101
|
Structure-based rational design and introduction of arginines on the surface of an alkaline α-amylase from Alkalimonas amylolytica for improved thermostability. Appl Microbiol Biotechnol 2014; 98:8937-45. [DOI: 10.1007/s00253-014-5790-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
|
102
|
Spickermann D, Kara S, Barackov I, Hollmann F, Schwaneberg U, Duenkelmann P, Leggewie C. Alcohol dehydrogenase stabilization by additives under industrially relevant reaction conditions. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
103
|
Jahanshahi-Anbuhi S, Pennings K, Leung V, Liu M, Carrasquilla C, Kannan B, Li Y, Pelton R, Brennan JD, Filipe CDM. Pullulan Encapsulation of Labile Biomolecules to Give Stable Bioassay Tablets. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
104
|
Jahanshahi-Anbuhi S, Pennings K, Leung V, Liu M, Carrasquilla C, Kannan B, Li Y, Pelton R, Brennan JD, Filipe CDM. Pullulan Encapsulation of Labile Biomolecules to Give Stable Bioassay Tablets. Angew Chem Int Ed Engl 2014; 53:6155-8. [PMID: 24764260 DOI: 10.1002/anie.201403222] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Sana Jahanshahi-Anbuhi
- Departments of Chemical Engineering, Chemistry & Chemical Biology, and Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4M1 (Canada)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Jadhav SB, Bankar SB, Granström T, Ojamo H, Singhal RS, Survase SA. Enhanced stability of alcohol dehydrogenase by non-covalent interaction with polysaccharides. Appl Microbiol Biotechnol 2014; 98:6307-16. [DOI: 10.1007/s00253-014-5579-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/25/2014] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
|
106
|
Vidya J, Ushasree MV, Pandey A. Effect of surface charge alteration on stability of l-asparaginase II from Escherichia sp. Enzyme Microb Technol 2014; 56:15-9. [DOI: 10.1016/j.enzmictec.2013.12.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 11/10/2013] [Accepted: 12/13/2013] [Indexed: 11/25/2022]
|
107
|
Modification of Lysine Residues of Horseradish Peroxidase and Its Effect on Stability and Structure of the Enzyme. Appl Biochem Biotechnol 2014; 172:3558-69. [DOI: 10.1007/s12010-014-0756-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
|
108
|
Biava H, Budisa N. Evolution of fluorinated enzymes: An emerging trend for biocatalyst stabilization. Eng Life Sci 2014. [DOI: 10.1002/elsc.201300049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Hernan Biava
- Department of Biocatalysis, Institute of Chemistry Berlin Institute of Technology/TU Berlin Berlin Germany
| | - Nediljko Budisa
- Department of Biocatalysis, Institute of Chemistry Berlin Institute of Technology/TU Berlin Berlin Germany
| |
Collapse
|
109
|
Jadhav SH, Gogate PR. Intensification in the Activity of Lipase Enzyme Using Ultrasonic Irradiation and Stability Studies. Ind Eng Chem Res 2014. [DOI: 10.1021/ie403419e] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sanket H. Jadhav
- Chemical
Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019, India
| | - Parag R. Gogate
- Chemical
Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019, India
| |
Collapse
|
110
|
Rodrigues RC, Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Fernandez-Lafuente R. Amination of enzymes to improve biocatalyst performance: coupling genetic modification and physicochemical tools. RSC Adv 2014. [DOI: 10.1039/c4ra04625k] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Improvement of the features of an enzyme is in many instances a pre-requisite for the industrial implementation of these exceedingly interesting biocatalysts.
Collapse
Affiliation(s)
- Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology Lab
- Institute of Food Science and Technology
- Federal University of Rio Grande do Sul
- Porto Alegre, Brazil
| | - Oveimar Barbosa
- Escuela de Química
- Grupo de investigación en Bioquímica y Microbiología (GIBIM)
- Edificio Camilo Torres 210
- Universidad Industrial de Santander
- Bucaramanga, Colombia
| | - Claudia Ortiz
- Escuela de Bacteriología y Laboratorio Clínico
- Universidad Industrial de Santander
- Bucaramanga, Colombia
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales
- Departamento de Química Inorgánica
- Universidad de Alicante
- Ap. 99-03080 Alicante, Spain
| | - Rodrigo Torres
- Escuela de Química
- Grupo de investigación en Bioquímica y Microbiología (GIBIM)
- Edificio Camilo Torres 210
- Universidad Industrial de Santander
- Bucaramanga, Colombia
| | | |
Collapse
|
111
|
Accelerated protein engineering for chemical biotechnology via homologous recombination. Curr Opin Biotechnol 2013; 24:1017-22. [DOI: 10.1016/j.copbio.2013.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/28/2013] [Accepted: 03/05/2013] [Indexed: 12/22/2022]
|
112
|
Deng Z, Yang H, Li J, Shin HD, Du G, Liu L, Chen J. Structure-based engineering of alkaline α-amylase from alkaliphilic Alkalimonas amylolytica for improved thermostability. Appl Microbiol Biotechnol 2013; 98:3997-4007. [PMID: 24247992 DOI: 10.1007/s00253-013-5375-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/30/2013] [Accepted: 11/01/2013] [Indexed: 12/07/2022]
Abstract
This study aimed to improve the thermostability of alkaline α-amylase from Alkalimonas amylolytica through structure-based rational design and systems engineering of its catalytic domain. Separate engineering strategies were used to increase alkaline α-amylase thermostability: (1) replace histidine residues with leucine to stabilize the least similar region in domain B, (2) change residues (glycine, proline, and glutamine) to stabilize the highly conserved α-helices in domain A, and (3) decrease the free energy of folding predicted by the PoPMuSiC program to stabilize the overall protein structure. A total of 15 single-site mutants were obtained, and four mutants - H209L, Q226V, N302W, and P477V - showed enhanced thermostability. Combinational mutations were subsequently introduced, and the best mutant was triple mutant H209L/Q226V/P477V. Its half-life at 60 °C was 3.8-fold of that of the wild type and displayed a 3.2 °C increase in melting temperature compared with that of the wild type. Interestingly, other biochemical properties of this mutant also improved: the optimum temperature increased from 50 °C to 55 °C, the optimum pH shifted from 9.5 to 10.0, the stable pH range expanded from 7.0-11.0 to 6.0-12.0, the specific activity increased by 24 %, and the catalytic efficiency (k cat/K m) increased from 1.8×10(4) to 3.5 × 10(4) l/(g min). Finally, the mechanisms responsible for the increased thermostability were analyzed through comparative analysis of structure models. The structure-based rational design and systems engineering strategies in this study may also improve the thermostability of other industrial enzymes.
Collapse
Affiliation(s)
- Zhuangmei Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | | | | | | | | | | | | |
Collapse
|
113
|
Honey-induced protein stabilization as studied by fluorescein isothiocyanate fluorescence. ScientificWorldJournal 2013; 2013:981902. [PMID: 24222758 PMCID: PMC3809590 DOI: 10.1155/2013/981902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/22/2013] [Indexed: 11/27/2022] Open
Abstract
Protein stabilizing potential of honey was studied on a model protein, bovine serum albumin (BSA), using extrinsic fluorescence of fluorescein isothiocyanate (FITC) as the probe. BSA was labelled with FITC using chemical coupling, and urea and thermal denaturation studies were performed on FITC-labelled BSA (FITC-BSA) both in the absence and presence of 10% and 20% (w/v) honey using FITC fluorescence at 522 nm upon excitation at 495 nm. There was an increase in the FITC fluorescence intensity upon increasing urea concentration or temperature, suggesting protein denaturation. The results from urea and thermal denaturation studies showed increased stability of protein in the presence of honey as reflected from the shift in the transition curve along with the start point and the midpoint of the transition towards higher urea concentration/temperature. Furthermore, the increase in ΔGDH2O and ΔGD25°C in presence of honey also suggested protein stabilization.
Collapse
|
114
|
In silico rational design and systems engineering of disulfide bridges in the catalytic domain of an alkaline α-amylase from Alkalimonas amylolytica to improve thermostability. Appl Environ Microbiol 2013; 80:798-807. [PMID: 24212581 DOI: 10.1128/aem.03045-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High thermostability is required for alkaline α-amylases to maintain high catalytic activity under the harsh conditions used in textile production. In this study, we attempted to improve the thermostability of an alkaline α-amylase from Alkalimonas amylolytica through in silico rational design and systems engineering of disulfide bridges in the catalytic domain. Specifically, 7 residue pairs (P35-G426, Q107-G167, G116-Q120, A147-W160, G233-V265, A332-G370, and R436-M480) were chosen as engineering targets for disulfide bridge formation, and the respective residues were replaced with cysteines. Three single disulfide bridge mutants-P35C-G426C, G116C-Q120C, and R436C-M480C-of the 7 showed significantly enhanced thermostability. Combinational mutations were subsequently assessed, and the triple mutant P35C-G426C/G116C-Q120C/R436C-M480C showed a 6-fold increase in half-life at 60°C and a 5.2°C increase in melting temperature compared with the wild-type enzyme. Interestingly, other biochemical properties of this mutant also improved: the optimum temperature increased from 50°C to 55°C, the optimum pH shifted from 9.5 to 10.0, the stable pH range extended from 7.0 to 11.0 to 6.0 to 12.0, and the catalytic efficiency (kcat/Km) increased from 1.8 × 10(4) to 2.4 × 10(4) liters/g · min. The possible mechanism responsible for these improvements was explored through comparative analysis of the model structures of wild-type and mutant enzymes. The disulfide bridge engineering strategy used in this work may be applied to improve the thermostability of other industrial enzymes.
Collapse
|
115
|
Moreira F, Badenes SM, Cabral JMS. Biocatalytic transesterification of triglycerides and alcohols for the production of biodiesel using cutinase in organic media. BIOCATAL BIOTRANSFOR 2013. [DOI: 10.3109/10242422.2013.836800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
116
|
Thomas CS, Xu L, Olsen BD. Effect of small molecule osmolytes on the self-assembly and functionality of globular protein-polymer diblock copolymers. Biomacromolecules 2013; 14:3064-72. [PMID: 23941572 DOI: 10.1021/bm400664t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Blending the small molecule osmolytes glycerol and trehalose with the model globular protein-polymer block copolymer mCherry-b-poly(N-isopropyl acrylamide) (mCherry-b-PNIPAM) is demonstrated to improve protein functionality in self-assembled nanostructures. The incorporation of either additive into block copolymers results in functionality retention in the solid state of 80 and 100% for PNIPAM volume fractions of 40 and 55%, respectively. This represents a large improvement over the 50-60% functionality observed in the absence of any additive. Furthermore, glycerol decreases the thermal stability of block copolymer films by 15-20 °C, while trehalose results in an improvement in the thermal stability by 15-20 °C. These results suggest that hydrogen bond replacement is responsible for the retention of protein function but suppression or enhancement of thermal motion based on the glass transition of the osmolyte primarily determines thermal stability. While both osmolytes are observed to have a disordering effect on the nanostructure morphology with increasing concentration, this effect is less pronounced in materials with a larger polymer volume fraction. Glycerol preferentially localizes in the protein domains and swells the nanostructures, inducing disordering or a change in morphology depending on the PNIPAM coil fraction. In contrast, trehalose is observed to macrophase separate from the block copolymer, which results in nanodomains becoming more disordered without changing significantly in size.
Collapse
Affiliation(s)
- Carla S Thomas
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | | |
Collapse
|
117
|
Reetz MT. Biocatalysis in organic chemistry and biotechnology: past, present, and future. J Am Chem Soc 2013; 135:12480-96. [PMID: 23930719 DOI: 10.1021/ja405051f] [Citation(s) in RCA: 551] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Enzymes as catalysts in synthetic organic chemistry gained importance in the latter half of the 20th century, but nevertheless suffered from two major limitations. First, many enzymes were not accessible in large enough quantities for practical applications. The advent of recombinant DNA technology changed this dramatically in the late 1970s. Second, many enzymes showed a narrow substrate scope, often poor stereo- and/or regioselectivity and/or insufficient stability under operating conditions. With the development of directed evolution beginning in the 1990s and continuing to the present day, all of these problems can be addressed and generally solved. The present Perspective focuses on these and other developments which have popularized enzymes as part of the toolkit of synthetic organic chemists and biotechnologists. Included is a discussion of the scope and limitation of cascade reactions using enzyme mixtures in vitro and of metabolic engineering of pathways in cells as factories for the production of simple compounds such as biofuels and complex natural products. Future trends and problems are also highlighted, as is the discussion concerning biocatalysis versus nonbiological catalysis in synthetic organic chemistry. This Perspective does not constitute a comprehensive review, and therefore the author apologizes to those researchers whose work is not specifically treated here.
Collapse
Affiliation(s)
- Manfred T Reetz
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein Strasse, 35032 Marburg, Germany.
| |
Collapse
|
118
|
|
119
|
Tuttolomondo MV, Villanueva ME, Alvarez GS, Desimone MF, Díaz LE. Preparation of submicrometer monodispersed magnetic silica particles using a novel water in oil microemulsion: properties and application for enzyme immobilization. Biotechnol Lett 2013; 35:1571-7. [DOI: 10.1007/s10529-013-1259-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 05/31/2013] [Indexed: 10/26/2022]
|
120
|
Lu X, Liu S, Feng Y, Rao S, Zhou X, Wang M, Du G, Chen J. Enhanced thermal stability of Pseudomonas aeruginosa lipoxygenase through modification of two highly flexible regions. Appl Microbiol Biotechnol 2013; 98:1663-9. [DOI: 10.1007/s00253-013-5039-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 01/20/2023]
|
121
|
Meridor D, Gedanken A. Forming nanoparticles of α-amylase and embedding them into solid surfaces. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
122
|
Kinetic study of the colloidal and enzymatic stability of β-galactosidase, for designing its encapsulation route through sol–gel route assisted by Triton X-100 surfactant. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
123
|
Jakoblinnert A, van den Wittenboer A, Shivange AV, Bocola M, Heffele L, Ansorge-Schumacher M, Schwaneberg U. Design of an activity and stability improved carbonyl reductase from Candida parapsilosis. J Biotechnol 2013; 165:52-62. [DOI: 10.1016/j.jbiotec.2013.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/05/2013] [Accepted: 02/11/2013] [Indexed: 10/27/2022]
|
124
|
C-terminal flanking peptide stabilized the catalytic domain of a recombinant Bacillus subtilis endo-β-1, 4-glucanase. Protein J 2013; 32:246-52. [PMID: 23543074 DOI: 10.1007/s10930-013-9483-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Three proteins, Egl330, Egl326 and Egl325, which covered the catalytic domain of a Bacillus subtilis endo-β-l, 4-glucanase were expressed in Escherichia coli and purified. Egl325 was a mutant of Egl330 with the peptide sequence Arg-Glu-Asn-Ile-Arg deleted in the C-terminus and Egl326 was another mutant of Egl330 with the peptide sequence Glu-Asn-Ile-Arg deleted in the C-terminus. These three proteins displayed same optimal reaction pH and temperature. However, the thermal stability and pH stability of Egl326 and Egl325 were diminished compared to Egl330. Results of ultra violet scanning, circular dichroism and Trp fluorescence spectrometry showed that the absence of the short peptide at the C-terminus of Egl330 resulted in the destabilization of the catalytic domain through affecting the folding of the protein.
Collapse
|
125
|
Lu X, Liu S, Zhang D, Zhou X, Wang M, Liu Y, Wu J, Du G, Chen J. Enhanced thermal stability and specific activity of Pseudomonas aeruginosa lipoxygenase by fusing with self-assembling amphipathic peptides. Appl Microbiol Biotechnol 2013; 97:9419-27. [DOI: 10.1007/s00253-013-4751-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 01/20/2013] [Accepted: 01/31/2013] [Indexed: 11/24/2022]
|
126
|
Solid-phase modification with succinic polyethyleneglycol of aminated lipase B from Candida antarctica: Effect of the immobilization protocol on enzyme catalytic properties. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2012.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
127
|
Improving the thermostability of lipase Lip2 from Yarrowia lipolytica. J Biotechnol 2013; 164:248-53. [DOI: 10.1016/j.jbiotec.2012.08.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 08/26/2012] [Accepted: 08/30/2012] [Indexed: 11/23/2022]
|
128
|
Jadhav SB, Singhal RS. Screening of polysaccharides for preparation of α-amylase conjugate to enhance stability and storage life. Carbohydr Polym 2013; 92:1724-9. [DOI: 10.1016/j.carbpol.2012.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/07/2012] [Accepted: 11/03/2012] [Indexed: 10/27/2022]
|
129
|
Wu Q, Soni P, Reetz MT. Laboratory Evolution of Enantiocomplementary Candida antarctica Lipase B Mutants with Broad Substrate Scope. J Am Chem Soc 2013; 135:1872-81. [DOI: 10.1021/ja310455t] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Qi Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, People’s
Republic of China
- Max-Planck-Institut
für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der
Ruhr, Germany
| | - Pankaj Soni
- Max-Planck-Institut
für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der
Ruhr, Germany
- CSIR-Institute
of Microbial Technology,
Chandigarh, 160036, India
| | - Manfred T. Reetz
- Max-Planck-Institut
für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der
Ruhr, Germany
- Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse,
35032 Marburg, Germany
| |
Collapse
|
130
|
Chung J, Hwang ET, Gang H, Gu MB. Magnetic-separable robust microbeads using a branched polymer for stable enzyme immobilization. REACT FUNCT POLYM 2013. [DOI: 10.1016/j.reactfunctpolym.2012.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
131
|
Meridor D, Gedanken A. Preparation of enzyme nanoparticles and studying the catalytic activity of the immobilized nanoparticles on polyethylene films. ULTRASONICS SONOCHEMISTRY 2013; 20:425-431. [PMID: 22800814 DOI: 10.1016/j.ultsonch.2012.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 06/13/2012] [Accepted: 06/13/2012] [Indexed: 06/01/2023]
Abstract
Using high-intensity ultrasound, in situ generated α-amylase nanoparticles (NPs) were immobilized on polyethylene (PE) films. The α-amylase NP-coated PE films have been characterized by E-SEM, FTIR, DLS, XPS and RBS. The PE was reacted with HNO(3) and NPs of the α-amylase were also deposited on the activated PE. The PE impregnated with α-amylase (4 μg per 1mg PE) was used for hydrolyzing soluble potato starch to maltose. The immobilization improved the catalytic activity of α-amylase at all the reaction conditions studied. The kinetic parameters, K(m) (5 and 4 g L(-1) for the regular and activated PE, respectively) and V(max) (5 × 10(-7) mol ml(-1) min(-1), almost the same numbers were obtained for the regular and activated PEs) for the immobilized amylase were found to slightly favor the respective values obtained for the free enzyme (K(m) = 6.6 g L(-1), V(max) = 3.7 × 10(-7) mol ml(-1) min(-1)). The enzyme remained bound to PE even after soaking the PE in a starch solution for 72 h and was still found to be weakly active.
Collapse
Affiliation(s)
- David Meridor
- Department of Chemistry and Kanbar Laboratory for Nanomaterials, Center for Advanced Materials and Nanotechnology, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | |
Collapse
|
132
|
Chen K, Liu S, Ma J, Zhang D, Shi Z, Du G, Chen J. Deletion combined with saturation mutagenesis of N-terminal residues in transglutaminase from Streptomyces hygroscopicus results in enhanced activity and thermostability. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
133
|
|
134
|
Cesarini S, Bofill C, Pastor FJ, Reetz MT, Diaz P. A thermostable variant of P. aeruginosa cold-adapted LipC obtained by rational design and saturation mutagenesis. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.07.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
135
|
Jadhav SB, Singhal RS. Conjugation of α-amylase with dextran for enhanced stability: Process details, kinetics and structural analysis. Carbohydr Polym 2012; 90:1811-7. [DOI: 10.1016/j.carbpol.2012.07.078] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/12/2012] [Accepted: 07/28/2012] [Indexed: 10/28/2022]
|
136
|
Rayalu S, Yadav R, Wanjari S, Prabhu C, Mushnoori SC, Labhsetwar N, Satyanarayanan T, Kotwal S, Wate SR, Hong SG, Kim J. Nanobiocatalysts for Carbon Capture, Sequestration and Valorisation. Top Catal 2012. [DOI: 10.1007/s11244-012-9896-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
137
|
Hegedüs I, Hancsók J, Nagy E. Stabilization of the Cellulase Enzyme Complex as Enzyme Nanoparticle. Appl Biochem Biotechnol 2012; 168:1372-83. [DOI: 10.1007/s12010-012-9863-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 08/21/2012] [Indexed: 11/29/2022]
|
138
|
Reetz MT. Laboratory evolution of stereoselective enzymes as a means to expand the toolbox of organic chemists. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.05.093] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
139
|
Hassani L. Chemical modification of Horseradish peroxidase with carboxylic anhydrides: Effect of negative charge and hydrophilicity of the modifiers on thermal stability. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
140
|
Cruz J, Barbosa O, Rodrigues RC, Fernandez-Lafuente R, Torres R, Ortiz C. Optimized preparation of CALB-CLEAs by response surface methodology: The necessity to employ a feeder to have an effective crosslinking. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.04.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
141
|
Zhang ZG, Parra LP, Reetz MT. Protein Engineering of Stereoselective Baeyer-Villiger Monooxygenases. Chemistry 2012; 18:10160-72. [DOI: 10.1002/chem.201202163] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
142
|
Park BW, Ko KA, Yoon DY, Kim DS. Enzyme activity assay for horseradish peroxidase encapsulated in peptide nanotubes. Enzyme Microb Technol 2012; 51:81-5. [DOI: 10.1016/j.enzmictec.2012.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 04/04/2012] [Accepted: 04/16/2012] [Indexed: 11/16/2022]
|
143
|
Reetz MT. Artificial Metalloenzymes as Catalysts in Stereoselective Diels-Alder Reactions. CHEM REC 2012; 12:391-406. [DOI: 10.1002/tcr.201100043] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Indexed: 11/05/2022]
|
144
|
Hassani L. The effect of chemical modification with pyromellitic anhydride on structure, function, and thermal stability of horseradish peroxidase. Appl Biochem Biotechnol 2012; 167:489-97. [PMID: 22562551 DOI: 10.1007/s12010-012-9671-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
Abstract
The stability of enzymes remains a critical issue in biotechnology. Compared with the strategies for obtaining stable enzymes, chemical modification is a simple and effective technique. In the present study, chemical modification of horseradish peroxidase (HRP) was carried out with pyromellitic anhydride. HRP has achieved a prominent position in the pharmaceutical, chemical, and biotechnological industries. In this study, the effect of chemical modification on thermal stability, structure, and function of the enzyme was studied by fluorescence, circular dichroism, and absorbance measurements. The results indicated a decrease in compactness of the structure and a considerable enhancement in thermal stability of HRP below 60 °C. It seems the charge replacement and introduction of the bulky group bring about the observed structural and the functional changes.
Collapse
Affiliation(s)
- Leila Hassani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45195-1159, Iran.
| |
Collapse
|
145
|
Barbosa O, Torres R, Ortiz C, Fernandez-Lafuente R. The slow-down of the CALB immobilization rate permits to control the inter and intra molecular modification produced by glutaraldehyde. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.02.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
146
|
Stabilization of a highly active but unstable alcohol dehydrogenase from yeast using immobilization and post-immobilization techniques. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.01.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
147
|
Barbosa O, Ruiz M, Ortiz C, Fernández M, Torres R, Fernandez-Lafuente R. Modulation of the properties of immobilized CALB by chemical modification with 2,3,4-trinitrobenzenesulfonate or ethylendiamine. Advantages of using adsorbed lipases on hydrophobic supports. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.02.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
148
|
Gumulya Y, Sanchis J, Reetz MT. Many Pathways in Laboratory Evolution Can Lead to Improved Enzymes: How to Escape from Local Minima. Chembiochem 2012; 13:1060-6. [DOI: 10.1002/cbic.201100784] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Indexed: 12/29/2022]
|
149
|
Feng X, Sanchis J, Reetz MT, Rabitz H. Enhancing the efficiency of directed evolution in focused enzyme libraries by the adaptive substituent reordering algorithm. Chemistry 2012; 18:5646-54. [PMID: 22434591 DOI: 10.1002/chem.201103811] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Indexed: 11/11/2022]
Abstract
Directed evolution is a broadly successful strategy for protein engineering in the quest to enhance the stereoselectivity, activity, and thermostability of enzymes. To increase the efficiency of directed evolution based on iterative saturation mutagenesis, the adaptive substituent reordering algorithm (ASRA) is introduced here as an alternative to traditional quantitative structure-activity relationship (QSAR) methods for identifying potential protein mutants with desired properties from minimal sampling of focused libraries. The operation of ASRA depends on identifying the underlying regularity of the protein property landscape, allowing it to make predictions without explicit knowledge of the structure-property relationships. In a proof-of-principle study, ASRA identified all or most of the best enantioselective mutants among the synthesized epoxide hydrolase from Aspergillus niger, in the absence of peptide seeds with high E-values. ASRA even revealed a laboratory error from irregularities of the reordered E-value landscape alone.
Collapse
Affiliation(s)
- Xiaojiang Feng
- Department of Chemistry, Princeton University, New Jersey 08544, USA
| | | | | | | |
Collapse
|
150
|
|