101
|
Odokonyero D, Ragumani S, Lopez MS, Bonanno JB, Ozerova NDS, Woodard DR, Machala BW, Swaminathan S, Burley SK, Almo SC, Glasner ME. Divergent evolution of ligand binding in the o-succinylbenzoate synthase family. Biochemistry 2013; 52:7512-21. [PMID: 24060347 DOI: 10.1021/bi401176d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thermobifida fusca o-succinylbenzoate synthase (OSBS), a member of the enolase superfamily that catalyzes a step in menaquinone biosynthesis, has an amino acid sequence that is 22 and 28% identical with those of two previously characterized OSBS enzymes from Escherichia coli and Amycolatopsis sp. T-1-60, respectively. These values are considerably lower than typical levels of sequence identity among homologous proteins that have the same function. To determine how such divergent enzymes catalyze the same reaction, we determined the structure of T. fusca OSBS and identified amino acids that are important for ligand binding. We discovered significant differences in structure and conformational flexibility between T. fusca OSBS and other members of the enolase superfamily. In particular, the 20s loop, a flexible loop in the active site that permits ligand binding and release in most enolase superfamily proteins, has a four-amino acid deletion and is well-ordered in T. fusca OSBS. Instead, the flexibility of a different region allows the substrate to enter from the other side of the active site. T. fusca OSBS was more tolerant of mutations at residues that were critical for activity in E. coli OSBS. Also, replacing active site amino acids found in one protein with the amino acids that occur at the same place in the other protein reduces the catalytic efficiency. Thus, the extraordinary divergence between these proteins does not appear to reflect a higher tolerance of mutations. Instead, large deletions outside the active site were accompanied by alteration of active site size and electrostatic interactions, resulting in small but significant differences in ligand binding.
Collapse
Affiliation(s)
- Denis Odokonyero
- Department of Biochemistry and Biophysics, Texas A&M University , 2128 TAMU, College Station, Texas 77843-2128, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Wang M, Song F, Wu R, Allen KN, Mariano PS, Dunaway-Mariano D. Co-evolution of HAD phosphatase and hotdog-fold thioesterase domain function in the menaquinone-pathway fusion proteins BF1314 and PG1653. FEBS Lett 2013; 587:2851-9. [PMID: 23851007 DOI: 10.1016/j.febslet.2013.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 07/02/2013] [Indexed: 01/25/2023]
Abstract
The function of a Bacteroidetes menaquinone biosynthetic pathway fusion protein comprised of an N-terminal haloacid dehalogenase (HAD) family domain and a C-terminal hotdog-fold family domain is described. Whereas the thioesterase domain efficiently catalyzes 1,4-dihydroxynapthoyl-CoA hydrolysis, an intermediate step in the menaquinone pathway, the HAD domain is devoid of catalytic activity. In some Bacteroidetes a homologous, catalytically active 1,4-dihydroxynapthoyl-CoA thioesterase replaces the fusion protein. Following the gene fusion event, sequence divergence resulted in a HAD domain that functions solely as the oligomerization domain of an otherwise inactive thioesterase domain.
Collapse
Affiliation(s)
- Min Wang
- Department of Chemistry & Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | | | |
Collapse
|
103
|
Sun Y, Song H, Li J, Li Y, Jiang M, Zhou J, Guo Z. Structural basis of the induced-fit mechanism of 1,4-dihydroxy-2-naphthoyl coenzyme A synthase from the crotonase fold superfamily. PLoS One 2013; 8:e63095. [PMID: 23658663 PMCID: PMC3637252 DOI: 10.1371/journal.pone.0063095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/28/2013] [Indexed: 01/25/2023] Open
Abstract
1, 4-Dihydroxy-2-naphthoyl coenzyme A (DHNA-CoA) synthase is a typical crotonase fold enzyme with an implicated role of conformational changes in catalysis. We have identified these conformational changes by determining the structures of its Escherichia coli and Synechocystis sp. PCC6803 orthologues in complex with a product analog. The structural changes include the folding of an active-site loop into a β-hairpin and significant reorientation of a helix at the carboxy terminus. Interestingly, a new interface is formed between the ordered loop and the reoriented helix, both of which also form additional interactions with the coenzyme A moiety of the ligand. Site-directed mutation of the amino acid residues involved in these ligand-induced interactions significantly diminishes the enzyme activity. These results suggest a catalytically essential induced-fit that is likely initiated by the enzyme-ligand interactions at the active site.
Collapse
Affiliation(s)
- Yueru Sun
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Haigang Song
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jie Li
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Yan Li
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Ming Jiang
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jiahai Zhou
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (ZG); (JZ)
| | - Zhihong Guo
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- * E-mail: (ZG); (JZ)
| |
Collapse
|
104
|
Johnston JM, Jiang M, Guo Z, Baker EN. Crystal structures of E. coli native MenH and two active site mutants. PLoS One 2013; 8:e61325. [PMID: 23637813 PMCID: PMC3630204 DOI: 10.1371/journal.pone.0061325] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 03/08/2013] [Indexed: 11/17/2022] Open
Abstract
Recent revision of the biosynthetic pathway for menaquinone has led to the discovery of a previously unrecognized enzyme 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase, also known as MenH. This enzyme has an α/β hydrolase fold with a catalytic triad comprising Ser86, His232, and Asp210. Mutational studies identified a number of conserved residues of importance to activity, and modeling further implicated the side chains of Tyr85 and Trp147 in formation of a non-standard oxyanion hole. We have solved the structure of E. coli MenH (EcMenH) at 2.75 Å resolution, together with the structures of the active site mutant proteins Tyr85Phe and Arg124Ala, both at 2.5 Å resolution. EcMenH has the predicted α/β hydrolase fold with its core α/β domain capped by a helical lid. The active site, a long groove beneath the cap, contains a number of conserved basic residues and is found to bind exogeneous anions, modeled as sulfate and chloride, in all three crystal structures. Docking studies with the MenH substrate and a transition state model indicate that the bound anions mark the binding sites for anionic groups on the substrate. The docking studies, and careful consideration of the active site geometry, further suggest that the oxyanion hole is of a conventional nature, involving peptide NH groups, rather than the proposed site involving Tyr85 and Trp147. This is in accord with conclusions from the structure of S. aureus MenH. Comparisons with the latter do, however, indicate differences in the periphery of the active site that could be of relevance to selective inhibition of MenH enzymes.
Collapse
Affiliation(s)
- Jodie M Johnston
- Maurice Wilkins Centre and School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
105
|
Ganesh K, Satheshkumar A, Balraj C, Elango KP. Substituent effect on the electron acceptor property of 1,4-benzoquinone towards the formation of molecular complex with sulfamethoxazole. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 107:156-166. [PMID: 23416920 DOI: 10.1016/j.saa.2013.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 12/28/2012] [Accepted: 01/10/2013] [Indexed: 06/01/2023]
Abstract
UV-Vis, (1)H NMR, FT-IR, LC-MS and fluorescence spectral techniques were employed to investigate the mechanism of interaction of sulfamethoxazole with varying number of methoxy/chloro substituted 1,4-benzoquinones (MQ1-4) and to characterize the reaction products. The interactions of MQ1-4 with sulfamethoxazole (SULF) were found to proceed through the formation of a donor-acceptor complex, containing radical anion and its conversion to the product. Fluorescence quenching studies showed that the interaction between the donor and the acceptors are spontaneous. The results indicated that the progressive replacement of chlorine atom (-I effect) by methoxy group (+M effect) in the quinone decreased the electron acceptor property of the quinone. The results of the correlation of experimentally measured binding constants with electrochemical data and ab initio DFT calculations supported these observations.
Collapse
Affiliation(s)
- K Ganesh
- Department of Chemistry, Gandhigram Rural Institute (Deemed University), Gandhigram 624 302, India
| | | | | | | |
Collapse
|
106
|
Das D, Agarwala H, Chowdhury AD, Patra T, Mobin SM, Sarkar B, Kaim W, Lahiri GK. Four-Center Oxidation State Combinations and Near-Infrared Absorption in [Ru(pap)(Q)2]n(Q=3,5-Di-tert-butyl-N-aryl-1,2-benzoquinonemonoimine, pap=2-Phenylazopyridine). Chemistry 2013; 19:7384-94. [DOI: 10.1002/chem.201204620] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Indexed: 12/26/2022]
Affiliation(s)
- Dipanwita Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Duckworth BP, Nelson KM, Aldrich CC. Adenylating enzymes in Mycobacterium tuberculosis as drug targets. Curr Top Med Chem 2012; 12:766-96. [PMID: 22283817 DOI: 10.2174/156802612799984571] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 11/08/2011] [Indexed: 11/22/2022]
Abstract
Adenylation or adenylate-forming enzymes (AEs) are widely found in nature and are responsible for the activation of carboxylic acids to intermediate acyladenylates, which are mixed anhydrides of AMP. In a second reaction, AEs catalyze the transfer of the acyl group of the acyladenylate onto a nucleophilic amino, alcohol, or thiol group of an acceptor molecule leading to amide, ester, and thioester products, respectively. Mycobacterium tuberculosis encodes for more than 60 adenylating enzymes, many of which represent potential drug targets due to their confirmed essentiality or requirement for virulence. Several strategies have been used to develop potent and selective AE inhibitors including highthroughput screening, fragment-based screening, and the rationale design of bisubstrate inhibitors that mimic the acyladenylate. In this review, a comprehensive analysis of the mycobacterial adenylating enzymes will be presented with a focus on the identification of small molecule inhibitors. Specifically, this review will cover the aminoacyl tRNAsynthetases (aaRSs), MenE required for menaquinone synthesis, the FadD family of enzymes including the fatty acyl- AMP ligases (FAAL) and the fatty acyl-CoA ligases (FACLs) involved in lipid metabolism, and the nonribosomal peptide synthetase adenylation enzyme MbtA that is necessary for mycobactin synthesis. Additionally, the enzymes NadE, GuaA, PanC, and MshC involved in the respective synthesis of NAD, guanine, pantothenate, and mycothiol will be discussed as well as BirA that is responsible for biotinylation of the acyl CoA-carboxylases.
Collapse
|
108
|
Zhu WW, Wang C, Jipp J, Ferguson L, Lucas SN, Hicks MA, Glasner ME. Residues required for activity in Escherichia coli o-succinylbenzoate synthase (OSBS) are not conserved in all OSBS enzymes. Biochemistry 2012; 51:6171-81. [PMID: 22775324 DOI: 10.1021/bi300753j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding how enzyme specificity evolves will provide guiding principles for protein engineering and function prediction. The o-succinylbenzoate synthase (OSBS) family is an excellent model system for elucidating these principles because it has many highly divergent amino acid sequences that are <20% identical, and some members have evolved a second function. The OSBS family belongs to the enolase superfamily, members of which use a set of conserved residues to catalyze a wide variety of reactions. These residues are the only conserved residues in the OSBS family, so they are not sufficient to determine reaction specificity. Some enzymes in the OSBS family catalyze another reaction, N-succinylamino acid racemization (NSAR). NSARs cannot be segregated into a separate family because their sequences are highly similar to those of known OSBSs, and many of them have both OSBS and NSAR activities. To determine how such divergent enzymes can catalyze the same reaction and how NSAR activity evolved, we divided the OSBS family into subfamilies and compared the divergence of their active site residues. Correlating sequence conservation with the effects of mutations in Escherichia coli OSBS identified two nonconserved residues (R159 and G288) at which mutations decrease efficiency ≥200-fold. These residues are not conserved in the subfamily that includes NSAR enzymes. The OSBS/NSAR subfamily binds the substrate in a different orientation, eliminating selective pressure to retain arginine and glycine at these positions. This supports the hypothesis that specificity-determining residues have diverged in the OSBS family and provides insight into the sequence changes required for the evolution of NSAR activity.
Collapse
Affiliation(s)
- Wan Wen Zhu
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | | | | | | | | | | | | |
Collapse
|
109
|
Berenjian A, Chan NLC, Mahanama R, Talbot A, Regtop H, Kavanagh J, Dehghani F. Effect of Biofilm Formation by Bacillus subtilis natto on Menaquinone-7 Biosynthesis. Mol Biotechnol 2012; 54:371-8. [DOI: 10.1007/s12033-012-9576-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
110
|
Sun Y, Song H, Li J, Jiang M, Li Y, Zhou J, Guo Z. Active site binding and catalytic role of bicarbonate in 1,4-dihydroxy-2-naphthoyl coenzyme A synthases from vitamin K biosynthetic pathways. Biochemistry 2012; 51:4580-9. [PMID: 22606952 DOI: 10.1021/bi300486j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,4-Dihydroxy-2-naphthoyl coenzyme A (DHNA-CoA) synthase, or MenB, catalyzes a carbon-carbon bond formation reaction in the biosynthesis of both vitamin K1 and K2. Bicarbonate is crucial to the activity of a large subset of its orthologues but lacks a clearly defined structural and mechanistic role. Here we determine the crystal structure of the holoenzymes from Escherichia coli at 2.30 Å and Synechocystis sp. PCC6803 at 2.04 Å, in which the bicarbonate cofactor is bound to the enzyme active site at a position equivalent to that of the side chain carboxylate of an aspartate residue conserved among bicarbonate-insensitive DHNA-CoA synthases. Binding of the planar anion involves both nonspecific electrostatic attraction and specific hydrogen bonding and hydrophobic interactions. In the absence of bicarbonate, the anion binding site is occupied by a chloride ion or nitrate, an inhibitor directly competing with bicarbonate. These results provide a solid structural basis for the bicarbonate dependence of the enzymatic activity of type I DHNA-CoA synthases. The unique location of the bicarbonate ion in relation to the expected position of the substrate α-proton in the enzyme's active site suggests a critical catalytic role for the anionic cofactor as a catalytic base in enolate formation.
Collapse
Affiliation(s)
- Yueru Sun
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
111
|
|
112
|
Song H, Guo Z. Characterization of 1,4-dihydroxy-2-naphthoyl-coenzyme A synthase (MenB) in phylloquinone biosynthesis of Synechocystis sp. PCC 6803. Sci China Chem 2011. [DOI: 10.1007/s11426-011-4448-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
113
|
Li PY, Xie BB, Zhang XY, Qin QL, Dang HY, Wang XM, Chen XL, Yu J, Zhang YZ. Genetic structure of three fosmid-fragments encoding 16S rRNA genes of the Miscellaneous Crenarchaeotic Group (MCG): implications for physiology and evolution of marine sedimentary archaea. Environ Microbiol 2011; 14:467-79. [DOI: 10.1111/j.1462-2920.2011.02637.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
114
|
Lu X, Zhou R, Sharma I, Li X, Kumar G, Swaminathan S, Tonge PJ, Tan DS. Stable analogues of OSB-AMP: potent inhibitors of MenE, the o-succinylbenzoate-CoA synthetase from bacterial menaquinone biosynthesis. Chembiochem 2011; 13:129-36. [PMID: 22109989 DOI: 10.1002/cbic.201100585] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Indexed: 12/15/2022]
Abstract
MenE, the o-succinylbenzoate (OSB)-CoA synthetase from bacterial menaquinone biosynthesis, is a promising new antibacterial target. Sulfonyladenosine analogues of the cognate reaction intermediate, OSB-AMP, have been developed as inhibitors of the MenE enzymes from Mycobacterium tuberculosis (mtMenE), Staphylococcus aureus (saMenE) and Escherichia coli (ecMenE). Both a free carboxylate and a ketone moiety on the OSB side chain are required for potent inhibitory activity. OSB-AMS (4) is a competitive inhibitor of mtMenE with respect to ATP (K(i) =5.4±0.1 nM) and a noncompetitive inhibitor with respect to OSB (K(i) =11.2±0.9 nM). These data are consistent with a Bi Uni Uni Bi Ping-Pong kinetic mechanism for these enzymes. In addition, OSB-AMS inhibits saMenE with K(i)(app) =22±8 nM and ecMenE with K(i)(OSB) =128±5 nM. Putative active-site residues, Arg222, which may interact with the OSB aromatic carboxylate, and Ser302, which may bind the OSB ketone oxygen, have been identified through computational docking of OSB-AMP with the unliganded crystal structure of saMenE. A pH-dependent interconversion of the free keto acid and lactol forms of the inhibitors is also described, along with implications for inhibitor design.
Collapse
Affiliation(s)
- Xuequan Lu
- Molecular Pharmacology and Chemistry Program and Tri-Institutional Research Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Li X, Liu N, Zhang H, Knudson SE, Li HJ, Lai CT, Simmerling C, Slayden RA, Tonge PJ. CoA Adducts of 4-Oxo-4-Phenylbut-2-enoates: Inhibitors of MenB from the M. tuberculosis Menaquinone Biosynthesis Pathway. ACS Med Chem Lett 2011; 2:818-823. [PMID: 22267981 DOI: 10.1021/ml200141e] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A high-throughput screen led to the discovery of 2-amino-4-oxo-4-phenylbutanoate inhibitors of the 1,4-dihydroxy-2-naphthoyl-CoA synthase (MenB) from the menaquinone biosynthesis pathway in Mycobacterium tuberculosis. However, these compounds are unstable in solution and eliminate to form the corresponding 4-oxo-4-phenylbut-2-enoates that then react with CoA in situ to form nanomolar inhibitors of MenB. The potency of these compounds results from interaction of the CoA adduct carboxylate with the MenB oxyanion hole, a conserved structural motif in the crotonase superfamily. 4-Oxo-4-chlorophenylbutenoyl methyl ester has MICs of 0.6 and 1.5 μg/ml against replicating and nonreplicating M. tuberculosis, respectively, and it is proposed that the methyl ester penetrates the cell where it is hydrolyzed and reacts with CoA to generate the active antibacterial. The CoA adducts thus represent an important foundation for the development of novel MenB inhibitors, and suggest a general approach to the development of potent inhibitors of acyl-CoA binding enzymes.
Collapse
Affiliation(s)
- Xiaokai Li
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Nina Liu
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Huaning Zhang
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Susan E. Knudson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Huei-Jiun Li
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Cheng-Tsung Lai
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Carlos Simmerling
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Richard A. Slayden
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Peter J. Tonge
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
116
|
Li HJ, Li X, Liu N, Zhang H, Truglio JJ, Mishra S, Kisker C, Garcia-Diaz M, Tonge PJ. Mechanism of the intramolecular Claisen condensation reaction catalyzed by MenB, a crotonase superfamily member. Biochemistry 2011; 50:9532-44. [PMID: 21830810 PMCID: PMC4119599 DOI: 10.1021/bi200877x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MenB, the 1,4-dihydroxy-2-naphthoyl-CoA synthase from the bacterial menaquinone biosynthesis pathway, catalyzes an intramolecular Claisen condensation (Dieckmann reaction) in which the electrophile is an unactivated carboxylic acid. Mechanistic studies on this crotonase family member have been hindered by partial active site disorder in existing MenB X-ray structures. In the current work the 2.0 Å structure of O-succinylbenzoyl-aminoCoA (OSB-NCoA) bound to the MenB from Escherichia coli provides important insight into the catalytic mechanism by revealing the position of all active site residues. This has been accomplished by the use of a stable analogue of the O-succinylbenzoyl-CoA (OSB-CoA) substrate in which the CoA thiol has been replaced by an amine. The resulting OSB-NCoA is stable, and the X-ray structure of this molecule bound to MenB reveals the structure of the enzyme-substrate complex poised for carbon-carbon bond formation. The structural data support a mechanism in which two conserved active site Tyr residues, Y97 and Y258, participate directly in the intramolecular transfer of the substrate α-proton to the benzylic carboxylate of the substrate, leading to protonation of the electrophile and formation of the required carbanion. Y97 and Y258 are also ideally positioned to function as the second oxyanion hole required for stabilization of the tetrahedral intermediate formed during carbon-carbon bond formation. In contrast, D163, which is structurally homologous to the acid-base catalyst E144 in crotonase (enoyl-CoA hydratase), is not directly involved in carbanion formation and may instead play a structural role by stabilizing the loop that carries Y97. When similar studies were performed on the MenB from Mycobacterium tuberculosis, a twisted hexamer was unexpectedly observed, demonstrating the flexibility of the interfacial loops that are involved in the generation of the novel tertiary and quaternary structures found in the crotonase superfamily. This work reinforces the utility of using a stable substrate analogue as a mechanistic probe in which only one atom has been altered leading to a decrease in α-proton acidity.
Collapse
Affiliation(s)
- Huei-Jiun Li
- Institute for Chemical Biology & Drug Discovery and Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Xiaokai Li
- Institute for Chemical Biology & Drug Discovery and Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Nina Liu
- Institute for Chemical Biology & Drug Discovery and Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Huaning Zhang
- Institute for Chemical Biology & Drug Discovery and Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - James J. Truglio
- Institute for Chemical Biology & Drug Discovery and Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Shambhavi Mishra
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Würzburg, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Würzburg, Germany
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794, USA
| | - Peter J. Tonge
- Institute for Chemical Biology & Drug Discovery and Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
117
|
Pandurangan K, Murnaghan KD, Walshe A, Müller-Bunz H, Paradisi F, Morgan GG. Design, Synthesis and Structure of Novel Para-Quinones and their Antibacterial Activity. Chem Biol Drug Des 2011; 78:787-99. [DOI: 10.1111/j.1747-0285.2011.01187.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
118
|
Yajima A, Kouno S, Dairi T, Mogi M, Katsuta R, Seto H, Nukada T. Synthesis of (±)-cyclic dehypoxanthine futalosine, the biosynthetic intermediate in an alternative biosynthetic pathway for menaquinones. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.07.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
119
|
Agarwala H, Das D, Mobin SM, Mondal TK, Lahiri GK. Probing valence and spin situations in selective ruthenium–iminoquinonoid frameworks. An experimental and DFT analysis. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2011.02.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
120
|
Chen M, Jiang M, Sun Y, Guo ZF, Guo Z. Stabilization of the second oxyanion intermediate by 1,4-dihydroxy-2-naphthoyl-coenzyme A synthase of the menaquinone pathway: spectroscopic evidence of the involvement of a conserved aspartic acid. Biochemistry 2011; 50:5893-904. [PMID: 21627110 DOI: 10.1021/bi200376x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1,4-Dihydroxy-2-naphthoyl-coenzyme A (DHNA-CoA) synthase, or MenB, catalyzes an intramolecular Claisen condensation involving two oxyanion intermediates in the biosynthetic pathway of menaquinone, an essential respiration electron transporter in many microorganisms. Here we report the finding that the DHNA-CoA product and its analogues bind and inhibit the synthase from Escherichia coli with significant ultraviolet--visible spectral changes, which are similar to the changes induced by deprotonation of the free inhibitors in a basic solution. Dissection of the structure--affinity relationships of the inhibitors identifies the hydroxyl groups at positions 1 (C1-OH) and 4 (C4-OH) of DHNA-CoA or their equivalents as the dominant and minor sites, respectively, for the enzyme--ligand interaction that polarizes or deprotonates the bound ligands to cause the observed spectral changes. In the meantime, spectroscopic studies with active site mutants indicate that C4-OH of the enzyme-bound DHNA-CoA interacts with conserved polar residues Arg-91, Tyr-97, and Tyr-258 likely through a hydrogen bonding network that also includes Ser-161. In addition, site-directed mutation of the conserved Asp-163 to alanine causes a complete loss of the ligand binding ability of the protein, suggesting that the Asp-163 side chain is most likely hydrogen-bonded to C1-OH of DHNA-CoA to provide the dominant polarizing effect. Moreover, this mutation also completely eliminates the enzyme activity, strongly supporting the possibility that the Asp-163 side chain provides a strong stabilizing hydrogen bond to the tetrahedral oxyanion, which takes a position similar to that of C1-OH of the enzyme-bound DHNA-CoA and is the second high-energy intermediate in the intracellular Claisen condensation reaction. Interestingly, both Arg-91 and Tyr-97 are located in a disordered loop forming part of the active site of all available DHNA-CoA synthase structures. Their involvement in the interaction with the small molecule ligands suggests that the disordered loop is folded in interaction with the substrates or reaction intermediates, supporting an induced-fit catalytic mechanism for the enzyme.
Collapse
Affiliation(s)
- Minjiao Chen
- Department of Chemistry and State Key Laboratory for Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
121
|
Tasci AG, Bilgili H, Altunay H, Gecit MR, Keskin D. Prospective evaluation of Vitamin K2, Raloxifene and their co-administration in osteoporotic rats. Eur J Pharm Sci 2011; 43:270-7. [PMID: 21575717 DOI: 10.1016/j.ejps.2011.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/16/2011] [Accepted: 04/30/2011] [Indexed: 11/29/2022]
Abstract
In this study, therapeutic effects of Vitamin K2, Raloxifene and their co-administration on bone, uterus, blood and weight profiles were investigated with an ovariectomized rat model. Forty Wistar rats were divided into five groups (n=8): Raloxifene (R), Vitamin K2 (K), Raloxifene+Vitamin K2 (R+K), ovariectomized controls (OVX) and Sham-operated controls (Sham). Treatment began 3 months after ovariectomy. Vitamin K2 and Raloxifene were administered 30 and 1.5 mg/kg/day separately and in combination five times per week for 12 weeks. All treatment groups had significantly higher ultimate strength and energy absorption capacity (P<0.05) than ovariectomized controls in both femur and tibia. Histological results showed that treatment groups had healthy lumen structure, whereas OVX had degeneration. Adverse effects which were seen in individual treatments (myometrium weakening in K, endometrium weakening in R, and ALP increase in group R) were not observed in the R+K group implying a synergistic effect of these two agents when they are co-administered. According to blood analysis, ALP values were significantly high in Raloxifene-only group (P<0.0001). This effect is suppressed in the co-administered group. In summary, the groups R, K and R+K had significantly higher ultimate strength and less susceptibility to fracture than ovariectomized controls. In summation, Vitamin K2 treated groups (either in single or combined with Raloxifene) had considerable biomechanical performance and reproductive tissue profile indicating that this agent is prospectively effective in osteoporosis management.
Collapse
Affiliation(s)
- A G Tasci
- Middle East Technical University, Department of Engineering Sciences, 06531 Ankara, Turkey
| | | | | | | | | |
Collapse
|
122
|
Dairi T, Kuzuyama T, Nishiyama M, Fujii I. Convergent strategies in biosynthesis. Nat Prod Rep 2011; 28:1054-86. [PMID: 21547300 DOI: 10.1039/c0np00047g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This review article focuses on how nature sometimes solves the same problem in the biosynthesis of small molecules but using very different approaches. Four examples, involving isopentenyl diphosphate, menaquinone, lysine, and aromatic polyketides, are highlighted that represent different strategies in convergent metabolism.
Collapse
Affiliation(s)
- Tohru Dairi
- Faculty of Engineering and Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | | | | | | |
Collapse
|
123
|
Dawson A, Fyfe PK, Gillet F, Hunter WN. Exploiting the high-resolution crystal structure of Staphylococcus aureus MenH to gain insight into enzyme activity. BMC STRUCTURAL BIOLOGY 2011; 11:19. [PMID: 21513522 PMCID: PMC3097144 DOI: 10.1186/1472-6807-11-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 04/22/2011] [Indexed: 11/23/2022]
Abstract
Background MenH (2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase) is a key enzyme in the biosynthesis of menaquinone, catalyzing an unusual 2,5-elimination of pyruvate from 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate. Results The crystal structure of Staphylococcus aureus MenH has been determined at 2 Å resolution. In the absence of a complex to inform on aspects of specificity a model of the enzyme-substrate complex has been used in conjunction with previously published kinetic analyses, site-directed mutagenesis studies and comparisons with orthologues to investigate the structure and reactivity of MenH. Conclusions The overall basic active site displays pronounced hydrophobic character on one side and these properties complement those of the substrate. A complex network of hydrogen bonds involving well-ordered water molecules serves to position key residues participating in the recognition of substrate and subsequent catalysis. We propose a proton shuttle mechanism, reliant on a catalytic triad consisting of Ser89, Asp216 and His243. The reaction is initiated by proton abstraction from the substrate by an activated Ser89. The propensity to form a conjugated system provides the driving force for pyruvate elimination. During the elimination, a methylene group is converted to a methyl and we judge it likely that His243 provides a proton, previously acquired from Ser89 for that reduction. A conformational change of the protonated His243 may be encouraged by the presence of an anionic intermediate in the active site.
Collapse
Affiliation(s)
- Alice Dawson
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | | | | | | |
Collapse
|
124
|
Li X, Apel D, Gaynor EC, Tanner ME. 5'-methylthioadenosine nucleosidase is implicated in playing a key role in a modified futalosine pathway for menaquinone biosynthesis in Campylobacter jejuni. J Biol Chem 2011; 286:19392-8. [PMID: 21489995 DOI: 10.1074/jbc.m111.229781] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Menaquinone (vitamin K(2)) serves as an electron carrier in the electron transport chain required for respiration in many pathogenic bacteria. Most bacteria utilize a common menaquinone biosynthetic pathway as exemplified by Escherichia coli. Recently, a novel biosynthetic pathway, the futalosine pathway, was discovered in Streptomyces. Bioinformatic analysis strongly suggests that this pathway is also operative in the human pathogens Campylobacter jejuni and Helicobacter pylori. Here, we provide compelling evidence that a modified futalosine pathway is operative in C. jejuni and that it utilizes 6-amino-6-deoxyfutalosine instead of futalosine. A key step in the Streptomyces pathway involves a nucleosidase called futalosine hydrolase. The closest homolog in C. jejuni has been annotated as a 5'-methylthioadenosine nucleosidase (MTAN). We have shown that this C. jejuni enzyme has MTAN activity but negligible futalosine hydrolase activity. However, the C. jejuni MTAN is able to hydrolyze 6-amino-6-deoxyfutalosine at a rate comparable with that of its known substrates. This suggests that the adenine-containing version of futalosine is the true biosynthetic intermediate in this organism. To demonstrate this in vivo, we constructed a C. jejuni mutant strain deleted for mqnA2, which is predicted to encode for the enzyme required to synthesize 6-amino-6-deoxyfutalosine. Growth of this mutant was readily rescued by the addition of 6-amino-6-deoxyfutalosine, but not futalosine. This provides the first direct evidence that a modified futalosine pathway is operative in C. jejuni. It also highlights the tremendous versatility of the C. jejuni MTAN, which plays key roles in S-adenosylmethionine recycling, the biosynthesis of autoinducer molecules, and the biosynthesis of menaquinone.
Collapse
Affiliation(s)
- Xu Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
125
|
Das D, Mondal TK, Chowdhury AD, Weisser F, Schweinfurth D, Sarkar B, Mobin SM, Urbanos FA, Jiménez-Aparicio R, Lahiri GK. Valence and spin situations in isomeric [(bpy)Ru(Q′)2]n (Q′ = 3,5-di-tert-butyl-N-aryl-1,2-benzoquinonemonoimine). An experimental and DFT analysis. Dalton Trans 2011; 40:8377-90. [DOI: 10.1039/c1dt10609k] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
126
|
Abstract
We recently demonstrated that the futalosine pathway was operating in some bacteria for the biosynthesis of menaquinone and that futalosine was converted into dehypoxanthinyl futalosine (DHFL) by an MqnB of Thermus thermophilus. In this study, we found that aminodeoxyfutalosine, which has adenine instead of hypoxanthine in futalosine, was directly converted into DHFL by an MqnB of Helicobacter pylori. Therefore, this step is potentially an attractive target for the development of specific anti-H. pylori drugs.
Collapse
|
127
|
Tanaka R, Kunisada T, Kushida N, Yamada K, Ikeda S, Noike M, Ono Y, Itoh N, Takami H, Seto H, Dairi T. Branched fatty acids inhibit the biosynthesis of menaquinone in Helicobacter pylori. J Antibiot (Tokyo) 2010; 64:151-3. [DOI: 10.1038/ja.2010.133] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
128
|
Bou Khalil M, Hou W, Zhou H, Elisma F, Swayne LA, Blanchard AP, Yao Z, Bennett SAL, Figeys D. Lipidomics era: accomplishments and challenges. MASS SPECTROMETRY REVIEWS 2010; 29:877-929. [PMID: 20931646 DOI: 10.1002/mas.20294] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Lipid mediators participate in signal transduction pathways, proliferation, apoptosis, and membrane trafficking in the cell. Lipids are highly complex and diverse owing to the various combinations of polar headgroups, fatty acyl chains, and backbone structures. This structural diversity continues to pose a challenge for lipid analysis. Here we review the current state of the art in lipidomics research and discuss the challenges facing this field. The latest technological developments in mass spectrometry, the role of bioinformatics, and the applications of lipidomics in lipid metabolism and cellular physiology and pathology are also discussed.
Collapse
Affiliation(s)
- Maroun Bou Khalil
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Fang M, Langman BM, Palmer DR. A stable analog of isochorismate for the study of MenD and other isochorismate-utilizing enzymes. Bioorg Med Chem Lett 2010; 20:5019-22. [DOI: 10.1016/j.bmcl.2010.07.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 07/08/2010] [Accepted: 07/12/2010] [Indexed: 11/16/2022]
|
130
|
Li X, Liu N, Zhang H, Knudson SE, Slayden RA, Tonge PJ. Synthesis and SAR studies of 1,4-benzoxazine MenB inhibitors: novel antibacterial agents against Mycobacterium tuberculosis. Bioorg Med Chem Lett 2010; 20:6306-9. [PMID: 20850304 DOI: 10.1016/j.bmcl.2010.08.076] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 08/13/2010] [Accepted: 08/17/2010] [Indexed: 11/20/2022]
Abstract
Menaquinone is an essential component of the electron transport chain in many pathogens and consequently enzymes in the menaquinone biosynthesis pathway are potential drug targets for the development of novel antibacterial agents. In order to identify leads that target MenB, the 1,4-dihydroxy-2-naphthoyl-CoA synthase from Mycobacterium tuberculosis, a high-throughput screen was performed. Several 1,4-benzoxazines were identified in this screen and subsequent SAR studies resulted in the discovery of compounds with excellent antibacterial activity against M. tuberculosis H37Rv with MIC values as low as 0.6μg/ml. The 1,4-benzoxazine scaffold is thus a promising foundation for the development of antitubercular agents.
Collapse
Affiliation(s)
- Xiaokai Li
- Institute for Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | | | | | | | | | | |
Collapse
|
131
|
Jiang M, Chen M, Guo ZF, Guo Z. A bicarbonate cofactor modulates 1,4-dihydroxy-2-naphthoyl-coenzyme a synthase in menaquinone biosynthesis of Escherichia coli. J Biol Chem 2010; 285:30159-69. [PMID: 20643650 DOI: 10.1074/jbc.m110.147702] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
1,4-Dihydroxy-2-naphthoyl coenzyme A (DHNA-CoA) synthase is a typical crotonase-fold protein catalyzing an intramolecular Claisen condensation in the menaquinone biosynthetic pathway. We have characterized this enzyme from Escherichia coli and found that it is activated by bicarbonate in a concentration-dependent manner. The bicarbonate binding site has been identified in the crystal structure of a virtually identical ortholog (96.8% sequence identity) from Salmonella typhimurium through comparison with a bicarbonate-insensitive orthologue. Kinetic properties of the enzyme and its site-directed mutants of the bicarbonate binding site indicate that the exogenous bicarbonate anion is essential to the enzyme activity. With this essential catalytic role, the simple bicarbonate anion is an enzyme cofactor, which is usually a small organic molecule derived from vitamins, a metal ion, or a metal-containing polyatomic anionic complex. This finding leads to classification of the DHNA-CoA synthases into two evolutionarily conserved subfamilies: type I enzymes that are bicarbonate-dependent and contain a conserved glycine at the bicarbonate binding site; and type II enzymes that are bicarbonate-independent and contain a conserved aspartate at the position similar to the enzyme-bound bicarbonate. In addition, the unique location of the enzyme-bound bicarbonate allows it to be proposed as a catalytic base responsible for abstraction of the α-proton of the thioester substrate in the enzymatic reaction, suggesting a unified catalytic mechanism for all DHNA-CoA synthases.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | |
Collapse
|
132
|
Johnston JM, Jiang M, Guo Z, Baker EN. Structural and functional analysis of Rv0554 from Mycobacterium tuberculosis: testing a putative role in menaquinone biosynthesis. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:909-17. [PMID: 20693690 DOI: 10.1107/s0907444910025771] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 06/30/2010] [Indexed: 05/26/2023]
Abstract
Mycobacterium tuberculosis, the cause of tuberculosis, is a devastating human pathogen against which new drugs are urgently needed. Enzymes from the biosynthetic pathway for menaquinone are considered to be valid drug targets. The protein encoded by the open reading frame Rv0554 has been expressed, purified and subjected to structural and functional analysis to test for a putative role in menaquinone biosynthesis. The crystal structure of Rv0554 has been solved and refined in two different space groups at 2.35 and 1.9 A resolution. The protein is dimeric, with an alpha/beta-hydrolase monomer fold. In each monomer, a large cavity adjacent to the catalytic triad is enclosed by a helical lid. Dimerization is mediated by the lid regions. Small-molecule additives used in crystallization bind in the active site, but no binding of ligands related to menaquinone biosynthesis could be detected and functional assays failed to support possible roles in menaquinone biosynthesis.
Collapse
Affiliation(s)
- Jodie M Johnston
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | |
Collapse
|
133
|
Guo ZF, Sun Y, Zheng S, Guo Z. Preferential hydrolysis of aberrant intermediates by the type II thioesterase in Escherichia coli nonribosomal enterobactin synthesis: substrate specificities and mutagenic studies on the active-site residues. Biochemistry 2010; 48:1712-22. [PMID: 19193103 DOI: 10.1021/bi802165x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The type II thioesterase EntH is a hotdog fold protein required for optimal nonribosomal biosynthesis of enterobactin in Escherichia coli. Its proposed proofreading activity in the biosynthesis is confirmed by its efficient restoration of enterobactin synthesis blocked in vitro by analogs of the cognate precursor 2,3-dihydroxybenzoate. Steady-state kinetic studies show that EntH recognizes the phosphopantetheine group and the pattern of hydroxylation in the aryl moiety of its thioester substrates. Remarkably, it is able to distinguish aberrant intermediates from the normal one in the enterobactin assembly line by demonstrating at least 10-fold higher catalytic efficiency toward thioesters derived from aberrant aryl precursors without a para-hydroxyl group, such as salicylate. By structural comparison and site-directed mutagenesis, the thioesterase is found to possess an active site closely resembling that of the 4-hydroxybenzoyl-CoA thioesterase from Arthrobacter sp. strain SU and to involve an acidic residue (glutamate-63) as the catalytic base or nucleophile like all other hotdog thioesterases. In addition, the EntH specificities toward the substrate hydroxylation pattern are found to depend on the active-site histidine-54, threonine-64, serine-67, and methionine-68 with the selectivity significantly reduced or even reversed when they are individually replaced by alanine. These residues are likely responsible for differential interaction of the enzyme with the substrates which leads to distinction between the normal and aberrant precursors in the enterobactin assembly line. These results show that the type II thioesterase evolves its distinctive ability to recognize the aberrant intermediates from the versatile catalytic platform of hotdog proteins and suggests an active search mechanism for type II thioesterases in nonribosomal peptide synthesis.
Collapse
Affiliation(s)
- Zu-Feng Guo
- Department of Chemistry, Center for Cancer Research, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | | | | | | |
Collapse
|
134
|
Dawson A, Chen M, Fyfe PK, Guo Z, Hunter WN. Structure and reactivity of Bacillus subtilis MenD catalyzing the first committed step in menaquinone biosynthesis. J Mol Biol 2010; 401:253-64. [PMID: 20600129 PMCID: PMC2914249 DOI: 10.1016/j.jmb.2010.06.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 06/10/2010] [Accepted: 06/11/2010] [Indexed: 12/19/2022]
Abstract
The first committed step in the classical biosynthetic route to menaquinone (vitamin K2) is a Stetter-like conjugate addition of α-ketoglutarate with isochorismate. This reaction is catalyzed by the thiamine diphosphate and metal-ion-dependent 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate synthase (MenD). The medium-resolution (2.35 Å) crystal structure of Bacillus subtilis MenD with cofactor and Mn2+ has been determined. Based on structure–sequence comparisons and modeling, a two-stage mechanism that is primarily driven by the chemical properties of the cofactor is proposed. Hypotheses for the molecular determinants of substrate recognition were formulated. Five basic residues (Arg32, Arg106, Arg409, Arg428, and Lys299) are postulated to interact with carboxylate and hydroxyl groups to align substrates for catalysis in combination with a cluster of non-polar residues (Ile489, Phe490, and Leu493) on one side of the active site. The powerful combination of site-directed mutagenesis, where each of the eight residues is replaced by alanine, and steady-state kinetic measurements has been exploited to address these hypotheses. Arg409 plays a significant role in binding both substrates while Arg428 contributes mainly to binding of α-ketoglutarate. Arg32 and in particular Arg106 are critical for recognition of isochorismate. Mutagenesis of Phe490 and Ile489 has the most profound influence on catalytic efficiency, indicating that these two residues are important for binding of isochorismate and for stabilizing the cofactor position. These data allow for a detailed description of the structure–reactivity relationship that governs MenD function and refinement of the model for the catalytic intermediate that supports the Stetter-like conjugate addition.
Collapse
Affiliation(s)
- Alice Dawson
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | | | | | | | |
Collapse
|
135
|
Lou Z, Zhang X. Protein targets for structure-based anti-Mycobacterium tuberculosis drug discovery. Protein Cell 2010; 1:435-42. [PMID: 21203958 DOI: 10.1007/s13238-010-0057-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 05/01/2010] [Indexed: 11/30/2022] Open
Abstract
Mycobacterium tuberculosis, which belongs to the genus Mycobacterium, is the pathogenic agent for most tuberculosis (TB). As TB remains one of the most rampant infectious diseases, causing morbidity and death with emergence of multi-drug-resistant and extensively-drug-resistant forms, it is urgent to identify new drugs with novel targets to ensure future therapeutic success. In this regards, the structural genomics of M. tuberculosis provides important information to identify potential targets, perform biochemical assays, determine crystal structures in complex with potential inhibitor(s), reveal the key sites/residues for biological activity, and thus validate drug targets and discover novel drugs. In this review, we will discuss the recent progress on novel targets for structure-based anti-M. tuberculosis drug discovery.
Collapse
Affiliation(s)
- Zhiyong Lou
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China.
| | | |
Collapse
|
136
|
Mathew R, Kruthiventi AK, Prasad JV, Kumar SP, Srinu G, Chatterji D. Inhibition of Mycobacterial Growth by Plumbagin Derivatives. Chem Biol Drug Des 2010; 76:34-42. [DOI: 10.1111/j.1747-0285.2010.00987.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
137
|
Joyard J, Ferro M, Masselon C, Seigneurin-Berny D, Salvi D, Garin J, Rolland N. Chloroplast proteomics and the compartmentation of plastidial isoprenoid biosynthetic pathways. MOLECULAR PLANT 2009; 2:1154-80. [PMID: 19969518 DOI: 10.1093/mp/ssp088] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Recent advances in the proteomic field have allowed high-throughput experiments to be conducted on chloroplast samples. Many proteomic investigations have focused on either whole chloroplast or sub-plastidial fractions. To date, the Plant Protein Database (PPDB, Sun et al., 2009) presents the most exhaustive chloroplast proteome available online. However, the accurate localization of many proteins that were identified in different sub-plastidial compartments remains hypothetical. Ferro et al. (2009) went a step further into the knowledge of Arabidopsis thaliana chloroplast proteins with regards to their accurate localization within the chloroplast by using a semi-quantitative proteomic approach known as spectral counting. Their proteomic strategy was based on the accurate mass and time tags (AMT) database approach and they built up AT_CHLORO, a comprehensive chloroplast proteome database with sub-plastidial localization and curated information on envelope proteins. Comparing these two extensive databases, we focus here on about 100 enzymes involved in the synthesis of chloroplast-specific isoprenoids. Well known pathways (i.e. compartmentation of the methyl erythritol phosphate biosynthetic pathway, of tetrapyrroles and chlorophyll biosynthesis and breakdown within chloroplasts) validate the spectral counting-based strategy. The same strategy was then used to identify the precise localization of the biosynthesis of carotenoids and prenylquinones within chloroplasts (i.e. in envelope membranes, stroma, and/or thylakoids) that remains unclear until now.
Collapse
Affiliation(s)
- Jacques Joyard
- Laboratoire de Physiologie Cellulaire Végétale, UMR 5168, CEA, CNRS, INRA, Université Joseph Fourier, iRTSV, CEA-Grenoble, 38054 Grenoble-cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
138
|
Evaluation of the Antioxidant Effect of a New Functional Food Enriched withSideritis euboeain Healthy Subjects. J Med Food 2009; 12:1105-10. [DOI: 10.1089/jmf.2008.0172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
139
|
Srinivasan N, Golbeck JH. Protein–cofactor interactions in bioenergetic complexes: The role of the A1A and A1B phylloquinones in Photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1057-88. [DOI: 10.1016/j.bbabio.2009.04.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 04/14/2009] [Accepted: 04/22/2009] [Indexed: 10/20/2022]
|
140
|
Jiang M, Chen X, Wu XH, Chen M, Wu YD, Guo Z. Catalytic mechanism of SHCHC synthase in the menaquinone biosynthesis of Escherichia coli: identification and mutational analysis of the active site residues. Biochemistry 2009; 48:6921-31. [PMID: 19545176 DOI: 10.1021/bi900897h] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
(1R,6R)-2-Succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate (SHCHC) synthase (MenH) is an alpha/beta fold enzyme containing a catalytically essential serine-histidine-aspartate triad typical of serine proteases but catalyzes a pyruvate elimination reaction initiated by alpha-proton abstraction in the menaquinone biosynthetic pathway of Escherichia coli. In this study, we identify the active site residues in the synthase through sequence analysis and structural modeling and study their mechanistic roles in MenH catalysis. Steady-state kinetic characterization of site-directed mutants of the active site residues shows that three conserved arginine residues (Arg-90, Arg-124, and Arg-168) likely form ionic salt bridges with three carboxylate groups of the substrate in the Michaelis complex and that the side-chain polar groups of the conserved tyrosine (Tyr-85) and tryptophan (Trp-147) residues likely donate hydrogen bonds to form an "oxyanion hole". In addition, the pH dependence of the MenH kinetic properties reveals a catalytic base with a pK(a) highly dependent on the hydroxyl group of the triad serine residue in the enzymatic reaction. Moreover, proton inventory experiments demonstrate that the SHCHC synthase adopts one-proton catalysis like many serine proteases. These results allow the proposal of a mechanism in which the histidine residue of the MenH triad serves as a general base catalyst to deprotonate the triad seryl hydroxyl group in the alpha-proton abstraction from the substrate. As such, the MenH triad performs a simple and fundamental proton transfer reaction occurring repeatedly in the reactions catalyzed by serine proteases and alpha/beta fold hydrolases, suggesting a common evolutionary origin for all serine-histidine-aspartate triads serving different catalytic functions.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Chemistry, Center for Cancer Research, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
141
|
An alternative menaquinone biosynthetic pathway operating in microorganisms: an attractive target for drug discovery to pathogenic Helicobacter and Chlamydia strains. J Antibiot (Tokyo) 2009; 62:347-52. [PMID: 19557031 DOI: 10.1038/ja.2009.46] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Menaquinone is an essential vitamin as an obligatory component of the electron transfer pathway in microorganisms. Menaquinone has been shown to be derived from chorismate by eight enzymes, designated MenA to -H in Escherichia coli. However, bioinformatic analyses of whole-genome sequences have suggested that some microorganisms, such as Helicobacter pylori and Campylobacter jejuni, which are known to cause gastric carcinoma and diarrhea, respectively, do not have orthologs of most of the men genes, although they synthesize menaquinone. The (13)C-labeling pattern of menaquinone purified from Streptomyces coelicolor A3(2) grown on [U-(13)C]glucose was quite different from that of E. coli, suggesting that an alternative pathway was operating in the strain. We searched for candidate genes participating in the alternative pathway by in silico screening, and the involvement of these genes in the pathway was confirmed by gene-disruption experiments. We also used mutagenesis to isolate mutants that required menaquinone for their growth and used these mutants as hosts for shotgun cloning experiments. Metabolites that accumulated in the culture broth of mutants were isolated and their structures were determined. Taking these results together, we deduced the outline of the alternative pathway, which branched at chorismate in a similar manner to the known pathway but then followed a completely different pathway. As humans and some useful intestinal bacteria, such as lactobacilli, lack the alternative pathway, it would be an attractive target for the development of chemotherapeutics.
Collapse
|
142
|
A dedicated thioesterase of the Hotdog-fold family is required for the biosynthesis of the naphthoquinone ring of vitamin K1. Proc Natl Acad Sci U S A 2009; 106:5599-603. [PMID: 19321747 DOI: 10.1073/pnas.0900738106] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phylloquinone (vitamin K(1)) is a bipartite molecule that consists of a naphthoquinone ring attached to a phytyl side chain. The coupling of these 2 moieties depends on the hydrolysis of the CoA thioester of 1,4-dihydroxy-2-naphthoate (DHNA), which forms the naphthalenoid backbone. It is not known whether such a hydrolysis is enzymatic or chemical. In this study, comparative genomic analyses identified orthologous genes of unknown function that in most species of cyanobacteria cluster with predicted phylloquinone biosynthetic genes. The encoded approximately 16-kDa proteins display homology with some Hotdog domain-containing CoA thioesterases that are involved in the catabolism of 4-hydroxybenzoyl-CoA and gentisyl-CoA (2,5-dihydroxybenzoyl-CoA) in certain soil-dwelling bacteria. The Synechocystis ortholog, encoded by gene slr0204, was expressed as a recombinant protein and was found to form DHNA as reaction product. Unlike its homologs in the Hotdog domain family, Slr0204 showed strict substrate specificity. The Synechocystis slr0204 knockout was devoid of DHNA-CoA thioesterease activity and accumulated DHNA-CoA. As a result, knockout cells contained 13-fold less phylloquinone than their wild-type counterparts and displayed the typical photosensitivity to high light associated to phylloquinone deficiency in cyanobacteria.
Collapse
|
143
|
Sun W, Shahinas D, Bonvin J, Hou W, Kimber MS, Turnbull J, Christendat D. The crystal structure of Aquifex aeolicus prephenate dehydrogenase reveals the mode of tyrosine inhibition. J Biol Chem 2009; 284:13223-32. [PMID: 19279014 DOI: 10.1074/jbc.m806272200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TyrA proteins belong to a family of dehydrogenases that are dedicated to l-tyrosine biosynthesis. The three TyrA subclasses are distinguished by their substrate specificities, namely the prephenate dehydrogenases, the arogenate dehydrogenases, and the cyclohexadienyl dehydrogenases, which utilize prephenate, l-arogenate, or both substrates, respectively. The molecular mechanism responsible for TyrA substrate selectivity and regulation is unknown. To further our understanding of TyrA-catalyzed reactions, we have determined the crystal structures of Aquifex aeolicus prephenate dehydrogenase bound with NAD(+) plus either 4-hydroxyphenylpyuvate, 4-hydroxyphenylpropionate, or l-tyrosine and have used these structures as guides to target active site residues for site-directed mutagenesis. From a combination of mutational and structural analyses, we have demonstrated that His-147 and Arg-250 are key catalytic and binding groups, respectively, and Ser-126 participates in both catalysis and substrate binding through the ligand 4-hydroxyl group. The crystal structure revealed that tyrosine, a known inhibitor, binds directly to the active site of the enzyme and not to an allosteric site. The most interesting finding though, is that mutating His-217 relieved the inhibitory effect of tyrosine on A. aeolicus prephenate dehydrogenase. The identification of a tyrosine-insensitive mutant provides a novel avenue for designing an unregulated enzyme for application in metabolic engineering.
Collapse
Affiliation(s)
- Warren Sun
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
144
|
Priyadarshi A, Saleem Y, Nam KH, Kim KS, Park SY, Kim EE, Hwang KY. Structural insights of the MenD from Escherichia coli reveal ThDP affinity. Biochem Biophys Res Commun 2009; 380:797-801. [DOI: 10.1016/j.bbrc.2009.01.168] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 01/27/2009] [Indexed: 11/29/2022]
|
145
|
Ma J, Kobayashi DY, Yee N. Role of menaquinone biosynthesis genes in selenate reduction byEnterobacter cloacaeSLD1a-1 andEscherichia coliK12. Environ Microbiol 2009; 11:149-58. [DOI: 10.1111/j.1462-2920.2008.01749.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
146
|
Lu X, Zhang H, Tonge PJ, Tan DS. Mechanism-based inhibitors of MenE, an acyl-CoA synthetase involved in bacterial menaquinone biosynthesis. Bioorg Med Chem Lett 2008; 18:5963-6. [PMID: 18762421 PMCID: PMC2628629 DOI: 10.1016/j.bmcl.2008.07.130] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 07/28/2008] [Accepted: 07/29/2008] [Indexed: 11/22/2022]
Abstract
Menaquinone (vitamin K(2)) is an essential component of the electron transfer chain in many pathogens, including Mycobacterium tuberculosis and Staphylococcus aureus, and menaquinone biosynthesis is a potential target for antibiotic drug discovery. We report herein a series of mechanism-based inhibitors of MenE, an acyl-CoA synthetase that catalyzes adenylation and thioesterification of o-succinylbenzoic acid (OSB) during menaquinone biosynthesis. The most potent compound inhibits MenE with an IC(50) value of 5.7microM.
Collapse
Affiliation(s)
- Xuequan Lu
- Molecular Pharmacology & Chemistry Program and Tri-Institutional Research Program, Memorial Sloan–Kettering Cancer Center, New York, NY 10065, USA
| | - Huaning Zhang
- Institute of Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Peter J. Tonge
- Institute of Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Derek S. Tan
- Molecular Pharmacology & Chemistry Program and Tri-Institutional Research Program, Memorial Sloan–Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
147
|
Specificity and reactivity in menaquinone biosynthesis: the structure of Escherichia coli MenD (2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate synthase). J Mol Biol 2008; 384:1353-68. [PMID: 18983854 DOI: 10.1016/j.jmb.2008.10.048] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/13/2008] [Accepted: 10/14/2008] [Indexed: 11/21/2022]
Abstract
The thiamine diphosphate (ThDP) and metal-ion-dependent enzyme 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate synthase, or MenD, catalyze the Stetter-like conjugate addition of alpha-ketoglutarate with isochorismate to release 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate and carbon dioxide. This reaction represents the first committed step for biosynthesis of menaquinone, or vitamin K2, a key cofactor for electron transport in bacteria and a metabolite for posttranslational modification of proteins in mammals. The medium-resolution structure of MenD from Escherichia coli (EcMenD) in complex with its cofactor and Mn2+ has been determined in two related hexagonal crystal forms. The subunit displays the typical three-domain structure observed for ThDP-dependent enzymes in which two of the domains bind and force the cofactor into a configuration that supports formation of a reactive ylide. The structures reveal a stable dimer-of-dimers association in agreement with gel filtration and analytical ultracentrifugation studies and confirm the classification of MenD in the pyruvate oxidase family of ThDP-dependent enzymes. The active site, created by contributions from a pair of subunits, is highly basic with a pronounced hydrophobic patch. These features, formed by highly conserved amino acids, match well to the chemical properties of the substrates. A model of the covalent intermediate formed after reaction with the first substrate alpha-ketoglutarate and with the second substrate isochorismate positioned to accept nucleophilic attack has been prepared. This, in addition to structural and sequence comparisons with putative MenD orthologues, provides insight into the specificity and reactivity of MenD and allows a two-stage reaction mechanism to be proposed.
Collapse
|
148
|
Hiratsuka T, Furihata K, Ishikawa J, Yamashita H, Itoh N, Seto H, Dairi T. An Alternative Menaquinone Biosynthetic Pathway Operating in Microorganisms. Science 2008; 321:1670-3. [DOI: 10.1126/science.1160446] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
149
|
Mustafa G, Migita CT, Ishikawa Y, Kobayashi K, Tagawa S, Yamada M. Menaquinone as well as ubiquinone as a bound quinone crucial for catalytic activity and intramolecular electron transfer in Escherichia coli membrane-bound glucose dehydrogenase. J Biol Chem 2008; 283:28169-75. [PMID: 18708350 DOI: 10.1074/jbc.m804938200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli membrane-bound glucose dehydrogenase (mGDH), which is one of quinoproteins containing pyrroloquinoline quinone (PQQ) as a coenzyme, is a good model for elucidating the function of bound quinone inside primary dehydrogenases in respiratory chains. Enzymatic analysis of purified mGDH from cells defective in synthesis of ubiquinone (UQ) and/or menaquinone (MQ) revealed that Q-free mGDH has very low levels of activity of glucose dehydrogenase and UQ2 reductase compared with those of UQ-bearing mGDH, and both activities were significantly increased by reconstitution with UQ1. On the other hand, MQ-bearing mGDH retains both catalytic abilities at the same levels as those of UQ-bearing mGDH. A radiolytically generated hydrated electron reacted with the bound MQ to form a semiquinone anion radical with an absorption maximum at 400 nm. Subsequently, decay of the absorbance at 400 nm was accompanied by an increase in the absorbance at 380 nm with a first order rate constant of 5.7 x 10(3) s(-1). This indicated that an intramolecular electron transfer from the bound MQ to the PQQ occurred. EPR analysis revealed that characteristics of the semiquinone radical of bound MQ are similar to those of the semiquinone radical of bound UQ and indicated an electron flow from PQQ to MQ as in the case of UQ. Taken together, the results suggest that MQ is incorporated into the same pocket as that for UQ to perform a function almost equivalent to that of UQ and that bound quinone is involved at least partially in the catalytic reaction and primarily in the intramolecular electron transfer of mGDH.
Collapse
Affiliation(s)
- Golam Mustafa
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | | | | | | | | | | |
Collapse
|
150
|
Tello M, Kuzuyama T, Heide L, Noel JP, Richard SB. The ABBA family of aromatic prenyltransferases: broadening natural product diversity. Cell Mol Life Sci 2008; 65:1459-63. [PMID: 18322648 PMCID: PMC2861910 DOI: 10.1007/s00018-008-7579-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- M. Tello
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037 USA
| | - T. Kuzuyama
- Biotechnology Research Centre, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113–8657 Japan
| | - L. Heide
- Pharmazeutisches Institut, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - J. P. Noel
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037 USA
| | - S. B. Richard
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037 USA
| |
Collapse
|