101
|
Baker A, Saulière A, Dumas F, Millot C, Mazères S, Lopez A, Salomé L. Functional membrane diffusion of G-protein coupled receptors. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36:849-60. [PMID: 17899063 DOI: 10.1007/s00249-007-0214-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 07/31/2007] [Accepted: 08/03/2007] [Indexed: 01/24/2023]
Abstract
G-protein-coupled receptor function involves interactions between the receptor, G-proteins and effectors in the cell plasma membrane. The main biochemical processes have been individually identified but the mechanisms governing the successive protein-protein interactions of this complex multi-molecular machinery have yet to be established. We discuss advances in understanding the functional dynamics of the receptor resulting from diffusion measurements, and in the context of the plasma membrane organization.
Collapse
Affiliation(s)
- Aurélie Baker
- Institut de Pharmacologie et Biologie Structurale, UMR CNRS-Université Paul Sabatier 5089, 205, route de Narbonne, 31077, Toulouse cedex 09, France
| | | | | | | | | | | | | |
Collapse
|
102
|
Adkins EM, Samuvel DJ, Fog JU, Eriksen J, Jayanthi LD, Vaegter CB, Ramamoorthy S, Gether U. Membrane Mobility and Microdomain Association of the Dopamine Transporter Studied with Fluorescence Correlation Spectroscopy and Fluorescence Recovery after Photobleaching. Biochemistry 2007; 46:10484-97. [PMID: 17711354 DOI: 10.1021/bi700429z] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To investigate microdomain association of the dopamine transporter (DAT), we employed FCS (fluorescence correlation spectroscopy) and FRAP (fluorescence recovery after photobleaching). In non-neuronal cells (HEK293), FCS measurements revealed for the YFP-DAT (DAT tagged with yellow fluorescent protein) a diffusion coefficient (D) of approximately 3.6 x 10(-9) cm2/s, consistent with a relatively freely diffusible protein. In neuronally derived cells (N2a), we were unable to perform FCS measurements on plasma membrane-associated protein due to photobleaching, suggesting partial immobilization. This was supported by FRAP measurements that revealed a lower D and a mobile fraction of the YFP-DAT in N2a cells compared to HEK293 cells. Comparison with the EGFP-EGFR (epidermal growth factor receptor) and the EGFP-beta2AR (beta2 adrenergic receptor) demonstrated that this observation was DAT specific. Both the cytoskeleton-disrupting agent cytochalasin D and the cholesterol-depleting agent methyl-beta-cyclodextrin (mbetaCD) increased the lateral mobility of the YFP-DAT but not that of the EGFP-EGFR. The DAT associated in part with membrane raft markers both in the N2a cells and in rat striatal synaptosomes as assessed by sucrose density gradient centrifugation. Raft association was further confirmed in the N2a cells by cholera toxin B patching. It was, moreover, observed that cholesterol depletion, and thereby membrane raft disruption, decreased both the Vmax and KM values for [3H]dopamine uptake without altering DAT surface expression. In summary, we propose that association of the DAT with lipid microdomains in the plasma membrane and/or the cytoskeleton serves to regulate both the lateral mobility of the transporter and its transport capacity.
Collapse
Affiliation(s)
- Erika M Adkins
- Molecular Neuropharmacology Group, Department of Neuroscience and Pharmacology and Center for Pharmacogenomics, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Bruckbauer A, James P, Zhou D, Yoon JW, Excell D, Korchev Y, Jones R, Klenerman D. Nanopipette delivery of individual molecules to cellular compartments for single-molecule fluorescence tracking. Biophys J 2007; 93:3120-31. [PMID: 17631532 PMCID: PMC2025666 DOI: 10.1529/biophysj.107.104737] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have developed a new method, using a nanopipette, for controlled voltage-driven delivery of individual fluorescently labeled probe molecules to the plasma membrane which we used for single-molecule fluorescence tracking (SMT). The advantages of the method are 1), application of the probe to predefined regions on the membrane; 2), release of only one or a few molecules onto the cell surface; 3), when combined with total internal reflection fluorescence microscopy, very low background due to unbound molecules; and 4), the ability to first optimize the experiment and then repeat it on the same cell. We validated the method by performing an SMT study of the diffusion of individual membrane glycoproteins labeled with Atto 647-wheat germ agglutin in different surface domains of boar spermatozoa. We found little deviation from Brownian diffusion with a mean diffusion coefficient of 0.79 +/- 0.04 microm(2)/s in the acrosomal region and 0.10 +/- 0.02 microm(2)/s in the postacrosomal region; this difference probably reflects different membrane structures. We also showed that we can analyze diffusional properties of different subregions of the cell membrane and probe for the presence of diffusion barriers. It should be straightforward to extend this new method to other probes and cells, and it can be used as a new tool to investigate the cell membrane.
Collapse
Affiliation(s)
- Andreas Bruckbauer
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Ghosh I, Wirth MJ. Parsing the motion of single molecules: a novel algorithm for deconvoluting the dynamics of individual receptors at the cell surface. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2007; 2007:pe28. [PMID: 17536098 DOI: 10.1126/stke.3882007pe28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To truly understand signal transduction, we will ultimately need to understand the dynamics and kinetics of individual proteins as they perform their functions in a single cell. Groundbreaking advances in single-molecule biophysics now allow us to follow the motion of many individual proteins on the cell surface with the use of fluorescent probes, such as quantum dots. However, discriminating the directed movement of single molecules from their natural Brownian motion remains a challenge. A recent paper provides a powerful statistical approach for distinguishing periods of directed motion of individual gamma-aminobutyric acid (GABA) receptors from periods during which they undergo Brownian motion. This new methodology should help single-molecule researchers determine the dynamics of individual proteins participating in signaling cascades.
Collapse
Affiliation(s)
- Indraneel Ghosh
- Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
105
|
Jin S, Verkman AS. Single particle tracking of complex diffusion in membranes: simulation and detection of barrier, raft, and interaction phenomena. J Phys Chem B 2007; 111:3625-32. [PMID: 17388520 DOI: 10.1021/jp067187m] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single particle tracking is being used increasingly to follow the motion of membrane-associated receptors and lipids. Anomalous and complex diffusive behaviors are generally found in cell membranes. We developed computational algorithms to simulate particle trajectories and to detect complex diffusive behaviors in two dimensions, including confined and convective diffusion, intramembrane barrier and raft phenomena, and interparticle interactions. Little useful information regarding barrier, raft, and interaction effects were provided by standard computational procedures for identification of anomalous diffusion, including analysis of mean squared displacement, distributions of diffusion rates and range, and time evolution of particle position. New algorithms were developed and optimized to detect complex diffusive behaviors from simulated single particle trajectories. A barrier detection algorithm was developed on the basis of spatial averaging of particle positions in trajectories. A raft detection algorithm utilized spatially resolved diffusion coefficients and particle density functions. An interaction algorithm utilized interparticle distance distributions. The algorithms developed here are applicable to identify biologically important diffusive phenomena in cell membranes.
Collapse
Affiliation(s)
- Songwan Jin
- Departments of Medicine and Physiology, Cardiovascular Research Institute, University of California, San Francisco, California 94143-0521, USA
| | | |
Collapse
|
106
|
Barisas BG, Smith SM, Liu J, Song J, Hagen GM, Pecht I, Roess DA. Compartmentalization of the Type I Fcε receptor and MAFA on mast cell membranes. Biophys Chem 2007; 126:209-17. [PMID: 16797115 DOI: 10.1016/j.bpc.2006.05.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 05/17/2006] [Indexed: 11/22/2022]
Abstract
The Mast cell Function-associated Antigen (MAFA) is a membrane glycoprotein on rat mast cells (RBL-2H3) expressed at a ratio of approximately 1:30 with respect to the Type I Fc epsilon receptor (Fc epsilon RI). Despite this stoichiometry, clustering MAFA by its specific mAb G63 substantially inhibits secretion of both granular and de novo synthesized mediators induced upon Fc epsilon RI aggregation. Since the Fc epsilon RIs apparently signal from within raft micro-environments, we investigated possible co-localization of MAFA within these membrane compartments containing aggregated Fc epsilon RI. We used cholera toxin B subunit (CTB) to cluster the raft component ganglioside GM1 and studied the effects of this perturbation on rotation of Fc epsilon RI and MAFA by time-resolved phosphorescence anisotropy of erythrosin-conjugated probes. CTB treatment would be expected to substantially inhibit rotation of raft-associated molecules. Experimentally, CTB has no effect on rotational parameters such as the long-time anisotropy (r(infinity)) of unperturbed Fc epsilon RI or MAFA. However, on cells where Fc epsilon RI-IgE has previously been clustered by antigen (DNP(14)-BSA), CTB treatment increases the Fc epsilon RI-IgE's r(infinity) by 0.010 and MAFA's by 0.014. Similarly, CTB treatment of cells where MAFA had been clustered by mAb G63 increases MAFA's r(infinity) by 0.010 but leaves Fc epsilon RI's unaffected. Evaluation of raft localization of Fc epsilon RI and MAFA using sucrose gradient ultracentrifugation of Triton X-100 treated membrane fragments demonstrates that a significant fraction of MAFA molecules sediments with rafts when Fc epsilon RI is clustered by antigen or when MAFA itself is clustered by mAb G63. The large excess of Fc epsilon RI over MAFA explains why clustering MAFA does not substantively affect Fc epsilon RI dynamics. Moreover, in single-particle tracking studies of individual Fc epsilon RI-IgE or MAFA molecules, these proteins, upon clustering by antigen, move into small membrane compartments of reduced, but similar, dimensions. This provides additional indication of constitutive interactions between Fc epsilon RI and MAFA. Taken together, these results of distinct methodologies suggest that MAFA functions within raft microdomains of the RBL-2H3 cell membrane and thus in close proximity to the Fc epsilon RI which themselves signal from within the raft environment.
Collapse
Affiliation(s)
- B George Barisas
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | | | |
Collapse
|
107
|
Roumy M, Lorenzo C, Mazères S, Bouchet S, Zajac JM, Mollereau C. Physical association between neuropeptide FF and micro-opioid receptors as a possible molecular basis for anti-opioid activity. J Biol Chem 2007; 282:8332-42. [PMID: 17224450 DOI: 10.1074/jbc.m606946200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neuropeptide FF (NPFF) modulates the opioid system by exerting functional anti-opioid activity on neurons, the mechanism of which is unknown. By using a model of SH-SY5Y cells, we recently postulated that anti-opioid activity likely takes place upstream from the signaling cascade, suggesting that NPFF receptors could block opioid receptors by physical interaction. In the present study, fluorescence techniques were used to monitor the physical association and the dynamic of NPFF2 and micro-opioid (MOP) receptors tagged with variants of the green fluorescent protein. Importantly, cyan fluorescent protein-tagged NPFF2 receptors retained their capacity to antagonize opioid receptors. Fluorescence resonance energy transfer (FRET) and coimmunoprecipitation studies indicate that NPFF and MOP receptors are close enough to generate a basal FRET signal. The opioid agonist Tyr-D-Ala-Gly-NMe-Phe-Gly-ol disrupts by 20-30% this FRET signal, mainly because it concomitantly induces 40% internalization of receptors. In contrast, the NPFF analog 1DMe significantly increases by 10-15% the basal FRET signal, suggesting an association between both receptors. In addition, 1DMe reduces, by half, MOP receptor internalization, indicating that, besides a functional blockade of opioid receptors, the NPFF analog also inhibits their internalization. Finally, as a first report showing the modulation of the mobility of a G-protein-coupled receptor by another one, fluorescence recovery after photobleaching analysis reveals that 1DMe modifies the lateral diffusion of MOP receptors in the cell membrane, changing them from a confined to a freely diffusing state. By promoting NPFF-MOP receptor heteromerization, 1DMe could disrupt the domain organization of MOP receptors in the membrane, resulting in a reduction of opioid response.
Collapse
Affiliation(s)
- Michel Roumy
- Institut de Pharmacologie et Biologie Structurale, CNRS UMR 5089, 205 route de Narbonne, 31077 Toulouse cedex 04, France
| | | | | | | | | | | |
Collapse
|
108
|
Lei Y, Hagen GM, Smith SML, Liu J, Barisas G, Roess DA. Constitutively-active human LH receptors are self-associated and located in rafts. Mol Cell Endocrinol 2007; 260-262:65-72. [PMID: 17045393 PMCID: PMC1904512 DOI: 10.1016/j.mce.2005.11.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Accepted: 11/23/2005] [Indexed: 11/24/2022]
Abstract
Several naturally occurring mutations in human luteinizing hormone receptors (LHR) at position 578 are associated with constitutive activation of the receptor. To determine whether human LHRs that signal in the absence of ligand are self-associated, fluorescence resonance energy transfer (FRET) between receptors was evaluated. Values for FRET between wild type LHR in the absence of ligand were less than 1% and increased significantly to over 11% after exposure to hCG. Constitutively active receptors exhibited 11-15% FRET efficiency in the absence of hormone and these values did not change with hCG treatment. A large fraction of constitutively active LHR-D578H receptors were also associated with so-called plasma membrane rafts. Disruption of these membrane microdomains reduced FRET efficiency but did not affect signalling through cAMP. Thus, in the absence of ligand, constitutively active receptors are self-associated and located in high buoyancy membrane fractions, both characteristics of the hormone-treated wild type receptor.
Collapse
Affiliation(s)
- Ying Lei
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, United States
| | | | | | | | | | | |
Collapse
|
109
|
Azuma R, Kitagawa T, Kobayashi H, Konagaya A. Particle simulation approach for subcellular dynamics and interactions of biological molecules. BMC Bioinformatics 2006; 7 Suppl 4:S20. [PMID: 17217513 PMCID: PMC1780110 DOI: 10.1186/1471-2105-7-s4-s20] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spatio-temporal dynamics within cells can now be visualized at appropriate resolution, due to the advances in molecular imaging technologies. Even single-particle tracking (SPT) and single fluorophore video imaging (SFVI) are now being applied to observation of molecular-level dynamics. However, little is known concerning how molecular-level dynamics affect properties at the cellular level. RESULTS We propose an algorithm designed for three-dimensional simulation of the reaction-diffusion dynamics of molecules, based on a particle model. Chemical reactions proceed through the interactions of particles in space, with activation energies determining the rates of these chemical reactions at each interaction. This energy-based model can include the cellular membrane, membranes of other organelles, and cytoskeleton. The simulation algorithm was tested for a reversible enzyme reaction model and its validity was confirmed. Snapshot images taken from simulated molecular interactions on the cell-surface revealed clustering domains (size approximately 0.2 microm) associated with rafts. Sample trajectories of raft constructs exhibited "hop diffusion". These domains corralled the diffusive motion of membrane proteins. CONCLUSION These findings demonstrate that our approach is promising for modelling the localization properties of biological phenomena.
Collapse
Affiliation(s)
- Ryuzo Azuma
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Tetsuji Kitagawa
- Dept. of Mathematics and Computing Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8552, Japan
| | - Hiroshi Kobayashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba, 260-8675, Japan
| | - Akihiko Konagaya
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Dept. of Mathematics and Computing Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8552, Japan
| |
Collapse
|
110
|
Bouzigues C, Dahan M. Transient directed motions of GABA(A) receptors in growth cones detected by a speed correlation index. Biophys J 2006; 92:654-60. [PMID: 17071660 PMCID: PMC1751400 DOI: 10.1529/biophysj.106.094524] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-molecule tracking of membrane proteins has become an important tool for investigating dynamic processes in live cells, such as cell signaling, membrane compartmentation or trafficking. The extraction of relevant parameters, such as interaction times between molecular partners or confinement-zone sizes, from the trajectories of single molecules requires appropriate statistical methods. Here we report a new tool, the speed correlation index, designed to detect transient periods of directed motion within trajectories of diffusing molecules. The ability to detect such events in a wide range of biologically relevant parameter values (speed, diffusion coefficient, and durations of the directed period) was first established on simulated data. The method was next applied to analyze the trajectories of quantum-dot-labeled GABA(A) receptors in nerve growth cones. The use of the speed correlation index revealed that the receptors had a "conveyor belt" type of motion due to temporary interactions ( approximately 4.0 s) between the receptors and the microtubules, leading to an average directed motion (velocity approximately 0.3 mum s(-1)) in the growth-cone membrane. Our observations point to the possibility of a cytoskeleton-dependent redistribution of the sensing molecules in the membrane, which could play a role in the modulation of the cell response to external signals.
Collapse
Affiliation(s)
- Cédric Bouzigues
- Laboratoire Kastler Brossel, Ecole Normale Supérieure, Centre National de la Recherche Scientifique UMR 8552, Paris, France
| | | |
Collapse
|
111
|
Gaibelet G, Planchenault T, Mazères S, Dumas F, Arenzana-Seisdedos F, Lopez A, Lagane B, Bachelerie F. CD4 and CCR5 constitutively interact at the plasma membrane of living cells: a confocal fluorescence resonance energy transfer-based approach. J Biol Chem 2006; 281:37921-9. [PMID: 17035237 DOI: 10.1074/jbc.m607103200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus entry into target cells requires sequential interactions of the viral glycoprotein envelope gp120 with CD4 and chemokine receptors CCR5 or CXCR4. CD4 interaction with the chemokine receptor is suggested to play a critical role in this process but to what extent such a mechanism takes place at the surface of target cells remains elusive. To address this issue, we used a confocal microspectrofluorimetric approach to monitor fluorescence resonance energy transfer at the cell plasma membrane between enhanced blue and green fluorescent proteins fused to CD4 and CCR5 receptors. We developed an efficient fluorescence resonance energy transfer analysis from experiments carried out on individual cells, revealing that receptors constitutively interact at the plasma membrane. Binding of R5-tropic HIV gp120 stabilizes these associations thus highlighting that ternary complexes between CD4, gp120, and CCR5 occur before the fusion process starts. Furthermore, the ability of CD4 truncated mutants and CCR5 ligands to prevent association of CD4 with CCR5 reveals that this interaction notably engages extracellular parts of receptors. Finally, we provide evidence that this interaction takes place outside raft domains of the plasma membrane.
Collapse
Affiliation(s)
- Gérald Gaibelet
- IPBS/CNRS, 205 Route de Narbonne, 31062 Toulouse cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Jacquier V, Prummer M, Segura JM, Pick H, Vogel H. Visualizing odorant receptor trafficking in living cells down to the single-molecule level. Proc Natl Acad Sci U S A 2006; 103:14325-30. [PMID: 16980412 PMCID: PMC1599963 DOI: 10.1073/pnas.0603942103] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the importance of trafficking for regulating G protein-coupled receptor signaling, for many members of the seven transmembrane helix protein family, such as odorant receptors, little is known about this process in live cells. Here, the complete life cycle of the human odorant receptor OR17-40 was directly monitored in living cells by ensemble and single-molecule imaging, using a double-labeling strategy. While the overall, intracellular trafficking of the receptor was visualized continuously by using a GFP tag, selective imaging of cell surface receptors was achieved by pulse-labeling an acyl carrier protein tag. We found that OR17-40 efficiently translocated to the plasma membrane only at low expression, whereas at higher biosynthesis the receptor accumulated in intracellular compartments. Receptors in the plasma membrane showed high turnover resulting from constitutive internalization along the clathrin pathway, even in the absence of ligand. Single-molecule microscopy allowed monitoring of the early, dynamic processes in odorant receptor signaling. Although mobile receptors initially diffused either freely or within domains of various sizes, binding of an agonist or an antagonist increased partitioning of receptors into small domains of approximately 190 nm, which likely are precursors of clathrin-coated pits. The binding of a ligand, therefore, resulted in modulation of the continuous, constitutive internalization. After endocytosis, receptors were directed to early endosomes for recycling. This unique mechanism of continuous internalization and recycling of OR17-40 might be instrumental in allowing rapid recovery of odor perception.
Collapse
Affiliation(s)
- V. Jacquier
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - M. Prummer
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - J.-M. Segura
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - H. Pick
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - H. Vogel
- Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
113
|
Saulière A, Gaibelet G, Millot C, Mazères S, Lopez A, Salomé L. Diffusion of the mu opioid receptor at the surface of human neuroblastoma SH-SY5Y cells is restricted to permeable domains. FEBS Lett 2006; 580:5227-31. [PMID: 16963028 DOI: 10.1016/j.febslet.2006.08.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 08/17/2006] [Indexed: 11/23/2022]
Abstract
Previous single-molecule studies have shown a long-term diffusion superimposed to a short-term confinement of the human mu opioid (hMOP) receptors at the surface of heterologous cells. However, additional ensemble average measurements are required to reach a complete understanding of the undergoing process. Here, we analyse, by fluorescence recovery after photobleaching measurements, the lateral diffusion of fully functional T7-EGFP-hMOP receptors in neuroblastoma SH-SY5Y cells naturally expressing a low level of the wild-type receptor. Experiments carried out at variable observation radii demonstrate the restriction of the receptors diffusion to sub-micrometer sized domains. Furthermore, consistently with the long-term single-molecule data, the domains are found permeable.
Collapse
Affiliation(s)
- Aude Saulière
- Institut de Pharmacologie et Biologie Structurale, UMR CNRS 5089, 205, route de Narbonne, 31077 TOULOUSE cedex, France
| | | | | | | | | | | |
Collapse
|
114
|
Perez JB, Segura JM, Abankwa D, Piguet J, Martinez KL, Vogel H. Monitoring the diffusion of single heterotrimeric G proteins in supported cell-membrane sheets reveals their partitioning into microdomains. J Mol Biol 2006; 363:918-30. [PMID: 16996083 DOI: 10.1016/j.jmb.2006.08.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2006] [Revised: 07/07/2006] [Accepted: 08/14/2006] [Indexed: 11/23/2022]
Abstract
Supported cell-membrane sheets are promising in vitro systems to investigate the properties of membranes with native protein/lipid composition, in particular their sub-compartmentalization and the differential localization of proteins associated to them. While such studies are usually performed using static microscopy techniques, we demonstrate here the potential offered by dynamic diffusion measurements. Whereas the overall fluidity of the lipid bilayer was preserved, the preparation of the membrane sheets led to the selective immobilization of extracellular and transmembrane (TM) glycosylated proteins and the anchored proteins/lipids associated with them. Taking advantage of this, we investigated the association of the G protein Gq with TM proteins, in particular G-protein coupled receptors (GPCRs), by monitoring the changes in diffusion occurring after preparation of the supported membranes. Two fluorescently tagged Galphaq proteins were constructed, which remained either mostly monomeric in the plasma membrane or associated with Gbetagamma in heterotrimers. While both constructs diffused similarly in living cells, the preparation of the supported membranes led to the selective immobilization of the heterotrimers with minimal changes of the diffusion of the monomeric Galphaq. The diverse mobility of monomeric and heterotrimeric Galphaq was a result of their different lipid anchors as demonstrated by monitoring the diffusion of the corresponding anchors alone. We propose that the immobilization of the heterotrimer was caused by its partitioning inside membrane microdomains surrounding GPCRs.
Collapse
Affiliation(s)
- Jean-Baptiste Perez
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institut des Sciences et Ingénierie Chimiques, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
115
|
Huet S, Karatekin E, Tran VS, Fanget I, Cribier S, Henry JP. Analysis of transient behavior in complex trajectories: application to secretory vesicle dynamics. Biophys J 2006; 91:3542-59. [PMID: 16891360 PMCID: PMC1614485 DOI: 10.1529/biophysj.105.080622] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Analysis of trajectories of dynamical biological objects, such as breeding ants or cell organelles, is essential to reveal the interactions they develop with their environments. Many previous works used a global characterization based on parameters calculated for entire trajectories. In cases where transient behavior was detected, this usually concerned only a particular type, such as confinement or directed motion. However, these approaches are not appropriate in situations in which the tracked objects may display many different types of transient motion. We have developed a method to exhaustively analyze different kinds of transient behavior that the tracked objects may exhibit. The method discriminates stalled periods, constrained and directed motions from random dynamics by evaluating the diffusion coefficient, the mean-square displacement curvature, and the trajectory asymmetry along individual trajectories. To detect transient motions of various durations, these parameters are calculated along trajectories using a rolling analysis window whose width is variable. The method was applied to the study of secretory vesicle dynamics in the subplasmalemmal region of human carcinoid BON cells. Analysis of transitions between transient motion periods, combined with plausible assumptions about the origin of each motion type, leads to a model of dynamical subplasmalemmal organization.
Collapse
Affiliation(s)
- Sébastien Huet
- Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, UPR 1929, Université Paris 7 Denis Diderot, Paris, F-75005, France
| | | | | | | | | | | |
Collapse
|
116
|
Prummer M, Meyer BH, Franzini R, Segura JM, George N, Johnsson K, Vogel H. Post-translational Covalent Labeling Reveals Heterogeneous Mobility of Individual G Protein-Coupled Receptors in Living Cells. Chembiochem 2006; 7:908-11. [PMID: 16607667 DOI: 10.1002/cbic.200500477] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michael Prummer
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
117
|
Smith SML, Lei Y, Liu J, Cahill ME, Hagen GM, Barisas BG, Roess DA. Luteinizing hormone receptors translocate to plasma membrane microdomains after binding of human chorionic gonadotropin. Endocrinology 2006; 147:1789-95. [PMID: 16410308 DOI: 10.1210/en.2005-1046] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Receptor-mediated signal transduction by G protein-coupled receptors can involve redistribution of plasma membrane receptors into membrane structures that are characterized by insolubility in Triton X-100 and low buoyant density in sucrose gradients. Here we describe the translocation of wild-type (wt) rat LH receptors (LHR-wt) from the bulk membrane into membrane microdomains (rafts) after the binding of human chorionic gonadotropin (hCG). In sucrose gradient ultracentrifugation of plasma membranes from cells stably expressing FLAG-tagged LHR-wt, receptors were located in high-density membrane fractions before binding of hormone and in low-density fractions after hCG treatment. Receptor translocation to low-density sucrose fractions did not occur when cells were pretreated with 1% methyl-beta-cyclodextrin, which reduces membrane cholesterol and disrupts rafts. Single-particle tracking of individual FLAG-LHR-wt receptors showed that hCG-treated receptors become confined in small compartments with a diameter of 86 +/- 36 nm, significantly smaller than 230 +/- 79 nm diameter regions accessed by the untreated receptor. Receptors were no longer confined in these small compartments after disruption of rafts by methyl-beta-cyclodextrin, a treatment that also decreased levels of cAMP in response to hCG. Finally, translocation of LHR into rafts required a functional hormone-receptor complex but did not occur after extensive receptor cross-linking that elevated cAMP levels. Thus, retention of LHR in rafts or small membrane compartments is a characteristic of functional, hormone-occupied LHR-wt. Although raft translocation was not essential for cAMP production, it may be necessary for optimizing hormone-mediated signaling.
Collapse
Affiliation(s)
- Steven M L Smith
- Department of Biomedical Sciences, Colorado State University, Fort Collins, 80523, USA
| | | | | | | | | | | | | |
Collapse
|
118
|
Meilhac N, Le Guyader L, Salomé L, Destainville N. Detection of confinement and jumps in single-molecule membrane trajectories. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:011915. [PMID: 16486193 DOI: 10.1103/physreve.73.011915] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Indexed: 05/06/2023]
Abstract
We propose a variant of the algorithm by [R. Simson, E. D. Sheets, and K. Jacobson, Biophys. 69, 989 (1995)]. Their algorithm was developed to detect transient confinement zones in experimental single-particle tracking trajectories of diffusing membrane proteins or lipids. We show that our algorithm is able to detect confinement in a wider class of confining potential shapes than that of Simson et al. Furthermore, it enables to detect not only temporary confinement but also jumps between confinement zones. Jumps are predicted by membrane skeleton fence and picket models. In the case of experimental trajectories of mu-opioid receptors, which belong to the family of G-protein-coupled receptors involved in a signal transduction pathway, this algorithm confirms that confinement cannot be explained solely by rigid fences.
Collapse
Affiliation(s)
- N Meilhac
- Laboratoire de Physique Théorique, UMR CNRS-UPS 5152, Université Paul Sabatier, 31062 Toulouse Cedex 9, France
| | | | | | | |
Collapse
|
119
|
Levi V, Ruan Q, Plutz M, Belmont AS, Gratton E. Chromatin dynamics in interphase cells revealed by tracking in a two-photon excitation microscope. Biophys J 2005; 89:4275-85. [PMID: 16150965 PMCID: PMC1366992 DOI: 10.1529/biophysj.105.066670] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 08/19/2005] [Indexed: 11/18/2022] Open
Abstract
Increasing evidence points to a dynamical compartmentalization of the cell nucleus, yet the mechanisms by which interphase chromatin moves and is positioned within nuclei remain unclear. Here, we study the dynamics of chromatin in vivo applying a novel particle-tracking method in a two-photon microscope that provides approximately 10-fold higher spatial and temporal resolutions than previous measurements. We followed the motion of a chromatin sequence containing a lac-operator repeat in cells stably expressing lac repressor fused with enhanced green fluorescent protein, observing long periods of apparent constrained diffusion interrupted by relatively abrupt jumps of approximately 150 nm lasting 0.3-2 s. During these jumps, the particle moved an average of four times faster than in the periods between jumps and in paths more rectilinear than predicted for random diffusion motion. Additionally, the jumps were sensitive to the temperature and absent after ATP depletion. These experimental results point to an energy-dependent mechanism driving fast motion of chromatin in interphase cells.
Collapse
Affiliation(s)
- Valeria Levi
- Laboratory for Fluorescence Dynamics, and Department of Cell and Structural Biology, Chemical and Life Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080, USA
| | | | | | | | | |
Collapse
|
120
|
Destainville N, Salomé L. Quantification and correction of systematic errors due to detector time-averaging in single-molecule tracking experiments. Biophys J 2005; 90:L17-9. [PMID: 16299068 PMCID: PMC1367085 DOI: 10.1529/biophysj.105.075176] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-molecule tracking is a powerful way to look at the dynamic organization of plasma membranes. However, there are some limitations to its use. For example, it was recently observed, using numerical simulation, that time-averaging effects inherent to the exposure time of detectors are likely to bias the apparent motion of molecules confined in microdomains. Here, we solve this apparently limiting issue analytically. We explore this phenomenon by calculating its effects on the observed diffusion coefficients and domain sizes. We demonstrate that the real parameters can be easily recovered from the measured apparent ones. Interestingly, we find that single-molecule tracking can be used to explore events occurring at a timescale smaller than the exposure time.
Collapse
Affiliation(s)
- Nicolas Destainville
- Laboratoire de Physique Théorique, UMR CNRS-UPS 5152, Université Paul Sabatier, 31062 Toulouse, France
| | | |
Collapse
|
121
|
Vigh L, Escribá PV, Sonnleitner A, Sonnleitner M, Piotto S, Maresca B, Horváth I, Harwood JL. The significance of lipid composition for membrane activity: New concepts and ways of assessing function. Prog Lipid Res 2005; 44:303-44. [PMID: 16214218 DOI: 10.1016/j.plipres.2005.08.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the last decade or so, it has been realised that membranes do not just have a lipid-bilayer structure in which proteins are embedded or with which they associate. Structures are dynamic and contain areas of heterogeneity which are vital for their formation. In this review, we discuss some of the ways in which these dynamic and heterogeneous structures have implications during stress and in relation to certain human diseases. A particular stress is that of temperature which may instigate adaptation in poikilotherms or appropriate defensive responses during fever in mammals. Recent data emphasise the role of membranes in sensing temperature changes and in controlling a regulatory loop with chaperone proteins. This loop seems to need the existence of specific membrane microdomains and also includes association of chaperone (heat stress) proteins with the membrane. The role of microdomains is then discussed further in relation to various human pathologies such as cardiovascular disease, cancer and neurodegenerative diseases. The concept of modifying membrane lipids (lipid therapy) as a means for treating such pathologies is then introduced. Examples are given when such methods have been shown to have benefit. In order to study membrane microheterogeneity in detail and to elucidate possible molecular mechanisms that account for alteration in membrane function, new methods are needed. In the second part of the review, we discuss ultra-sensitive and ultra-resolution imaging techniques. These include atomic force microscopy, single particle tracking, single particle tracing and various modern fluorescence methods. Finally, we deal with computing simulation of membrane systems. Such methods include coarse-grain techniques and Monte Carlo which offer further advances into molecular dynamics. As computational methods advance they will have more application by revealing the very subtle interactions that take place between the lipid and protein components of membranes - and which are so essential to their function.
Collapse
Affiliation(s)
- Làszló Vigh
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Lill Y, Martinez KL, Lill MA, Meyer BH, Vogel H, Hecht B. Kinetics of the Initial Steps of G Protein-Coupled Receptor-Mediated Cellular Signaling Revealed by Single-Molecule Imaging. Chemphyschem 2005; 6:1633-40. [PMID: 16082665 DOI: 10.1002/cphc.200500111] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We report on an in vivo single-molecule study of the signaling kinetics of G protein-coupled receptors (GPCR) performed using the neurokinin 1 receptor (NK1R) as a representative member. The NK1R signaling cascade is triggered by the specific binding of a fluorescently labeled agonist, substance P (SP). The diffusion of single receptor-ligand complexes in plasma membrane of living HEK 293 cells is imaged using fast single-molecule wide-field fluorescence microscopy at 100 ms time resolution. Diffusion trajectories are obtained which show intra- and intertrace heterogeneity in the diffusion mode. To investigate universal patterns in the diffusion trajectories we take the ligand-binding event as the common starting point. This synchronization allows us to observe changes in the character of the ligand-receptor-complex diffusion. Specifically, we find that the diffusion of ligand-receptor complexes is slowed down significantly and becomes more constrained as a function of time during the first 1000 ms. The decelerated and more constrained diffusion is attributed to an increasing interaction of the GPCR with cellular structures after the ligand-receptor complex is formed.
Collapse
Affiliation(s)
- Yoriko Lill
- Nano-Optics group, National Competence Center for Research in Nanoscale Science, Institute of Physics, University of Basel, 4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
123
|
Abstract
Many important signaling events are initiated at the cell membrane. To facilitate efficient signal transduction upon stimulation, membrane microdomains, also known as lipid rafts, are postulated to serve as platforms to recruit components involved in the signaling complex, but few methods exist to study rafts in vivo. Single particle tracking provides an approach to study the plasma membrane of living cells on the nano-scale. The trajectories of single gold particles bound to membrane proteins and lipids are characterized in terms of both random and confined diffusion; the latter occurs in "transient confinement zones". Here we review transient confinement zones and some of their implications for membrane structure and function.
Collapse
Affiliation(s)
- Yun Chen
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7090, USA
| | | | | |
Collapse
|
124
|
Suzuki K, Ritchie K, Kajikawa E, Fujiwara T, Kusumi A. Rapid hop diffusion of a G-protein-coupled receptor in the plasma membrane as revealed by single-molecule techniques. Biophys J 2005; 88:3659-80. [PMID: 15681644 PMCID: PMC1305513 DOI: 10.1529/biophysj.104.048538] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Diffusion of a G-protein coupled receptor, mu-opioid receptor (muOR), in the plasma membrane was tracked by single-fluorescent molecule video imaging and high-speed single-particle tracking. At variance with a previous publication, where gold-tagged muOR was found to be totally confined within a domain, which in turn underwent very slow diffusion itself, we found that muOR undergoes rapid hop diffusion over membrane compartments (210-nm and 730-nm nested double compartments in the case of normal rat kidney cell line), which are likely delimited by the actin-based membrane-skeleton "fence or corrals" and its associated transmembrane protein "pickets", at a rate comparable to that for transferrin receptor (every 45 and 760 ms on average, respectively), suggesting that the fence and picket models may also be applicable to G-protein coupled receptors. Further, we found that strong confinement of gold-labeled muOR could be induced by the prolonged on-ice preincubation of the gold probe with the cells, showing that this procedure should be avoided in future single-particle tracking experiments. Based on the dense, long trajectories of muOR obtained by high-speed single-particle tracking, the membrane compartments apposed and adjoined to each other could be defined that are delimited by rather straight boundaries, consistent with the involvement of actin filaments in membrane compartmentalization.
Collapse
Affiliation(s)
- Kenichi Suzuki
- Kusumi Membrane Organizer Project, Exploratory Research for Advanced Technology Organization, Department of Biological Science and Institute for Advanced Research, Nagoya University, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
125
|
Levi V, Ruan Q, Gratton E. 3-D particle tracking in a two-photon microscope: application to the study of molecular dynamics in cells. Biophys J 2005; 88:2919-28. [PMID: 15653748 PMCID: PMC1305386 DOI: 10.1529/biophysj.104.044230] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We developed a method for tracking particles in three dimensions designed for a two-photon microscope, which holds great promise to study cellular processes because of low photodamage, efficient background rejection, and improved depth discrimination. During a standard cycle of the tracking routine (32 ms), the laser beam traces four circular orbits surrounding the particle in two z planes above and below the particle. The radius of the orbits is half of the x,y-width of the point spread function, and the distance between the z planes is the z-width of the point spread function. The z-position is adjusted by moving the objective with a piezoelectric-nanopositioner. The particle position is calculated on the fly from the intensity profile obtained during the cycle, and these coordinates are used to set the scanning center for the next cycle. Applying this method, we were able to follow the motion of 500-nm diameter fluorescent polystyrene microspheres moved by a nanometric stage in either steps of 20-100 nm or sine waves of 0.1-10 microm amplitude with 20 nm precision. We also measured the diffusion coefficient of fluorospheres in glycerol solutions and recovered the values expected according to the Stokes-Einstein relationship for viscosities higher than 3.7 cP. The feasibility of this method for live cell measurements is demonstrated studying the phagocytosis of protein-coated fluorospheres by fibroblasts.
Collapse
Affiliation(s)
- Valeria Levi
- Laboratory for Fluorescence Dynamics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080, USA.
| | | | | |
Collapse
|
126
|
Abstract
In the year 2003 there was a 17% increase in the number of publications citing work performed using optical biosensor technology compared with the previous year. We collated the 962 total papers for 2003, identified the geographical regions where the work was performed, highlighted the instrument types on which it was carried out, and segregated the papers by biological system. In this overview, we spotlight 13 papers that should be on everyone's 'must read' list for 2003 and provide examples of how to identify and interpret high-quality biosensor data. Although we still find that the literature is replete with poorly performed experiments, over-interpreted results and a general lack of understanding of data analysis, we are optimistic that these shortcomings will be addressed as biosensor technology continues to mature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
127
|
Ritchie K, Shan XY, Kondo J, Iwasawa K, Fujiwara T, Kusumi A. Detection of non-Brownian diffusion in the cell membrane in single molecule tracking. Biophys J 2004; 88:2266-77. [PMID: 15613635 PMCID: PMC1305276 DOI: 10.1529/biophysj.104.054106] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecules undergo non-Brownian diffusion in the plasma membrane, but the mechanism behind this anomalous diffusion is controversial. To characterize the anomalous diffusion in the complex system of the plasma membrane and to understand its underlying mechanism, single-molecule/particle methods that allow researchers to avoid ensemble averaging have turned out to be highly effective. However, the intrinsic problems of time-averaging (resolution) and the frequency of the observations have not been explored. These would not matter for the observations of simple Brownian particles, but they do strongly affect the observation of molecules undergoing anomalous diffusion. We examined these effects on the apparent motion of molecules undergoing simple, totally confined, or hop diffusion, using Monte Carlo simulations of particles undergoing short-term confined diffusion within a compartment and long-term hop diffusion between these compartments, explicitly including the effects of time-averaging during a single frame of the camera (exposure time) and the frequency of observations (frame rate). The intricate relationships of these time-related experimental parameters with the intrinsic diffusion parameters have been clarified, which indicated that by systematically varying the frame time and rate, the anomalous diffusion can be clearly detected and characterized. Based on these results, single-particle tracking of transferrin receptor in the plasma membrane of live PtK2 cells were carried out, varying the frame time between 0.025 and 33 ms (0.03-40 kHz), which revealed the hop diffusion of the receptor between 47-nm (average) compartments with an average residency time of 1.7 ms, with the aid of single fluorescent-molecule video imaging.
Collapse
Affiliation(s)
- Ken Ritchie
- Kusumi Membrane Organizer Project, Exploratory Research for Advanced Technology Organization (ERATO/SORST-JST), Department of Biological Science and Institute for Advanced Research, Nagoya University, Nagoya, Japan.
| | | | | | | | | | | |
Collapse
|
128
|
Cézanne L, Lecat S, Lagane B, Millot C, Vollmer JY, Matthes H, Galzi JL, Lopez A. Dynamic Confinement of NK2 Receptors in the Plasma Membrane. J Biol Chem 2004; 279:45057-67. [PMID: 15294896 DOI: 10.1074/jbc.m404811200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A functional fluorescent neurokinin NK2 receptor, EGFP-NK2, was previously used to follow, by fluorescence resonance energy transfer measurements in living cells, the binding of its fluorescently labeled agonist, bodipy-neurokinin A (NKA). Local agonist application suggested that the activation and desensitization of the NK2 receptors were compartmentalized at the level of the plasma membrane. In this study, fluorescence recovery after photobleaching experiments are carried out at variable observation radius (vrFRAP) to probe EGFP-NK2 receptor mobility and confinement. Experiments are carried out at 20 degrees C to maintain the number of receptors constant at the cell surface during recordings. In the absence of agonist, 35% EGFP-NK2 receptors diffuse within domains of 420 +/- 80 nm in radius with the remaining 65% of receptors able to diffuse with a long range lateral diffusion coefficient between the domains. When cells are incubated with a saturating concentration of NKA, 30% EGFP-NK2 receptors become immobilized in small domains characterized by a radius equal to 170 +/- 50 nm. Biochemical experiments show that the confinement of EGFP-NK2 receptor is not due to its association with rafts at any given time. Colocalization of the receptor with beta-arrestin and transferrin supports that the small domains, containing 30% of activated EGFP-NK2, correspond to clathrin-coated pre-pits. The similar amount of confined EGFP-NK2 receptors found before and after activation (30-35%) is discussed in term of putative transient interactions of the receptors with preexisting scaffolds of signaling molecules.
Collapse
Affiliation(s)
- Laurence Cézanne
- Institut de Pharmacologie et de Biologie Structurale/CNRS, 205 route de Narbonne, 31062 Toulouse, France.
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Briddon SJ, Middleton RJ, Cordeaux Y, Flavin FM, Weinstein JA, George MW, Kellam B, Hill SJ. Quantitative analysis of the formation and diffusion of A1-adenosine receptor-antagonist complexes in single living cells. Proc Natl Acad Sci U S A 2004; 101:4673-8. [PMID: 15070776 PMCID: PMC384805 DOI: 10.1073/pnas.0400420101] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Indexed: 11/18/2022] Open
Abstract
The A1-adenosine receptor (A1-AR) is a G protein-coupled receptor that mediates many of the physiological effects of adenosine in the brain, heart, kidney, and adipocytes. Currently, ligand interactions with the A1-AR can be quantified on large cell populations only by using radioligand binding. To increase the resolution of these measurements, we have designed and characterized a previously undescribed fluorescent antagonist for the A1-AR, XAC-BY630, based on xanthine amine congener (XAC). This compound has been used to quantify ligand-receptor binding at a single cell level using fluorescence correlation spectroscopy (FCS). XAC-BY630 was a competitive antagonist of A1-AR-mediated inhibition of cAMP accumulation [log10 of the affinity constant (pKb) = 6.7)] and stimulation of inositol phosphate accumulation (pKb = 6.5). Specific binding of XAC-BY630 to cell surface A1-AR could also be visualized in living Chinese hamster ovary (CHO)-A1 cells by using confocal microscopy. FCS analysis of XAC-BY630 binding to the membrane of CHO-A1 cells revealed three components with diffusion times (tauD) of 62 micros (tauD1, free ligand), 17 ms (tauD2, A1-AR-ligand), and 320 ms (tauD3). Confirmation that tauD2 resulted from diffusion of ligand-receptor complexes came from the similar diffusion time observed for the fluorescent A1-AR-Topaz fusion protein (15 ms). Quantification of tauD2 showed that the number of receptor-ligand complexes increased with increasing free ligand concentration and was decreased by the selective A1-AR antagonist, 8-cyclopentyl-1,3-dipropylxanthine. The combination of FCS with XAC-BY630 will be a powerful tool for the characterization of ligand-A1-AR interactions in single living cells in health and disease.
Collapse
Affiliation(s)
- S J Briddon
- Institute of Cell Signalling, Medical School, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Abstract
The isolation of subfractions of cell membranes on the basis of their solubility in non-ionic detergents has led to the discovery of lipid domain structure in membranes. Detergents used for this purpose include Triton, Brij, Lubrol and CHAPS. Different lipid constituents are known to resist solubilization by different detergents and the resulting fractions may associate with different membrane proteins. In general, the detergent-resistant membrane fractions tend to be dominated by saturated molecular species of sphingomyelin and phosphatidylcholine and invariably include significant proportions of cholesterol. The lipid composition is consistent with formation of liquid-ordered phases. The present evidence favours a model in which the lateral segregation of membrane proteins takes place on the basis of their affinity for liquid-ordered lipid domains within the membrane.
Collapse
Affiliation(s)
- Kamen S Koumanov
- Institute of Biophysics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | | |
Collapse
|
131
|
Choquet D, Triller A. The role of receptor diffusion in the organization of the postsynaptic membrane. Nat Rev Neurosci 2003; 4:251-65. [PMID: 12671642 DOI: 10.1038/nrn1077] [Citation(s) in RCA: 323] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Daniel Choquet
- Physiologie Cellulaire de la Synapse, UMR 5091 CNRS/Université de Bordeaux 2, Bordeaux, France.
| | | |
Collapse
|