101
|
Dodd M, Marquez-Curtis L, Janowska-Wieczorek A, Hortelano G. Sustained expression of coagulation factor IX by modified cord blood-derived mesenchymal stromal cells. J Gene Med 2014; 16:131-42. [DOI: 10.1002/jgm.2769] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/12/2014] [Accepted: 06/16/2014] [Indexed: 01/07/2023] Open
Affiliation(s)
- Megan Dodd
- School of Biomedical Engineering; McMaster University; Hamilton ON Canada
- Department of Biomedical Engineering; Jimma Institute of Technology; Jimma Ethiopia
| | - Leah Marquez-Curtis
- Centre for Innovation (formerly Research and Development); Canadian Blood Services; Edmonton AB Canada
| | - Anna Janowska-Wieczorek
- Centre for Innovation (formerly Research and Development); Canadian Blood Services; Edmonton AB Canada
- Department of Medicine; University of Alberta; Edmonton AB Canada
| | - Gonzalo Hortelano
- School of Biomedical Engineering; McMaster University; Hamilton ON Canada
- Department of Pathology & Molecular Medicine; McMaster University; Hamilton ON Canada
- Department of Biology & Chemistry, School of Science and Technology; Nazarbayev University; Astana Republic of Kazakhstan
| |
Collapse
|
102
|
Le Sage V, Mouland AJ, Valiente-Echeverría F. Roles of HIV-1 capsid in viral replication and immune evasion. Virus Res 2014; 193:116-29. [PMID: 25036886 DOI: 10.1016/j.virusres.2014.07.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 02/07/2023]
Abstract
The primary roles of the human immunodeficiency virus type 1 (HIV-1) capsid (CA) protein are to encapsidate and protect the viral RNA genome. It is becoming increasing apparent that HIV-1 CA is a multifunctional protein that acts early during infection to coordinate uncoating, reverse transcription, nuclear import of the pre-integration complex and integration of double stranded viral DNA into the host genome. Additionally, numerous recent studies indicate that CA is playing a crucial function in HIV-1 immune evasion. Here we summarize the current knowledge on HIV-1 CA and its interactions with the host cell to promote infection. The fact that CA engages in a number of different protein-protein interactions with the host makes it an interesting target for the development of new potent antiviral agents.
Collapse
Affiliation(s)
- Valerie Le Sage
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute, Jewish General Hospital, Montréal, Québec H3T1E2, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute, Jewish General Hospital, Montréal, Québec H3T1E2, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada; Department of Microbiology and Immunology, McGill University, Montréal, Québec, H3A2B4, Canada
| | - Fernando Valiente-Echeverría
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute, Jewish General Hospital, Montréal, Québec H3T1E2, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada.
| |
Collapse
|
103
|
Kymäläinen H, Appelt JU, Giordano FA, Davies AF, Ogilvie CM, Ahmed SG, Laufs S, Schmidt M, Bode J, Yáñez-Muñoz RJ, Dickson G. Long-term episomal transgene expression from mitotically stable integration-deficient lentiviral vectors. Hum Gene Ther 2014; 25:428-42. [PMID: 24483952 DOI: 10.1089/hum.2013.172] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nonintegrating gene delivery vectors have an improved safety profile compared with integrating vectors, but transgene retention is problematic as nonreplicating episomes are progressively and rapidly diluted out through cell division. We have developed an integration-deficient lentiviral vector (IDLV) system generating mitotically stable episomes capable of long-term transgene expression. We found that a transient cell cycle arrest at the time of transduction with IDLVs resulted in 13-45% of Chinese hamster ovary (CHO) cells expressing the transgene for over 100 cell generations in the absence of selection. The use of a scaffold/matrix attachment region did not result in improved episomal retention in this system, and episomes did not form after transduction with adeno-associated viral or minicircle vectors under the same conditions. Investigations into the episomal status of the vector genome using (1) linear amplification-mediated polymerase chain reaction followed by deep sequencing of vector-genome junctions, (2) Southern blotting, and (3) fluorescent in situ hybridization strongly suggest that the vector is not integrated in the vast majority of cells. In conclusion, we have developed an IDLV procedure generating mitotically stable episomes capable of long-term transgene expression. The application of this approach to stem cell populations could significantly improve the safety profile of a range of stem and progenitor cell gene therapies.
Collapse
Affiliation(s)
- Hanna Kymäläinen
- 1 School of Biological Sciences, Royal Holloway-University of London , Egham, Surrey TW20 0EX, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Larochelle A, Dunbar CE. Hematopoietic stem cell gene therapy:assessing the relevance of preclinical models. Semin Hematol 2014; 50:101-30. [PMID: 24014892 DOI: 10.1053/j.seminhematol.2013.03.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
105
|
Abstract
UNLABELLED Previous studies showed that short hairpin RNA (shRNA) knockdown of the RNA lariat debranching enzyme (DBR1) led to a decrease in the production of HIV-1 cDNA. To further characterize this effect, DBR1 shRNA was introduced into GHOST-R5X4 cells, followed by infection at a multiplicity near unity with HIV-1 or an HIV-1-derived vector. DNA and RNA were isolated from whole cells and from cytoplasmic and nuclear fractions at different times postinfection. Inhibition of DBR1 had little or no effect on the formation of minus-strand strong-stop cDNA but caused a significant reduction in the formation of intermediate and full-length cDNA. Moreover, minus-strand strong-stop DNA rapidly accumulated in the cytoplasm in the first 2 h of infection but shifted to the nuclear fraction by 6 h postinfection. Regardless of DBR1 inhibition, greater than 95% of intermediate-length and full-length HIV-1 cDNA was found in the nuclear fraction at all time points. Thus, under these experimental conditions, HIV-1 cDNA synthesis was initiated in the cytoplasm and completed in the nucleus or perinuclear region of the infected cell. When nuclear import of the HIV-1 reverse transcription complex was blocked by expressing a truncated form of the mRNA cleavage and polyadenylation factor CPSF6, the completion of HIV-1 vector cDNA synthesis was detected in the cytoplasm, where it was not inhibited by DBR1 knockdown. Refinement of the cell fractionation procedure indicated that the completion of reverse transcription occurred both within nuclei and in the perinuclear region. Taken together the results indicate that in infections at a multiplicity near 1, HIV-1 reverse transcription is completed in the nucleus or perinuclear region of the infected cell, where it is dependent on DBR1. When nuclear transport is inhibited, reverse transcription is completed in the cytoplasm in a DBR1-independent manner. Thus, there are at least two mechanisms of HIV-1 reverse transcription that require different factors and occur in different intracellular locations. IMPORTANCE This study shows that HIV-1 reverse transcription starts in the cytoplasm but is completed in or on the surface of the nucleus. Moreover, we show that nuclear reverse transcription is dependent on the activity of the human RNA lariat debranchng enzyme (DBR1), while cytoplasmic reverse transcription is not. These findings may provide new avenues for inhibiting HIV-1 replication and therefore may lead to new medicines for treating HIV-1-infected individuals.
Collapse
|
106
|
El Asmi F, Maroui MA, Dutrieux J, Blondel D, Nisole S, Chelbi-Alix MK. Implication of PMLIV in both intrinsic and innate immunity. PLoS Pathog 2014; 10:e1003975. [PMID: 24586174 PMCID: PMC3937294 DOI: 10.1371/journal.ppat.1003975] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/21/2014] [Indexed: 12/12/2022] Open
Abstract
PML/TRIM19, the organizer of nuclear bodies (NBs), has been implicated in the antiviral response to diverse RNA and DNA viruses. Several PML isoforms generated from a single PML gene by alternative splicing, share the same N-terminal region containing the RBCC/tripartite motif but differ in their C-terminal sequences. Recent studies of all the PML isoforms reveal the specific functions of each. The knockout of PML renders mice more sensitive to vesicular stomatitis virus (VSV). Here we report that among PML isoforms (PMLI to PMLVIIb), only PMLIII and PMLIV confer resistance to VSV. Unlike PMLIII, whose anti-VSV activity is IFN-independent, PMLIV can act at two stages: it confers viral resistance directly in an IFN-independent manner and also specifically enhances IFN-β production via a higher activation of IRF3, thus protecting yet uninfected cells from oncoming infection. PMLIV SUMOylation is required for both activities. This demonstrates for the first time that PMLIV is implicated in innate immune response through enhanced IFN-β synthesis. Depletion of IRF3 further demonstrates the dual activity of PMLIV, since it abrogated PMLIV-induced IFN synthesis but not PMLIV-induced inhibition of viral proteins. Mechanistically, PMLIV enhances IFN-β synthesis by regulating the cellular distribution of Pin1 (peptidyl-prolyl cis/trans isomerase), inducing its recruitment to PML NBs where both proteins colocalize. The interaction of SUMOylated PMLIV with endogenous Pin1 and its recruitment within PML NBs prevents the degradation of activated IRF3, and thus potentiates IRF3-dependent production of IFN-β. Whereas the intrinsic antiviral activity of PMLIV is specific to VSV, its effect on IFN-β synthesis is much broader, since it affects a key actor of innate immune pathways. Our results show that, in addition to its intrinsic anti-VSV activity, PMLIV positively regulates IFN-β synthesis in response to different inducers, thus adding PML/TRIM19 to the growing list of TRIM proteins implicated in both intrinsic and innate immunity.
Collapse
Affiliation(s)
- Faten El Asmi
- INSERM UMR-S 1124, Paris, France
- Université Paris Descartes, Paris, France
| | - Mohamed Ali Maroui
- INSERM UMR-S 1124, Paris, France
- Université Paris Descartes, Paris, France
| | - Jacques Dutrieux
- INSERM UMR-S 1124, Paris, France
- Université Paris Descartes, Paris, France
| | | | - Sébastien Nisole
- INSERM UMR-S 1124, Paris, France
- Université Paris Descartes, Paris, France
| | | |
Collapse
|
107
|
Neuronal phenotype dependency of agonist-induced internalization of the 5-HT(1A) serotonin receptor. J Neurosci 2014; 34:282-94. [PMID: 24381289 DOI: 10.1523/jneurosci.0186-13.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRI) are aimed at increasing brain 5-HT tone; however, this expected effect has a slow onset after starting SSRI treatment because of initial activation of 5-HT(1A) autoreceptor-mediated negative feedback of 5-HT release. After chronic SSRI treatment, 5-HT(1A) autoreceptors desensitize, which allows 5-HT tone elevation. Because 5-HT(1A) receptor (5-HT(1A)R) internalization has been proposed as a possible mechanism underlying 5-HT(1A) autoreceptor desensitization, we examined whether this receptor could internalize under well controlled in vitro conditions in the LLC-CPK1 cell line and in raphe or hippocampal neurons from rat embryos. To this goal, cells were transfected with recombinant lentiviral vectors encoding N-terminal tagged 5-HT(1A)R, and exposed to various pharmacological conditions. Constitutive endocytosis and plasma membrane recycling of tagged-5-HT(1A)R was observed in LLC-PK1 cells as well as in neurons. Acute exposure (for 1 h) to the full 5-HT(1A)R agonists, 5-HT and 5-carboxamido-tryptamine, but not the partial agonist 8-OH-DPAT, triggered internalization of tagged 5-HT(1A)R in serotonergic neurons only. In contrast, sustained exposure (for 24 h) to all agonists induced tagged-5-HT(1A)R endocytosis in raphe serotonergic neurons and a portion of hippocampal neurons, but not LLC-PK1 cells and partial agonist displayed an effect only in serotonergic neurons. In all cases, agonist-induced tagged 5-HT(1A)R endocytosis was prevented by the 5-HT(1A)R antagonist, WAY-100635, which was inactive on its own. These data showed that agonist-induced 5-HT(1A)R internalization does exist in neurons and depends on agonist efficacy and neuronal phenotype. Its differential occurrence in serotonergic neurons supports the idea that 5-HT(1A)R internalization might underlie 5-HT(1A) autoreceptor desensitization under SSRI antidepressant therapy.
Collapse
|
108
|
Klinger PP, Schubert U. The ubiquitin–proteasome system in HIV replication: potential targets for antiretroviral therapy. Expert Rev Anti Infect Ther 2014; 3:61-79. [PMID: 15757458 DOI: 10.1586/14787210.3.1.61] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Since the discovery of HIV approximately 20 years ago, more than 60 million individuals have been infected, and AIDS still remains one of the most devastating diseases humankind has ever faced. Unfortunately, there is little hope that an effective vaccine will be developed in the near future. Current antiretroviral treatment is based on drugs that either target the viral enzymes (protease and reverse transcriptase) or the attachment and entry of the virus. Although the introduction of highly active antiretroviral therapy in the mid-1990s has led to a profound reduction in HIV-related morbidity and mortality, the complete eradication of the virus from infected individuals has never been achieved. In addition, these antiviral drugs can induce serious adverse effects, particularly when administered in combination over prolonged treatment periods. A further drawback to these treatments is that with the high mutation rate of HIV, drug-resistant mutants are evolving, particularly when antiretroviral treatment only suppresses virus replication to marginal levels in latently infected cells making up the virus reservoirs in vivo. Cellular genes have much lower mutation rates, and drug-mediated modulation of specific cellular pathways represents an attractive antiviral strategy. Recent findings showing that proteasome inhibitors interfere with budding, maturation and infectivity of HIV have triggered intensive investigation of the hitherto unappreciated function of the ubiquitin-proteasome system in HIV replication. It was also observed that, like several other retroviruses, HIV-1 virions contain a small amount of mono-ubiquitinylated Gag proteins. Currently, two E3-type ubiquitin ligases, in addition to one E3-like protein, have been identified as regulators of HIV budding. These ligases might represent interesting targets for therapeutic intervention.
Collapse
Affiliation(s)
- Patricia P Klinger
- University of Erlangen-Nuremberg, Institute of Clinical and Molecular Virology, Schlossgarten 4, 91054 Erlangen, Germany
| | | |
Collapse
|
109
|
Haffar O, Bukrinsky M. Nuclear translocation as a novel target for anti-HIV drugs. Expert Rev Anti Infect Ther 2014; 3:41-50. [PMID: 15757456 DOI: 10.1586/14787210.3.1.41] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During recent years, remarkable progress has been achieved in the treatment of patients infected with HIV. This progress involves not only the improvement of previously known drugs but also the introduction of new classes of anti-HIV agents. Currently, drugs targeting virus entry, reverse transcription, integration and maturation are either in clinical use or in the late stages of clinical development. Nonetheless, the high mutation rate of the virus and toxicity of the drugs, which become problematic during prolonged treatment regimens characteristic of anti-HIV therapy, drive the necessity to produce new drugs that will allow physicians to keep the virus at bay in patients on lifelong anti-HIV therapy. Ideally, such drugs would target a new step in the HIV life cycle, thus avoiding crossresistance with older compounds. One such new target for anti-HIV therapy is nuclear translocation--a process critical for HIV replication. In this article, the authors will review recent literature on the mechanisms of HIV nuclear import and will describe compounds that inhibit this step of HIV replication.
Collapse
Affiliation(s)
- Omar Haffar
- International Therapeutics, Inc., 600 Broadway Medical Center, Suite 510, Seattle, WA 98122, USA.
| | | |
Collapse
|
110
|
Abstract
Numerous viral vectors have been developed for the delivery of transgenes to specific target cells. For persistent transgene expression, vectors based on retroviruses are attractive delivery vehicles because of their ability to stably integrate their DNA into the host cell genome. Initially, vectors based on simple retroviruses were the vector of choice for such applications. However, these vectors can only transduce actively dividing cells. Therefore, much interest has turned to retroviral vectors based on the lentivirus genus because of their ability to transduce both dividing and non-dividing cells. The best characterized lentiviral vectors are derived from the human immunodeficiency virus type 1 (HIV-1). This chapter describes the basic features of the HIV-1 replication cycle and the many improvements reported for the lentiviral vector systems to increase the safety and efficiency. We also provide practical information on the production of HIV-1 derived lentiviral vectors, the cell transduction protocol and a method to determine the transduction titers of a lentiviral vector.
Collapse
Affiliation(s)
- Ying Poi Liu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
111
|
Abstract
In order to study the molecular pathways of Parkinson's disease (PD) and to develop novel therapeutic strategies, scientific investigators rely on animal models. The identification of PD-associated genes has led to the development of genetic PD models as an alternative to toxin-based models. Viral vector-mediated loco-regional gene delivery provides an attractive way to express transgenes in the central nervous system. Several vector systems based on various viruses have been developed. In this chapter, we give an overview of the different viral vector systems used for targeting the CNS. Further, we describe the different viral vector-based PD models currently available based on overexpression strategies for autosomal dominant genes such as α-synuclein and LRRK2, and knockout or knockdown strategies for autosomal recessive genes, such as parkin, DJ-1, and PINK1. Models based on overexpression of α-synuclein are the most prevalent and extensively studied, and therefore the main focus of this chapter. Many efforts have been made to increase the expression levels of α-synuclein in the dopaminergic neurons. The best α-synuclein models currently available have been developed from a combined approach using newer AAV serotypes and optimized vector constructs, production, and purification methods. These third-generation α-synuclein models show improved face and predictive validity, and therefore offer the possibility to reliably test novel therapeutics.
Collapse
|
112
|
Calderón-Gómez E, Fillatreau S. Utilization of a lentiviral system for the generation of B cells with regulatory properties. Methods Mol Biol 2014; 1190:105-13. [PMID: 25015276 DOI: 10.1007/978-1-4939-1161-5_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
B cells are classically considered for their unique capacity to produce antibodies. Besides this, B cells can also present antigen, costimulate T cells, and secrete cytokines. Recent studies have demonstrated that activated B cells could regulate immunity by the secretion of anti-inflammatory cytokines. Because of their capacity to inhibit immune responses, B cells became of interest as a potential vehicle for the treatment of autoimmune disorders via cell-based therapy. Different approaches have been developed to empower B cells with regulatory properties. An attractive strategy involves their genetic engineering to enforce their expression of suppressive genes. This can be achieved using retroviral vectors. However, most retroviral vectors require prior activation of the B cells for transduction, and the administration of activated B cells may lead to unpredictable outcomes in recipients, including to an enhancement of immune responses. In contrast, resting B cells are poorly immunogenic and therefore safer for the suppression of undesired immune responses in adoptive cell therapy. In this chapter, we describe an approach to generate genetically modified resting B cells with lentiviral vectors using a protocol that is rapid, simple, and neither requires nor induces activation of B cells.
Collapse
Affiliation(s)
- Elisabeth Calderón-Gómez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villarroel 170, 08036, Barcelona, Spain
| | | |
Collapse
|
113
|
Kantor B, Bailey RM, Wimberly K, Kalburgi SN, Gray SJ. Methods for gene transfer to the central nervous system. ADVANCES IN GENETICS 2014; 87:125-97. [PMID: 25311922 DOI: 10.1016/b978-0-12-800149-3.00003-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gene transfer is an increasingly utilized approach for research and clinical applications involving the central nervous system (CNS). Vectors for gene transfer can be as simple as an unmodified plasmid, but more commonly involve complex modifications to viruses to make them suitable gene delivery vehicles. This chapter will explain how tools for CNS gene transfer have been derived from naturally occurring viruses. The current capabilities of plasmid, retroviral, adeno-associated virus, adenovirus, and herpes simplex virus vectors for CNS gene delivery will be described. These include both focal and global CNS gene transfer strategies, with short- or long-term gene expression. As is described in this chapter, an important aspect of any vector is the cis-acting regulatory elements incorporated into the vector genome that control when, where, and how the transgene is expressed.
Collapse
Affiliation(s)
- Boris Kantor
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina, Columbia, SC, USA
| | - Rachel M Bailey
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Keon Wimberly
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sahana N Kalburgi
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Steven J Gray
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
114
|
Simeon RL, Chen Z. A screen for genetic suppressor elements of hepatitis C virus identifies a supercharged protein inhibitor of viral replication. PLoS One 2013; 8:e84022. [PMID: 24391867 PMCID: PMC3877138 DOI: 10.1371/journal.pone.0084022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/18/2013] [Indexed: 12/30/2022] Open
Abstract
Genetic suppressor elements (GSEs) are biomolecules derived from a gene or genome of interest that act as transdominant inhibitors of biological functions presumably by disruption of critical biological interfaces. We exploited a cell death reporter cell line for hepatitis C virus (HCV) infection, n4mBid, to develop an iterative selection/enrichment strategy for the identification of anti-HCV GSEs. Using this approach, a library of fragments of an HCV genome was screened for sequences that suppress HCV infection. A 244 amino acid gene fragment, B1, was strongly enriched after 5 rounds of selection. B1 derives from a single-base frameshift of the enhanced green fluorescent protein (eGFP) which was used as a filler during fragment cloning. B1 has a very high net positive charge of 43 at neutral pH and a high charge-to-mass (kDa) ratio of 1.5. We show that B1 expression specifically inhibits HCV replication. In addition, five highly positively charged B1 fragments produced from progressive truncation at the C-terminus all retain the ability to inhibit HCV, suggesting that a high positive charge, rather than a particular motif in B1, likely accounts for B1's anti-HCV activity. Another supercharged protein, +36GFP, was also found to strongly inhibit HCV replication when added to cells at the time of infection. This study reports a new methodology for HCV inhibitor screening and points to the anti-HCV potential of positively charged proteins/peptides.
Collapse
Affiliation(s)
- Rudo L. Simeon
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Zhilei Chen
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States of America
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
115
|
Lahaye X, Satoh T, Gentili M, Cerboni S, Conrad C, Hurbain I, El Marjou A, Lacabaratz C, Lelièvre JD, Manel N. The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells. Immunity 2013; 39:1132-42. [PMID: 24269171 DOI: 10.1016/j.immuni.2013.11.002] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/08/2013] [Indexed: 01/23/2023]
Abstract
HIV-2 is less pathogenic for humans than HIV-1 and might provide partial cross-protection from HIV-1-induced pathology. Although both viruses replicate in the T cells of infected patients, only HIV-2 replicates efficiently in dendritic cells (DCs) and activates innate immune pathways. How HIV is sensed in DC is unknown. Capsid-mutated HIV-2 revealed that sensing by the host requires viral cDNA synthesis, but not nuclear entry or genome integration. The HIV-1 capsid prevented viral cDNA sensing up to integration, allowing the virus to escape innate recognition. In contrast, DCs sensed capsid-mutated HIV-1 and enhanced stimulation of T cells in the absence of productive infection. Finally, we found that DC sensing of HIV-1 and HIV-2 required the DNA sensor cGAS. Thus, the HIV capsid is a determinant of innate sensing of the viral cDNA by cGAS in dendritic cells. This pathway might potentially be harnessed to develop effective vaccines against HIV-1.
Collapse
Affiliation(s)
- Xavier Lahaye
- Institut Curie, 12 rue Lhomond, 75005 Paris, France; INSERM U932, 12 rue Lhomond, 75005 Paris, France
| | - Takeshi Satoh
- Institut Curie, 12 rue Lhomond, 75005 Paris, France; INSERM U932, 12 rue Lhomond, 75005 Paris, France
| | - Matteo Gentili
- Institut Curie, 12 rue Lhomond, 75005 Paris, France; INSERM U932, 12 rue Lhomond, 75005 Paris, France
| | - Silvia Cerboni
- Institut Curie, 12 rue Lhomond, 75005 Paris, France; INSERM U932, 12 rue Lhomond, 75005 Paris, France
| | - Cécile Conrad
- Institut Curie, 12 rue Lhomond, 75005 Paris, France; INSERM U932, 12 rue Lhomond, 75005 Paris, France
| | - Ilse Hurbain
- Institut Curie, 12 rue Lhomond, 75005 Paris, France; CNRS UMR144, 12 rue Lhomond, 75005 Paris, France
| | - Ahmed El Marjou
- Institut Curie, 12 rue Lhomond, 75005 Paris, France; CNRS UMR144, 12 rue Lhomond, 75005 Paris, France
| | - Christine Lacabaratz
- INSERM U955, Vaccine Research Institute, Université Paris Est Créteil, Faculté de Médecine, 94010 Créteil, France
| | - Jean-Daniel Lelièvre
- INSERM U955, Vaccine Research Institute, Université Paris Est Créteil, Faculté de Médecine, 94010 Créteil, France; AP-HP, Groupe Henri-Mondor Albert-Chenevier, Immunologie clinique, 94010 Créteil, France
| | - Nicolas Manel
- Institut Curie, 12 rue Lhomond, 75005 Paris, France; INSERM U932, 12 rue Lhomond, 75005 Paris, France.
| |
Collapse
|
116
|
Nuclear trafficking of retroviral RNAs and Gag proteins during late steps of replication. Viruses 2013; 5:2767-95. [PMID: 24253283 PMCID: PMC3856414 DOI: 10.3390/v5112767] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 10/31/2013] [Accepted: 11/12/2013] [Indexed: 11/16/2022] Open
Abstract
Retroviruses exploit nuclear trafficking machinery at several distinct stages in their replication cycles. In this review, we will focus primarily on nucleocytoplasmic trafficking events that occur after the completion of reverse transcription and proviral integration. First, we will discuss nuclear export of unspliced viral RNA transcripts, which serves two essential roles: as the mRNA template for the translation of viral structural proteins and as the genome for encapsidation into virions. These full-length viral RNAs must overcome the cell's quality control measures to leave the nucleus by co-opting host factors or encoding viral proteins to mediate nuclear export of unspliced viral RNAs. Next, we will summarize the most recent findings on the mechanisms of Gag nuclear trafficking and discuss potential roles for nuclear localization of Gag proteins in retrovirus replication.
Collapse
|
117
|
Hutson TH, Foster E, Moon LDF, Yáñez-Muñoz RJ. Lentiviral vector-mediated RNA silencing in the central nervous system. Hum Gene Ther Methods 2013; 25:14-32. [PMID: 24090197 DOI: 10.1089/hgtb.2013.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
RNA silencing is an established method for investigating gene function and has attracted particular interest because of the potential for generating RNA-based therapeutics. Using lentiviral vectors as an efficient delivery system that offers stable, long-term expression in postmitotic cells further enhances the applicability of an RNA-based gene therapy for the CNS. In this review we provide an overview of both lentiviral vectors and RNA silencing along with design considerations for generating lentiviral vectors capable of RNA silencing. We go on to describe the current preclinical data regarding lentiviral vector-mediated RNA silencing for CNS disorders and discuss the concerns of side effects associated with lentiviral vectors and small interfering RNAs and how these might be mitigated.
Collapse
Affiliation(s)
- Thomas H Hutson
- 1 Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London , Guy's Campus, London SE1 1UL, United Kingdom
| | | | | | | |
Collapse
|
118
|
Sourisseau M, Goldman O, He W, Gori JL, Kiem HP, Gouon-Evans V, Evans MJ. Hepatic cells derived from induced pluripotent stem cells of pigtail macaques support hepatitis C virus infection. Gastroenterology 2013; 145:966-969.e7. [PMID: 23891978 PMCID: PMC3805793 DOI: 10.1053/j.gastro.2013.07.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 12/21/2022]
Abstract
The narrow species tropism of hepatitis C virus (HCV) limits animal studies. We found that pigtail macaque (Macaca nemestrina) hepatic cells derived from induced pluripotent stem cells support the entire HCV life cycle, although infection efficiency was limited by defects in the HCV cell entry process. This block was overcome by either increasing occludin expression, complementing the cells with human CD81, or infecting them with a strain of HCV with less restricted requirements for CD81. Using this system, we can modify viral and host cell genetics to make pigtail macaques a suitable, clinically relevant model for the study of HCV infection.
Collapse
Affiliation(s)
- Marion Sourisseau
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Orit Goldman
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Wenqian He
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Jennifer L. Gori
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA, 98109
| | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA, 98109,Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA, 98195,Department of Pathology, University of Washington, 815 Mercer Street, Seattle, WA, USA, 98109
| | - Valerie Gouon-Evans
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029,Corresponding Authors: Valerie Gouon-Evans, 212-241-4033, , Matthew J. Evans, 212-241-5576,
| | - Matthew J. Evans
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029,Corresponding Authors: Valerie Gouon-Evans, 212-241-4033, , Matthew J. Evans, 212-241-5576,
| |
Collapse
|
119
|
Viral and cellular requirements for the nuclear entry of retroviral preintegration nucleoprotein complexes. Viruses 2013; 5:2483-511. [PMID: 24103892 PMCID: PMC3814599 DOI: 10.3390/v5102483] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/26/2013] [Accepted: 10/03/2013] [Indexed: 02/07/2023] Open
Abstract
Retroviruses integrate their reverse transcribed genomes into host cell chromosomes as an obligate step in virus replication. The nuclear envelope separates the chromosomes from the cell cytoplasm during interphase, and different retroviral groups deal with this physical barrier in different ways. Gammaretroviruses are dependent on the passage of target cells through mitosis, where they are believed to access chromosomes when the nuclear envelope dissolves for cell division. Contrastingly, lentiviruses such as HIV-1 infect non-dividing cells, and are believed to enter the nucleus by passing through the nuclear pore complex. While numerous virally encoded elements have been proposed to be involved in HIV-1 nuclear import, recent evidence has highlighted the importance of HIV-1 capsid. Furthermore, capsid was found to be responsible for the viral requirement of various nuclear transport proteins, including transportin 3 and nucleoporins NUP153 and NUP358, during infection. In this review, we describe our current understanding of retroviral nuclear import, with emphasis on recent developments on the role of the HIV-1 capsid protein.
Collapse
|
120
|
New insights in the role of nucleoporins: a bridge leading to concerted steps from HIV-1 nuclear entry until integration. Virus Res 2013; 178:187-96. [PMID: 24051001 DOI: 10.1016/j.virusres.2013.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/01/2013] [Accepted: 09/02/2013] [Indexed: 11/22/2022]
Abstract
Human Immunodeficiency virus type 1 (HIV-1), as well as many other viruses that depend on nuclear entry for replication, has developed an evolutionary strategy to dock and translocate through the nuclear pore complex (NPC). In particular, the nuclear pore is not a static window but it is a dynamic structure involved in many vital cellular functions, as nuclear import/export, gene regulation, chromatin organization and genome stability. This review aims to shed light on viral mechanisms developed by HIV-1 to usurp cellular machinery to favor viral gene expression and their replication. In particular, it will be reviewed both what is known and what is speculated about the link between HIV translocation through the nuclear pore and the proviral integration in the host chromatin.
Collapse
|
121
|
Schambach A, Zychlinski D, Ehrnstroem B, Baum C. Biosafety features of lentiviral vectors. Hum Gene Ther 2013; 24:132-42. [PMID: 23311447 DOI: 10.1089/hum.2012.229] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Over the past decades, lentiviral vectors have evolved as a benchmark tool for stable gene transfer into cells with a high replicative potential. Their relatively flexible genome and ability to transduce many forms of nondividing cells, combined with the potential for cell-specific pseudotyping, provides a rich resource for numerous applications in experimental platforms and therapeutic settings. Here, we give an overview of important biosafety features of lentiviral vectors, with detailed discussion of (i) the principles of the lentiviral split-genome design used for the construction of packaging cells; (ii) the relevance of modifications introduced into the lentiviral long terminal repeat (deletion of enhancer/promoter sequences and introduction of insulators); (iii) the basic features of mRNA processing, including the Rev/Rev-responsive element (RRE) interaction and the modifications of the 3' untranslated region of lentiviral vectors with various post-transcriptional regulatory elements affecting transcriptional termination, polyadenylation, and differentiation-specific degradation of mRNA; and (iv) the characteristic integration pattern with the associated risk of transcriptional interference with cellular genes. We conclude with considerations regarding the importance of cell targeting via envelope modifications. Along this course, we address canonical biosafety issues encountered with any type of viral vector: the risks of shedding, mobilization, germline transmission, immunogenicity, and insertional mutagenesis.
Collapse
Affiliation(s)
- Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, D-30625 Hannover, Germany
| | | | | | | |
Collapse
|
122
|
Kono K, Takeda E, Tsutsui H, Kuroishi A, Hulme AE, Hope TJ, Nakayama EE, Shioda T. Slower uncoating is associated with impaired replicative capability of simian-tropic HIV-1. PLoS One 2013; 8:e72531. [PMID: 23967315 PMCID: PMC3742594 DOI: 10.1371/journal.pone.0072531] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/10/2013] [Indexed: 11/19/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) productively infects only humans and chimpanzees, but not Old World monkeys, such as rhesus and cynomolgus (CM) monkeys. To establish a monkey model of HIV-1/AIDS, several HIV-1 derivatives have been constructed. We previously generated a simian-tropic HIV-1 that replicates efficiently in CM cells. This virus encodes a capsid protein (CA) with SIVmac239-derived loops between α-helices 4 and 5 (L4/5) and between α-helices 6 and 7 (L6/7), along with the entire vif from SIVmac239 (NL-4/5S6/7SvifS). These SIVmac239-derived sequences were expected to protect the virus from HIV-1 restriction factors in monkey cells. However, the replicative capability of NL-4/5S6/7SvifS in human cells was severely impaired. By long-term cultivation of human CEM-SS cells infected with NL-4/5S6/7SvifS, we succeeded in partially rescuing the impaired replicative capability of the virus in human cells. This adapted virus encoded a G-to-E substitution at the 116th position of the CA (NL-4/5SG116E6/7SvifS). In the work described here, we explored the mechanism by which the replicative capability of NL-4/5S6/7SvifS was impaired in human cells. Quantitative analysis (by real-time PCR) of viral DNA synthesis from infected cells revealed that NL-4/5S6/7SvifS had a major defect in nuclear entry. Mutations in CA are known to affect viral core stability and result in deleterious effects in HIV-1 infection; therefore, we measured the kinetics of uncoating of these viruses. The uncoating of NL-4/5S6/7SvifS was significantly slower than that of wild type HIV-1 (WT), whereas the uncoating of NL-4/5SG116E6/7SvifS was similar to that of WT. Our results suggested that the lower replicative capability of NL-4/5S6/7SvifS in human cells was, at least in part, due to the slower uncoating of this virus.
Collapse
Affiliation(s)
- Ken Kono
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Eri Takeda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hiromi Tsutsui
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Ayumu Kuroishi
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Amy E. Hulme
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Thomas J. Hope
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Emi E. Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
123
|
Quantitative analysis of the time-course of viral DNA forms during the HIV-1 life cycle. Retrovirology 2013; 10:87. [PMID: 23938039 PMCID: PMC3766001 DOI: 10.1186/1742-4690-10-87] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/02/2013] [Indexed: 01/06/2023] Open
Abstract
Background HIV-1 DNA is found both integrated in the host chromosome and unintegrated in various forms: linear (DNAL) or circular (1-LTRc, 2-LTRc or products of auto-integration). Here, based on pre-established strategies, we extended and characterized in terms of sensitivity two methodologies for quantifying 1-LTRc and DNAL, respectively, the latter being able to discriminate between unprocessed or 3′-processed DNA. Results Quantifying different types of viral DNA genome individually provides new information about the dynamics of all viral DNA forms and their interplay. For DNAL, we found that the 3′-processing reaction was efficient during the early stage of the replication cycle. Moreover, strand-transfer inhibitors (Dolutegravir, Elvitegravir, Raltegravir) affected 3′-processing differently. The comparisons of 2-LTRc accumulation mediated by either strand-transfer inhibitors or catalytic mutation of integrase indicate that 3′-processing efficiency did not influence the total 2-LTRc accumulation although the nature of the LTR-LTR junction was qualitatively affected. Finally, a significant proportion of 1-LTRc was generated concomitantly with reverse transcription, although most of the 1-LTRc were produced in the nucleus. Conclusions We describe the fate of viral DNA forms during HIV-1 infection. Our study reveals the interplay between various forms of the viral DNA genome, the distribution of which can be affected by mutations and by inhibitors of HIV-1 viral proteins. In the latter case, the quantification of 3′-processed DNA in infected cells can be informative about the mechanisms of future integrase inhibitors directly in the cell context.
Collapse
|
124
|
Lim TT, Geisen C, Hesse M, Fleischmann BK, Zimmermann K, Pfeifer A. Lentiviral vector mediated thymidine kinase expression in pluripotent stem cells enables removal of tumorigenic cells. PLoS One 2013; 8:e70543. [PMID: 23936225 PMCID: PMC3728319 DOI: 10.1371/journal.pone.0070543] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 06/20/2013] [Indexed: 01/12/2023] Open
Abstract
Embryonic stem cells (ES) and induced pluripotent stem (iPS) cells represent promising tools for cell-based therapies and regenerative medicine. Nevertheless, implantation of ES cell derived differentiated cells holds the risk of teratoma formation due to residual undifferentiated cells. In order to tackle this problem, we used pluripotent stem cells consisting of ES and iPS cells of mouse genetically modified by lentiviral vectors (LVs) carrying herpes simplex virus thymidine kinase (HSV-TK) under the control of different promoters of pluripotency genes. Cells expressing TK in turn are eliminated upon administration of the prodrug ganciclovir (GCV). Our aim was to study the conditions required for a safe mechanism to clear residual undifferentiated cells but using low MOIs of lentiviruses to reduce the risk of insertional mutagenesis. Our in vitro data demonstrated that TK expression in pluripotent stem cells upon treatment with GCV led to elimination of undifferentiated cells. However, introduction of hygromycin resistance in the LV transduced ES cells followed by pre-selection with hygromycin and GCV treatment was required to abolish undifferentiated cells. Most importantly, transplantation of pre-selected ES cells that had been transduced with low MOI LV in mice resulted in no teratoma development after GCV treatment in vivo. Taken together, our data show that pre-selection of ES cells prior to in vivo application is necessary if vector integration events are minimized. The study presented here gives rise to safer use of pluripotent stem cells as promising cell sources in regenerative medicine in the future.
Collapse
Affiliation(s)
- Tiong-Ti Lim
- Institute of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
- NRW International Graduate Research School Biotech, PHARMA, Bonn, Germany
| | - Caroline Geisen
- Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Michael Hesse
- Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Bernd K. Fleischmann
- NRW International Graduate Research School Biotech, PHARMA, Bonn, Germany
- Institute of Physiology I, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - Katrin Zimmermann
- Institute of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
- NRW International Graduate Research School Biotech, PHARMA, Bonn, Germany
- * E-mail: (AP); (KZ)
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
- NRW International Graduate Research School Biotech, PHARMA, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
- * E-mail: (AP); (KZ)
| |
Collapse
|
125
|
Structural and functional insights into foamy viral integrase. Viruses 2013; 5:1850-66. [PMID: 23872492 PMCID: PMC3738965 DOI: 10.3390/v5071850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/12/2013] [Accepted: 07/12/2013] [Indexed: 02/06/2023] Open
Abstract
Successful integration of retroviral DNA into the host chromosome is an essential step for viral replication. The process is mediated by virally encoded integrase (IN) and orchestrated by 3'-end processing and the strand transfer reaction. In vitro reaction conditions, such as substrate specificity, cofactor usage, and cellular binding partners for such reactions by the three distinct domains of prototype foamy viral integrase (PFV-IN) have been described well in several reports. Recent studies on the three-dimensional structure of the interacting complexes between PFV-IN and DNA, cofactors, binding partners, or inhibitors have explored the mechanistic details of such interactions and shown its utilization as an important target to develop anti-retroviral drugs. The presence of a potent, non-transferable nuclear localization signal in the PFV C-terminal domain extends its use as a model for investigating cellular trafficking of large molecular complexes through the nuclear pore complex and also to identify novel cellular targets for such trafficking. This review focuses on recent advancements in the structural analysis and in vitro functional aspects of PFV-IN.
Collapse
|
126
|
Zhao Y, Chen F, Chen S, Liu X, Cui M, Dong Q. The Parkinson's disease-associated gene PINK1
protects neurons from ischemic damage by decreasing mitochondrial translocation of the fission promoter Drp1. J Neurochem 2013; 127:711-22. [PMID: 23772688 DOI: 10.1111/jnc.12340] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 06/12/2013] [Accepted: 06/12/2013] [Indexed: 01/28/2023]
Affiliation(s)
- Yanxin Zhao
- Department of Neurology; The 10th People's Hospital; Tongji University; Shanghai China
| | - Fangzhe Chen
- Department of Neurology; Huashan hospital; State Key Laboratory of Medical Neurobiology; Fudan University; Shanghai China
| | - Shufen Chen
- Department of Neurology; Huashan hospital; State Key Laboratory of Medical Neurobiology; Fudan University; Shanghai China
| | - Xueyuan Liu
- Department of Neurology; The 10th People's Hospital; Tongji University; Shanghai China
| | - Mei Cui
- Department of Neurology; Huashan hospital; State Key Laboratory of Medical Neurobiology; Fudan University; Shanghai China
| | - Qiang Dong
- Department of Neurology; Huashan hospital; State Key Laboratory of Medical Neurobiology; Fudan University; Shanghai China
| |
Collapse
|
127
|
Semple-Rowland SL, Berry J. Use of lentiviral vectors to deliver and express bicistronic transgenes in developing chicken embryos. Methods 2013; 66:466-73. [PMID: 23816789 DOI: 10.1016/j.ymeth.2013.06.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/16/2013] [Accepted: 06/21/2013] [Indexed: 12/16/2022] Open
Abstract
The abilities of lentiviral vectors to carry large transgenes (∼8kb) and to efficiently infect and integrate these genes into the genomes of both dividing and non-dividing cells make them ideal candidates for transport of genetic material into cells and tissues. Given the properties of these vectors, it is somewhat surprising that they have seen only limited use in studies of developing tissues and in particular of the developing nervous system. Over the past several years, we have taken advantage of the large capacity of these vectors to explore the expression characteristics of several dual promoter and 2A peptide bicistronic transgenes in developing chick neural retina, with the goal of identifying transgene designs that reliably express multiple proteins in infected cells. Here we summarize the activities of several of these transgenes in neural retina and provide detailed methodologies for packaging lentivirus and delivering the virus into the developing neural tubes of chicken embryos in ovo, procedures that have been optimized over the course of several years of use in our laboratory. Conditions to hatch injected embryos are also discussed. The chicken-specific techniques will be of highest interest to investigators using avian embryos, development and packaging of lentiviral vectors that reliably express multiple proteins in infected cells should be of interest to all investigators whose experiments demand manipulation and expression of multiple proteins in developing cells and tissues.
Collapse
Affiliation(s)
- Susan L Semple-Rowland
- Department of Neuroscience, University of Florida, McKnight Brain Institute, Gainesville, FL 32610 0244, United States.
| | - Jonathan Berry
- Department of Neuroscience, University of Florida, McKnight Brain Institute, Gainesville, FL 32610 0244, United States.
| |
Collapse
|
128
|
Bai J, Li J, Mao Q. Construction of a single lentiviral vector containing tetracycline-inducible Alb-uPA for transduction of uPA expression in murine hepatocytes. PLoS One 2013; 8:e61412. [PMID: 23626683 PMCID: PMC3634076 DOI: 10.1371/journal.pone.0061412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/08/2013] [Indexed: 01/22/2023] Open
Abstract
The SCID-beige/Alb-uPA mouse model is currently the best small animal model available for viral hepatitis infection studies [1]. But the construction procedure is often costly and time-consuming due to logistic and technical difficulties. Thus, the widespread application of these chimeric mice has been hampered [2]. In order to optimize the procedure, we constructed a single lentiviral vector containing modified tetracycline-regulated system to control Alb-uPA gene expression in the cultured hepatocytes. The modified albumin promoter controlled by tetracycline (Tet)-dependent transactivator rtTA2S-M2 was integrated into a lentiviral vector. The full-length uPA cDNA was inserted into another lentiviral vector containing PTight, a modified Tet-responsive promoter. Two vectors were then digested by specific enzymes and ligated by DNA ligase 4. The ligated DNA fragment was inserted into a modified pLKO.1 cloning vector and the final lentiviral vector was then successfully constructed. H2.35 cell, Lewis lung carcinoma, primary kidney, primary hepatic interstitial and CT26 cells were infected with recombinant lentivirus at selected MOI. The expression of uPA induced by DOX was detectable only in the infected H2.35 cells, which was confirmed by real-time PCR and Western blot analysis. Moreover, DOX induced uPA expression on the infected H2.35 cells in a dose-dependent manner. The constructed single lentiviral vector has many biological advantages, including that the interested gene expression under "Tet-on/off" system is controlled by DOX in a dose-depending fashion only in murine liver cells, which provides an advantage for simplifying generation of conditional transgenic animals.
Collapse
Affiliation(s)
- Jiasi Bai
- Institute of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jungang Li
- Institute of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qing Mao
- Institute of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
129
|
The importance of becoming double-stranded: Innate immunity and the kinetic model of HIV-1 central plus strand synthesis. Virology 2013; 441:1-11. [PMID: 23561461 DOI: 10.1016/j.virol.2013.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 03/14/2013] [Indexed: 12/23/2022]
Abstract
Central initiation of plus strand synthesis is a conserved feature of lentiviruses and certain other retroelements. This complication of the standard reverse transcription mechanism produces a transient "central DNA flap" in the viral cDNA, which has been proposed to mediate its subsequent nuclear import. This model has assumed that the important feature is the flapped DNA structure itself rather than the process that produces it. Recently, an alternative kinetic model was proposed. It posits that central plus strand synthesis functions to accelerate conversion to the double-stranded state, thereby helping HIV-1 to evade single-strand DNA-targeting antiviral restrictions such as APOBEC3 proteins, and perhaps to avoid innate immune sensor mechanisms. The model is consistent with evidence that lentiviruses must often synthesize their cDNAs when dNTP concentrations are limiting and with data linking reverse transcription and uncoating. There may be additional kinetic advantages for the artificial genomes of lentiviral gene therapy vectors.
Collapse
|
130
|
Abstract
Even now, most human cell lines used in research are derived from tumor cells. They are still widely used because they grow well in vitro and so far have helped answering several basic biological questions. However, as modern biology moves into more sophisticated areas, scientists now need human cell lines closer to normal primary cells and further from transformed cancerous cells. The recent identification of cellular genes involved in cell cycling and senescence, together with the development of molecular tools capable of cleanly integrating transgenes into the genome of target cells, have moved the frontier of genetic engineering. In this chapter, we present a detailed hands-on protocol, based on lentivirus-derived vectors and a combination of two native cellular genes that has proven very efficient in generating immortal cell lines from several human primary cells, while preserving most of their original properties.
Collapse
Affiliation(s)
- Patrick Salmon
- Department of Neurosciences, Geneva School of Medicine (CMU), Geneva, Switzerland.
| |
Collapse
|
131
|
Temporal analysis of hepatitis C virus cell entry with occludin directed blocking antibodies. PLoS Pathog 2013; 9:e1003244. [PMID: 23555257 PMCID: PMC3605286 DOI: 10.1371/journal.ppat.1003244] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/28/2013] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of liver disease worldwide. A better understanding of its life cycle, including the process of host cell entry, is important for the development of HCV therapies and model systems. Based on the requirement for numerous host factors, including the two tight junction proteins claudin-1 (CLDN1) and occludin (OCLN), HCV cell entry has been proposed to be a multi-step process. The lack of OCLN-specific inhibitors has prevented a comprehensive analysis of this process. To study the role of OCLN in HCV cell entry, we created OCLN mutants whose HCV cell entry activities could be inhibited by antibodies. These mutants were expressed in polarized HepG2 cells engineered to support the complete HCV life cycle by CD81 and miR-122 expression and synchronized infection assays were performed to define the kinetics of HCV cell entry. During these studies, OCLN utilization differences between HCV isolates were observed, supporting a model that HCV directly interacts with OCLN. In HepG2 cells, both HCV cell entry and tight junction formation were impaired by OCLN silencing and restored by expression of antibody regulatable OCLN mutant. Synchronized infection assays showed that glycosaminoglycans and SR-BI mediated host cell binding, while CD81, CLDN1 and OCLN all acted sequentially at a post-binding stage prior to endosomal acidification. These results fit a model where the tight junction region is the last to be encountered by the virion prior to internalization. HCV is a serious public health problem. Although new treatments have recently become available, it is clear that effective therapies will require combinations of inhibitors targeting diverse stages of the viral life cycle. While the HCV cell entry process is considered a suitable antiviral target, a lack of understanding of this process has hampered the development of inhibitors. It is widely accepted that HCV cell entry requires many cellular proteins that are used in a nonredundant and sequential manner. However, a critical piece of information supporting this model – the determination of when OCLN is used during this process – could not be addressed due to a lack of reagents that specifically target this protein. In this study, we derive mutant OCLN proteins whose HCV cell entry activity can be blocked by incubation with an antibody. These mutants allowed us to show that OCLN is used very late in the HCV cell entry process, which fits a model in which tight junction components are required later in the process than more exposed factors. Furthermore, our studies suggest that HCV virions may interact directly with OCLN, which has thus far not been demonstrated experimentally.
Collapse
|
132
|
Schweitzer CJ, Jagadish T, Haverland N, Ciborowski P, Belshan M. Proteomic analysis of early HIV-1 nucleoprotein complexes. J Proteome Res 2013; 12:559-72. [PMID: 23282062 PMCID: PMC3564510 DOI: 10.1021/pr300869h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
After entry into the cell, the early steps of the human immunodeficiency virus type 1 (HIV-1) replication cycle are mediated by two functionally distinct nucleoprotein complexes, the reverse transcription complex (RTC) and preintegration complex (PIC). These two unique viral complexes are responsible for the conversion of the single-stranded RNA genome into double-stranded DNA, transport of the DNA into the nucleus, and integration of the viral DNA into the host cell chromosome. Prior biochemical analyses suggest that these complexes are large and contain multiple undiscovered host cell factors. In this study, functional HIV-1 RTCs and PICs were partially purified by velocity gradient centrifugation and fractionation, concentrated, trypsin digested, and analyzed by LC-MS/MS. A total of seven parallel infected and control biological replicates were completed. Database searches were performed with Proteome Discoverer and a comparison of the HIV-1 samples to parallel uninfected control samples was used to identify unique cellular factors. The analysis produced a total data set of 11055 proteins. Several previously characterized HIV-1 factors were identified, including XRCC6, TFRC, and HSP70. The presence of XRCC6 was confirmed in infected fractions and shown to be associated with HIV-1 DNA by immunoprecipitation-PCR experiments. Overall, the analysis identified 94 proteins unique in the infected fractions and 121 proteins unique to the control fractions with ≥ 2 protein assignments. An additional 54 and 52 were classified as enriched in the infected and control samples, respectively, based on a 3-fold difference in total Proteome Discoverer probability score. The differential expression of several candidate proteins was validated by Western blot analysis. This study contributes additional novel candidate proteins to the growing published bioinformatic data sets of proteins that contribute to HIV-1 replication.
Collapse
MESH Headings
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Nuclear/genetics
- Antigens, Nuclear/metabolism
- Cell Line
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Cell Nucleus/virology
- Centrifugation, Density Gradient
- Chromatography, Liquid
- DNA, Viral/genetics
- DNA, Viral/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Profiling
- HIV-1/genetics
- HIV-1/metabolism
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/metabolism
- Host-Pathogen Interactions
- Humans
- Ku Autoantigen
- Lymphocytes/metabolism
- Lymphocytes/virology
- Nucleoproteins/genetics
- Nucleoproteins/metabolism
- Protein Binding
- Proteome/genetics
- Proteome/metabolism
- Receptors, Transferrin/genetics
- Receptors, Transferrin/metabolism
- Reverse Transcription
- Tandem Mass Spectrometry
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virus Integration
Collapse
Affiliation(s)
| | - Teena Jagadish
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Nicole Haverland
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
- The Nebraska Center for Virology, University of Nebraska, Lincoln, NE
| | - Michael Belshan
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE
- The Nebraska Center for Virology, University of Nebraska, Lincoln, NE
| |
Collapse
|
133
|
Gérard A, Soler N, Ségéral E, Belshan M, Emiliani S. Identification of low molecular weight nuclear complexes containing integrase during the early stages of HIV-1 infection. Retrovirology 2013; 10:13. [PMID: 23369367 PMCID: PMC3571920 DOI: 10.1186/1742-4690-10-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 01/03/2013] [Indexed: 12/18/2022] Open
Abstract
Background HIV-1 replication requires integration of its reverse transcribed viral cDNA into a host cell chromosome. The DNA cutting and joining reactions associated to this key step are catalyzed by the viral protein integrase (IN). In infected cells, IN binds the viral cDNA, together with viral and cellular proteins, to form large nucleoprotein complexes. However, the dynamics of IN complexes formation is still poorly understood. Results Here, we characterized IN complexes during the early stages of T-lymphocyte infection. We found that following viral entry into the host cell, IN was rapidly targeted to proteasome-mediated degradation. Interactions between IN and cellular cofactors LEDGF/p75 and TNPO3 were detected as early as 6 h post-infection. Size exclusion chromatography of infected cell extracts revealed distinct IN complexes in vivo. While at 2 h post-infection the majority of IN eluted within a high molecular weight complex competent for integration (IN complex I), IN was also detected in a low molecular weight complex devoid of full-length viral cDNA (IN complex II, ~440 KDa). At 6 h post-infection the relative proportion of IN complex II increased. Inhibition of reverse transcription or integration did not alter the elution profile of IN complex II in infected cells. However, in cells depleted for LEDGF/p75 IN complex II shifted to a lower molecular weight complex (IN complex III, ~150 KDa) containing multimers of IN. Notably, cell fractionation experiments indicated that both IN complex II and III were exclusively nuclear. Finally, IN complex II was not detected in cells infected with a virus harboring a mutated IN defective for LEDGF/p75 interaction and tetramerization. Conclusions Our findings indicate that, shortly after viral entry, a significant portion of DNA–free IN that is distinct from active pre-integration complexes accumulates in the nucleus.
Collapse
|
134
|
Lyonnais S, Gorelick RJ, Heniche-Boukhalfa F, Bouaziz S, Parissi V, Mouscadet JF, Restle T, Gatell JM, Le Cam E, Mirambeau G. A protein ballet around the viral genome orchestrated by HIV-1 reverse transcriptase leads to an architectural switch: from nucleocapsid-condensed RNA to Vpr-bridged DNA. Virus Res 2013; 171:287-303. [PMID: 23017337 PMCID: PMC3552025 DOI: 10.1016/j.virusres.2012.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 12/15/2022]
Abstract
HIV-1 reverse transcription is achieved in the newly infected cell before viral DNA (vDNA) nuclear import. Reverse transcriptase (RT) has previously been shown to function as a molecular motor, dismantling the nucleocapsid complex that binds the viral genome as soon as plus-strand DNA synthesis initiates. We first propose a detailed model of this dismantling in close relationship with the sequential conversion from RNA to double-stranded (ds) DNA, focusing on the nucleocapsid protein (NCp7). The HIV-1 DNA-containing pre-integration complex (PIC) resulting from completion of reverse transcription is translocated through the nuclear pore. The PIC nucleoprotein architecture is poorly understood but contains at least two HIV-1 proteins initially from the virion core, namely integrase (IN) and the viral protein r (Vpr). We next present a set of electron micrographs supporting that Vpr behaves as a DNA architectural protein, initiating multiple DNA bridges over more than 500 base pairs (bp). These complexes are shown to interact with NCp7 bound to single-stranded nucleic acid regions that are thought to maintain IN binding during dsDNA synthesis, concurrently with nucleocapsid complex dismantling. This unexpected binding of Vpr conveniently leads to a compacted but filamentous folding of the vDNA that should favor its nuclear import. Finally, nucleocapsid-like aggregates engaged in dsDNA synthesis appear to efficiently bind to F-actin filaments, a property that may be involved in targeting complexes to the nuclear envelope. More generally, this article highlights unique possibilities offered by in vitro reconstitution approaches combined with macromolecular imaging to gain insights into the mechanisms that alter the nucleoprotein architecture of the HIV-1 genome, ultimately enabling its insertion into the nuclear chromatin.
Collapse
MESH Headings
- DNA Packaging
- DNA, Viral/chemistry
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Genome, Viral
- HIV Integrase/genetics
- HIV Integrase/metabolism
- HIV Reverse Transcriptase/genetics
- HIV Reverse Transcriptase/metabolism
- HIV-1/chemistry
- HIV-1/enzymology
- HIV-1/genetics
- HIV-1/metabolism
- Humans
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Reverse Transcription
- gag Gene Products, Human Immunodeficiency Virus/genetics
- gag Gene Products, Human Immunodeficiency Virus/metabolism
- vpr Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program; SAIC-Frederick, Inc.; Frederick National Laboratory for Cancer Research; Frederick, MD USA
| | - Fatima Heniche-Boukhalfa
- Maintenance des génomes, Microscopies Moléculaire et Bionanosciences; UMR 8126 CNRS-Université Paris Sud, Villejuif, F-94805, France
| | - Serge Bouaziz
- Laboratoire de Cristallographie et RMN biologiques; UMR 8015 CNRS-Université Paris Descartes; Paris, F-75006, France
| | - Vincent Parissi
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, UMR5234 CNRS-Université Bordeaux Segalen, France
| | | | - Tobias Restle
- Institute of Molecular Medicine, University of Lübeck, Center for Structural and Cell Biology in Medicine (CSCM), D-23538 Lübeck, Germany
| | | | - Eric Le Cam
- Maintenance des génomes, Microscopies Moléculaire et Bionanosciences; UMR 8126 CNRS-Université Paris Sud, Villejuif, F-94805, France
| | - Gilles Mirambeau
- AIDS Research Group; IDIBAPS; E-08036 Barcelona, Spain
- Faculté de Biologie; UPMC Sorbonne Universités; Paris, F-75005, France
| |
Collapse
|
135
|
Battivelli E, Lecossier D, Clavel F, Hance AJ. Delaying reverse transcription does not increase sensitivity of HIV-1 to human TRIM5α. PLoS One 2013; 8:e52434. [PMID: 23320071 PMCID: PMC3540060 DOI: 10.1371/journal.pone.0052434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 11/14/2012] [Indexed: 01/08/2023] Open
Abstract
Background Because uncoating of the capsid is linked to reverse transcription, modifications that delay this process lead to the persistence in the cytoplasm of capsids susceptible to recognition by the human restriction factor TRIM5α (hTRIM5α). It is unknown, however, if increasing the time available for capsid-hTRIM5α interactions would actually render viruses more sensitive to hTRIM5α. Results Viral sensitivity to hTRIM5α was evaluated by comparing their replication in human U373-X4 cells in which hTRIM5α activity had or had not been inhibited by overexpression of human TRIM5γ. No differences were observed comparing wild-type HIV-1 and variants carrying mutations in reverse transcriptase or the central polypurine tract that delayed the completion of reverse transcription. In addition, the effect of delaying the onset of reverse transcription for several hours by treating target cells with nevirapine was evaluated using viral isolates with different sensitivities to hTRIM5α. Delaying reverse transcription led to a time-dependent loss in viral infectivity that was increased by inhibiting capsid-cyclophilin A interactions, but did not result in increased viral sensitivity to hTRIM5α, regardless of their intrinsic sensitivity to this restriction factor. Conclusions Consistent with prior studies, the HIV-1 capsid can be targeted for destruction by hTRIM5α, but different strains display considerable variability in their sensitivity to this restriction factor. Capsids can also be lost more slowly through a TRIM5α-independent process that is accelerated when capsid-cyclophilin A interactions are inhibited, an effect that may reflect changes in the intrinsic stability of the capsid. Blocking the onset or delaying reverse transcription does not, however, increase viral sensitivity to hTRIM5α, indicating that the recognition of the capsids by hTRIM5α is completed rapidly following entry into the cytoplasm, as previously observed for the simian restriction factors TRIM-Cyp and rhesus TRIM5α.
Collapse
Affiliation(s)
- Emilie Battivelli
- Institut National de la Santé et de la Recherche Médicale (INSERM) U941, Paris, France
- Institut Universitaire d'Hématologie, Université Paris Diderot, Hôpital Saint-Louis, Paris, France
| | - Denise Lecossier
- Institut National de la Santé et de la Recherche Médicale (INSERM) U941, Paris, France
- Institut Universitaire d'Hématologie, Université Paris Diderot, Hôpital Saint-Louis, Paris, France
| | - François Clavel
- Institut National de la Santé et de la Recherche Médicale (INSERM) U941, Paris, France
- Institut Universitaire d'Hématologie, Université Paris Diderot, Hôpital Saint-Louis, Paris, France
| | - Allan J. Hance
- Institut National de la Santé et de la Recherche Médicale (INSERM) U941, Paris, France
- Institut Universitaire d'Hématologie, Université Paris Diderot, Hôpital Saint-Louis, Paris, France
- Service des Maladies Infectieuses et Tropicales, Assistance Publique - Hôpitaux de Paris, Hôpital Bichat - Claude Bernard, Paris, France
- * E-mail:
| |
Collapse
|
136
|
Satoh T, Manel N. Gene transduction in human monocyte-derived dendritic cells using lentiviral vectors. Methods Mol Biol 2013; 960:401-409. [PMID: 23329503 DOI: 10.1007/978-1-62703-218-6_30] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Monocyte-derived dendritic cells (MDDCs) are widely used in the field of human immunology. Although a variety of gene delivery procedures have been used in MDDC, it has remained difficult to achieve robust gene transductions. In this chapter, we describe a procedure for high efficiency gene transduction in human MDDCs using lentiviral vectors. Gene transduction based on HIV-1-derived lentiviral vectors is restricted at the level of reverse transcription by the cellular protein SAMHD1 in MDDCs. Co-transduction of the MDDCs with helper particles derived from SIVmac that contain the viral protein Vpx removes this restriction, leading to a drastic increase in the rate of gene transduction. This procedure leads to nontoxic, efficient and stable transduction in MDDCs. It can be applied to any HIV-1-derived lentiviral vector, including shRNA lentiviral vectors for RNAi. Transduced MDDCs are not activated by the transduction and can be activated normally by TLR ligands.
Collapse
|
137
|
Yi Z, Yuan Z, Rice CM, MacDonald MR. Flavivirus replication complex assembly revealed by DNAJC14 functional mapping. J Virol 2012; 86:11815-32. [PMID: 22915803 PMCID: PMC3486285 DOI: 10.1128/jvi.01022-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 08/12/2012] [Indexed: 01/20/2023] Open
Abstract
DNAJC14 is an Hsp40 family member that broadly modulates flavivirus replication. The mechanism by which DNAJC14 stoichiometrically participates in flavivirus replication complex (RC) formation is unknown; both reduced and elevated levels result in replication inhibition. Using yellow fever virus (YFV), we demonstrate that DNAJC14 redistributes and clusters with YFV nonstructural proteins via a transmembrane domain and a newly identified membrane-binding domain (MBD), which both mediate targeting to detergent-resistant membranes. Furthermore, the RC and DNAJC14 reside as part of a protein interaction network that remains after 1% Triton solubilization. Mutagenesis studies demonstrate that entry into this protein interaction network requires the DNAJC14 C-terminal self-interaction domain. Fusion of the DNAJC14 MBD and self-interaction domain with another Hsp40 family protein is sufficient to confer YFV-inhibitory activity. Our findings support a novel model of DNAJC14 action that includes specific membrane targeting of both DNAJC14 and YFV replication proteins, the formation of protein interactions, and a microdomain-specific chaperone event leading to RC formation. This process alters the properties of the RC membrane and results in the formation of a protein scaffold that maintains the RC.
Collapse
Affiliation(s)
- Zhigang Yi
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| | - Margaret R. MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| |
Collapse
|
138
|
Giambra V, Jenkins CR, Wang H, Lam SH, Shevchuk OO, Nemirovsky O, Wai C, Gusscott S, Chiang MY, Aster JC, Humphries RK, Eaves C, Weng AP. NOTCH1 promotes T cell leukemia-initiating activity by RUNX-mediated regulation of PKC-θ and reactive oxygen species. Nat Med 2012; 18:1693-8. [PMID: 23086478 PMCID: PMC3738873 DOI: 10.1038/nm.2960] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 08/29/2012] [Indexed: 12/19/2022]
Abstract
Reactive oxygen species (ROS), a byproduct of cellular metabolism, damage intracellular macromolecules and, when present in excess, can promote normal hematopoietic stem cell differentiation and exhaustion. However, mechanisms that regulate the amount of ROS in leukemia-initiating cells (LICs) and the biological role of ROS in these cells are largely unknown. We show here that the ROS(low) subset of CD44(+) cells in T cell acute lymphoblastic leukemia (T-ALL), a malignancy of immature T cell progenitors, is highly enriched in the most aggressive LICs and that ROS accumulation is restrained by downregulation of protein kinase C θ (PKC-θ). Notably, primary mouse T-ALLs lacking PKC-θ show improved LIC activity, whereas enforced PKC-θ expression in both mouse and human primary T-ALLs compromised LIC activity. We also show that PKC-θ is regulated by a new pathway in which NOTCH1 induces runt-related transcription factor 3 (RUNX3), RUNX3 represses RUNX1 and RUNX1 induces PKC-θ. NOTCH1, which is frequently activated by mutation in T-ALL and required for LIC activity in both mouse and human models, thus acts to repress PKC-θ. These results reveal key functional roles for PKC-θ and ROS in T-ALL and suggest that aggressive biological behavior in vivo could be limited by therapeutic strategies that promote PKC-θ expression or activity, or the accumulation of ROS.
Collapse
Affiliation(s)
- Vincenzo Giambra
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | | | - Hongfang Wang
- Department of Pathology, Brigham & Women’s Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - Sonya H. Lam
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Olena O. Shevchuk
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Oksana Nemirovsky
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Carol Wai
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Sam Gusscott
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Mark Y. Chiang
- Division of Hematology/Oncology, University of Michigan Cancer Center, Ann Arbor, MI 48103, USA
| | - Jon C. Aster
- Department of Pathology, Brigham & Women’s Hospital/Harvard Medical School, Boston, MA 02115, USA
| | | | - Connie Eaves
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Andrew P. Weng
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| |
Collapse
|
139
|
Abstract
Retroviral vector-mediated gene transfer into hematopoietic stem cells provides a potentially curative therapy for severe β-thalassemia. Lentiviral vectors based on human immunodeficiency virus have been developed for this purpose and have been shown to be effective in curing thalassemia in mouse models. One participant in an ongoing clinical trial has achieved transfusion independence after gene transfer into bone marrow stem cells owing, in part, to a genetically modified, dominant clone. Ongoing efforts are focused on improving the efficiency of lentiviral vector-mediated gene transfer into stem cells so that the curative potential of gene transfer can be consistently achieved.
Collapse
|
140
|
Schickel JN, Pasquali JL, Soley A, Knapp AM, Decossas M, Kern A, Fauny JD, Marcellin L, Korganow AS, Martin T, Soulas-Sprauel P. Carabin deficiency in B cells increases BCR-TLR9 costimulation-induced autoimmunity. EMBO Mol Med 2012; 4:1261-75. [PMID: 23109291 PMCID: PMC3531602 DOI: 10.1002/emmm.201201595] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 01/22/2023] Open
Abstract
The mechanisms behind flares of human autoimmune diseases in general, and of systemic lupus in particular, are poorly understood. The present scenario proposes that predisposing gene defects favour clinical flares under the influence of external stimuli. Here, we show that Carabin is low in B cells of (NZB × NZW) F1 mice (murine SLE model) long before the disease onset, and is low in B cells of lupus patients during the inactive phases of the disease. Using knock-out and B-cell-conditional knock-out murine models, we identify Carabin as a new negative regulator of B-cell function, whose deficiency in B cells speeds up early B-cell responses and makes the mice more susceptible to anti-dsDNA production and renal lupus flare after stimulation with a Toll-like Receptor 9 agonist, CpG-DNA. Finally, in vitro analysis of NFκB activation and Erk phosphorylation in TLR9- and B-cell receptor (BCR)-stimulated Carabin-deficient B cells strongly suggests how the internal defect synergizes with the external stimulus and proposes Carabin as a natural inhibitor of the potentially dangerous crosstalk between BCR and TLR9 pathways in self-reactive B cells.
Collapse
|
141
|
Houbracken I, Baeyens L, Ravassard P, Heimberg H, Bouwens L. Gene delivery to pancreatic exocrine cells in vivo and in vitro. BMC Biotechnol 2012; 12:74. [PMID: 23088534 PMCID: PMC3487942 DOI: 10.1186/1472-6750-12-74] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 10/19/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Effective gene transfer to the pancreas or to pancreatic cells has remained elusive although it is essential for studies of genetic lineage tracing and modulation of gene expression. Different transduction methods and viral vectors were tested in vitro and in vivo, in rat and mouse pancreas. RESULTS For in vitro transfection/transduction of rat exocrine cells lipofection reagents, adenoviral vectors, and Mokola- and VSV-G pseudotyped lentiviral vectors were used. For in vivo transduction of mouse and rat pancreas adenoviral vectors and VSV-G lentiviral vectors were injected into the parenchymal tissue. Both lipofection of rat exocrine cell cultures and transduction with Mokola pseudotyped lentiviral vectors were inefficient and resulted in less than 4% EGFP expressing cells. Adenoviral transduction was highly efficient but its usefulness for gene delivery to rat exocrine cells in vitro was hampered by a drastic increase in cell death. In vitro transduction of rat exocrine cells was most optimal with VSV-G pseudotyped lentiviral vectors, with stable transgene expression, no significant effect on cell survival and about 40% transduced cells. In vivo, pancreatic cells could not be transduced by intra-parenchymal administration of lentiviral vectors in mouse and rat pancreas. However, a high efficiency could be obtained by adenoviral vectors, resulting in transient transduction of mainly exocrine acinar cells. Injection in immune-deficient animals diminished leukocyte infiltration and prolonged transgene expression. CONCLUSIONS In summary, our study remarkably demonstrates that transduction of pancreatic exocrine cells requires lentiviral vectors in vitro but adenoviral vectors in vivo.
Collapse
Affiliation(s)
- Isabelle Houbracken
- Cell Differentiation Lab, Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, B-1090, Belgium.
| | | | | | | | | |
Collapse
|
142
|
Efficient gene expression from integration-deficient lentiviral vectors in the spinal cord. Gene Ther 2012; 20:645-57. [PMID: 23076378 DOI: 10.1038/gt.2012.78] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gene transfer to spinal cord cells may be crucial for therapy in spinal muscular atrophy, amyotrophic lateral sclerosis and spinal cord injury. Lentiviral vectors are efficient for transduction of a variety of cells, but like all integrating vectors they pose a risk of insertional mutagenesis. Integration-deficient lentiviral vectors (IDLVs) remain episomal but retain the transduction efficiency of standard integrating lentiviral vectors, particularly when the episomes are not diluted out through repeated cell division. We have now applied IDLVs for transduction of spinal cord in vitro, in explants and in vivo. Our results demonstrate similar efficiency of eGFP expression from integrating lentiviral vectors and IDLVs in most cell types analyzed, including motor neurons, interneurons, dorsal root ganglia (DRG) neurons and astroglia. IDLV-mediated expression of pro-glial-cell-derived neurotrophic factor (Gdnf) rescues motor neuron cultures from death caused by removal of exogenous trophic support. IDLVs also mediate efficient RNA interference in DRG neuron cultures. After intraparenchymal injection in the rat and mouse cervical and lumbar regions in vivo, transduction is mainly neuronal, with both motor neurons and interneurons being efficiently targeted. These results suggest that IDLVs could be efficient and safer tools for spinal cord transduction in future therapeutic strategies.
Collapse
|
143
|
Di Nunzio F, Danckaert A, Fricke T, Perez P, Fernandez J, Perret E, Roux P, Shorte S, Charneau P, Diaz-Griffero F, Arhel NJ. Human nucleoporins promote HIV-1 docking at the nuclear pore, nuclear import and integration. PLoS One 2012; 7:e46037. [PMID: 23049930 PMCID: PMC3457934 DOI: 10.1371/journal.pone.0046037] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/27/2012] [Indexed: 11/19/2022] Open
Abstract
The nuclear pore complex (NPC) mediates nucleo-cytoplasmic transport of macromolecules and is an obligatory point of passage and functional bottleneck in the replication of some viruses. The Human Immunodeficiency Virus (HIV) has evolved the required mechanisms for active nuclear import of its genome through the NPC. However the mechanisms by which the NPC allows or even assists HIV translocation are still unknown. We investigated the involvement of four key nucleoporins in HIV-1 docking, translocation, and integration: Nup358/RanBP2, Nup214/CAN, Nup98 and Nup153. Although all induce defects in infectivity when depleted, only Nup153 actually showed any evidence of participating in HIV-1 translocation through the nuclear pore. We show that Nup358/RanBP2 mediates docking of HIV-1 cores on NPC cytoplasmic filaments by interacting with the cores and that the C-terminus of Nup358/RanBP2 comprising a cyclophilin-homology domain contributes to binding. We also show that Nup214/CAN and Nup98 play no role in HIV-1 nuclear import per se: Nup214/CAN plays an indirect role in infectivity read-outs through its effect on mRNA export, while the reduction of expression of Nup98 shows a slight reduction in proviral integration. Our work shows the involvement of nucleoporins in diverse and functionally separable steps of HIV infection and nuclear import.
Collapse
Affiliation(s)
- Francesca Di Nunzio
- Molecular Virology and Vaccinology Unit, CNRS URA 3015, Department of Virology, Institut Pasteur, Paris, France
| | | | - Thomas Fricke
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Patricio Perez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Juliette Fernandez
- Molecular Virology and Vaccinology Unit, CNRS URA 3015, Department of Virology, Institut Pasteur, Paris, France
| | | | | | | | - Pierre Charneau
- Molecular Virology and Vaccinology Unit, CNRS URA 3015, Department of Virology, Institut Pasteur, Paris, France
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Nathalie J. Arhel
- Molecular Virology and Vaccinology Unit, CNRS URA 3015, Department of Virology, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
144
|
Auvray C, Delahaye A, Pflumio F, Haddad R, Amsellem S, Miri-Nezhad A, Broix L, Yacia A, Bulle F, Fichelson S, Vigon I. HOXC4 homeoprotein efficiently expands human hematopoietic stem cells and triggers similar molecular alterations as HOXB4. Haematologica 2012; 97:168-78. [PMID: 22298821 DOI: 10.3324/haematol.2011.051235] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Expansion of hematopoietic stem cells represents an important objective for improving cell and gene therapy protocols. Retroviral transduction of the HoxB4 homeogene in mouse and human hematopoietic stem cells and hematopoietic progenitors is known to promote the cells' expansion. A safer approach consists in transferring homeobox proteins into hematopoietic stem cells taking advantage of the natural ability of homeoproteins to cross cell membranes. Thus, HOXB4 protein transfer is operative for expanding human hematopoietic cells, but such expansion needs to be improved. DESIGN AND METHODS To that aim, we evaluated the effects of HOXC4, a protein encoded by a HOXB4 paralog gene, by co-culturing HOXC4-producing stromal cells with human CD34(+) hematopoietic cells. Numbers of progenitors and stem cells were assessed by in vitro cloning assays and injection into immuno-deficient mice, respectively. We also looked for activation or inhibition of target downstream gene expression. RESULTS We show that the HOXC4 homeoprotein expands human hematopoietic immature cells by 3 to 6 times ex vivo and significantly improves the level of in vivo engraftment. Comparative transcriptome analysis of CD34(+) cells subjected or not to HOXB4 or HOXC4 demonstrated that both homeoproteins regulate the same set of genes, some of which encode key hematopoietic factors and signaling molecules. Certain molecules identified herein are factors reported to be involved in stem cell fate or expansion in other models, such as MEF2C, EZH2, DBF4, DHX9, YPEL5 and Pumilio. CONCLUSIONS The present study may help to identify new HOX downstream key factors potentially involved in hematopoietic stem cell expansion or in leukemogenesis.
Collapse
|
145
|
Kobiler O, Drayman N, Butin-Israeli V, Oppenheim A. Virus strategies for passing the nuclear envelope barrier. Nucleus 2012; 3:526-39. [PMID: 22929056 PMCID: PMC3515536 DOI: 10.4161/nucl.21979] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Viruses that replicate in the nucleus need to pass the nuclear envelope barrier during infection. Research in recent years indicates that the nuclear envelope is a major hurdle for many viruses. This review describes strategies to overcome this obstacle developed by seven virus families: herpesviridae, adenoviridae, orthomyxoviridae, lentiviruses (which are part of retroviridae), Hepadnaviridae, parvoviridae and polyomaviridae. Most viruses use the canonical nuclear pore complex (NPC) in order to get their genome into the nucleus. Viral capsids that are larger than the nuclear pore disassemble before or during passing through the NPC, thus allowing genome nuclear entry. Surprisingly, increasing evidence suggest that parvoviruses and polyomaviruses may bypass the nuclear pore by trafficking directly through the nuclear membrane. Additional studies are required for better understanding these processes. Since nuclear entry emerges as the limiting step in infection for many viruses, it may serve as an ideal target for antiviral drug development.
Collapse
Affiliation(s)
- Oren Kobiler
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
146
|
Cellular cofactors of lentiviral integrase: from target validation to drug discovery. Mol Biol Int 2012; 2012:863405. [PMID: 22928108 PMCID: PMC3420096 DOI: 10.1155/2012/863405] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/03/2012] [Accepted: 06/27/2012] [Indexed: 01/30/2023] Open
Abstract
To accomplish their life cycle, lentiviruses make use of host proteins, the so-called cellular cofactors. Interactions between host cell and viral proteins during early stages of lentiviral infection provide attractive new antiviral targets. The insertion of lentiviral cDNA in a host cell chromosome is a step of no return in the replication cycle, after which the host cell becomes a permanent carrier of the viral genome and a producer of lentiviral progeny. Integration is carried out by integrase (IN), an enzyme playing also an important role during nuclear import. Plenty of cellular cofactors of HIV-1 IN have been proposed. To date, the lens epithelium-derived growth factor (LEDGF/p75) is the best studied cofactor of HIV-1 IN. Moreover, small molecules that block the LEDGF/p75-IN interaction have recently been developed for the treatment of HIV infection. The nuclear import factor transportin-SR2 (TRN-SR2) has been proposed as another interactor of HIV IN-mediating nuclear import of the virus. Using both proteins as examples, we will describe approaches to be taken to identify and validate novel cofactors as new antiviral targets. Finally, we will highlight recent advances in the design and the development of small-molecule inhibitors binding to the LEDGF/p75-binding pocket in IN (LEDGINs).
Collapse
|
147
|
Nair GR, Dash C, Le Grice SFJ, DeStefano JJ. Viral reverse transcriptases show selective high affinity binding to DNA-DNA primer-templates that resemble the polypurine tract. PLoS One 2012; 7:e41712. [PMID: 22848574 PMCID: PMC3407194 DOI: 10.1371/journal.pone.0041712] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/26/2012] [Indexed: 11/18/2022] Open
Abstract
Previous results using a SELEX (Systematic Evolution of Ligands by Exponential Enrichment)-based approach that selected DNA primer-template duplexes binding with high affinity to HIV reverse transcriptase (RT) showed that primers mimicking the 3' end, and in particular the six nt terminal G tract, of the RNA polypurine tract (PPT; HIV PPT: 5'-AAAAGAAAAGGGGGG-3') were preferentially selected. In this report, two viral (Moloney murine leukemia virus (MuLV) and avian myeloblastosis virus (AMV)) and one retrotransposon (Ty3) RTs were used for selection. Like HIV RT, both viral RTs selected duplexes with primer strands mimicking the G tract at the PPT 3' end (AMV PPT: 5'-AGGGAGGGGGA-3'; MuLV PPT: 5'-AGAAAAAGGGGGG-3'). In contrast, Ty3, whose PPT lacks a G tract (5'-GAGAGAGAGGAA-3') showed no selective binding to any duplex sequences. Experiments were also conducted with DNA duplexes (termed DNA PPTs) mimicking the RNA PPT-DNA duplex of each virus and a control duplex with a random DNA sequence. Retroviral RTs bound with high affinity to all viral DNA PPT constructs, with HIV and MuLV RTs showing comparable binding to the counterpart DNA PPT duplexes and reduced affinity to the AMV DNA PPT. AMV RT showed similar behavior with a modest preference for its own DNA PPT. Ty3 RT showed no preferential binding for its own or any other DNA PPT and viral RTs bound the Ty3 DNA PPT with relatively low affinity. In contrast, binding affinity of HIV RT to duplexes containing the HIV RNA PPT was less dependent on the G tract, which is known to be pivotal for efficient extension. We hypothesize that the G tract on the RNA PPT helps shift the binding orientation of RT to the 3' end of the PPT where extension can occur.
Collapse
Affiliation(s)
- Gauri R. Nair
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Chandravanu Dash
- HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Stuart F. J. Le Grice
- HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Jeffrey J. DeStefano
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
148
|
Levin A, Hayouka Z, Friedler A, Loyter A. Transportin 3 and importin α are required for effective nuclear import of HIV-1 integrase in virus-infected cells. Nucleus 2012; 1:422-31. [PMID: 21326825 DOI: 10.4161/nucl.1.5.12903] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 07/02/2010] [Accepted: 07/07/2010] [Indexed: 01/25/2023] Open
Abstract
Unlike other retroviruses, human immunodeficiency virus type-1 (HIV-1) can infect terminally differentiated cells, due to the ability of its pre-integration complex (PIC) to translocate via the host nuclear pore complex (NPC). The PIC Nuclear import has been suggested to be mediated by the viral integrase protein (IN), via either the importin α or transportin 3 (TNPO3/transportin-SR2) pathways.We show that in virus-infected cells, IN interacts with both importin α and TNPO3, simultaneously or separately, suggesting a multiple use of nuclear import pathways. Disruption of either the IN-importin α or IN-TNPO3 complexes in virus-infected cells by specific cell-permeable-peptides resulted in inhibition of IN and viral cDNA nuclear import. Here we show that peptides which disrupt either one of these complexes block virus infection, indicating involvement of both pathways in efficient viral replication. Formation of IN-importin α and IN-TNPO3 complexes has also been observed in IN-transfected cultured cells. Using specific peptides, we demonstrate that in transfected cells but not in virus infected cells the importin α pathway overrides that of TNPO3. The IN-importin α and IN-TNPO3 complexes were not observed in virus-infected Rev-expressing cells, indicating the Rev protein's ability to disrupt both complexes.Our work suggests that IN nuclear import requires the involvement of both importin α and TNPO3. The ability to inhibit nuclear import of the IN-DNA complex and consequently, virus infection by peptides that interrupt IN's interaction with either importin α or TNPO3 indicates that for efficient infection, nuclear import of IN should be mediated by both nuclear-import receptors.
Collapse
Affiliation(s)
- Aviad Levin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
149
|
Abstract
More than two decades have passed since genetically modified HIV was used for gene delivery. Through continuous improvements these early marker gene-carrying HIVs have evolved into safer and more effective lentiviral vectors. Lentiviral vectors offer several attractive properties as gene-delivery vehicles, including: (i) sustained gene delivery through stable vector integration into host genome; (ii) the capability of infecting both dividing and non-dividing cells; (iii) broad tissue tropisms, including important gene- and cell-therapy-target cell types; (iv) no expression of viral proteins after vector transduction; (v) the ability to deliver complex genetic elements, such as polycistronic or intron-containing sequences; (vi) potentially safer integration site profile; and (vii) a relatively easy system for vector manipulation and production. Accordingly, lentivector technologies now have widespread use in basic biology and translational studies for stable transgene overexpression, persistent gene silencing, immunization, in vivo imaging, generating transgenic animals, induction of pluripotent cells, stem cell modification and lineage tracking, or site-directed gene editing. Moreover, in the present high-throughput '-omics' era, the commercial availability of premade lentiviral vectors, which are engineered to express or silence genome-wide genes, accelerates the rapid expansion of this vector technology. In the present review, we assess the advances in lentiviral vector technology, including basic lentivirology, vector designs for improved efficiency and biosafety, protocols for vector production and infection, targeted gene delivery, advanced lentiviral applications and issues associated with the vector system.
Collapse
|
150
|
Karki S, Li MMH, Schoggins JW, Tian S, Rice CM, MacDonald MR. Multiple interferon stimulated genes synergize with the zinc finger antiviral protein to mediate anti-alphavirus activity. PLoS One 2012; 7:e37398. [PMID: 22615998 PMCID: PMC3353916 DOI: 10.1371/journal.pone.0037398] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 04/22/2012] [Indexed: 01/11/2023] Open
Abstract
The zinc finger antiviral protein (ZAP) is a host factor that mediates inhibition of viruses in the Filoviridae, Retroviridae and Togaviridae families. We previously demonstrated that ZAP blocks replication of Sindbis virus (SINV), the prototype Alphavirus in the Togaviridae family at an early step prior to translation of the incoming genome and that synergy between ZAP and one or more interferon stimulated genes (ISGs) resulted in maximal inhibitory activity. The present study aimed to identify those ISGs that synergize with ZAP to mediate Alphavirus inhibition. Using a library of lentiviruses individually expressing more than 350 ISGs, we screened for inhibitory activity in interferon defective cells with or without ZAP overexpression. Confirmatory tests of the 23 ISGs demonstrating the largest infection reduction in combination with ZAP revealed that 16 were synergistic. Confirmatory tests of all potentially synergistic ISGs revealed 15 additional ISGs with a statistically significant synergistic effect in combination with ZAP. These 31 ISGs are candidates for further mechanistic studies. The number and diversity of the identified ZAP-synergistic ISGs lead us to speculate that ZAP may play an important role in priming the cell for optimal ISG function.
Collapse
Affiliation(s)
- Sophiya Karki
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Melody M. H. Li
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - John W. Schoggins
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Suyan Tian
- Center for Clinical and Translational Science, The Rockefeller University, New York, New York, United States of America
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Margaret R. MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|