101
|
Melnik NO, Markevich GN, Taylor EB, Loktyushkin AV, Esin EV. Evidence for divergence between sympatric stone charr and Dolly Varden along unique environmental gradients in Kamchatka. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | - Eric B. Taylor
- Department of Zoology Biodiversity Research Centre and Beaty Biodiversity Museum University of British Columbia Vancouver BC Canada
| | | | - Evgeny V. Esin
- A.N. Severtsov Institute of Ecology and Evolution Moscow Russia
- Kronotsky Nature Biosphere Reserve Yelizovo Russia
| |
Collapse
|
102
|
Dose-Dependent Behavioral and Antioxidant Effects of Quercetin and Methanolic and Acetonic Extracts from Heterotheca inuloides on Several Rat Tissues following Kainic Acid-Induced Status Epilepticus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5287507. [PMID: 31949879 PMCID: PMC6939434 DOI: 10.1155/2019/5287507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/12/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
Abstract
Kainic acid (KA) has been used to study the neurotoxicity induced after status epilepticus (SE) due to activation of excitatory amino acids with neuronal damage. Medicinal plants can protect against damage caused by KA-induced SE; in particular, organic extracts of Heterotheca inuloides and its metabolite quercetin display antioxidant activity and act as hepatoprotective agents. However, it is unknown whether these properties can protect against the hyperexcitability underlying the damage caused by KA-induced SE. Our aim was to study the protective effects (with regard to behavior and antioxidant activity) of administration of natural products methanolic (ME) and acetonic (AE) extracts and quercetin (Q) from H. inuloides at doses of 30 mg/kg (ME30, AE30, and Q30 groups), 100 mg/kg (ME100, AE100, and Q100 groups), and 300 mg/kg (ME300, AE300, and Q300 groups) against damage in brain regions of male Wistar rats treated with KA. We found dose-dependent effects on behavioral and biochemical studies in the all-natural product groups vs. the control group, with decreases in seizure severity (Racine's scale) and increases in seizure latency (p < 0.05 in the ME100, AE100, Q100, and Q300 groups and p < 0.01 in the AE300 and ME300 groups); on lipid peroxidation and carbonylated proteins in all brain tissues (p < 0.0001); and on GPx, GR, CAT, and SOD activities with all the treatments vs. KA (p ≤ 0.001). In addition, there were strong negative correlations between carbonyl levels and latency in the group treated with KA and in the group treated with methanolic extract in the presence of KA (r = ‐0.9919, p = 0.0084). This evidence suggests that organic extracts and quercetin from H. inuloides exert anticonvulsant effects via direct scavenging of reactive oxygen species (ROS) and modulation of antioxidant enzyme activity.
Collapse
|
103
|
Abd Al Haleem EN, Ahmed SF, Temraz A, El-Tantawy WH. Evaluation of the cardioprotective effect of Casuarina suberosa extract in rats. Drug Chem Toxicol 2019; 45:367-377. [PMID: 31778078 DOI: 10.1080/01480545.2019.1696815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of the current study was to examine and compare the cardioprotective activities of the chloroform and petroleum extracts the leaves of Casuarina suberosa in isoproterenol (ISO)-induced cardiac tissue oxidative stress. Rats were categorized into 6 groups as follows: control group, vehicle or Tween 80-treated group, ISO-treated group, chloroform extract + ISO treated group, petroleum ether extract + ISO treated group and Reference drug (Captopril) + ISO treated group. ISO injection significantly (p < 0.05) increased the activities of cardiac marker enzymes (CK-MB, LDH, ALT, and AST), cardiac troponin-I, levels of lipid peroxides (MDA), nitric oxide (NO), and vascular endothelial growth factor (VEGF), serum angiotensin-converting enzyme (ACE) activity and neutrophil infiltration marker; myeloperoxidase (MPO) in the cardiac tissues. Pretreatment with chloroform or petroleum ether extracts significantly (p < 0.05) prevented the ISO-induced alteration; they upregulated VEGF expression. Histopathological findings corroborated biochemical results. These extracts exerted a cardioprotective effect by alleviating oxidative stress.
Collapse
Affiliation(s)
- Ekram Nemr Abd Al Haleem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo, Egypt
| | | | - Abeer Temraz
- Pharmacognosy Department, Faculty of Pharmacy For Girls, Al-Azhar University, Cairo, Egypt
| | | |
Collapse
|
104
|
Valizadeh A, Shirzad M, Pourmand MR, Farahmandfar M, Sereshti H, Amani A. Preparation and Comparison of Effects of Different Herbal Oil Ointments as Wound-Healing Agents. Cells Tissues Organs 2019; 207:177-186. [PMID: 31775143 DOI: 10.1159/000503624] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/24/2019] [Indexed: 11/19/2022] Open
Abstract
Wound healing is a complex process and some agents have been reported to accelerate it. The aim of this study was to evaluate the healing effect of Eucerin-based ointments of lemon, sesame and olive oils on infected full-thickness wounds in rats. Wounds were created on the dorsal surface of Male Albino Wistar rats (n = 12). Wounds were treated with an Eucerin-based ointment containing either of lemon, sesame or olive oils (33% w/w) twice a day for 14 days. Histopathology results showed that contraction of wounds treated with lemon and sesame oils was higher than in the olive oil and control groups on days 10 and 14. In the lemon- and sesame-oil treated groups, on day 14, 50% of rat lesions were completely healed. Total number of inflammatory cells in lemon oil treatment group was significantly smaller than that of others on day 14 (p < 0.001). Also, thickness of the epidermal layer and rejuvenation of the hair follicles and other skin appendages was normal in lemon and sesame oil treated groups. The lemon and sesame oil ointments accelerated the healing process of wounds in macroscopic, morphological and morphmetrical analyses. Therefore, lemon and sesame oil ointments could be considered as alternative dressings for infected full-thickness wounds because of improved wound healing characteristics.
Collapse
Affiliation(s)
- Alireza Valizadeh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Shirzad
- Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Farahmandfar
- Department of Neuroscience, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Sereshti
- Department of Chemistry, Faculty of Science, University of Tehran, Tehran, Iran
| | - Amir Amani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran, .,Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran,
| |
Collapse
|
105
|
Sudarikov DV, Krymskaya YV, Shevchenko OG, Slepukhin PA, Rubtsova SA, Kutchin AV. Synthesis and Antioxidant Activity of Carane and Pinane Based Sulfenimines and Sulfinimines. Chem Biodivers 2019; 16:e1900413. [DOI: 10.1002/cbdv.201900413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/10/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Denis V. Sudarikov
- Institute of Chemistry of the Komi Scientific Center of Ural Branch of the RAS of FRC ‘Komi SC UrB of the RAS' 48, Pervomayskaya St. Syktyvkar 167000 Russia
| | - Yulia V. Krymskaya
- Institute of Chemistry of the Komi Scientific Center of Ural Branch of the RAS of FRC ‘Komi SC UrB of the RAS' 48, Pervomayskaya St. Syktyvkar 167000 Russia
| | - Oksana G. Shevchenko
- Institute of Biology of the Komi Scientific Center of Ural Branch of the RAS of FRC ‘Komi SC UrB of the RAS' 28, Kommunisticheskaya St. Syktyvkar 167982 Russia
| | - Pavel A. Slepukhin
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences 22, S. Kovalevskaya St. Ekaterinburg 620137 Russia
| | - Svetlana A. Rubtsova
- Institute of Chemistry of the Komi Scientific Center of Ural Branch of the RAS of FRC ‘Komi SC UrB of the RAS' 48, Pervomayskaya St. Syktyvkar 167000 Russia
| | - Aleksandr V. Kutchin
- Institute of Chemistry of the Komi Scientific Center of Ural Branch of the RAS of FRC ‘Komi SC UrB of the RAS' 48, Pervomayskaya St. Syktyvkar 167000 Russia
| |
Collapse
|
106
|
Insawang S, Pripdeevech P, Tanapichatsakul C, Khruengsai S, Monggoot S, Nakham T, Artrod A, D'Souza PE, Panuwet P. Essential Oil Compositions and Antibacterial and Antioxidant Activities of Five
Lavandula stoechas
Cultivars Grown in Thailand. Chem Biodivers 2019; 16:e1900371. [DOI: 10.1002/cbdv.201900371] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/28/2019] [Indexed: 12/16/2022]
Affiliation(s)
| | - Patcharee Pripdeevech
- School of ScienceMae Fah Luang University Chiang Rai 57100 Thailand
- Center of Chemical Innovation for Sustainability (CIS)Mae Fah Luang University Chiang Rai 57100 Thailand
| | | | | | - Sakon Monggoot
- Milott Laboratories Co., Ltd., Bangplee Samutprakarn 10540 Thailand
| | - Thanawut Nakham
- Angkhang Royal Agricultural Station Chiang Mai 50110 Thailand
| | - Angkana Artrod
- Angkhang Royal Agricultural Station Chiang Mai 50110 Thailand
| | - Priya E. D'Souza
- Laboratory of Exposure Assessment and Development for Environmental Research, Department of Environmental Health, Rollins School of Public HealthEmory University Atlanta Georgia 30322 USA
| | - Parinya Panuwet
- Laboratory of Exposure Assessment and Development for Environmental Research, Department of Environmental Health, Rollins School of Public HealthEmory University Atlanta Georgia 30322 USA
| |
Collapse
|
107
|
Yazdi HB, Hojati V, Shiravi A, Hosseinian S, Vaezi G, Hadjzadeh MAR. Liver Dysfunction and Oxidative Stress in Streptozotocin-Induced Diabetic Rats: Protective Role of Artemisia Turanica. J Pharmacopuncture 2019; 22:109-114. [PMID: 31338251 PMCID: PMC6645339 DOI: 10.3831/kpi.2019.22.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 03/06/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives Oxidative stress plays a central role in diabetes-induced complications. In the present study, the protevtive effect of Artemisia turanica (A. turanica) was evaluated against diabetes-induced liver oxidative stress and dysfunction. Methods Fifty male Wistar rats were randomly divided into five groups: control, diabetic, diabetic + metformin, diabetic + A. turanica extract, and diabetic + A. turanica extract + metformin. Experimental diabetes was induced by a single-dose (55 mg/kg, intraperitoneally (ip)) injection of streptozotocin (STZ). Metformin (300 mg/kg) and A. turanica extract (70 mg/kg) were orally administrated three days after STZ injection for four weeks. The levels of malondialdehyde (MDA), total thiol content and superoxide dismutase (SOD) and catalase activities were measured in the liver tissue. Serum glucose concentration, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were also determined. Results In the diabetic group, serum glucose concentration, serum AST and ALT activities and liver MDA level were significantly higher while tissue total thiol content as well as catalase and SOD activities were lower, compared to the control group. Serum glucose in diabetic rats treated with metformin + A. turanica extract showed a significant decrease compared with the diabetic group. In all the A. turanica extract and metformin treated groups, serum ALT, tissue MDA level, total thiol content and SOD activity significantly improved compared with the diabetic rats. However, treatment of the diabetic rats only with metformin could not significantly change the activities of catalase and AST compared with the diabetic group. Conclusion These findings suggested that A. turanica extract had a therapeutic effect on liver dysfuncyion and oxidative stress induced by diabetes, that may be probably due to its antioxidant and antiinflammatory effects.
Collapse
Affiliation(s)
- Hassan Bgheri Yazdi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Vida Hojati
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | | - Sara Hosseinian
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamhassan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Mousa-Al-Reza Hadjzadeh
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
108
|
|
109
|
Kaur N, Chahal KK, Kumar A, Singh R, Bhardwaj U. Antioxidant activity of Anethum graveolens L. essential oil constituents and their chemical analogues. J Food Biochem 2019; 43:e12782. [PMID: 31353585 DOI: 10.1111/jfbc.12782] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 01/16/2023]
Abstract
In the present study, Dill (Anethum graveolens) seed essential oil, its nonpolar and polar fractions, compounds isolated and derivatized were evaluated for their antioxidant potential using different in vitro assays. The major compounds carvone, limonene, and camphor were isolated from dill seed essential oil using column chromatography and characterized using spectroscopic techniques. Among all the tested components for antioxidant activity, carveol and perillyl alcohol were most effective (IC50 values < 0.16 mg/ml), whereas camphor was least effective (IC50 values > 10 mg/ml). All the tested compounds exhibited lower antioxidant potential than the standard. PRACTICAL APPLICATIONS: Oxidation of food products was delayed by compounds known as antioxidants. The use of synthetic antioxidant is restricted because of carcinogenicity in human servings and plant-based natural antioxidant are preferred due to safety and less toxicity. The aim of this in vitro study was to assess the antioxidant activity of the different constituents of dill seed essential oil. The present study revealed that carvone and its derivatives are potent scavengers of free radicals which might be due to the presence of unsaturated hydroxyl group. Thus, natural antioxidants are the important source of alternative medicines and natural therapy in the pharmaceutical industry.
Collapse
Affiliation(s)
- Navneet Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab
| | | | - Amit Kumar
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab
| | - Ravinder Singh
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab
| | - Urvashi Bhardwaj
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab
| |
Collapse
|
110
|
Sarma P, Borah M, Das S. Evaluation of the protective effect of ethanolic extract of seed kernel of Caesalpinia bonducella Flem (EECB) on forced swimming-induced chronic fatigue syndrome in mice. Pharmacognosy Res 2019. [DOI: 10.4103/pr.pr_172_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
111
|
Mishra C, Khalid MA, Fatima N, Singh B, Tripathi D, Waseem M, Mahdi AA. Effects of citral on oxidative stress and hepatic key enzymes of glucose metabolism in streptozotocin/high-fat-diet induced diabetic dyslipidemic rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:49-57. [PMID: 30944708 PMCID: PMC6437455 DOI: 10.22038/ijbms.2018.26889.6574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 08/17/2018] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Phytochemicals such as polyphenols, alkaloids, and terpenoids, protect against the development of early stages and complications of diabetes mellitus according to various reports. The aim of this study was to measure the anti-dyslipidemic and anti-diabetic effects of Citral on high-fat-diet (HFD) and streptozotocin (STZ) induced diabetic dyslipidemic rats and to see also its effect on carbohydrate metabolic regulatory enzymes in the liver. MATERIALS AND METHODS Rats were kept on a high-fat diet for 2 weeks, then diabetes was induced by a single dose of STZ (35 mg/kg/BW, intraperitoneally), Citral was administered orally at a dose of 45 mg/kg/BW for 28 days to diabetic rats. Blood glucose, plasma insulin, and lipid profile in blood were studied. Antioxidant activities were assayed in the liver, pancreas, and adipose tissues. Carbohydrate metabolic enzymes of the liver were also studied in diabetic dyslipidemic rats. RESULTS The results of this study confirmed that administration of Citral significantly (P<0.05) decreased the blood glucose level and increased plasma insulin in diabetic rats. Citral also improved oxidative markers along with anti-oxidative enzymes of the liver, adipose tissue, and pancreas in the HFD/STZ group. Citral also regulated the activity of the glucose-metabolic enzymes in the liver. The results of the present study were compared to Glibenclamide, which is a standard oral drug for lowering the blood sugar. CONCLUSION Results may show that Citral possesses anti-dyslipidemic activity as well as anti-diabetic activity and also regulates the enzyme activity of glycolytic and gluconeogenic processes in the liver.
Collapse
Affiliation(s)
- Chetna Mishra
- Department of Biochemistry, King George’s Medical University, Lucknow-226003, Uttar Pradesh, India
- Department of Environmental Science, Integral University, Lucknow-226021, Uttar Pradesh, India
| | - Monowar Alam Khalid
- Department of Environmental Science, Integral University, Lucknow-226021, Uttar Pradesh, India
| | - Nazmin Fatima
- Department of Biochemistry, King George’s Medical University, Lucknow-226003, Uttar Pradesh, India
| | - Babita Singh
- Department of Biochemistry, King George’s Medical University, Lucknow-226003, Uttar Pradesh, India
| | - Dinesh Tripathi
- Department of Physiology, King George’s Medical University, Lucknow- 226003, Uttar Pradesh, India
| | - Mohammad Waseem
- Department of Biochemistry, King George’s Medical University, Lucknow-226003, Uttar Pradesh, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George’s Medical University, Lucknow-226003, Uttar Pradesh, India
| |
Collapse
|
112
|
Vasantharaja R, Abraham LS, Inbakandan D, Thirugnanasambandam R, Senthilvelan T, Jabeen SA, Prakash P. Influence of seaweed extracts on growth, phytochemical contents and antioxidant capacity of cowpea (Vigna unguiculata L. Walp). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
113
|
Decros G, Baldet P, Beauvoit B, Stevens R, Flandin A, Colombié S, Gibon Y, Pétriacq P. Get the Balance Right: ROS Homeostasis and Redox Signalling in Fruit. FRONTIERS IN PLANT SCIENCE 2019; 10:1091. [PMID: 31620143 PMCID: PMC6760520 DOI: 10.3389/fpls.2019.01091] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/09/2019] [Indexed: 05/02/2023]
Abstract
Plant central metabolism generates reactive oxygen species (ROS), which are key regulators that mediate signalling pathways involved in developmental processes and plant responses to environmental fluctuations. These highly reactive metabolites can lead to cellular damage when the reduction-oxidation (redox) homeostasis becomes unbalanced. Whilst decades of research have studied redox homeostasis in leaves, fundamental knowledge in fruit biology is still fragmentary. This is even more surprising when considering the natural profusion of fruit antioxidants that can process ROS and benefit human health. In this review, we explore redox biology in fruit and provide an overview of fruit antioxidants with recent examples. We further examine the central role of the redox hub in signalling during development and stress, with particular emphasis on ascorbate, also referred to as vitamin C. Progress in understanding the molecular mechanisms involved in the redox regulations that are linked to central metabolism and stress pathways will help to define novel strategies for optimising fruit nutritional quality, fruit production and storage.
Collapse
Affiliation(s)
- Guillaume Decros
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- *Correspondence: Guillaume Decros, ; Pierre Pétriacq,
| | - Pierre Baldet
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | | | | | - Amélie Flandin
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
| | - Sophie Colombié
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
| | - Yves Gibon
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
| | - Pierre Pétriacq
- UMR 1332 BFP, INRA, Univ. Bordeaux, Villenave d’Ornon, France
- MetaboHUB-Bordeaux, MetaboHUB, Phenome-Emphasis, Villenave d’Ornon, France
- *Correspondence: Guillaume Decros, ; Pierre Pétriacq,
| |
Collapse
|
114
|
Ansari IA, Akhtar MS. Current Insights on the Role of Terpenoids as Anticancer Agents: A Perspective on Cancer Prevention and Treatment. NATURAL BIO-ACTIVE COMPOUNDS 2019:53-80. [DOI: 10.1007/978-981-13-7205-6_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
115
|
Guzman E, Molina J. The predictive utility of the plant phylogeny in identifying sources of cardiovascular drugs. PHARMACEUTICAL BIOLOGY 2018; 56:154-164. [PMID: 29486635 PMCID: PMC6130559 DOI: 10.1080/13880209.2018.1444642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/10/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
CONTEXT Cardiovascular disease (CVD) is the number one cause of death globally, responsible for over 17 million (31%) deaths in the world. Novel pharmacological interventions may be needed given the high prevalence of CVD. OBJECTIVE In this study, we aimed to find potential new sources of cardiovascular (CV) drugs from phylogenetic and pharmacological analyses of plant species that have experimental and traditional CV applications in the literature. MATERIALS AND METHODS We reconstructed the molecular phylogeny of these plant species and mapped their pharmacological mechanisms of action on the phylogeny. RESULTS Out of 139 plant species in 71 plant families, seven plant families with 45 species emerged as phylogenetically important exhibiting common CV mechanisms of action within the family, as would be expected given their common ancestry: Apiaceae, Brassicaceae, Fabaceae, Lamiaceae, Malvaceae, Rosaceae and Zingiberaceae. Apiaceae and Brassicaceae promoted diuresis and hypotension; Fabaceae and Lamiaceae had anticoagulant/thrombolytic effects; Apiaceae and Zingiberaceae were calcium channel blockers. Moreover, Apiaceae, Lamiaceae, Malvaceae, Rosaceae and Zingiberaceae species were found to possess anti-atherosclerotic properties. DISCUSSION AND CONCLUSIONS The phylogeny identified certain plant families with disproportionately more species, highlighting their importance as sources of natural products for CV drug discovery. Though there were some species that did not show the same mechanism within the family, the phylogeny predicts that these species may contain undiscovered phytochemistry, and potentially, the same bioactivity. Evolutionary pharmacology, as applied here, may guide and expedite our efforts in discovering sources of new CV drugs.
Collapse
Affiliation(s)
- Emily Guzman
- Department of Biology, Long Island University, Brooklyn, NY, USA
| | - Jeanmaire Molina
- Department of Biology, Long Island University, Brooklyn, NY, USA
| |
Collapse
|
116
|
Zhang Y, Zhou WY, Song XY, Yao GD, Song SJ. Neuroprotective terpenoids from the leaves of Viburnum odoratissimum. Nat Prod Res 2018; 34:1352-1359. [PMID: 30417665 DOI: 10.1080/14786419.2018.1514400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
As a part of our ongoing search for neuroprotective compounds from natural products, two new iridoid glycosides, vibsansuspenside A-B (1-2), along with five known terpenoids (3-7), were isolated from the dry leaves of Viburnum odoratissimum. Their chemical structures were well determined by means of NMR spectroscopic data as well as HRESIMS analysis. All compounds were detected for their neuroprotective effects against H2O2-induced damage in human dopaminergic neuroblastoma cells (SH-SY5Y). Among them, compound 3 displayed the most potent neuroprotective ability, and further investigation by Annexin V/PI and Western blot analysis demonstrated that compound 3 could protect SH-SY5Y cells from oxidative damage through inhibiting cell apoptosis.[Formula: see text].
Collapse
Affiliation(s)
- Yan Zhang
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Wei-Yu Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Xiao-Yu Song
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Guo-Dong Yao
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Shao-Jiang Song
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| |
Collapse
|
117
|
Qi C, Zhao H, Li W, Li X, Xiang H, Zhang G, Liu H, Wang Q, Wang Y, Xian M, Zhang H. Production of γ-terpinene by metabolically engineered Escherichia coli using glycerol as feedstock. RSC Adv 2018; 8:30851-30859. [PMID: 35548758 PMCID: PMC9085526 DOI: 10.1039/c8ra02076k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 08/16/2018] [Indexed: 11/21/2022] Open
Abstract
Gamma (γ)-terpinene, a monoterpene compound, which is generally used in the pharmaceutical and cosmetics industries, due to its physical and chemical properties, is expected to become one of the more influential compounds used as an alternative biofuel in the future. It is necessary to seek more sustainable technologies such as microbial engineering for γ-terpinene production. In this study, we metabolically engineered Escherichia coli to produce γ-terpinene by introducing a heterologous mevalonate (MVA) pathway combined with the geranyl diphosphate synthase gene and γ-terpinene synthase gene. Subsequently, the culture medium and process conditions were optimised with a titre of 19.42 mg L-1 obtained. Additionally, in-depth analysis at translation level for the engineered strain and intermediate metabolites were detected for further analysis. Finally, the fed-batch fermentation of γ-terpinene was evaluated, where a maximum concentration of 275.41 mg L-1 with a maintainable feedstock of glycerol was achieved.
Collapse
Affiliation(s)
- Chang Qi
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences No. 189 Songling Road, Laoshan District Qingdao 266101 P. R. China
| | - Hongwei Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences No. 189 Songling Road, Laoshan District Qingdao 266101 P. R. China
| | - Wenyang Li
- School of Mechanical and Power Engineering, Dalian Ocean University No. 52 Heishijiao street, Shahekou District Dalian Liaoning 116023 P. R. China
| | - Xing Li
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences No. 189 Songling Road, Laoshan District Qingdao 266101 P. R. China
| | - Haiying Xiang
- Yunnan Academy of Tobacco Sciences Kunming 650106 P. R. China
| | - Ge Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences No. 189 Songling Road, Laoshan District Qingdao 266101 P. R. China
- Ministry of Agriculture Key Laboratory for Tobacco Biology and Processing, Tobacco Research Institute, Chinese Academy of Agricultural Sciences No. 11 Keyuanjing 4 Road, Laoshan District Qingdao 266101 P. R. China
| | - Haobao Liu
- Ministry of Agriculture Key Laboratory for Tobacco Biology and Processing, Tobacco Research Institute, Chinese Academy of Agricultural Sciences No. 11 Keyuanjing 4 Road, Laoshan District Qingdao 266101 P. R. China
- Hainan Cigar Research Institute, Hainan Provincial Branch of China National Tobacco Corporation No. 22 Hongchenghu Road, Qiongshan District Haikou 571100 P. R. China
| | - Qian Wang
- Ministry of Agriculture Key Laboratory for Tobacco Biology and Processing, Tobacco Research Institute, Chinese Academy of Agricultural Sciences No. 11 Keyuanjing 4 Road, Laoshan District Qingdao 266101 P. R. China
| | - Yi Wang
- Yunnan Academy of Tobacco Sciences Kunming 650106 P. R. China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences No. 189 Songling Road, Laoshan District Qingdao 266101 P. R. China
| | - Haibo Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences No. 189 Songling Road, Laoshan District Qingdao 266101 P. R. China
| |
Collapse
|
118
|
Chen Q, Lin H, Wu X, Song H, Zhu X. Preparative separation of six terpenoids from Wedelia prostrataHemsl. by two-step high-speed counter-current chromatography. J LIQ CHROMATOGR R T 2018. [DOI: 10.1080/10826076.2017.1412320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Qing Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Hongjian Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xiaoxue Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Hua Song
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xuan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
119
|
Analysis of the phytochemical contents and antioxidant activities of crude extracts from Tulbaghia species. J TRADIT CHIN MED 2018. [DOI: 10.1016/j.jtcm.2018.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
120
|
Yap HYY, Tan NH, Ng ST, Tan CS, Fung SY. Inhibition of Protein Glycation by Tiger Milk Mushroom [ Lignosus rhinocerus (Cooke) Ryvarden] and Search for Potential Anti-diabetic Activity-Related Metabolic Pathways by Genomic and Transcriptomic Data Mining. Front Pharmacol 2018; 9:103. [PMID: 29491836 PMCID: PMC5817425 DOI: 10.3389/fphar.2018.00103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/30/2018] [Indexed: 01/08/2023] Open
Abstract
Naturally occurring anti-glycation compounds have drawn much interest in recent years as they show potential in reducing or preventing the risk of chronic complications for diabetic patients. In this study, annotation of the genome–transcriptome data from tiger milk mushroom (Lignosus rhinocerus, syn. Lignosus rhinocerotis) to PlantCyc enzymes database identified transcripts that are related to anti-diabetic properties, and these include genes that are involved in carotenoid and abscisic acid biosynthesis as well as genes that code for glyoxalase I, catalase-peroxidases, and superoxide dismutases. The existence of these genes suggests that L. rhinocerus may contain bioactive compound(s) with anti-glycation properties that can be exploited for management of diabetic complications. A medium-molecular-weight (MMW) fraction which was obtained from a combination of cold water extraction and Sephadex® G-50 (fine) gel filtration chromatography of L. rhinocerus sclerotia powder was demonstrated to exhibit potent anti-glycation activity. The fraction specifically inhibited the formation of N𝜀-(carboxymethyl)lysine, pentosidine, and other advanced glycation end-product (AGE) structures in a human serum albumin-glucose system, with an IC50 value of 0.001 mg/ml, almost 520 times lower than that of the positive control, aminoguanidine hydrochloride (IC50 = 0.52 mg/ml). Its ability to suppress protein glycation may be partly associated with its strong superoxide anion radical scavenging activity (10.16 ± 0.12 mmol TE/g). Our results suggest that the MMW fraction of L. rhinocerus shows potential to be developed into a potent glycation inhibitor for preventing AGE-mediated diabetic complications.
Collapse
Affiliation(s)
- Hui-Yeng Y Yap
- Department of Oral Biology, Faculty of Dentistry, Mahsa University, Kuala Lumpur, Malaysia.,Medicinal Mushroom Research Group, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nget-Hong Tan
- Medicinal Mushroom Research Group, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Szu-Ting Ng
- LiGNO Biotech Sdn Bhd, Balakong Jaya, Malaysia
| | | | - Shin-Yee Fung
- Medicinal Mushroom Research Group, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Center for Natural Products Research and Drug Discovery, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
121
|
Cheong AM, Jessica Koh JX, Patrick NO, Tan CP, Nyam KL. Hypocholesterolemic Effects of Kenaf Seed Oil, Macroemulsion, and Nanoemulsion in High-Cholesterol Diet Induced Rats. J Food Sci 2018; 83:854-863. [PMID: 29412455 DOI: 10.1111/1750-3841.14038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/23/2017] [Accepted: 12/11/2017] [Indexed: 12/17/2022]
Abstract
This study aimed to evaluate the effect of kenaf seed oil (KSO), kenaf seed oil-in-water macroemulsion (KSOM), kenaf seed oil-in-water nanoemulsions (KSON), and emulsifier mixtures (EM) on serum lipid profile, liver oxidative status, and histopathological changes in high-cholesterol fed rats. Stability and characteristic of KSOM and KSON were carried out prior to in vivo study. Forty-two Sprague-Dawley rats were divided into 7 groups (6 rats each) and induced hypercholesterolemia by feeding high cholesterol diet (HCD) for 14 days prior to treatments. Different treatments were introduced on day 15 to 29 while supplemented with HCD and removal of HCD during treatment on day 30 to 43, except for HCD group. Body weight and serum lipid profiles were measured at 3 different points: after hypercholesterolemia was induced, on day 29, and at the end of the experiment. Relative liver weight, atherogenic index, coronary risk index, and fecal total bile acids were also determined at the end of experiment. KSON showed significantly higher stability than KSOM and FTIR exhibited good encapsulation of KSO after 1.5 years of storage. Serum total cholesterol, low density lipoprotein cholesterol, lipid peroxidation levels in HCD group without treatment were significantly higher compared to normal control group and all treatment groups. All samples demonstrated hypocholesterolemic effect, but KSON exhibited higher efficiency in cholesterol-lowering properties, weight control and decreased liver fat as confirmed by histopathological evaluation. The overall results revealed that the efficacy of different treatments was in descending order of KSON, KSO, KSOM, and EM. PRACTICAL APPLICATION Kenaf seed oil-in-water nanoemulsion (KSON) has the potential to be used as a natural alternative to the synthetic hypocholesterolemic drug in the future. However, larger sample size and clinical trial are needed to confirm on this potential application. In addition, treatment with KSON was suggested to prevent cardiovascular disease and fatty liver.
Collapse
Affiliation(s)
- Ai Mun Cheong
- Dept. of Food Science with Nutrition, Faculty of Applied Sciences, UCSI Univ., 5600, Kuala Lumpur, Malaysia
| | - Jue Xi Jessica Koh
- Dept. of Food Science with Nutrition, Faculty of Applied Sciences, UCSI Univ., 5600, Kuala Lumpur, Malaysia
| | | | - Chin Ping Tan
- Dept. of Food Technology, Faculty of Food Science and Technology, Univ. Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Kar Lin Nyam
- Dept. of Food Science with Nutrition, Faculty of Applied Sciences, UCSI Univ., 5600, Kuala Lumpur, Malaysia
| |
Collapse
|
122
|
Characterization of Essential Oils Obtained from Abruzzo Autochthonous Plants: Antioxidant and Antimicrobial Activities Assessment for Food Application. Foods 2018; 7:foods7020019. [PMID: 29393893 PMCID: PMC5848123 DOI: 10.3390/foods7020019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 11/25/2022] Open
Abstract
In the present study, the essential oils (EOs) of some officinal plants from Abruzzo territory (Italy) were evaluated for their antimicrobial and antioxidant activities and their volatile fraction chemical characterization. The EOs were extracted from Rosmarinus officinalis, Origanum vulgare, Salvia officinalis, Mentha piperita, Allium sativum, Foeniculum vulgare, Satureja montana, Thymus vulgaris and Coriandrum sativum seeds. The antimicrobial activity was screened against thirteen Gram-positive and Gram-negative strains to determine the Minimal Inhibitory Concentration (MIC). The total phenolic content (TPC) and the antioxidant capacity (AOC) were assessed by means of Folin-Ciocâlteu method, and Trolox Equivalent Antioxidant Capacity with 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (TEAC/ABTS), Ferric Reducing Antioxidant Power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays respectively. Among the nine EOs tested, T. vulgaris, S. montana, O. vulgare and C. sativum EOs showed MIC values ranging from 0.625 to 5 μL/mL. The AOC and TPC results for these species were also interesting. The major components for these EOs were thymol for T. vulgaris (44%) and O. vulgare (40%), linalool (77%) for C. sativum, and carvacrol for S. montana (54%). The results allowed the study to establish that these EOs are good candidates for potential application as biopreservatives in foods and/or food manufacture environments.
Collapse
|
123
|
Torres-Martínez R, García-Rodríguez YM, Ríos-Chávez P, Saavedra-Molina A, López-Meza JE, Ochoa-Zarzosa A, Garciglia RS. Antioxidant Activity of the Essential Oil and its Major Terpenes of Satureja macrostema (Moc. and Sessé ex Benth.) Briq. Pharmacogn Mag 2018; 13:S875-S880. [PMID: 29491647 PMCID: PMC5822514 DOI: 10.4103/pm.pm_316_17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/22/2017] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the in vitro antioxidant activity of Satureja macrostema (Moc. and Sessé ex Benth.) Briq. (Lamiaceae) essential oil, a Mexican medicinal plant known as nurite. MATERIALS AND METHODS Fresh aerial parts of S. macrostema plants cultivated in greenhouse for 3 months were subjected to hydrodistillation in a Clevenger apparatus to obtain essential oil. Volatile compounds were identified by gas chromatography (GC) and GC/mass spectrometry. Antioxidant effectiveness of essential oil and its major terpenes of S. macrostema was examined by three different radical scavenging methods: 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and total antioxidant capacity (TAC). The concentrations tested were 0.001, 0.01, 0.1, and 1 mg/mL. RESULTS The major volatile compounds were caryophyllene, limonene, linalool, pulegone, menthone, and thymol. S. macrostema essential oil showed the highest free radical scavenging activity with DPPH and ABTS methods (53.10% and 92.12%, respectively) at 1 mg/mL and 98% with TAC method at 0.1 mg/mL. Thymol exerted the highest antioxidant capacity with 0.1 mg/mL, reaching 83.38%, 96.96%, and 98.57% by DPPH, ABTS, and TAC methods. Caryophyllene, limonene, linalool, pulegone, and menthone exhibited an antioxidant capacity <25% with the DPPH and ABTS methods; however, limonene showed a TAC of 85.41% with 0.01 mg/mL. CONCLUSION The essential oil of S. macrostema and thymol showed a free radical scavenging activity close to that of the synthetic butylated hydroxytoluene. SUMMARY The major volatile compounds of essential oil of Satureja macrostema were caryophyllene, limonene, linalool, pulegone, menthone and thymolThe essential oil of S. macrostema showed a high free radical scavengingThymol exerted the highest antioxidant capacity by DPPH, ABTS and TAC methods. Abbreviations used: GC: Gas Chromatography; DPPH: 2,2-diphenyl-1-picrylhydrazyl; ABTS: 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid; TAC: Total antioxidant capacity.
Collapse
Affiliation(s)
- Rafael Torres-Martínez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia, México
| | | | | | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia, México
| | | | | | - Rafael Salgado Garciglia
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia, México
| |
Collapse
|
124
|
Ramos-Hryb AB, Cunha MP, Kaster MP, Rodrigues ALS. Natural Polyphenols and Terpenoids for Depression Treatment: Current Status. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/b978-0-444-64068-0.00006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
125
|
Hu Y, Zhong X, Liu X, Lou B, Zhou C, Wang X. Comparative transcriptome analysis unveils the tolerance mechanisms of Citrus hystrix in response to 'Candidatus Liberibacter asiaticus' infection. PLoS One 2017; 12:e0189229. [PMID: 29232716 PMCID: PMC5726760 DOI: 10.1371/journal.pone.0189229] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/21/2017] [Indexed: 11/26/2022] Open
Abstract
Citrus Huanglongbing (HLB), a highly devastating citrus disease, is associated with 'Candidatus Liberibacter asiacitus' (CLas), a member of phloem-inhabiting α-proteobacteria. HLB can affect all cultivated citrus and no cure is currently available. Previous studies showed that Kaffir lime (Citrus hystrix), primarily grown in South Asia and Southeast Asia, was tolerant to HLB but the molecular mechanism remains unknown. In this study, gene expression profiling experiments were performed on HLB-tolerant C. hystrix and HLB-susceptible C. sinensis three months after inoculation with CLas using RNA-seq data. Differentially expressed genes (DEGs) in the two citrus cultivars were mainly involved in diverse cellular functions including carbohydrate metabolism, photosynthesis, cell wall metabolism, secondary metabolism, hormone metabolism and oxidation/reduction processes. Notably, starch synthesis and photosynthesis process were not disturbed in CLas-infected C. hystrix. Most of the DEGs involved in cell wall metabolism and secondary metabolism were up-regulated in C. hystrix. In addition, the activation of peroxidases, Cu/Zn-SOD and POD4, may also enhance the tolerance of C. hystrix to CLas. This study provides an insight into the host response of HLB-tolerant citrus cultivar to CLas. C. hystrix is potentially useful for HLB-tolerant/resistant citrus breeding in the future.
Collapse
Affiliation(s)
- Yan Hu
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, P. R. China
- Ganzhou Bureau of Fruit Industry, Ganzhou, Jiangxi, P. R. China
| | - Xi Zhong
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, P. R. China
| | - Xuelu Liu
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, P. R. China
| | - Binghai Lou
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin, Guangxi, P. R. China
| | - Changyong Zhou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, P. R. China
| | - Xuefeng Wang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, P. R. China
| |
Collapse
|
126
|
Gilaburu (Viburnum opulus L.) fruit extract alleviates testis and sperm damages induced by taxane-based chemotherapeutics. Biomed Pharmacother 2017; 95:1284-1294. [DOI: 10.1016/j.biopha.2017.09.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 08/29/2017] [Accepted: 09/12/2017] [Indexed: 11/19/2022] Open
|
127
|
Busatta C, Barbosa J, Cardoso RI, Paroul N, Rodrigues M, Oliveira DD, Oliveira JVD, Cansian RL. Chemical profiles of essential oils of marjoram (Origanum majorana) and oregano (Origanum vulgare) obtained by hydrodistillation and supercritical CO2. JOURNAL OF ESSENTIAL OIL RESEARCH 2017. [DOI: 10.1080/10412905.2017.1340197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Cassiano Busatta
- Departamento de Engenharia de Alimentos, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Brasil
| | - Juliana Barbosa
- Departamento de Engenharia de Alimentos, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Brasil
| | - Rafael Imlau Cardoso
- Departamento de Engenharia de Alimentos, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Brasil
| | - Natalia Paroul
- Departamento de Engenharia de Alimentos, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Brasil
| | - Maria Rodrigues
- Instituto de Química e Geociências, Departamento de Química Orgânica, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, Brasil
| | - Débora de Oliveira
- Departamento de Engenharia Química e de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, Brasil
| | - José Vladimir de Oliveira
- Departamento de Engenharia Química e de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, Brasil
| | - Rogério Luis Cansian
- Departamento de Engenharia de Alimentos, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Brasil
| |
Collapse
|
128
|
Antioxidant and selective anticancer activities of two Euphorbia species in human acute myeloid leukemia. Biomed Pharmacother 2017; 90:375-385. [DOI: 10.1016/j.biopha.2017.03.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 11/18/2022] Open
|
129
|
Pereira JR, Queiroz RF, Siqueira EADE, Brasileiro-Vidal AC, Sant'ana AEG, Silva DM, Affonso PRADEM. Evaluation of cytogenotoxicity, antioxidant and hypoglycemiant activities of isolate compounds from Mansoa hirsuta D.C. (Bignoniaceae). AN ACAD BRAS CIENC 2017; 89:317-331. [PMID: 28423086 DOI: 10.1590/0001-3765201720160585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/03/2017] [Indexed: 11/21/2022] Open
Abstract
Mansoa hirsuta (Bignoniaceae) is a native plant from caatinga in Brazilian semiarid. This plant has been locally used as antimicrobial and hypoglycemiant agents, but their action mechanisms and toxicity remain largely unknown. Therefore, we evaluated the composition and antioxidant, cytoprotective and hypoglycemiant effects of raw extract, fractions and compounds from leaves of M. hirsuta. The cytogenotoxic effects of ursolic and oleanolic acids, the main phytotherapic components of this plant, were assessed. The raw extract and fractions presented steroids, saponins, flavonols, flavanonols, flavanones, xanthones, phenols, tannins, anthocyanins, anthocyanidins and flavonoids. The ethyl acetate fraction inhibited efficiently the cascade of lipid peroxidation while the hydroalcoholic fraction was richer in total phenols and more efficient in capturing 2,2-diphenyl-1-picrylhydrazyl (·DPPH) and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS·+) radicals. The isolated fraction of M. hirsuta also inhibited the α-amylase activity. Cytotoxic effects were absent in both raw extract and fractions while ursolic+oleanolic acids were efficient in protecting cells after exposure to hydrogen peroxide. Moreover, this mixture of acid shad no significant interference on the mitotic index and frequency of nuclear and/or chromosomal abnormalities in Allium cepa test. Therefore, M. hirsuta represents a potential source of phytochemicals against inflammatory and oxidative pathologies, including diabetes.
Collapse
Affiliation(s)
- Joquebede R Pereira
- Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia, Av. José Moreira Sobrinho, s/n, 45208-091 Jequié, BA, Brazil
| | - Raphael F Queiroz
- Departamento de Ciências Naturais, Universidade Estadual do Sudoeste da Bahia, Estrada do Bem Querer, Km 4, 45031-900 Vitória da Conquista, BA, Brazil
| | - Erlânia A DE Siqueira
- Departamento de Genética, Universidade Federal de Pernambuco, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50732-970 Recife, PE, Brazil
| | - Ana Christina Brasileiro-Vidal
- Departamento de Genética, Universidade Federal de Pernambuco, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50732-970 Recife, PE, Brazil
| | - Antônio E G Sant'ana
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Campus A.C. Simões, Av. Lourival de Melo Mota, s/n, Tabuleiro do Martins, 57072-970 Maceió, AL, Brazil
| | - Daniel M Silva
- Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia, Av. José Moreira Sobrinho, s/n, 45208-091 Jequié, BA, Brazil
| | - Paulo R A DE Mello Affonso
- Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Av. José Moreira Sobrinho, s/n, 45208-091 Jequié, BA, Brazil
| |
Collapse
|
130
|
Fernández-Moriano C, González-Burgos E, Divakar PK, Crespo A, Gómez-Serranillos MP. Evaluation of the Antioxidant Capacities and Cytotoxic Effects of Ten Parmeliaceae Lichen Species. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:3169751. [PMID: 28074101 PMCID: PMC5203883 DOI: 10.1155/2016/3169751] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/28/2016] [Accepted: 11/08/2016] [Indexed: 01/15/2023]
Abstract
Parmeliaceae represents the largest and widespread family of lichens and includes species that attract much interest regarding pharmacological activities, due to their production of unique secondary metabolites. The current work aimed to investigate the in vitro antioxidant and cytotoxic activities of the methanol extracts of ten Parmeliaceae species, collected in different continents. Methanol extraction afforded high phenolic content in the extracts. The antioxidant activity displayed by lichens was evaluated through chemical assays, such as the ORAC (Oxygen Radical Absorbance Capacity) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities and the ferric reducing antioxidant power (FRAP). A moderately positive correlation was found between the phenolic content and the antioxidant properties for all the species: R: 0.7430 versus ORAC values, R: 0.7457 versus DPPH scavenging capacity, and R: 0.7056 versus FRAP reducing power. The methanol extract of Flavoparmelia euplecta exhibited the highest ORAC value, the extract of Myelochroa irrugans showed the maximum DPPH scavenging capacity, and Hypotrachyna cirrhata methanol extract demonstrated the highest reducing power. Further, the cytotoxic activity of the ten species was investigated on the human cancer cell lines HepG2 and MCF-7; Myelochroa irrugans exhibited the highest anticancer potential. The pharmacological activities shown here could be attributed to their phytochemical constituents.
Collapse
Affiliation(s)
- C. Fernández-Moriano
- Department of Pharmacology, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - E. González-Burgos
- Department of Pharmacology, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - P. K. Divakar
- Department of Plant Biology II, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - A. Crespo
- Department of Plant Biology II, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - M. P. Gómez-Serranillos
- Department of Pharmacology, Faculty of Pharmacy, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
131
|
Synthesis and Catalytic Evaluation of Silver Nanoparticles Synthesized with Aloysia triphylla Leaf Extract. J CLUST SCI 2016. [DOI: 10.1007/s10876-016-1062-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
132
|
Misra SK, Mukherjee P, Chang HH, Tiwari S, Gryka M, Bhargava R, Pan D. Multi-functionality Redefined with Colloidal Carotene Carbon Nanoparticles for Synchronized Chemical Imaging, Enriched Cellular Uptake and Therapy. Sci Rep 2016; 6:29299. [PMID: 27405011 PMCID: PMC4941412 DOI: 10.1038/srep29299] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/14/2016] [Indexed: 12/22/2022] Open
Abstract
Typically, multiplexing high nanoparticle uptake, imaging, and therapy requires careful integration of three different functions of a multiscale molecular-particle assembly. Here, we present a simpler approach to multiplexing by utilizing one component of the system for multiple functions. Specifically, we successfully synthesized and characterized colloidal carotene carbon nanoparticle (C(3)-NP), in which a single functional molecule served a threefold purpose. First, the presence of carotene moieties promoted the passage of the particle through the cell membrane and into the cells. Second, the ligand acted as a potent detrimental moiety for cancer cells and, finally, the ligands produced optical contrast for robust microscopic detection in complex cellular environments. In comparative tests, C(3)-NP were found to provide effective intracellular delivery that enables both robust detection at cellular and tissue level and presents significant therapeutic potential without altering the mechanism of intracellular action of β-carotene. Surface coating of C(3) with phospholipid was used to generate C(3)-Lipocoat nanoparticles with further improved function and biocompatibility, paving the path to eventual in vivo studies.
Collapse
Affiliation(s)
- Santosh K Misra
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Prabuddha Mukherjee
- Electrical and Computer Engineering, Chemical and Biomolecular Engineering, Chemistry, and Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Huei-Huei Chang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Saumya Tiwari
- Electrical and Computer Engineering, Chemical and Biomolecular Engineering, Chemistry, and Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Mark Gryka
- Electrical and Computer Engineering, Chemical and Biomolecular Engineering, Chemistry, and Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Rohit Bhargava
- Electrical and Computer Engineering, Chemical and Biomolecular Engineering, Chemistry, and Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Dipanjan Pan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
133
|
Kouřimská L, Ešlerová K, Khatri Y. The effect of storage on quality of herbs genus Origanum. POTRAVINARSTVO 2016. [DOI: 10.5219/608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
134
|
Abeer MES. Leaves of Schinus polygamous (Cav.) Cabrera (Anacardiaceae) are a potential source of hepatoprotective and antioxidant phytochemicals. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/jmpr2016.6061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
135
|
Dirks I, Raviv B, Shelef O, Hill A, Amir E, Aidoo MK, Hoefgen B, Rapaport T, Gil H, Geta E, Kochavi A, Cohen I, Rachmilevitch S. Green roofs: what can we learn from desert plants? Isr J Ecol Evol 2016. [DOI: 10.1080/15659801.2016.1140619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Green roofs in the Mediterranean region are often exposed to high levels of radiation, extreme temperatures, and an inconsistent water supply. To withstand these harsh conditions in shallow soils and poorly aerated growth media, plants must be armored with adaptations. Strategies that have evolved in desert plants can play significant roles in the use of plants for green covers. In the following, we will specifically focus on (1) heat and radiation, (2) drought, and (3) salinity. Further, we will discuss (4) interactions between neighboring plants. Finally, we will (5) propose a design for diverse green roofs that includes horticultural and medicinal products and provides diverse habitats. Many desert plants have developed morphological and anatomical features to avoid photo-inhibition, which can be advantageous for growth on green roofs. Plants exhibiting C4photosynthesis or crassulacean acid metabolism (CAM) photosynthesis have a protected hydraulic system that enables growth under dry conditions. Furthermore, dew and high levels of relative humidity can provide reliable water sources under limited precipitation. Halophytes are protected against salinity, ionic specific stress, and nutritional imbalances, characteristics that can be advantageous for green roofs. Under limited space, competition for resources becomes increasingly relevant. Allelopathy can also induce the germination and growth inhibition of neighboring plants. Many desert plants, as a result of their exposure to environmental stress, have developed unique survival adaptations based on secondary metabolites that can be used as pharmaceuticals. A systematic survey of plant strategies to withstand these extreme conditions provides a basis for increasing the number of green roof candidates.
Collapse
Affiliation(s)
- Inga Dirks
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev
| | - Buzi Raviv
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev
| | - Oren Shelef
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev
| | - Amber Hill
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev
| | - Eppel Amir
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev
| | - Moses Kwame Aidoo
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev
| | - Brian Hoefgen
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev
| | - Tal Rapaport
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev
| | - Hila Gil
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev
| | - Endale Geta
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev
| | - Amnon Kochavi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev
| | - Itay Cohen
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev
| | - Shimon Rachmilevitch
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev
| |
Collapse
|
136
|
Song H, Lin J, Zhu X, Chen Q. Developments in high-speed countercurrent chromatography and its applications in the separation of terpenoids and saponins. J Sep Sci 2016; 39:1574-91. [DOI: 10.1002/jssc.201501199] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/13/2016] [Accepted: 02/14/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Hua Song
- Department of Pharmacy, School of Pharmaceutical Science; Xiamen University; Xiamen China
| | - Jianhong Lin
- Department of Pharmacy, School of Pharmaceutical Science; Xiamen University; Xiamen China
| | - Xuan Zhu
- Department of Pharmacy, School of Pharmaceutical Science; Xiamen University; Xiamen China
| | - Qing Chen
- Department of Pharmacy, School of Pharmaceutical Science; Xiamen University; Xiamen China
| |
Collapse
|
137
|
Uquiche E, Garcés F. Recovery and antioxidant activity of extracts from leptocarpha rivularis by supercritical carbon dioxide extraction. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
138
|
Rattanakon S, Ghan R, Gambetta GA, Deluc LG, Schlauch KA, Cramer GR. Abscisic acid transcriptomic signaling varies with grapevine organ. BMC PLANT BIOLOGY 2016; 16:72. [PMID: 27001301 PMCID: PMC4802729 DOI: 10.1186/s12870-016-0763-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/15/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Abscisic acid (ABA) regulates various developmental processes and stress responses over both short (i.e. hours or days) and longer (i.e. months or seasons) time frames. To elucidate the transcriptional regulation of early responses of grapevine (Vitis vinifera) responding to ABA, different organs of grape (berries, shoot tips, leaves, roots and cell cultures) were treated with 10 μM (S)-(+)-ABA for 2 h. NimbleGen whole genome microarrays of Vitis vinifera were used to determine the effects of ABA on organ-specific mRNA expression patterns. RESULTS Transcriptomic analysis revealed 839 genes whose transcript abundances varied significantly in a specific organ in response to ABA treatment. No single gene exhibited the same changes in transcript abundance across all organs in response to ABA. The biochemical pathways affected by ABA were identified using the Cytoscape program with the BiNGO plug-in software. The results indicated that these 839 genes were involved in several biological processes such as flavonoid metabolism, response to reactive oxygen species, response to light, and response to temperature stimulus. ABA affected ion and water transporters, particularly in the root. The protein amino acid phosphorylation process was significantly overrepresented in shoot tips and roots treated with ABA. ABA affected mRNA abundance of genes (CYP707As, UGTs, and PP2Cs) associated with ABA degradation, conjugation, and the ABA signaling pathway. ABA also significantly affected the expression of several transcription factors (e.g. AP2/ERF, MYC/MYB, and bZIP/AREB). The greatest number of significantly differentially expressed genes was observed in the roots followed by cell cultures, leaves, berries, and shoot tips, respectively. Each organ had a unique set of gene responses to ABA. CONCLUSIONS This study examined the short-term effects of ABA on different organs of grapevine. The responses of each organ were unique indicating that ABA signaling varies with the organ. Understanding the ABA responses in an organ-specific manner is crucial to fully understand hormone action and plant responses to water deficit.
Collapse
Affiliation(s)
- Supakan Rattanakon
- />Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| | - Ryan Ghan
- />Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| | - Gregory A. Gambetta
- />Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin (ISVV), EGFV, UMR 1287, F-33140 Villenave d’Ornon, France
| | - Laurent G. Deluc
- />Department of Horticulture, Oregon State University, Corvallis, OR 97331 USA
| | - Karen A. Schlauch
- />Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| | - Grant R. Cramer
- />Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| |
Collapse
|
139
|
Tabit FT, Komolafe NT, Tshikalange TE, Nyila MA. Phytochemical Constituents and Antioxidant and Antimicrobial Activity of Selected Plants Used Traditionally as a Source of Food. J Med Food 2016; 19:324-9. [PMID: 26987025 DOI: 10.1089/jmf.2015.0099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many indigenous plants have also been used as a source of food and medicine in many African rural communities in the past. The study investigated the antimicrobial activity, phytochemical constituent, and antioxidant activity of selected traditional plants used traditionally as a source of food and medicine. The methanol and water extracts of different plant parts were analyzed for phytochemicals using standard phytochemical screening reagents while the broth microdilution assays were used to analyze antimicrobial activities. Alkaloids, phenols, flavonoids, saponins, tannins, and terpenes were found in one or more of the plant extracts, and all the plant extracts demonstrated scavenging activities. The back extracts of Sclerocarya birrea and the leaf extracts of Garcinia livingstonei exhibit the best antioxidant activities, while the water and methanol back extracts of S. birrea and G. livingstonei were the most active against all the tested foodborne bacteria.
Collapse
Affiliation(s)
- Frederick Tawi Tabit
- 1 Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa , Florida, South Africa
| | - Naomi Tope Komolafe
- 1 Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa , Florida, South Africa
| | | | - Monde Alfred Nyila
- 1 Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa , Florida, South Africa
| |
Collapse
|
140
|
Hajagos-Tóth J, Hódi Á, Seres AB, Gáspár R. Effects of d- and l-limonene on the pregnant rat myometrium in vitro. Croat Med J 2016; 56:431-8. [PMID: 26526880 PMCID: PMC4655928 DOI: 10.3325/cmj.2015.56.431] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aim To study the effects of d- and l-limonene on pregnant rat myometrial contractility in vitro, and investigate how these effects are modified by other agents. D- and l-limonene (10−13-10−8 M) caused myometrial contraction in a dose-dependent manner. Methods Contractions of uterine rings from 22-day-pregnant rats were measured in an organ bath in the presence of d- or l-limonene (10−13-10−8 M) and nifedipine (10−8 M), tetraethyl-ammonium (10−3 M), theophylline (10−5 M), or paxilline (10−5 M). Uterine cyclic adenosine monophosphate (cAMP) level was detected by enzyme immunoassay. Oxidative damage was induced by methylglyoxal (3 × 10−2 M) and the alteration was measured via noradrenaline (1 × 10−9 to 3 × 10−5 M) -induced contractions. Results Pre-treatment with nifedipine (10−8 M), tetraethylammonium (10−3 M), and theophylline (10−5 M) attenuated the contracting effect of d- and l-limonene, while in the presence of paxilline (10−5 M) d- and l-limonene were ineffective. The two enantiomers decreased the myometrial cAMP level, but after paxilline pretreatment the cAMP level was not altered compared with the control value. Additionally, l-limonene (10−6 M) diminished consequences of oxidative damage caused by methylglyoxal (3 × 10−2 M) on contractility, whereas d-limonene was ineffective. Conclusion Our findings suggest that l-limonene has an antioxidant effect and that both d-and l-limonene cause myometrial contraction through activation of the A2A receptor and opening of the voltage-gated Ca2+ channel. It is possible that limonene-containing products increase the pregnant uterus contractility and their use should be avoided during pregnancy.
Collapse
Affiliation(s)
| | | | | | - Róbert Gáspár
- Róbert Gáspár, Szeged, H-6701, P.O. Box 121, Hungary,
| |
Collapse
|
141
|
Rydlová J, Jelínková M, Dušek K, Dušková E, Vosátka M, Püschel D. Arbuscular mycorrhiza differentially affects synthesis of essential oils in coriander and dill. MYCORRHIZA 2016; 26:123-31. [PMID: 26070450 DOI: 10.1007/s00572-015-0652-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/03/2015] [Indexed: 05/14/2023]
Abstract
Research on the role of arbuscular mycorrhizal fungi (AMF) in the synthesis of essential oils (EOs) by aromatic plants has seldom been conducted in field-relevant conditions, and then, only limited spectra of EO constituents have been analyzed. The effect was investigated of inoculation with AMF on the synthesis of a wide range of EO in two aromatic species, coriander (Coriandrum sativum) and dill (Anethum graveolens), in a garden experiment under outdoor conditions. Plants were grown in 4-l pots filled with soil, which was either γ-irradiated (eliminating native AMF) or left non-sterile (containing native AMF), and inoculated or not with an isolate of Rhizophagus irregularis. AMF inoculation significantly stimulated EO synthesis in both plant species. EO synthesis (total EO and several individual constituents) was increased in dill in all mycorrhizal treatments (containing native and/or inoculated AMF) compared to non-mycorrhizal plants. In contrast, EO concentrations in coriander (total EO and most constituents) were increased only in the treatment combining both inoculated and native AMF. A clear positive effect of AMF on EO synthesis was found for both aromatic plants, which was, however, specific for each plant species and modified by the pool of AMF present in the soil.
Collapse
Affiliation(s)
- Jana Rydlová
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Marcela Jelínková
- Crop Research Institute, Šlechtitelů 11, 783 71, Olomouc - Holice, Czech Republic
| | - Karel Dušek
- Crop Research Institute, Šlechtitelů 11, 783 71, Olomouc - Holice, Czech Republic
| | - Elena Dušková
- Crop Research Institute, Šlechtitelů 11, 783 71, Olomouc - Holice, Czech Republic
| | - Miroslav Vosátka
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, 252 43, Průhonice, Czech Republic
| | - David Püschel
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, 252 43, Průhonice, Czech Republic.
| |
Collapse
|
142
|
Riveros CG, Nepote V, Grosso NR. Thyme and basil essential oils included in edible coatings as a natural preserving method of oilseed kernels. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:183-191. [PMID: 25640285 DOI: 10.1002/jsfa.7080] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/04/2014] [Accepted: 01/06/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Sunflower seeds are susceptible to developing rancidity and off-flavours through lipid oxidation. Edible coatings and essential oils have proven antioxidant properties in different food products. The purpose of this study was to evaluate the combined effect of using an edible coating and thyme and basil essential oils to preserve the chemical and sensory quality parameters of roasted sunflower seeds during storage. RESULTS 50% DPPH inhibitory concentration (IC50) values of 0.278 and 0.0997 µg mL(-1) were observed for thyme and basil, respectively. On storage day 40, peroxide values were 80.68, 70.28, 68.43, 49.31 and 33.87 mEq O2 kg(-1) in roasted sunflower seeds (RS), roasted sunflower seeds coated with carboxymethyl cellulose (CMC) (RS-CMC), roasted sunflower seeds coated with CMC added with basil (RS-CMC-A), thyme (RS-CMC-T) and butylated hydroxytoluene (RS-CMC-BHT), respectively. RS-CMC-T and RS-CMC-BHT presented the lowest peroxide values, conjugated dienes and p-anisidine values during storage. RS-CMC-BHT, RS-CMC-T, and RS-CMC-A showed the lowest oxidized and cardboard flavour intensity ratings. On storage day 40, roasted sunflower flavour intensity ratings were higher in RS-CMC-T and RS-CMC-A. CONCLUSIONS Thyme and basil essential oils added to the CMC coating improved the sensory stability of this product during storage, but only thyme essential oil increased their chemical stability.
Collapse
Affiliation(s)
- Cecilia G Riveros
- Química Biológica, FCA-UNC, IMBIV-CONICET, X5016GCA Córdoba, Argentina
| | - Valeria Nepote
- IMBIV-CONICET, ICTA, Facultad de Ciencias Exactas, Físicas y Naturales, UNC, X5016GCA Córdoba, Argentina
| | - Nelson R Grosso
- Química Biológica, FCA-UNC, IMBIV-CONICET, X5016GCA Córdoba, Argentina
| |
Collapse
|
143
|
Bouzenna H, Samout N, Amani E, Mbarki S, Tlili Z, Rjeibi I, Elfeki A, Talarmin H, Hfaiedh N. Protective Effects of Pinus halepensis L. Essential Oil on Aspirin-induced Acute Liver and Kidney Damage in Female Wistar Albino Rats. J Oleo Sci 2016; 65:701-12. [DOI: 10.5650/jos.ess15287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hafsia Bouzenna
- Laboratory of Environmental Physiopathology, Valorization of Bioactive Molecules and Mathematical Modeling, Faculty of Sciences of Sfax
- Laboratory Animal Eco Physiology, Faculty of Sciences of Gafsa
- EA 1274, Faculté de Médecine et Sciences de la Santé, Université de Bretagne Occidentale
| | - Noura Samout
- Laboratory of Environmental Physiopathology, Valorization of Bioactive Molecules and Mathematical Modeling, Faculty of Sciences of Sfax
- Laboratory Animal Eco Physiology, Faculty of Sciences of Gafsa
| | - Etaya Amani
- Laboratory of Environmental Physiopathology, Valorization of Bioactive Molecules and Mathematical Modeling, Faculty of Sciences of Sfax
- Laboratory Animal Eco Physiology, Faculty of Sciences of Gafsa
| | - Sakhria Mbarki
- Laboratory of Environmental Physiopathology, Valorization of Bioactive Molecules and Mathematical Modeling, Faculty of Sciences of Sfax
- Laboratory Animal Eco Physiology, Faculty of Sciences of Gafsa
| | - Zied Tlili
- Department of Quantitative and Computational Medthods, the Higher Institute of Business Administration of Gafsa, Campus Universitaire Sidi Ahmed Zarroug
| | - Ilhem Rjeibi
- Laboratory Animal Eco Physiology, Faculty of Sciences of Gafsa
| | - Abdelfattah Elfeki
- Laboratory of Environmental Physiopathology, Valorization of Bioactive Molecules and Mathematical Modeling, Faculty of Sciences of Sfax
| | - Hélène Talarmin
- EA 1274, Faculté de Médecine et Sciences de la Santé, Université de Bretagne Occidentale
| | - Najla Hfaiedh
- Laboratory of Environmental Physiopathology, Valorization of Bioactive Molecules and Mathematical Modeling, Faculty of Sciences of Sfax
- Laboratory Animal Eco Physiology, Faculty of Sciences of Gafsa
| |
Collapse
|
144
|
Tan JBL, Lim YY. Antioxidant and tyrosinase inhibition activity of the fertile fronds and rhizomes of three different Drynaria species. BMC Res Notes 2015; 8:468. [PMID: 26395256 PMCID: PMC4580379 DOI: 10.1186/s13104-015-1414-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 09/07/2015] [Indexed: 11/28/2022] Open
Abstract
Background For generations, the rhizomes of Drynaria ferns have been used as traditional medicine in Asia. Despite this, the bioactivities of Drynaria rhizomes and leaves have rarely been studied scientifically. Methods This study evaluates the antioxidant properties of the methanolic extracts of the fertile fronds and rhizomes from three species in this genus: Drynaria quercifolia, Drynaria rigidula and Drynaria sparsisora. The phenolic and flavonoid contents of the samples were respectively quantified with the total phenolic content (TPC) and total flavonoid content (TFC) assays, while the antioxidant activities were determined via measuring the DPPH radical scavenging activity (FRS), ferric reducing power (FRP), ferrous ion chelating (FIC) activity and lipid peroxidation inhibition (LPI). The tyrosinase inhibition activity of all three species was also reported. Results The fertile fronds of D. quercifolia were found to exhibit the highest overall TPC (2939 ± 469 mg GAE/100 g) and antioxidant activity amongst all the samples, and the fertile fronds of D. quercifolia and D. rigidula exhibited superior TPC and FRP compared to their rhizomes, despite only the latter being widely used in traditional medicine. The fronds of D. quercifolia had high tyrosinase inhibition activity (56.6 ± 5.0 %), but most of the Drynaria extracts showed unexpected tyrosinase enhancement instead, particularly for D. sparsisora’s fronds. Conclusion The high bioactivity of the fertile fronds in the fern species indicate that there is value in further research on the fronds of ferns which are commonly used mostly, or only, for their rhizomes.
Collapse
Affiliation(s)
- Joash Ban Lee Tan
- School of Science, Monash University Malaysia, Bandar Sunway, 46150, Petaling Jaya, Selangor, Malaysia.
| | - Yau Yan Lim
- School of Science, Monash University Malaysia, Bandar Sunway, 46150, Petaling Jaya, Selangor, Malaysia.
| |
Collapse
|
145
|
Tu PTB, Tawata S. Anti-Oxidant, Anti-Aging, and Anti-Melanogenic Properties of the Essential Oils from Two Varieties of Alpinia zerumbet. Molecules 2015; 20:16723-40. [PMID: 26389869 PMCID: PMC6332289 DOI: 10.3390/molecules200916723] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/03/2015] [Accepted: 09/10/2015] [Indexed: 11/16/2022] Open
Abstract
Here, we investigated the anti-oxidant and anti-aging effects of essential oils (EOs) from the leaves of Alpinia zerumbet (tairin and shima) in vitro and anti-melanogenic effects in B16F10 melanoma cells. The anti-oxidant activities were performed with 2,2-diphenyl-1-picrylhydrazyl (DPPH); 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS); nitric oxide; singlet oxygen; hydroxyl radical scavenging; and xanthine oxidase. The inhibitory activities against collagenase, elastase, hyaluronidase, and tyrosinase were employed for anti-aging. The anti-melanogenic was assessed in B16F10 melanoma cells by melanin synthesis and intracellular tyrosinase inhibitory activity. The volatile chemical composition of the essential oil was analyzed with gas chromatography-mass spectrometry (GC/MS). The EO was a complex mixture mainly consisting of monoterpenes and sesquiterpenes. The results revealed that tairin and shima EOs showed strong anti-oxidant activities against DPPH and nitric oxide, hydroxyl radical scavenging activity, and xanthine oxidase inhibition. Compared to shima EO; tairin EO exhibited strong anti-aging activity by inhibiting collagenase, tyrosinase, hyaluronidase, and elastase (IC50 = 11 ± 0.1; 25 ± 1.2; 83 ± 1.6; and 213 ± 2 μg/mL, respectively). Both EOs inhibited intracellular tyrosinase activity; thus, reducing melanin synthesis. These results suggest that tairin EO has better anti-oxidant/anti-aging activity than shima EO, but both are equally anti-melanogenic.
Collapse
Affiliation(s)
- Pham Thi Be Tu
- Department of Bioscience and Biotechnology, The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan.
| | - Shinkichi Tawata
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Senbaru 1, Nishihara-cho, Okinawa 903-0129, Japan.
| |
Collapse
|
146
|
Aliferis KA, Chamoun R, Jabaji S. Metabolic responses of willow (Salix purpurea L.) leaves to mycorrhization as revealed by mass spectrometry and (1)H NMR spectroscopy metabolite profiling. FRONTIERS IN PLANT SCIENCE 2015; 6:344. [PMID: 26042135 PMCID: PMC4434919 DOI: 10.3389/fpls.2015.00344] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 04/30/2015] [Indexed: 05/20/2023]
Abstract
UNLABELLED The root system of most terrestrial plants form symbiotic interfaces with arbuscular mycorrhizal fungi (AMF), which are important for nutrient cycling and ecosystem sustainability. The elucidation of the undergoing changes in plants' metabolism during symbiosis is essential for understanding nutrient acquisition and for alleviation of soil stresses caused by environmental cues. Within this context, we have undertaken the task of recording the fluctuation of willow (Salix purpurea L.) leaf metabolome in response to AMF inoculation. The development of an advanced metabolomics/bioinformatics protocol employing mass spectrometry (MS) and (1)H NMR analyzers combined with the in-house-built metabolite library for willow (http://willowmetabolib. RESEARCH mcgill.ca/index.html) are key components of the research. Analyses revealed that AMF inoculation of willow causes up-regulation of various biosynthetic pathways, among others, those of flavonoid, isoflavonoid, phenylpropanoid, and the chlorophyll and porphyrin pathways, which have well-established roles in plant physiology and are related to resistance against environmental stresses. The recorded fluctuation in the willow leaf metabolism is very likely to provide AMF-inoculated willows with a significant advantage compared to non-inoculated ones when they are exposed to stresses such as, high levels of soil pollutants. The discovered biomarkers of willow response to AMF inoculation and corresponding pathways could be exploited in biomarker-assisted selection of willow cultivars with superior phytoremediation capacity or genetic engineering programs.
Collapse
Affiliation(s)
| | | | - Suha Jabaji
- Department of Plant Science, McGill UniversitySainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
147
|
Participation of the TRP channel in the cardiovascular effects induced by carvacrol in normotensive rat. Vascul Pharmacol 2015; 67-69:48-58. [PMID: 25869504 DOI: 10.1016/j.vph.2015.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 02/12/2015] [Accepted: 02/16/2015] [Indexed: 11/21/2022]
Abstract
Carvacrol has been described as an agonist/antagonist of different transient receptor potential (TRP) channels and voltage-dependent calcium channels (Cavs). The aim of this study was to evaluate the role of Cav and TRP channels following carvacrol stimulation. Initially, in mesenteric artery rings carvacrol relaxed phenylephrine-induced contractions. Furthermore, carvacrol inhibited contraction elicited by CaCl2 in depolarizing nominally without Ca2+ medium and antagonized the contractions induced by S(-)-Bay K 8644 and inhibited Ca2+ currents indicating the inhibition of Ca2+ influx through L-type Cav. Additionally, carvacrol antagonized the contractions induced by CaCl2 in the presence of nifedipine/Cyclopiazonic acid/phenylephrine or nifedipine/Cyclopiazonic acid/KCl 60, suggesting a possible inhibition of calcium influx by store operated channels (SOCs), receptor operated channels (ROCs) and/or TRP channels. Interestingly, among the TRP channel blockers used, the effect induced by carvacrol was attenuated by Mg2+ and potentiated by La3+ and Gd3+, suggesting that TRP channels are involved in relaxation induced by carvacrol. Monoterpene also induced hypotension and bradycardia in non-anesthetized normotensive rats and negative inotropic and chronotropic effects. In conclusion, these results suggest that the hypotensive effect of carvacrol is probably due to bradycardia and a peripheral vasodilatation that involves, at least, the inhibition of the Ca2+ influx through Cav and TRP channels.
Collapse
|
148
|
Tarvainen M, Nuora A, Quirin KW, Kallio H, Yang B. Effects of CO2 plant extracts on triacylglycerol oxidation in Atlantic salmon during cooking and storage. Food Chem 2015; 173:1011-21. [DOI: 10.1016/j.foodchem.2014.10.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/27/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022]
|
149
|
The Structure–Activity Relationships of Plant Secondary Metabolites with Antimicrobial, Free Radical Scavenging and Inhibitory Activity toward Selected Enzymes. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/b978-0-444-63473-3.00007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
150
|
Sitzmann J, Habegger R, Schnitzler WH, Grassmann J. Comparative Analysis of Antioxidant Activities of FourteenMenthaEssential Oils and Their Components. Chem Biodivers 2014; 11:1978-89. [DOI: 10.1002/cbdv.201400100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Indexed: 11/05/2022]
|