101
|
Xia L, McEver RP. Targeted disruption of the gene encoding core 1 beta1-3-galactosyltransferase (T-synthase) causes embryonic lethality and defective angiogenesis in mice. Methods Enzymol 2006; 416:314-31. [PMID: 17113876 DOI: 10.1016/s0076-6879(06)16021-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The biosynthesis of the core 1 O-glycan (Galbeta1-3GalNAcalpha1-Ser/Thr, T antigen) is controlled by core 1 beta1-3-galactosyltransferase (T-synthase), which catalyzes the addition of Gal to GalNAcalpha1-Ser/Thr (Tn antigen). The T antigen is a precursor for extended and branched O-glycans of largely unknown function. We found that wild-type mice expressed the sialyl-T antigen (NeuAcalpha2-3Galbeta1-3GalNAcalpha1-Ser/Thr) primarily in endothelial, hematopoietic, and epithelial cells during development. Gene-targeted mice lacking T-synthase instead expressed the nonsialylated Tn antigen in these cells and developed brain hemorrhage that was uniformly fatal by embryonic day 14. T-synthase-deficient brains formed a chaotic microvascular network with distorted capillary lumens and defective association of endothelial cells with pericytes and extracellular matrix. These data reveal an unexpected requirement for core 1-derived O-glycans during angiogenesis.
Collapse
Affiliation(s)
- Lijun Xia
- Oklahoma Medical Research Foundation, Oklahoma City, USA
| | | |
Collapse
|
102
|
Bertolino P, Deckers M, Lebrin F, ten Dijke P. Transforming Growth Factor-β Signal Transduction in Angiogenesis and Vascular Disorders. Chest 2005; 128:585S-590S. [PMID: 16373850 DOI: 10.1378/chest.128.6_suppl.585s] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Transforming growth factor (TGF)-beta is a multifunctional protein that initiates its diverse cellular responses by binding to and activating specific type I and type II serine/threonine kinase receptors. TGF-beta can act as a regulator of proliferation, migration, survival, differentiation, and extracellular matrix synthesis in endothelial cells and vascular smooth muscle cells, as well as in the maintenance of vascular homeostasis. Importantly, genetic studies in humans have revealed the pivotal role of TGF-beta as well as its signaling components in angiogenesis. Mutations in two TGF-beta receptors (ie, the activin receptor-like kinase (ALK) 1 and the accessory TGF-beta receptor endoglin) have been linked to vascular disorders named hereditary hemorrhagic telangiectasia. In addition, knockout mice for the different components of the TGF-beta signaling pathway have shown that TGF-beta is indispensable for angiogenesis. Recent studies have revealed that TGF-beta can regulate vascular homeostasis by balancing the signaling between two distinct TGF-beta type I receptors (ie, the endothelial-restricted ALK1 and the broadly expressed ALK5 receptors). The activation of these receptors has been shown to induce opposite effects on endothelial cell behavior and angiogenesis. In this review, we will present recent advances in understanding the role of TGF-beta signaling in endothelial cells as well as the underlying molecular mechanisms by which perturbation of this pathway can lead to vascular disorders.
Collapse
Affiliation(s)
- Philippe Bertolino
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
103
|
Abstract
Many eukaryotic proteins share a sequence designated as the zona pellucida (ZP) domain. This structural element, present in extracellular proteins from a wide variety of organisms, from nematodes to mammals, consists of approximately 260 amino acids with eight conserved cysteine (Cys) residues and is located close to the C terminus of the polypeptide. ZP domain proteins are often glycosylated, modular structures consisting of multiple types of domains. Predictions can be made about some of the structural features of the ZP domain and ZP domain proteins. The functions of ZP domain proteins vary tremendously, from serving as structural components of egg coats, appendicularian mucous houses, and nematode dauer larvae, to serving as mechanotransducers in flies and receptors in mammals and nonmammals. Generally, ZP domain proteins are present in filaments and/or matrices, which is consistent with the role of the domain in protein polymerization. A general mechanism for assembly of ZP domain proteins has been presented. It is likely that the ZP domain plays a common role despite its presence in proteins of widely diverse functions.
Collapse
Affiliation(s)
- Luca Jovine
- Brookdale Department of Molecular, Cell, and Developmental Biology, Mount Sinai School of Medicine, New York, New York 10029-6574, USA.
| | | | | | | |
Collapse
|
104
|
Muenzner P, Rohde M, Kneitz S, Hauck CR. CEACAM engagement by human pathogens enhances cell adhesion and counteracts bacteria-induced detachment of epithelial cells. ACTA ACUST UNITED AC 2005; 170:825-36. [PMID: 16115956 PMCID: PMC2171332 DOI: 10.1083/jcb.200412151] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Exfoliation, which is the detachment of infected epithelial cells, is an innate defense mechanism to prevent bacterial colonization. Indeed, infection with Neisseria gonorrhoeae induced epithelial detachment from an extracellular matrix (ECM) substrate in vitro. Surprisingly, variants of N. gonorrhoeae that bind to human carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) failed to induce detachment and, instead, promoted enhanced host cell adhesion to the ECM. Microarray analysis revealed that CEACAM engagement by several human pathogens triggers expression of CD105. Blockage of CD105 expression by antisense oligonucleotides abolished infection-induced cell adhesion. The expression of full-length CD105 promoted cell adhesion to the ECM and was sufficient to prevent infection-induced detachment. The CD105-mediated increase in cell adhesion was dependent on the presence and function of integrin β1. CD105 expression did not elevate cellular integrin levels but caused a dramatic increase in the ECM-binding capacity of the cells, suggesting that CD105 affects integrin activity. The exploitation of CEACAMs to trigger CD105 expression and to counteract infection-induced cell detachment represents an intriguing adaptation of pathogens that are specialized to colonize the human mucosa.
Collapse
Affiliation(s)
- Petra Muenzner
- Zentrum für Infektionsforschung, Universität Würzburg, 97070 Würzburg, Germany
| | | | | | | |
Collapse
|
105
|
Vates GE, Hashimoto T, Young WL, Lawton MT. Angiogenesis in the brain during development: the effects of vascular endothelial growth factor and angiopoietin-2 in an animal model. J Neurosurg 2005; 103:136-45. [PMID: 16121984 DOI: 10.3171/jns.2005.103.1.0136] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The goal of this study was to examine the roles of vascular endothelial growth factor (VEGF) and angiopoietin-2 (Ang-2) in the formation of blood vessels in the brain in a developmental animal model not routinely used for such a study. METHODS Either VEGF, Ang-2, or a combination of the two factors were injected into the optic tectum of 4-day-old quail embryos. Immunohistochemical analysis and laser confocal microscopy were used to observe the effects on endothelial cells in the brain. Vascular endothelial growth factor and Ang-2 had very different effects on the development of blood vessels; the former caused expansion and the latter retraction of these vessels. Treatment with a combination of VEGF and Ang-2 caused retroorbital or intraventricular hemorrhage, and brain blood vessels appeared enlarged and dysmorphic, with dramatically extended filopodia. CONCLUSIONS Some of these observations may provide insight into how one may develop a better model of brain arteriovenous malformations.
Collapse
Affiliation(s)
- G Edward Vates
- Department of Neurology, Center for Cerebrovascular Research, University of California, San Francisco, California, USA.
| | | | | | | |
Collapse
|
106
|
Dudas M, Kaartinen V. Tgf-beta superfamily and mouse craniofacial development: interplay of morphogenetic proteins and receptor signaling controls normal formation of the face. Curr Top Dev Biol 2005; 66:65-133. [PMID: 15797452 DOI: 10.1016/s0070-2153(05)66003-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Marek Dudas
- Developmental Biology Program at the Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California 90027, USA
| | | |
Collapse
|
107
|
Meurer SK, Tihaa L, Lahme B, Gressner AM, Weiskirchen R. Identification of endoglin in rat hepatic stellate cells: new insights into transforming growth factor beta receptor signaling. J Biol Chem 2004; 280:3078-87. [PMID: 15537649 DOI: 10.1074/jbc.m405411200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transforming growth factor beta (TGF-beta) signaling is mediated by the cell surface TGF-beta type I (ALK5), type II, and the accessory type III receptors endoglin and betaglycan. Hepatic stellate cells (HSC), the most profibrogenic cell type in the liver, express ALK5, TbetaRII, and betaglycan. To monitor the expression of betaglycan in HSC, we used the commercially available antibody sc-6199 in Western blot analysis. This antibody, raised against a peptide mapping at the carboxyl terminus of the human betaglycan, is claimed to be specific for betaglycan, although it is known that the C-terminal domain is highly conserved in type III receptors. Proteins recognized in HSC by sc-6199 did not match the characteristic migration pattern of betaglycan. Moreover, the determined molecular weight (M(r) 160) and the observed reductant sensitivity after treatment with dithiothreitol resemble those of a closely related type III receptor, endoglin (CD105). Endoglin, a disulfide-linked homodimer, is an accessory component of the TGF-beta receptor complex and mainly expressed on endothelial cells. The presence of endoglin in HSC of rat liver was confirmed by molecular cloning of the endoglin cDNA and immunocytochemistry. The reactivity of sc-6199 with both auxiliary TGF-beta receptors (betaglycan and endoglin) from rats was demonstrated by Western blot and immunocytochemical analysis of cells heterologously expressing these proteins. Furthermore, Northern and Western blotting revealed that both betaglycan and endoglin genes are differentially regulated in HSC and in transdifferentiated myofibroblasts (MFB). By surface labeling and immunoprecipitation experiments, we show that endoglin is found in significant amounts exposed at the plasma membrane of HSC and MFB, which is a pivotal prerequisite for binding of and signaling in response to TGF-beta. In conclusion, we hypothesize that TGF-beta signals in HSC and MFB are tuned by two different interconnected signaling pathways, as it was previously demonstrated for endothelial cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, CD
- Base Sequence
- Blotting, Northern
- Blotting, Western
- COS Cells
- Cell Differentiation
- DNA, Complementary/metabolism
- Dimerization
- Endoglin
- Fibroblasts/cytology
- Gene Expression Regulation
- Immunohistochemistry
- Immunoprecipitation
- Liver/cytology
- Male
- Models, Genetic
- Molecular Sequence Data
- Peptide Mapping
- Protein Structure, Tertiary
- Proteoglycans/chemistry
- Rats
- Rats, Sprague-Dawley
- Receptors, Cell Surface
- Receptors, Transforming Growth Factor beta/chemistry
- Receptors, Transforming Growth Factor beta/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Signal Transduction
- Time Factors
- Transfection
- Vascular Cell Adhesion Molecule-1/chemistry
- Vascular Cell Adhesion Molecule-1/metabolism
Collapse
Affiliation(s)
- Steffen K Meurer
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH-University Hospital, D-52074 Aachen, Germany
| | | | | | | | | |
Collapse
|
108
|
Krebs LT, Shutter JR, Tanigaki K, Honjo T, Stark KL, Gridley T. Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev 2004; 18:2469-73. [PMID: 15466160 PMCID: PMC529533 DOI: 10.1101/gad.1239204] [Citation(s) in RCA: 415] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Notch signaling pathway is essential for embryonic vascular development in vertebrates. Here we show that mouse embryos heterozygous for a targeted mutation in the gene encoding the DLL4 ligand exhibit haploinsufficient lethality because of defects in vascular remodeling. We also describe vascular defects in embryos homozygous for a mutation in the Rbpsuh gene, which encodes the primary transcriptional mediator of Notch signaling. Conditional inactivation of Rpbsuh function demonstrates that Notch activation is essential in the endothelial cell lineage. Notch pathway mutant embryos exhibit defects in arterial specification of nascent blood vessels and develop arteriovenous malformations. These results demonstrate that vascular remodeling in the mouse embryo is sensitive to Dll4 gene dosage and that Notch activation in endothelial cells is essential for embryonic vascular remodeling.
Collapse
Affiliation(s)
- Luke T Krebs
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | | | | | | | |
Collapse
|
109
|
Freedom RM, Yoo SJ, Perrin D. The biological "scrabble" of pulmonary arteriovenous malformations: considerations in the setting of cavopulmonary surgery. Cardiol Young 2004; 14:417-37. [PMID: 15680049 DOI: 10.1017/s1047951104004111] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pulmonary arteriovenous fistulas are vascular malformations, which, by virtue of producing abnormal vascular connections proximal to the units of gas exchange, result in intrapulmonary right-to-left shunting. These malformations or fistulas reflect at least in part disordered angiogenesis, and less commonly recruitment and dilation of pre-existing vascular channels. Pulmonary arteriovenous fistulas occur in a number of diverse clinical settings. Such fistulas are a well-established feature of the Weber-Osler-Rendu complex, or hereditary haemorrhagic telangiectasia, an autosomal dominant vascular dysplasia characterized by mucocutaneous telangiectasis, epistaxis, gastrointestinal haemorrhage, and arteriovenous malformations in the lung, brain, liver and elsewhere. They are also seen in the patient with acute or chronic liver disease, disease that is usually but not invariably severe, or those with non-cirrhotic portal hypertension. They may occur as congenital malformations, single or diffuse, large or small in isolation, and when large or extensive enough may result in hypoxaemia, clinical cyanosis, and heart failure. Cerebral vascular accidents are also a well-known complication of this disorder. An extensive literature has accumulated with regard to the pulmonary arteriovenous fistulas seen in the setting of the Weber-Osler-Rendu complex, and there is considerable information on the genetics, basic biology, clinical findings, complications and therapeutic interventions of these malformations in the setting of this syndrome. These issues, however, are not the primary considerations of this review, although some aspects of this fascinating disorder will be discussed later. Rather the focus will be on pulmonary arteriovenous malformations that develop in the setting of cavopulmonary surgery, and their relationship to the pulmonary arteriovenous fistulas occurring in the hepatopulmonary syndrome. The complex tapestry of these overlapping and intersecting clinical observations will be unfolded in the light of their chronology.
Collapse
Affiliation(s)
- Robert M Freedom
- The Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, The University of Toronto Faculty of Medicine, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
110
|
Abstract
Members of the transforming growth factor beta (TGF-beta) family of multifunctional peptides are involved in almost every aspect of development. Model systems, ranging from genetically tractable invertebrates to genetically engineered mice, have been used to determine the mechanisms of TGF-beta signaling in normal development and in pathological situations. Furthermore, mutations in genes for the ligands, receptors, extracellular modulators, and intracellular signaling molecules have been associated with several human disorders. The most common are those associated with the development and maintenance of the skeletal system and axial patterning. This review focuses on the mechanisms of TGF-beta signaling with special emphasis on the molecules involved in human disorders of patterning and skeletal development.
Collapse
Affiliation(s)
- Rosa Serra
- Department of Cell Biology, University of Alabama, Birmingham 35294-0005, USA.
| | | |
Collapse
|
111
|
Whitehead KJ, Plummer NW, Adams JA, Marchuk DA, Li DY. Ccm1 is required for arterial morphogenesis: implications for the etiology of human cavernous malformations. Development 2004; 131:1437-48. [PMID: 14993192 DOI: 10.1242/dev.01036] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hemorrhagic stroke is a significant cause of morbidity and mortality in children, and is frequently associated with intracranial vascular malformations. One prevalent form of these vascular malformations, cerebral cavernous malformation, is characterized by thin-walled vascular cavities that hemorrhage and has been linked to loss-of-function mutations in CCM1. The neural and epithelial expression of CCM1 in adulthood suggests that cavernous malformations may be the result of primary neural defects. In this study, we generated mice lacking Ccm1 and demonstrate that Ccm1 is ubiquitously expressed early in embryogenesis and is essential for vascular development. Homozygous mutant embryos die in mid-gestation and the first detectable defects are exclusively vascular in nature. The precursor vessels of the brain become dilated starting at E8.5, reminiscent of the intracranial vascular defects observed in the human disease. In addition, there is marked enlargement and increased endothelial proliferation of the caudal dorsal aorta, as well as variable narrowing of the branchial arch arteries and proximal dorsal aorta. These vascular defects are not secondary to primary neural defects, as neural morphology and marker expression are normal even subsequent to the onset of vascular pathology. The defects in the vascular structure of embryos lacking Ccm1 are associated with early downregulation of artery-specific markers, including the Efnb2- and Notch-related genes. Finally, consistent with the murine data, we found that there is an analogous reduction in Notch gene expression in arterioles from humans with mutations in CCM1. Our studies suggest that cavernous malformations result from primary vascular rather than neural defects.
Collapse
Affiliation(s)
- Kevin J Whitehead
- Program in Human Molecular Biology and Genetics, University of Utah, Building 533 Room 4220, 15 N 2030 East, Salt Lake City, Utah 84112, USA
| | | | | | | | | |
Collapse
|
112
|
Hirashima M, Bernstein A, Stanford WL, Rossant J. Gene-trap expression screening to identify endothelial-specific genes. Blood 2004; 104:711-8. [PMID: 15090446 DOI: 10.1182/blood-2004-01-0254] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The endothelial cell is a key cellular component for blood vessel formation. Many signaling receptors expressed in endothelial cells play critical roles in vascular development during embryogenesis. However, downstream response genes required for vascular differentiation are still not clearly identified. Here we describe the development of a protocol for gene-trap expression screening in embryonic stem (ES) cells for endothelial-specific genes. ES cells were differentiated into endothelial cells on an OP9 feeder cell layer in 96-well plates. In a pilot screen, 5 gene-trapped ES cell lines showed an up-regulated expression of the gene trap lacZ reporter out of 864 ES clones screened. One of the trapped genes was endoglin, an endothelial-specific transforming growth factor-beta type III receptor, and another was ASPP1, a p53-binding protein. In vivo expression analysis of the lacZ reporter confirmed that both genes are specifically expressed in endothelial cells during early mouse embryogenesis. Gene-trap expression screening can thus be used to identify early endothelial-specific genes and analyze their function in mice.
Collapse
Affiliation(s)
- Masanori Hirashima
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | | | | |
Collapse
|
113
|
Affiliation(s)
- Lisa D Urness
- Division of Cardiology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|