ameliorates most of these aging-associated changes. Understanding the molecular basis of the protective effects of caffeine will be useful in elucidating, and possibly reversing, the signaling pathway(s) compromised by in vitro culture of eggs.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | |
Collapse
|
122
|
Lee K, Wang C, Machaty Z. STIM1 is required for Ca2+ signaling during mammalian fertilization. Dev Biol 2012; 367:154-62. [PMID: 22565091 DOI: 10.1016/j.ydbio.2012.04.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 04/25/2012] [Indexed: 11/30/2022]
Abstract
During fertilization in mammals, a series of oscillations in the oocyte's intracellular free Ca(2+) concentration is responsible for oocyte activation and stimulation of embryonic development. The oscillations are associated with influx of Ca(2+) across the plasma membrane that is probably triggered by the depletion of the intracellular stores, a mechanism known as store-operated Ca(2+) entry. Recently, STIM1 has been identified in oocytes as a key component of the machinery that generates the Ca(2+) influx after store depletion. In this study, the involvement of STIM1 in the sperm-induced Ca(2+) oscillations and its significance in supporting subsequent embryo development were investigated. Downregulation of STIM1 levels in pig oocytes by siRNA completely inhibited the repetitive Ca(2+) signal triggered by the fertilizing sperm. In addition, a significantly lower percentage of oocytes cleaved or formed blastocysts when STIM1 was downregulated prior to fertilization compared to the control groups. Restoring STIM1 levels after fertilization in such oocytes by means of mRNA injection could not rescue embryonic development that in most cases was arrested at the 2-cell stage. On the other hand, STIM1 overexpression prior to fertilization did not alter the pattern of sperm-induced Ca(2+) oscillations and development of these fertilized oocytes up to the blastocyst stage was also similar to that registered in the control group. Finally, downregulation of STIM1 had no effect on oocyte activation when activation was stimulated artificially by inducing a single large elevation in the oocyte's intracellular free Ca(2+) concentration. These findings suggest that STIM1 is essential for normal fertilization as it is involved in the maintenance of the long-lasting repetitive Ca(2+) signal.
Collapse
Affiliation(s)
- Kiho Lee
- Division of Animal Sciences, University of Missouri-Columbia, Columbia, MO 65201, USA
| | | | | |
Collapse
|
123
|
Wang C, Lee K, Gajdócsi E, Papp ÁB, Machaty Z. Orai1 mediates store-operated Ca2+ entry during fertilization in mammalian oocytes. Dev Biol 2012; 365:414-23. [DOI: 10.1016/j.ydbio.2012.03.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 02/23/2012] [Accepted: 03/07/2012] [Indexed: 11/26/2022]
|
124
|
Calcium Oscillations, Oocyte Activation, and Phospholipase C zeta. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:1095-121. [DOI: 10.1007/978-94-007-2888-2_50] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
125
|
Adult body weight is programmed by a redox-regulated and energy-dependent process during the pronuclear stage in mouse. PLoS One 2011; 6:e29388. [PMID: 22216268 PMCID: PMC3247262 DOI: 10.1371/journal.pone.0029388] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 11/28/2011] [Indexed: 11/19/2022] Open
Abstract
In mammals fertilization triggers a series of Ca(2+) oscillations that not only are essential for events of egg activation but also stimulate oxidative phosphorylation. Little is known, however, about the relationship between quantitative changes in egg metabolism and specific long-term effects in offspring. This study assessed whether post-natal growth is modulated by early transient changes in NAD(P)H and FAD(2+) in zygotes. We report that experimentally manipulating the redox potential of fertilized eggs during the pronuclear (PN) stage affects post-natal body weight. Exogenous pyruvate induces NAD(P)H oxidation and stimulates mitochondrial activity with resulting offspring that are persistently and significantly smaller than controls. Exogenous lactate stimulates NAD(+) reduction and impairs mitochondrial activity, and produces offspring that are smaller than controls at weaning but catch up after weaning. Cytosolic alkalization increases NAD(P)(+) reduction and offspring of normal birth-weight become significantly and persistently larger than controls. These results constitute the first report that post-natal growth rate is ultimately linked to modulation of NAD(P)H and FAD(2+) concentration as early as the PN stage.
Collapse
|
126
|
Nomikos M, Swann K, Lai FA. Starting a new life: sperm PLC-zeta mobilizes the Ca2+ signal that induces egg activation and embryo development: an essential phospholipase C with implications for male infertility. Bioessays 2011; 34:126-34. [PMID: 22086556 DOI: 10.1002/bies.201100127] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have discovered that a single sperm protein, phospholipase C-zeta (PLCζ), can stimulate intracellular Ca(2+) signalling in the unfertilized oocyte ('egg') culminating in the initiation of embryonic development. Upon fertilization by a spermatozoon, the earliest observed signalling event in the dormant egg is a large, transient increase in free Ca(2+) concentration. The fertilized egg responds to the intracellular Ca(2+) rise by completing meiosis. In mammalian eggs, the Ca(2+) signal is delivered as a train of long-lasting cytoplasmic Ca(2+) oscillations that begin soon after gamete fusion and persist beyond the completion of meiosis. Sperm PLCζ effects Ca(2+) release from egg intracellular stores by hydrolyzing the membrane lipid PIP(2) and consequent stimulation of the inositol 1,4,5-trisphosphate (InsP(3) ) receptor Ca(2+) -signalling pathway, leading to egg activation and early embryogenesis. Recent advances have refined our understanding of how PLCζ induces Ca(2+) oscillations in the egg and also suggest its potential dysfunction as a cause of male infertility.
Collapse
Affiliation(s)
- Michail Nomikos
- Cell Signalling Laboratory, WHRI, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Cardiff, UK
| | | | | |
Collapse
|
127
|
Rispoli LA, Lawrence JL, Payton RR, Saxton AM, Schrock GE, Schrick FN, Middlebrooks BW, Dunlap JR, Parrish JJ, Edwards JL. Disparate consequences of heat stress exposure during meiotic maturation: embryo development after chemical activation vs fertilization of bovine oocytes. Reproduction 2011; 142:831-43. [PMID: 21994359 DOI: 10.1530/rep-11-0032] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Consequences of heat stress exposure during the first 12 h of meiotic maturation differed depending on how and when bovine oocytes were activated. If heat-stressed oocytes underwent IVF at ~24 h, blastocyst development was less than for respective controls and similar to that obtained for nonheat-stressed oocytes undergoing IVF at 30 h (i.e. slightly aged). In contrast, if heat-stressed oocytes underwent chemical activation with ionomycin/6-dimethylaminopurine at 24 h, blastocyst development was not only higher than respective controls, but also equivalent to development obtained after activation of nonheat-stressed oocytes at 30 h. Developmental differences in chemically activated vs IVF-derived embryos were not related to fertilization failure or gross alterations in cytoskeletal components. Rather, ionomycin-induced calcium release and MAP kinase activity were less in heat-stressed oocytes. While underlying mechanisms are multifactorial, ability to obtain equivalent or higher development after parthenogenetic activation demonstrates that oocytes experiencing heat stress during the first 12 h of meiotic maturation have the necessary components to develop to the blastocyst stage, but fail to do so after fertilization.
Collapse
Affiliation(s)
- L A Rispoli
- Department of Animal Science, Institute of Agriculture, UT AgResearch, The University of Tennessee, Knoxville, Tennessee 37996-4574, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Rhythmic actomyosin-driven contractions induced by sperm entry predict mammalian embryo viability. Nat Commun 2011; 2:417. [PMID: 21829179 PMCID: PMC3265380 DOI: 10.1038/ncomms1424] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 06/07/2011] [Indexed: 11/22/2022] Open
Abstract
Fertilization-induced cytoplasmic flows are a conserved feature of eggs in many species. However, until now the importance of cytoplasmic flows for the development of mammalian embryos has been unknown. Here, by combining a rapid imaging of the freshly fertilized mouse egg with advanced image analysis based on particle image velocimetry, we show that fertilization induces rhythmical cytoplasmic movements that coincide with pulsations of the protrusion forming above the sperm head. We find that these movements are caused by contractions of the actomyosin cytoskeleton triggered by Ca2+ oscillations induced by fertilization. Most importantly, the relationship between the movements and the events of egg activation makes it possible to use the movements alone to predict developmental potential of the zygote. In conclusion, this method offers, thus far, the earliest and fastest, non-invasive way to predict the viability of eggs fertilized in vitro and therefore can potentially improve greatly the prospects for IVF treatment. Cytoplasmic flows—the movement of cytoplasmic material—can be detected following the fertilization of an egg by a sperm in many species. In this study, rhythmic cytoplasmic flows are shown to be induced in mice by calcium-induced cytoskeleton contractions which could be used to predict the successful outcome of fertilization.
Collapse
|
129
|
Kim KH, Kim EY, Kim Y, Kim E, Lee HS, Yoon SY, Lee KA. Gas6 downregulation impaired cytoplasmic maturation and pronuclear formation independent to the MPF activity. PLoS One 2011; 6:e23304. [PMID: 21850267 PMCID: PMC3151302 DOI: 10.1371/journal.pone.0023304] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 07/14/2011] [Indexed: 11/18/2022] Open
Abstract
Previously, we found that the growth arrest-specific gene 6 (Gas6) is more highly expressed in germinal vesicle (GV) oocytes than in metaphase II (MII) oocytes using annealing control primer (ACP)-PCR technology. The current study was undertaken to investigate the role of Gas6 in oocyte maturation and fertilization using RNA interference (RNAi). Interestingly, despite the specific and marked decrease in Gas6 mRNA and protein expression in GVs after Gas6 RNAi, nuclear maturation including spindle structures and chromosome segregation was not affected. The only discernible effect induced by Gas6 RNAi was a change in maturation promoting factor (MPF) activity. After parthenogenetic activation, Gas6 RNAi-treated oocytes at the MII stage had not developed further and arrested at MII (90.0%). After stimulation with Sr(2+), Gas6-silenced MII oocytes had markedly reduced Ca(2+) oscillation and exhibited no exocytosis of cortical granules. In these oocytes, sperm penetration occurred during fertilization but not pronucleus (PN) formation. By roscovitine and colcemid treatment, we found that the Gas6 knockdown affected cytoplasmic maturation directly, independent to the changed MPF activity. These results strongly suggest that 1) the Gas6 signaling itself is important to the cytoplasmic maturation, but not nuclear maturation, and 2) the decreased Gas6 expression and decreased MPF activity separately or mutually influence sperm head decondensation and PN formation.
Collapse
Affiliation(s)
- Kyeoung-Hwa Kim
- Department of Biomedical Science, College of Life Science, Fertility Center, CHA Research Institute, CHA University, CHA General Hospital, Seoul, Korea
| | - Eun-Young Kim
- Department of Biomedical Science, College of Life Science, Fertility Center, CHA Research Institute, CHA University, CHA General Hospital, Seoul, Korea
| | - Yuna Kim
- Department of Biomedical Science, College of Life Science, Fertility Center, CHA Research Institute, CHA University, CHA General Hospital, Seoul, Korea
| | - Eunju Kim
- Department of Biomedical Science, College of Life Science, Fertility Center, CHA Research Institute, CHA University, CHA General Hospital, Seoul, Korea
| | - Hyun-Seo Lee
- Department of Biomedical Science, College of Life Science, Fertility Center, CHA Research Institute, CHA University, CHA General Hospital, Seoul, Korea
| | - Sook-Young Yoon
- Department of Biomedical Science, College of Life Science, Fertility Center, CHA Research Institute, CHA University, CHA General Hospital, Seoul, Korea
| | - Kyung-Ah Lee
- Department of Biomedical Science, College of Life Science, Fertility Center, CHA Research Institute, CHA University, CHA General Hospital, Seoul, Korea
- * E-mail:
| |
Collapse
|
130
|
Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis. Nat Commun 2011; 2:248. [PMID: 21427719 PMCID: PMC3109953 DOI: 10.1038/ncomms1248] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 02/21/2011] [Indexed: 12/23/2022] Open
Abstract
One of the central issues in evolutionary developmental biology is how we can formulate the relationships between evolutionary and developmental processes. Two major models have been proposed: the 'funnel-like' model, in which the earliest embryo shows the most conserved morphological pattern, followed by diversifying later stages, and the 'hourglass' model, in which constraints are imposed to conserve organogenesis stages, which is called the phylotypic period. Here we perform a quantitative comparative transcriptome analysis of several model vertebrate embryos and show that the pharyngula stage is most conserved, whereas earlier and later stages are rather divergent. These results allow us to predict approximate developmental timetables between different species, and indicate that pharyngula embryos have the most conserved gene expression profiles, which may be the source of the basic body plan of vertebrates. The conservation of embryonic development across species is of great interest in evolutionary biology. Here, using transcriptome analysis, the authors show that the pharyngula stage of development—in mid-embryogenesis—is conserved between mice, chickens, frogs and zebrafish.
Collapse
|
131
|
Kim AM, Bernhardt ML, Kong BY, Ahn RW, Vogt S, Woodruff TK, O’Halloran TV. Zinc sparks are triggered by fertilization and facilitate cell cycle resumption in mammalian eggs. ACS Chem Biol 2011; 6:716-23. [PMID: 21526836 PMCID: PMC3171139 DOI: 10.1021/cb200084y] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In last few hours of maturation, the mouse oocyte takes up over twenty billion zinc atoms and arrests after the first meiotic division, until fertilization or pharmacological intervention stimulates cell cycle progression toward a new embryo. Using chemical and physical probes, we show that fertilization of the mature, zinc-enriched egg triggers the ejection of zinc into the extracellular milieu in a series of coordinated events termed zinc sparks. These events immediately follow the well-established series of calcium oscillations within the activated egg and are evolutionarily conserved in several mammalian species, including rodents and nonhuman primates. Functionally, the zinc sparks mediate a decrease in intracellular zinc content that is necessary for continued cell cycle progression, as increasing zinc levels within the activated egg results in the reestablishment of cell cycle arrest at metaphase. The mammalian egg thus uses a zinc-dependent switch mechanism to toggle between metaphase arrest and resumption of the meiotic cell cycle at the initiation of embryonic development.
Collapse
Affiliation(s)
- Alison M. Kim
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 250 E. Superior St., Suite 3-2303, Chicago, IL 60611, USA
- The Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| | - Miranda L. Bernhardt
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 250 E. Superior St., Suite 3-2303, Chicago, IL 60611, USA
| | - Betty Y. Kong
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 250 E. Superior St., Suite 3-2303, Chicago, IL 60611, USA
| | - Richard W. Ahn
- The Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| | - Stefan Vogt
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439
| | - Teresa K. Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 250 E. Superior St., Suite 3-2303, Chicago, IL 60611, USA
- The Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Hogan 2-100, Evanston, IL 60208, USA
| | - Thomas V. O’Halloran
- The Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Hogan 2-100, Evanston, IL 60208, USA
| |
Collapse
|
132
|
Takahashi T, Igarashi H, Amita M, Hara S, Kurachi H. Cellular and molecular mechanisms of various types of oocyte aging. Reprod Med Biol 2011; 10:239-249. [PMID: 29699098 DOI: 10.1007/s12522-011-0099-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 06/16/2011] [Indexed: 01/19/2023] Open
Abstract
It is well established that age-related decline of a woman's fertility is related to the poor developmental potential of her gametes. The age-associated decline in female fertility is largely attributable to the oocyte aging caused by ovarian aging. Age-associated oocyte aging results in a decrease in oocyte quality. In contrast to ovarian aging, there is a concept of postovulatory oocyte aging. Postovulatory aging of oocytes, not being fertilized for a prolonged time after ovulation, is known to significantly affect the development of oocytes. Both categories of oocyte aging have similar phenotypes of reproductive failure. However, the mechanisms of the decline in oocyte quality are not necessarily equivalent. An age-dependent increase in aneuploidy is a key determinant of oocyte quality. The reduced expression of molecules regulating cell cycle control during meiosis might be involved in the age-dependent increase in aneuploidy. The mechanism of age-associated oocyte aging might be involved in mitochondrial dysfunction, whose etiologies are still unknown. Alternatively, the mechanism of postovulatory oocyte aging might be involved in reactive oxygen species-induced mitochondrial injury pathways followed by abnormal intracellular Ca2+ regulation of the endoplasmic reticulum. We suggest that future research into the mechanism of oocyte aging will be necessary to develop a method to rescue the poor developmental potential of aged oocytes.
Collapse
Affiliation(s)
- Toshifumi Takahashi
- Department of Obstetrics and Gynecology Yamagata University Faculty of Medicine 990-9585 Yamagata Japan
| | - Hideki Igarashi
- Department of Obstetrics and Gynecology Yamagata University Faculty of Medicine 990-9585 Yamagata Japan
| | - Mitsuyoshi Amita
- Department of Obstetrics and Gynecology Yamagata University Faculty of Medicine 990-9585 Yamagata Japan
| | - Shuichiro Hara
- Department of Obstetrics and Gynecology Yamagata University Faculty of Medicine 990-9585 Yamagata Japan
| | - Hirohisa Kurachi
- Department of Obstetrics and Gynecology Yamagata University Faculty of Medicine 990-9585 Yamagata Japan
| |
Collapse
|
133
|
Gualtieri R, Mollo V, Barbato V, Fiorentino I, Iaccarino M, Talevi R. Ultrastructure and intracellular calcium response during activation in vitrified and slow-frozen human oocytes. Hum Reprod 2011; 26:2452-60. [DOI: 10.1093/humrep/der210] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
134
|
Kohda T, Ogonuki N, Inoue K, Furuse T, Kaneda H, Suzuki T, Kaneko-Ishino T, Wakayama T, Wakana S, Ogura A, Ishino F. Intracytoplasmic sperm injection induces transcriptome perturbation without any transgenerational effect. Biochem Biophys Res Commun 2011; 410:282-8. [PMID: 21658372 DOI: 10.1016/j.bbrc.2011.05.133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 05/25/2011] [Indexed: 12/20/2022]
Abstract
Faithful transcriptome regulation is important in development and also crucial for applications in reproductive and regenerative medicine. Intracytoplasmic sperm injection (ICSI), one of the human assisted reproductive technologies (ART), has long raised concerns about its influence on development. No clear consensus has been reached, however, in spite of many cohort studies carried out in the last two decades on the children conceived by ICSI and/or in vitro fertilization (IVF). In this study, the pre- and postnatal effects of ICSI were assessed using comprehensive transcriptome and phenotypic analyses in mice under strict conditions. Here we demonstrate that, in contrast to IVF, ICSI induces distinct long-lasting transcriptome change that remains at the neonatal stage. Importantly, no remarkable differences were observed in the ICSI adults in either the gene expression or phenotypic profiles, and there was no indication of transmission to the next generation via natural mating. Our results suggest there are no lifelong or transgenerational effects of ICSI, but the ICSI effects during neonatal period remain to be evaluated.
Collapse
Affiliation(s)
- Takashi Kohda
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Nakai M, Ito J, Sato KI, Noguchi J, Kaneko H, Kashiwazaki N, Kikuchi K. Pre-treatment of sperm reduces success of ICSI in the pig. Reproduction 2011; 142:285-93. [PMID: 21610169 DOI: 10.1530/rep-11-0073] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In pigs, although ICSI is a feasible fertilization technique, its efficiency is low. In general, injected pig sperm are insufficient to induce oocyte activation and embryonic development. Pretreatments for disrupting sperm membranes have been applied to improve the fertility of ICSI oocytes; however, we hypothesize that such pretreatment(s) may reduce the ability of the sperm to induce oocyte activation. We first evaluated the effects of sperm pretreatments (sonication (SO) to isolate the sperm heads from the tails, Triton X-100 (TX), and three cycles of repeated freezing/thawing (3×-FT) for disrupting sperm membranes) on the rate of pronucleus (PN) formation after ICSI. We found that oocytes injected with control (whole) sperm had higher rates of PN formation than those obtained after subjecting the sperm to SO, TX, and 3×-FT. The amounts of phospholipase Cζ (PLCζ), which is thought to be the oocyte-activating factor in mammalian sperm, in sperm treated by each method was significantly lower than that in whole untreated sperm. Furthermore, using immunofluorescence, it was found that in pig sperm, PLCζ was localized to both the post-acrosomal region and the tail area. Thus we demonstrated for the first time that sperm pretreatment leads to a reduction of oocyte-activating capacity. Our data also show that in addition to its expected localization to the sperm head, PLCζ is also localized in the tail of pig sperm, thus raising the possibility that injection of whole sperm may be required to attain successful activation in pigs.
Collapse
Affiliation(s)
- Michiko Nakai
- Reproductive Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan.
| | | | | | | | | | | | | |
Collapse
|
136
|
Newman SA. Animal egg as evolutionary innovation: a solution to the “embryonic hourglass” puzzle. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:467-83. [DOI: 10.1002/jez.b.21417] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 04/01/2011] [Accepted: 04/07/2011] [Indexed: 12/26/2022]
|
137
|
Ca2+ signaling during mammalian fertilization: requirements, players, and adaptations. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a006767. [PMID: 21441584 DOI: 10.1101/cshperspect.a006767] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Changes in the intracellular concentration of calcium ([Ca(2+)](i)) represent a vital signaling mechanism enabling communication among cells and between cells and the environment. The initiation of embryo development depends on a [Ca(2+)](i) increase(s) in the egg, which is generally induced during fertilization. The [Ca(2+)](i) increase signals egg activation, which is the first stage in embryo development, and that consist of biochemical and structural changes that transform eggs into zygotes. The spatiotemporal patterns of [Ca(2+)](i) at fertilization show variability, most likely reflecting adaptations to fertilizing conditions and to the duration of embryonic cell cycles. In mammals, the focus of this review, the fertilization [Ca(2+)](i) signal displays unique properties in that it is initiated after gamete fusion by release of a sperm-derived factor and by periodic and extended [Ca(2+)](i) responses. Here, we will discuss the events of egg activation regulated by increases in [Ca(2+)](i), the possible downstream targets that effect these egg activation events, and the property and identity of molecules both in sperm and eggs that underpin the initiation and persistence of the [Ca(2+)](i) responses in these species.
Collapse
|
138
|
Structural and functional changes linked to, and factors promoting, cytoplasmic maturation in mammalian oocytes. Reprod Med Biol 2011; 10:69-79. [PMID: 29699083 DOI: 10.1007/s12522-011-0079-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 02/21/2011] [Indexed: 02/04/2023] Open
Abstract
In most mammals, oocyte maturation is the final process of oogenesis, from the prophase of the first meiosis (germinal vesicle stage) to the metaphase of the second meiosis (MII), during which the oocyte acquires fertilizable competence as well as post-fertilization development competence. The nuclear and cytoplasmic maturation processes occur in synchrony but independently. Cytoplasmic maturation entails biochemical and structural changes in the cytoplasm, which give rise to oocytes capable of being fertilized and developing into embryos. Herein we review the literature and results from our own experiments on the structural and molecular events regulating cytoplasmic maturation in oocytes, concentrating on (1) the appropriate reorganization of active mitochondria and the endoplasmic reticulum, a structural and functional feature of cytoplasmic maturation, and (2) factors involved in regulatory mechanisms such as cumulus cell-oocyte gap junctional signaling, cumulus cell-oocyte bidirectional paracrine signaling, and the complex interactions of these signaling processes and follicular fluid constituents in the follicle environment.
Collapse
|
139
|
Baczyk D, Kingdom JCP, Uhlén P. Calcium signaling in placenta. Cell Calcium 2011; 49:350-6. [PMID: 21236488 DOI: 10.1016/j.ceca.2010.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 12/19/2022]
Abstract
The placenta sustains the developing fetus throughout gestation and its major functions include nutrition, gas and waste exchange via a variety of passive or active mechanisms. Up to 30 g of calcium (Ca(2+)) actively crosses the trophoblast layer during human pregnancy. The Ca(2+) ion not only plays an important role for skeletal development but is also an essential second messenger. This review is intended to highlight the implications of Ca(2+) signaling during reproduction and specifically placentation. Initially, a Ca(2+) wave induces fertilization of the oocyte. The intracellular Ca(2+) concentration is key for the blastocyst implantation, proper placental development and function. Current knowledge of many proteins involved in placental Ca(2+) regulation and their function in pathologic conditions is largely limited. Recent studies, however, point to alterations in Ca(2+) homeostasis in placental pathologies such as pre-eclampsia (PE) and intrauterine growth restriction (IUGR). A broader understanding of the role of Ca(2+) signaling during human reproduction may offer insight into impaired pregnancy outcomes.
Collapse
Affiliation(s)
- Dora Baczyk
- Research Centre for Women's and Infants' Health (RCWIH) at the Samuel Lunenfeld Research Institute of Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
140
|
Heytens E, Schmitt-John T, Moser JM, Jensen NM, Soleimani R, Young C, Coward K, Parrington J, De Sutter P. Reduced fertilization after ICSI and abnormal phospholipase C zeta presence in spermatozoa from the wobbler mouse. Reprod Biomed Online 2010; 21:742-9. [PMID: 21044866 DOI: 10.1016/j.rbmo.2010.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 06/24/2010] [Accepted: 07/07/2010] [Indexed: 11/25/2022]
Abstract
Failed fertilization after intracytoplasmic sperm injection (ICSI) can be due to a reduced oocyte-activation capacity caused by reduced concentrations and abnormal localization of the oocyte-activation factor phospholipase C (PLC) zeta. Patients with this condition can be helped to conceive by artificial activation of oocytes after ICSI with calcium ionophore (assisted oocyte activation; AOA). However some concern still exists about this approach. Mouse models could help to identify potential oocyte-activation strategies and evaluate their safety. In this study, the fertilizing capacity of wobbler sperm cells was tested and the efficiency of AOA with two exposures to ionomycin to restore fertilization and embryo development was studied. The quality of the obtained blastocysts was assessed and embryo transfer was performed to evaluate post-implantation development. The presence of PLCzeta in the spermatozoa and testis of the wobbler mouse was evaluated by PLCzeta immunostaining and quantitative reverse-transcription polymerase chain reaction. Sperm cells from wobbler mice had reduced fertilizing capacity and abnormalities in PLCzeta localization, but not in its expression. Artificially activating the oocytes restored fertilization and embryo development. Therefore, the wobbler mouse can be a model for failed fertilization after ICSI to study PLCzeta dynamics and aid in optimization of the AOA method.
Collapse
Affiliation(s)
- Elke Heytens
- Department of Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Kashir J, Heindryckx B, Jones C, De Sutter P, Parrington J, Coward K. Oocyte activation, phospholipase C zeta and human infertility. Hum Reprod Update 2010; 16:690-703. [PMID: 20573804 DOI: 10.1093/humupd/dmq018] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Mammalian oocytes are activated by intracellular calcium (Ca(2+)) oscillations following gamete fusion. Recent evidence implicates a sperm-specific phospholipase C zeta, PLCζ, which is introduced into the oocyte following membrane fusion, as the responsible factor. This review summarizes the current understanding of human oocyte activation failure and describes recent discoveries linking certain cases of male infertility with defects in PLCζ expression and activity. How these latest findings may influence future diagnosis and treatment options are also discussed. METHODS Systematic literature searches were performed using PubMed, ISI-Web of Knowledge and The Cochrane Library. We also scrutinized material from the United Nations and World Health Organization databases (UNWHO) and the Human Fertilization and Embryology Authority (HFEA). RESULTS AND CONCLUSIONS Although ICSI results in average fertilization rates of 70%, complete or virtually complete fertilization failure still occurs in 1-5% of ICSI cycles. While oocyte activation failure can, in some cases, be overcome by artificial oocyte activators such as calcium ionophores, a more physiological oocyte activation agent might release Ca(2+) within the oocyte in a more efficient and controlled manner. As PLCζ is now widely considered to be the physiological agent responsible for activating mammalian oocytes, it represents both a novel diagnostic biomarker of oocyte activation capability and a possible mode of treatment for certain types of male infertility.
Collapse
Affiliation(s)
- J Kashir
- Nuffield Department of Obstetrics and Gynaecology, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | | | | | | | | | | |
Collapse
|
142
|
Kim AM, Vogt S, O'Halloran TV, Woodruff TK. Zinc availability regulates exit from meiosis in maturing mammalian oocytes. Nat Chem Biol 2010; 6:674-81. [PMID: 20693991 PMCID: PMC2924620 DOI: 10.1038/nchembio.419] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 07/08/2010] [Indexed: 01/23/2023]
Abstract
Cellular metal ion fluxes are known in alkali and alkaline earth metals but are not well documented in transition metals. Here we describe major changes in the zinc physiology of the mammalian oocyte as it matures and initiates embryonic development. Single-cell elemental analysis of mouse oocytes by synchrotron-based X-ray fluorescence microscopy (XFM) revealed a 50% increase in total zinc content within the 12-14-h period of meiotic maturation. Perturbation of zinc homeostasis with a cell-permeable small-molecule chelator blocked meiotic progression past telophase I. Zinc supplementation rescued this phenotype when administered before this meiotic block. However, after telophase arrest, zinc triggered parthenogenesis, suggesting that exit from this meiotic step is tightly regulated by the availability of a zinc-dependent signal. These results implicate the zinc bolus acquired during meiotic maturation as an important part of the maternal legacy to the embryo.
Collapse
Affiliation(s)
- Alison M. Kim
- Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, 250 East Superior Street, Suite 3-2303, Chicago, IL 60611
- The Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| | - Stefan Vogt
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
| | - Thomas V. O'Halloran
- The Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, 2205 Tech Drive, Hogan 2-100, Evanston, IL 60208
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| | - Teresa K. Woodruff
- Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, 250 East Superior Street, Suite 3-2303, Chicago, IL 60611
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, 2205 Tech Drive, Hogan 2-100, Evanston, IL 60208
| |
Collapse
|
143
|
Suzuki T, Yoshida N, Suzuki E, Okuda E, Perry ACF. Full-term mouse development by abolishing Zn2+-dependent metaphase II arrest without Ca2+ release. Development 2010; 137:2659-69. [DOI: 10.1242/dev.049791] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vertebrates, a rise in intracellular free Ca2+ (Ca2+i) levels during fertilization initiates second metaphase (mII) exit and the developmental programme. The Ca2+ rise has long been considered to be crucial for development, but verifying this contribution would benefit from defining its role during fertilization. Here, we delineate the role of Ca2+ release during mII exit in wild-type mouse eggs and show that it is dispensable for full-term development. Exit from mII can be induced by Zn2+-specific sequestration without Ca2+ release, eliciting Cyclin B degradation in a manner dependent upon the proteasome pathway and intact microtubules, but not accompanied by degradation of the meiotic regulator Emi2. Parthenogenotes generated by Zn2+ sequestration developed in vitro with normal expression of Ca2+-sensitive genes. Meiotic exit induced by either Ca2+ oscillations or a single Ca2+ rise in oocytes containing a signaling-deficient sperm resulted in comparable developmental rates. In the absence of Ca2+ release, full-term development occurred ∼50% less efficiently, but at readily detectable rates, with the birth of 27 offspring. These results show in intact mouse oocytes that Zn2+ is essential for mII arrest and suggest that triggering meiotic exit is the sole indispensable developmental role of Ca2+ signaling in mammalian fertilization.
Collapse
Affiliation(s)
- Toru Suzuki
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047 Japan
| | - Naoko Yoshida
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047 Japan
| | - Emi Suzuki
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047 Japan
| | - Erina Okuda
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047 Japan
| | - Anthony C. F. Perry
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047 Japan
| |
Collapse
|
144
|
Segers I, Adriaenssens T, Ozturk E, Smitz J. Acquisition and loss of oocyte meiotic and developmental competence during in vitro antral follicle growth in mouse. Fertil Steril 2010; 93:2695-700. [DOI: 10.1016/j.fertnstert.2009.11.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 11/16/2009] [Accepted: 11/17/2009] [Indexed: 10/20/2022]
|
145
|
Abstract
Oocytes play a pivotal role in the cycle of human life. As we discuss here, after emerging from germline stem cells in the fetus, they grow in a follicular niche in which development is harmonized for timely ovulation and hormone secretion after puberty. Most human oocytes have poor developmental competence and are peculiarly vulnerable to chromosomal malsegregation, especially as women pass the optimal years of fertility and may begin to turn to assisted reproductive technologies (ARTs) and egg donation. Research needs to focus on the molecular factors involved and the environmental niche required for optimal development of oocytes, with the aim of increasing their numbers and quality for ARTs, since these are the factors that so often limit human fertility.
Collapse
Affiliation(s)
- Roger Gosden
- Ronald O. Perelman & Claudia Cohen Center for Reproductive Medicine & Infertility, Weill Medical College of Cornell University, 1305 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
146
|
Duncan FE, Schultz RM. Gene expression profiling of mouse oocytes and preimplantation embryos. Methods Enzymol 2010; 477:457-80. [PMID: 20699155 DOI: 10.1016/s0076-6879(10)77023-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Gene expression profiling using microarray technology is a robust, efficient, and cost-effective approach to assay a cell or tissue's transcriptome at a particular time or under a specific condition. Application of this technology to oocytes and preimplantation embryos has been limited largely because this biological material is difficult to acquire in sufficient quantities. We describe here a protocol to isolate and amplify mRNA from oocytes and preimplantation embryos that is suitable for microarray experiments. This protocol is based on a linear two-step amplification protocol using T7 RNA polymerase-based in vitro transcription and has been used to isolate more than 80 microg of cRNA from only 20 oocytes or preimplantation embryos. Gene expression profiling has provided insight into the molecular mechanisms of meiotic maturation, fertilization, and preimplantation embryo development. It has also been used to characterize female gametes and embryos from animals harboring gene-specific knockouts or knockdowns. Finally, this technology has been useful in evaluating how various Assisted Reproductive Technologies impact global patterns of gene expression in resulting embryos.
Collapse
Affiliation(s)
- Francesca E Duncan
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, Illinois, USA
| | | |
Collapse
|
147
|
Heytens E, Parrington J, Coward K, Young C, Lambrecht S, Yoon SY, Fissore RA, Hamer R, Deane CM, Ruas M, Grasa P, Soleimani R, Cuvelier CA, Gerris J, Dhont M, Deforce D, Leybaert L, De Sutter P. Reduced amounts and abnormal forms of phospholipase C zeta (PLCzeta) in spermatozoa from infertile men. Hum Reprod 2009; 24:2417-28. [PMID: 19584136 DOI: 10.1093/humrep/dep207] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND In mammals, oocyte activation at fertilization is thought to be induced by the sperm-specific phospholipase C zeta (PLCzeta). However, it still remains to be conclusively shown that PLCzeta is the endogenous agent of oocyte activation. Some types of human infertility appear to be caused by failure of the sperm to activate and this may be due to specific defects in PLCzeta. METHODS AND RESULTS Immunofluorescence studies showed PLCzeta to be localized in the equatorial region of sperm from fertile men, but sperm deficient in oocyte activation exhibited no specific signal in this same region. Immunoblot analysis revealed reduced amounts of PLCzeta in sperm from infertile men, and in some cases, the presence of an abnormally low molecular weight form of PLCzeta. In one non-globozoospermic case, DNA analysis identified a point mutation in the PLCzeta gene that leads to a significant amino acid change in the catalytic region of the protein. Structural modelling suggested that this defect may have important effects upon the structure and function of the PLCzeta protein. cRNA corresponding to mutant PLCzeta failed to induce calcium oscillations when microinjected into mouse oocytes. Injection of infertile human sperm into mouse oocytes failed to activate the oocyte or trigger calcium oscillations. Injection of such infertile sperm followed by two calcium pulses, induced by assisted oocyte activation, activated the oocytes without inducing the typical pattern of calcium oscillations. CONCLUSIONS Our findings illustrate the importance of PLCzeta during fertilization and suggest that mutant forms of PLCzeta may underlie certain types of human male infertility.
Collapse
Affiliation(s)
- E Heytens
- Department of Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Newman SA. E.E. Just's “independent irritability” revisited: The activated egg as excitable soft matter. Mol Reprod Dev 2009; 76:966-74. [DOI: 10.1002/mrd.21094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
149
|
Kato Y, Nagao Y. Effect of PVP on sperm capacitation status and embryonic development in cattle. Theriogenology 2009; 72:624-35. [PMID: 19604569 DOI: 10.1016/j.theriogenology.2009.04.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 03/18/2009] [Accepted: 04/19/2009] [Indexed: 11/19/2022]
Abstract
The objective of this study was to investigate the effects of polyvinylpyrrolidone (PVP) on sperm capacitation status and embryonic development in cattle (Bos taurus). Acrosome-reacted sperm (chlortetracycline stain) and the fertilization rate after intracytoplasmic sperm injection (ICSI) were enhanced (P<0.05) when sperm were cultured in a medium containing 10% PVP. However, injection of bovine in vitro-produced (IVP) embryos with medium containing 10% PVP suppressed development of these embryos to the 2-cell, morula, and blastocyst stages and cell number at the blastocyst stage (P<0.01) but did not affect chromosomal integrity (P>0.05). Embryo developmental capacity differed (P<0.01) among PVP from three suppliers, but there were no significant differences among three solvent media. The PVP remained localized in 40.9% of PVP-injected IVP embryos. In conclusion, PVP affected the acrosome reaction and enhanced the fertilization rate after ICSI. However, PVP remained detectable in IVP embryos and suppressed their developmental capacity.
Collapse
Affiliation(s)
- Y Kato
- Department of Animal Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Japan
| | | |
Collapse
|
150
|
McPartlin L, Suarez S, Czaya C, Hinrichs K, Bedford-Guaus S. Hyperactivation of Stallion Sperm Is Required for Successful In Vitro Fertilization of Equine Oocytes1. Biol Reprod 2009; 81:199-206. [DOI: 10.1095/biolreprod.108.074880] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|