101
|
Mears D, Sheppard NF, Atwater I, Rojas E. Magnitude and modulation of pancreatic beta-cell gap junction electrical conductance in situ. J Membr Biol 1995; 146:163-76. [PMID: 7473686 DOI: 10.1007/bf00238006] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The parallel gap junction electrical conductance between a beta-cell and its nearest neighbors was measured by using an intracellular microelectrode to clamp the voltage of a beta-cell within a bursting islet of Langerhans. The holding current records consisted of bursts of inward current due to the synchronized oscillations in membrane potential of the surrounding cells. The membrane potential record of the impaled cell, obtained in current clamp mode, was used to estimate the behavior of the surrounding cells during voltage clamp, and the coupling conductance was calculated by dividing the magnitude of the current bursts by that of the voltage bursts. The histogram of coupling conductance magnitude from 26 cells was bimodal with peaks at 2.5 and 3.5 nS, indicating heterogeneity in extent of electrical communication within the islet of Langerhans. Gap junction conductance reversibly decreased when the temperature was lowered from 37 to 30 degrees C and when the extracellular calcium concentration was raised from 2.56 to 7.56 mM. The coupling conductance decreased slightly during the active phase of the burst. Activation of adenylate cyclase with forskolin (10 microM) resulted in an increase in cell-to-cell electrical coupling. We conclude that beta-cell gap junction conductance can be measured in situ under near physiological conditions. Furthermore, the magnitude and physiological regulation of beta-cell gap junction conductance suggest that intercellular electrical communication plays an important role in the function of the endocrine pancreas.
Collapse
Affiliation(s)
- D Mears
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
102
|
Rojas E, Stokes CL, Mears D, Atwater I. Single-microelectrode voltage clamp measurements of pancreatic beta-cell membrane ionic currents in situ. J Membr Biol 1995; 143:65-77. [PMID: 7714889 DOI: 10.1007/bf00232524] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A conventional patch clamp amplifier was used to test the feasibility of measuring whole-cell ionic currents under voltage clamp conditions from beta-cells in intact mouse islets of Langerhans perifused with bicarbonate Krebs buffer at 37 degrees C. Cells impaled with a high resistance microelectrode (ca. 0.150 G omega) were identified as beta-cells by the characteristic burst pattern of electrical activity induced by 11 mM glucose. Voltage-dependent outward K+ currents were enhanced by glucose both in the presence and absence of physiological bicarbonate buffer and also by bicarbonate regardless of the presence or absence of glucose. For comparison with the usual patch clamp protocol, similar measurements were made from single rat beta-cells at room temperature; glucose did not enhance the outward currents in these cells. Voltage-dependent inward currents were recorded in the presence of tetraethylammonium (TEA), an effective blocker of the K+ channels known to be present in the beta-cell membrane. Inward currents exhibited a fast component with activation-inactivation kinetics and a delayed component with a rather slow inactivation; inward currents were dependent on Ca2+ in the extracellular solution. These results suggest the presence of either two types of voltage-gated Ca2+ channels or a single type with fast and slow inactivation. We conclude that it is feasible to use a single intracellular microelectrode to measure voltage-gated membrane currents in the beta-cell within the intact islet at 37 degrees C, under conditions that support normal glucose-induced insulin secretion and that glucose enhances an as yet unidentified voltage-dependent outward K+ current.
Collapse
Affiliation(s)
- E Rojas
- Laboratory of Cell Biology and Genetics, National Institutes of Health, NIDDK, Bethesda, Maryland 20893
| | | | | | | |
Collapse
|
103
|
Sherman A, Xu L, Stokes CL. Estimating and eliminating junctional current in coupled cell populations by leak subtraction. A computational study. J Membr Biol 1995; 143:79-87. [PMID: 7714890 DOI: 10.1007/bf00232525] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The quantitative characterization of ion channel properties in pancreatic beta-cells under typical patch clamp conditions can be questioned because of the unreconciled differences in experimental conditions and observed behavior between microelectrode recordings of membrane potential in intact islets of Langerhans and patch recordings of single cells. Complex bursting is reliably observed in islets but not in isolated cells under patch clamp conditions. E. Rojas et al. (J. Membrane Biol. 143:65-77, 1995) have attempted to circumvent these incompatibilities by measuring currents in beta-cells in intact islets by voltage-clamping with intracellular microelectrodes (150-250 M omega tip resistance). The major potential pitfall is that beta-cells within the islet are electrically coupled, and contaminating coupling currents must be subtracted from current measurements, just as linear leak currents are typically subtracted. To characterize the conditions under which such coupling current subtraction is valid, we have conducted a computational study of a model islet. Assuming that the impaled cell is well clamped, we calculate the native and coupling components of the observed current. Our simulations illustrate that coupling can be reliably subtracted when neighbor cells' potentials are constant or vary only slowly (e.g., during their silent phases) but not when they vary rapidly (e.g., during their active phases). We also show how to estimate coupling conductances in the intact islet from measurements of coupling currents.
Collapse
Affiliation(s)
- A Sherman
- National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
104
|
Zimmerberg J, Blumenthal R, Sarkar DP, Curran M, Morris SJ. Restricted movement of lipid and aqueous dyes through pores formed by influenza hemagglutinin during cell fusion. J Cell Biol 1994; 127:1885-94. [PMID: 7806567 PMCID: PMC2120276 DOI: 10.1083/jcb.127.6.1885] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The fusion of cells by influenza hemagglutinin (HA) is the best characterized example of protein-mediated membrane fusion. In simultaneous measurements of pairs of assays for fusion, we determined the order of detectable events during fusion. Fusion pore formation in HA-triggered cell-cell fusion was first detected by changes in cell membrane capacitance, next by a flux of fluorescent lipid, and finally by flux of aqueous fluorescent dye. Fusion pore conductance increased by small steps. A retardation of lipid and aqueous dyes occurred during fusion pore fluctuations. The flux of aqueous dye depended on the size of the molecule. The lack of movement of aqueous dyes while total fusion pore conductance increased suggests that initial HA-triggered fusion events are characterized by the opening of multiple small pores: the formation of a "sieve".
Collapse
Affiliation(s)
- J Zimmerberg
- Laboratory of Theoretical and Physical Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
105
|
Pérez-Armendariz EM, Romano MC, Luna J, Miranda C, Bennett MV, Moreno AP. Characterization of gap junctions between pairs of Leydig cells from mouse testis. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 267:C570-80. [PMID: 7521131 DOI: 10.1152/ajpcell.1994.267.2.c570] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Leydig cells are coupled in vivo by numerous gap junctions. In vivo and in vitro cells were immunolabeled by connexin 43 (Cx43) but not by Cx26 or Cx32 antibodies; immunoblotting confirmed specificity of Cx43 labeling. Pairs of Leydig cells dissociated from mouse testis were studied by dual whole cell voltage clamp, and a high incidence of dye (n = 20) and electrical coupling (n = 60; > 90%) was found. Coupling coefficients were near 1 and junctional conductance (gj) averaged 7.2 +/- 1.2 nS (SE, n = 40). Large transjunctional voltage (Vj) decreased gj; currents decayed exponentially with time constants of seconds that decreased at greater Vj. The residual conductance at large Vj was at least approximately 40% of the initial conductance. Exposure of cell pairs to saline solutions saturated with CO2 (n = 15) or containing 2 mM halothane (n = 15) or 3.5 mM heptanol (n = 15) rapidly and reversibly reduced gj. In eight cell pairs, gating of single junctional channels was observed during halothane-induced reduction in gj. Most gating events at Vj < 40 mV were fit by a Gaussian distribution with a mean of approximately 100 pS. With Vj > 40 mV, smaller transitions of approximately 30 pS were also recorded, and the frequency and duration of the approximately 100-pS transitions decreased. Also, approximately 70-pS transitions between 30- and 100-pS conductances were observed in the absence of 70-pS transitions to or from the baseline, indicating that the 30-pS conductance was a substate induced by large Vj.
Collapse
|
106
|
|
107
|
Bastiaanse EM, Jongsma HJ, van der Laarse A, Takens-Kwak BR. Heptanol-induced decrease in cardiac gap junctional conductance is mediated by a decrease in the fluidity of membranous cholesterol-rich domains. J Membr Biol 1993; 136:135-45. [PMID: 7508980 DOI: 10.1007/bf02505758] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
To assess whether alterations in membrane fluidity of neonatal rat heart cells modulate gap junctional conductance (gj), we compared the effects of 2 mM 1-heptanol and 20 microM 2-(methoxy-ethoxy)ethyl 8-(cis-2-n-octylcyclopropyl)-octanoate (A2C) in a combined fluorescence anisotropy and electrophysiological study. Both substances decreased fluorescence steady-state anisotropy (rss), as assessed with the fluorescent probe 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) by 9.6 +/- 1.1% (mean +/- SEM, n = 5) and 9.8 +/- 0.6% (n = 5), respectively, i.e., both substances increased bulk membrane fluidity. Double whole-cell voltage-clamp experiments showed that 2 mM heptanol uncoupled cell pairs completely (n = 6), whereas 20 microM A2C, which increased bulk membrane fluidity to the same extent, did not affect coupling at all (n = 5). Since gap junction channels are embedded in relatively cholesterol-rich domains of the membrane, we specifically assessed the fluidity of the cholesterol-rich domains with dehydroergosterol (DHE). Using DHE, heptanol increased rss by 14.9 +/- 3.0% (n = 5), i.e., decreased cholesterol domain fluidity, whereas A2C had no effect on rss (-0.4 +/- 6.7%, n = 5). Following an increase of cellular "cholesterol" content (by loading the cells with DHE), 2 mM heptanol did not uncouple cell pairs completely: gj decreased by 80 +/- 20% (range 41-95%, n = 5). The decrease in gj was most probably due to a decrease in the open probability of the gap junction channels, because the unitary conductances of the channels were not changed nor was the number of channels comprising the gap junction. The sensitivity of nonjunctional membrane channels to heptanol was unaltered in cholesterol-enriched myocytes. These results indicate that the fluidity of cholesterol-rich domains is of importance to gap junctional coupling, and that heptanol decreases gj by decreasing the fluidity of cholesterol-rich domains, rather than by increasing the bulk membrane fluidity.
Collapse
Affiliation(s)
- E M Bastiaanse
- Department of Cardiology, University Hospital, Leiden, The Netherlands
| | | | | | | |
Collapse
|
108
|
|
109
|
Stokes CL, Rinzel J. Diffusion of extracellular K+ can synchronize bursting oscillations in a model islet of Langerhans. Biophys J 1993; 65:597-607. [PMID: 8218890 PMCID: PMC1225762 DOI: 10.1016/s0006-3495(93)81092-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Electrical bursting oscillations of mammalian pancreatic beta-cells are synchronous among cells within an islet. While electrical coupling among cells via gap junctions has been demonstrated, its extent and topology are unclear. The beta-cells also share an extracellular compartment in which oscillations of K+ concentration have been measured (Perez-Armendariz and Atwater, 1985). These oscillations (1-2 mM) are synchronous with the burst pattern, and apparently are caused by the oscillating voltage-dependent membrane currents: Extracellular K+ concentration (Ke) rises during the depolarized active (spiking) phase and falls during the hyperpolarized silent phase. Because raising Ke depolarizes the cell membrane by increasing the potassium reversal potential (VK), any cell in the active phase should recruit nonspiking cells into the active phase. The opposite is predicted for the silent phase. This positive feedback system might couple the cells' electrical activity and synchronize bursting. We have explored this possibility using a theoretical model for bursting of beta-cells (Sherman et al., 1988) and K+ diffusion in the extracellular space of an islet. Computer simulations demonstrate that the bursts synchronize very quickly (within one burst) without gap junctional coupling among the cells. The shape and amplitude of computed Ke oscillations resemble those seen in experiments for certain parameter ranges. The model cells synchronize with exterior cells leading, though incorporating heterogeneous cell properties can allow interior cells to lead. The model islet can also be forced to oscillate at both faster and slower frequencies using periodic pulses of higher K+ in the medium surrounding the islet. Phase plane analysis was used to understand the synchronization mechanism. The results of our model suggest that diffusion of extracellular K+ may contribute to coupling and synchronization of electrical oscillations in beta-cells within an islet.
Collapse
Affiliation(s)
- C L Stokes
- Mathematical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
110
|
Malchow RP, Qian H, Ripps H. Evidence for hemi-gap junctional channels in isolated horizontal cells of the skate retina. J Neurosci Res 1993; 35:237-45. [PMID: 7688816 DOI: 10.1002/jnr.490350303] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Prolonged depolarization of isolated, voltage-clamped skate retinal horizontal cells produces an outward current that exhibit a late onset and develops slowly with time. This current, which we refer to as the Q-current, is associated with an increase in membrane conductance, and is present when other voltage-gated conductances have been pharmacologically blocked. The reversal potential for the Q-current, obtained using tail current analysis, was close to 0 mV. The magnitude of the current was greatly reduced by superfusion with 25 mM acetate, and by 4 mM cobalt chloride, 2 mM 1-octanol, and a saturated solution of the general anesthetic halothane. In addition, the low-molecular weight fluorescent dye Lucifer yellow, applied extracellularly, entered the cells during activation of the Q-current, whereas a 3 kD dextran-fluorescein complex did not cross the cell membrane. The effects of divalent cations, the non-specific nature of the ionic current suggested by its reversal potential, the entry of Lucifer yellow, and the ability of acetate, halothane, cobalt, and octanol to block the current lead us to hypothesize that the Q-current results from the opening of hemi-gap junctional channels that mediate electrical coupling between skate horizontal cells.
Collapse
Affiliation(s)
- R P Malchow
- Department of Ophthalmology and Visual Sciences, Lions of Illinois Eye Research Institute, University of Illinois, Chicago College of Medicine 60612
| | | | | |
Collapse
|
111
|
Smolen P, Rinzel J, Sherman A. Why pancreatic islets burst but single beta cells do not. The heterogeneity hypothesis. Biophys J 1993; 64:1668-80. [PMID: 8369400 PMCID: PMC1262502 DOI: 10.1016/s0006-3495(93)81539-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Previous mathematical modeling of beta cell electrical activity has involved single cells or, recently, clusters of identical cells. Here we model clusters of heterogeneous cells that differ in size, channel density, and other parameters. We use gap-junctional electrical coupling, with conductances determined by an experimental histogram. We find that, for reasonable parameter distributions, only a small proportion of isolated beta cells will burst when uncoupled, at any given value of a glucose-sensing parameter. However, a coupled, heterogeneous cluster of such cells, if sufficiently large (approximately 125 cells), will burst synchronously. Small clusters of such cells will burst only with low probability. In large clusters, the dynamics of intracellular calcium compare well with experiments. Also, these clusters possess a dose-response curve of increasing average electrical activity with respect to a glucose-sensing parameter that is sharp when the cluster is coupled, but shallow when the cluster is decoupled into individual cells. This is in agreement with comparative experiments on cells in suspension and islets.
Collapse
Affiliation(s)
- P Smolen
- Mathematical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
112
|
Koh DS, Vogel W. A method for rapid exchange of solutions at membrane patches using a 10-microliters microcapsule. Pflugers Arch 1993; 422:609-13. [PMID: 8469612 DOI: 10.1007/bf00374009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A rapid exchange (less than 2 ms) of the bath solution facing a membrane patch is accomplished by driving the tip of a pipette from the bath through a 100-microns oil layer into a small capsule filled with 10 microliters test solution. The microcapsule method can be applied to both excised patch configurations, inside-out and outside-out patches. On and off reactions of Ca(2+)-activated K+ channel activity have been recorded after changing the intracellular Ca2+ concentration using an inside-out patch. A blockade of these K+ channels by external tetraethylammonium ions is demonstrated with an outside-out patch. The blocking kinetics of delayed-rectifier K+ channels by a purified peptide toxin from snake venom, dendrotoxin, could be measured with our microcapsule method. Using tiny volumes of test solutions this method can be helpful in experiments involving scarce or expensive solutions.
Collapse
Affiliation(s)
- D S Koh
- Physiologisches Institut, Justus-Liebig-Universität, Giessen, Germany
| | | |
Collapse
|
113
|
Mazet JL, Jarry T, Gros D, Mazet F. Voltage dependence of liver gap-junction channels reconstituted into liposomes and incorporated into planar bilayers. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 210:249-56. [PMID: 1332862 DOI: 10.1111/j.1432-1033.1992.tb17415.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The voltage dependence of rat liver gap junctions was investigated using non-denaturing solubilization and reconstitution of gap-junction protein into proteoliposomes in controlled conditions of connexon aggregation. The presence of liver connexin 32 in reconstituted proteoliposomes was checked with specific antibodies. The proteoliposomes were inserted into planar lipid bilayers by fusion. The single-channel conductance was voltage independent, and its magnitude was 700-1900 pS in 1 M NaCl, as expected from other reports, assuming that conductance is linear with ion activity. The channels were open at zero voltage and completely closed above 40 mV in either direction. This steep voltage dependence corresponded to an open/closed-state voltage difference of 19 mV and to 3.5 gating charges moving through the field. When several channels were inserted into the bilayer, a large fraction of the membrane conductance became voltage insensitive. These results show that the isolated channel units are highly voltage dependent and are consistent with the assumption that aggregated connexons interact through links which prevent voltage-sensitive conformational changes.
Collapse
Affiliation(s)
- J L Mazet
- Laboratoire de Physiologie Cellulaire, URA 1121, Université Paris-Sud, France
| | | | | | | |
Collapse
|
114
|
Huizinga JD, Liu LW, Blennerhassett MG, Thuneberg L, Molleman A. Intercellular communication in smooth muscle. EXPERIENTIA 1992; 48:932-41. [PMID: 1426144 DOI: 10.1007/bf01919140] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The functioning of a group of cells as a tissue depends on intercellular communication; an example is the spread of action potentials through intestinal tissue resulting in synchronized contraction. Recent evidence for cell heterogeneity within smooth muscle tissues has renewed research into cell coupling. Electrical coupling is essential for propagation of action potentials in gastrointestinal smooth muscle. Metabolic coupling may be involved in generation of pacemaker activity. This review deals with the role of cell coupling in tissue function and some of the issues discussed are the relationship between electrical synchronization and gap junctions, metabolic coupling, and the role of interstitial cells of Cajal in coupling.
Collapse
Affiliation(s)
- J D Huizinga
- Intestinal Disease Research Unit, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
115
|
Valdeolmillos M, Nadal A, Contreras D, Soria B. The relationship between glucose-induced K+ATP channel closure and the rise in [Ca2+]i in single mouse pancreatic beta-cells. J Physiol 1992; 455:173-86. [PMID: 1484353 PMCID: PMC1175638 DOI: 10.1113/jphysiol.1992.sp019295] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
1. Intracellular calcium [Ca2+]i and channel activity were simultaneously recorded in single, dissociated mouse beta-cells kept in culture for 1-3 days. [Ca2+]i was estimated from microfluorometric ratio methods using Indo-1. Channel activity was measured using the cell-attached configuration of the patch-clamp technique. 2. At low glucose concentrations (0.3 mM), resting K+ATP channel activity was prevalent. Increasing glucose up to 16 mM, produced a gradual decrease in K+ATP channel activity over a time course of 90-120 s (temperature = 23 degrees C) and an increase in [Ca2+]i. 3. In the majority of experiments, glucose elicited biphasic action currents (action potentials) which preceded the rise in [Ca2+]i. There was a close correlation between spike frequency and the levels of [Ca2+]i. 4. The sulphonylurea tolbutamide (1 mM) blocked K+ATP channels in 10-20 s. K+ATP channel blockade was associated with a quick rise in [Ca2+]i. 5. When K+ATP channel activity was stimulated in the presence of diazoxide (100 microM), increasing the glucose concentration from 3 to 16 mM produced a decrease in [Ca2+]i. Only when diazoxide was removed did glucose produce an increase in [Ca2+]i. 6. In a small population of cells, glucose (16 mM) produced a small decrease in K+ATP channel activity but not an increase in [Ca2+]i. In such cells, tolbutamide blocked K+ATP channels and produced an increase in [Ca2+]i. 7. These results demonstrate a close correlation between K+ATP channel activity and [Ca2+]i in beta-cells. The findings are consistent with the model in which glucose metabolism produces a rise in [Ca2+]i through the blockade of K+ATP channels, membrane depolarization and calcium current activation.
Collapse
Affiliation(s)
- M Valdeolmillos
- Department of Physiology, School of Medicine, University of Alicante, Spain
| | | | | | | |
Collapse
|
116
|
Abstract
Gap junction channels, now known to be formed of connexins, connect the interiors of apposed cells. These channels can be opened and closed by various physiological stimuli and experimental treatments. They are permeable to ions and neutral molecules up to a size of about 1 kDa or 1.5 nm diameter, including second messengers and metabolites. The processes of gating and of permeation are the subject of this review. Voltage is a readily applied stimulus, and transjunctional voltages, or those between cytoplasm and exterior, affect most junctions. Single channel transitions between open and closed states are rapid and presumably involve a charge movement as occurs with channels of electrically excitable channels of nerve and muscle. Identification of gating domains and charges by domain replacement and site-directed mutagenesis is being pursued. Raising cytoplasmic H+ or Ca2+ concentrations rapidly reduces junctional conductance, and this action is generally reversible, at least in part. A number of lipophilic alcohols, fatty acids and volatile anesthetics have similar actions. Phosphorylation also modulates junctional conductance, and in several cases, sites of phosphorylation are known. These gating processes appear similar to those induced by voltage. Permeability measurement indicates that the channel is aqueous and that permeation is by diffusion with only minor interactions with the channel wall. Differences among junctions are known, but further characterization of connexin and cell specificity is required.
Collapse
Affiliation(s)
- M V Bennett
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | | |
Collapse
|
117
|
Moreno AP, de Carvalho AC, Verselis V, Eghbali B, Spray DC. Voltage-dependent gap junction channels are formed by connexin32, the major gap junction protein of rat liver. Biophys J 1991; 59:920-925. [PMID: 1648416 PMCID: PMC1281258 DOI: 10.1016/s0006-3495(91)82305-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We report here experiments undertaken in pairs of hepatocytes that demonstrate a marked voltage sensivity of junctional conductance and, thus, contradict earlier findings reported by this laboratory (Spray, D.C., R.D.ginzberg, E.A., E. A. Morales, Z. Gatmaitan and I.M. Arias, 1986, J. Cell Biol. 101:135-144; Spray C.D. R.L. White, A.C. Campos de Carvalho, and M.V.L. Bennett. 1984. Biophys. J. 45:219-230) and by others (Dahl, G., T. Moller, D. Paul, R. Voellmy, and R. Werner. 1987. Science [Wash. DC] 236:1290-1293; Riverdin, E.C., and R. Weingart. 1988. Am. J. Physiol. 254:C226-C234). Expression in exogenous systems, lipid bilayers in which fragments of isolated gap junction membranes were incorporated (Young, J.D.-E., Z. Cohn, and N.B. Gilula. 1987. Cell. 48:733-743.) and noncommunicating cells transfected with connexin32 cDNA (Eghbali, B., J.A. Kessler, and D.C. Spray. 1990. Proc. Natl. Acad. Sci. USA. 87:1328-1331), support these findings and indicate that the voltage-dependent channel is composed of connexin32, the major gap junction protein of rat liver (Paul, D. 1986. J. Cell Biol. 103:123-134).
Collapse
Affiliation(s)
- A P Moreno
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | | | | | |
Collapse
|
118
|
Abstract
Pancreatic beta-cells coupled by gap junctions in sufficiently large clusters exhibit regular electrical bursting activity, which is described by the Chay-Keizer model and its variants. According to most reports, however, isolated cells exhibit disorganized spiking. We have previously (Sherman, A. J. Rinzel, and J. Keizer, 1988. Biophys. J. 54:411-425) modeled these behaviors by hypothesizing that stochastic channel fluctuations disrupt the bursts. We showed that when cells are coupled by infinite conductance gap junctions, so that the cluster is isopotential and may be viewed as a single "supercell," the fluctuations are shared over a larger membrane area and hence dampened. Bursting emerges when there are more than approximately 50 cells in the cluster. In the model the temporal organization of spikes into bursts increases the amplitude of intracellular calcium oscillations, which may be relevant for insulin secretion. We now extend the previous work by considering the case of a true "multicell" model with finite gap junctional conductance. Whereas the previous study assumed that the cells were synchronized, we can now study the process of synchronization itself. We show that, for sufficiently large clusters, the cells both synchronize and begin to burst with moderate, physiologically reasonable gap junctional conductance. An unexpected finding is that the burst period is longer, and calcium amplitude greater, than when coupling is infinitely strong, with an optimum in the range of 150-250 pS. Our model is in good agreement with recent experimental data of Perez-Armendariz, M., D. C. Spray, and M. V. L. Bennett. (1991. Biophys. J. 59:76-92) showing extensive gap junctions in beta-cell pairs with mean interfacial conductance of 213 +/- 113 pS. The optimality property of our model is noteworthy because simple slow-wave models without spikes do not show the same behavior.
Collapse
Affiliation(s)
- A Sherman
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Mathematical Research Branch, Bethesda, Maryland 20892
| | | |
Collapse
|