101
|
Vaglio-Garro A, Kozlov AV, Smirnova YD, Weidinger A. Pathological Interplay between Inflammation and Mitochondria Aggravates Glutamate Toxicity. Int J Mol Sci 2024; 25:2276. [PMID: 38396952 PMCID: PMC10889519 DOI: 10.3390/ijms25042276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondrial dysfunction and glutamate toxicity are associated with neural disorders, including brain trauma. A review of the literature suggests that toxic and transmission actions of neuronal glutamate are spatially and functionally separated. The transmission pathway utilizes synaptic GluN2A receptors, rapidly released pool of glutamate, evoked release of glutamate mediated by Synaptotagmin 1 and the amount of extracellular glutamate regulated by astrocytes. The toxic pathway utilizes extrasynaptic GluN2B receptors and a cytoplasmic pool of glutamate, which results from the spontaneous release of glutamate mediated by Synaptotagmin 7 and the neuronal 2-oxoglutarate dehydrogenase complex (OGDHC), a tricarboxylic acid (TCA) cycle enzyme. Additionally, the inhibition of OGDHC observed upon neuro-inflammation is due to an excessive release of reactive oxygen/nitrogen species by immune cells. The loss of OGDHC inhibits uptake of glutamate by mitochondria, thus facilitating its extracellular accumulation and stimulating toxic glutamate pathway without affecting transmission. High levels of extracellular glutamate lead to dysregulation of intracellular redox homeostasis and cause ferroptosis, excitotoxicity, and mitochondrial dysfunction. The latter affects the transmission pathway demanding high-energy supply and leading to cell death. Mitochondria aggravate glutamate toxicity due to impairments in the TCA cycle and become a victim of glutamate toxicity, which disrupts oxidative phosphorylation. Thus, therapies targeting the TCA cycle in neurological disorders may be more efficient than attempting to preserve mitochondrial oxidative phosphorylation.
Collapse
Affiliation(s)
- Annette Vaglio-Garro
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (Y.D.S.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Andrey V. Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (Y.D.S.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Yuliya D. Smirnova
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (Y.D.S.); (A.W.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (Y.D.S.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
102
|
Escalada P, Ezkurdia A, Ramírez MJ, Solas M. Essential Role of Astrocytes in Learning and Memory. Int J Mol Sci 2024; 25:1899. [PMID: 38339177 PMCID: PMC10856373 DOI: 10.3390/ijms25031899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
One of the most biologically relevant functions of astrocytes within the CNS is the regulation of synaptic transmission, i.e., the physiological basis for information transmission between neurons. Changes in the strength of synaptic connections are indeed thought to be the cellular basis of learning and memory. Importantly, astrocytes have been demonstrated to tightly regulate these processes via the release of several gliotransmitters linked to astrocytic calcium activity as well as astrocyte-neuron metabolic coupling. Therefore, astrocytes seem to be integrators of and actors upon learning- and memory-relevant information. In this review, we focus on the role of astrocytes in learning and memory processes. We delineate the recognized inputs and outputs of astrocytes and explore the influence of manipulating astrocytes on behaviour across diverse learning paradigms. We conclude that astrocytes influence learning and memory in various manners. Appropriate astrocytic Ca2+ dynamics are being increasingly identified as central contributors to memory formation and retrieval. In addition, astrocytes regulate brain rhythms essential for cognition, and astrocyte-neuron metabolic cooperation is required for memory consolidation.
Collapse
Affiliation(s)
- Paula Escalada
- Department of Pharmaceutical Sciences, University of Navarra, 31008 Pamplona, Spain; (P.E.); (A.E.); (M.J.R.)
| | - Amaia Ezkurdia
- Department of Pharmaceutical Sciences, University of Navarra, 31008 Pamplona, Spain; (P.E.); (A.E.); (M.J.R.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - María Javier Ramírez
- Department of Pharmaceutical Sciences, University of Navarra, 31008 Pamplona, Spain; (P.E.); (A.E.); (M.J.R.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Maite Solas
- Department of Pharmaceutical Sciences, University of Navarra, 31008 Pamplona, Spain; (P.E.); (A.E.); (M.J.R.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
103
|
Lee SY, Chung WS. Astrocytic crosstalk with brain and immune cells in healthy and diseased conditions. Curr Opin Neurobiol 2024; 84:102840. [PMID: 38290370 DOI: 10.1016/j.conb.2024.102840] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/04/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
Astrocytes interact with various cell types, including neurons, vascular cells, microglia, and peripheral immune cells. These interactions are crucial for regulating normal brain functions as well as modulating neuroinflammation in pathological conditions. Recent transcriptomic and proteomic studies have identified critical molecules involved in astrocytic crosstalk with other cells, shedding light on their roles in maintaining brain homeostasis in both healthy and diseased conditions. Astrocytes perform these various roles through either direct or indirect physical associations with neuronal synapses and vasculature. Furthermore, astrocytes can communicate with other immune cells, such as microglia, T cells, and natural killer cells, through secreted molecules during neuroinflammation. In this review, we discuss the critical molecular basis of this astrocytic crosstalk and the underlying mechanisms of astrocyte communication with other cells. We propose that astrocytes function as a central hub in inter-connecting neurons, vasculatures, and immune cells in healthy and diseased brains.
Collapse
Affiliation(s)
- Se Young Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. https://twitter.com/SYLee_neuro
| | - Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
104
|
Catalano M, Limatola C, Trettel F. Non-neoplastic astrocytes: key players for brain tumor progression. Front Cell Neurosci 2024; 17:1352130. [PMID: 38293652 PMCID: PMC10825036 DOI: 10.3389/fncel.2023.1352130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Astrocytes are highly plastic cells whose activity is essential to maintain the cerebral homeostasis, regulating synaptogenesis and synaptic transmission, vascular and metabolic functions, ions, neuro- and gliotransmitters concentrations. In pathological conditions, astrocytes may undergo transient or long-lasting molecular and functional changes that contribute to disease resolution or exacerbation. In recent years, many studies demonstrated that non-neoplastic astrocytes are key cells of the tumor microenvironment that contribute to the pathogenesis of glioblastoma, the most common primary malignant brain tumor and of secondary metastatic brain tumors. This Mini Review covers the recent development of research on non-neoplastic astrocytes as tumor-modulators. Their double-edged capability to promote cancer progression or to represent potential tools to counteract brain tumors will be discussed.
Collapse
Affiliation(s)
- Myriam Catalano
- Laboratory of Neuroimmunology, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Cristina Limatola
- Laboratory of Neuroimmunology, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Flavia Trettel
- Laboratory of Neuroimmunology, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
105
|
Sočan V, Dolinar K, Kržan M. Cortical and Striatal Astrocytes of Neonatal Rats Display Distinct Molecular and Pharmacological Characteristics of Dopamine Uptake. Int J Mol Sci 2024; 25:911. [PMID: 38255983 PMCID: PMC10815805 DOI: 10.3390/ijms25020911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Astrocytes are crucial in the regulation of neurotransmitter homeostasis, and while their involvement in the dopamine (DA) tripartite synapse is acknowledged, it necessitates a more comprehensive investigation. In the present study, experiments were conducted on primary astrocyte cultures from the striatum and cortex of neonatal rats. The pharmacological intricacies of DA uptake, including dependence on time, temperature, and concentration, were investigated using radiolabelled [3H]-DA. The mRNA expression of transporters DAT, NET, PMAT, and OCTs was evaluated by qPCR. Notably, astrocytes from both brain regions exhibited prominent mRNA expression of NET and PMAT, with comparatively lower expression of DAT and OCTs. The inhibition of DA uptake by the DAT inhibitor, GBR12909, and NET inhibitors, desipramine and nortriptyline, impeded DA uptake in striatal astrocytes more than in cortical astrocytes. The mRNA expression of NET and PMAT was significantly upregulated in cortical astrocytes in response to the DA receptor agonist apomorphine, while only the mRNA expression of NET exhibited changes in striatal astrocytes. Haloperidol, a DA receptor antagonist, and L-DOPA, a DA precursor, did not induce significant alterations in transporter mRNA expression. These findings underscore the intricate and region-specific mechanisms governing DA uptake in astrocytes, emphasizing the need for continued exploration to unravel the nuanced dynamics of astrocytic involvement in the DA tripartite synapse.
Collapse
Affiliation(s)
- Vesna Sočan
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Klemen Dolinar
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Mojca Kržan
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| |
Collapse
|
106
|
Varadi G. Mechanism of Analgesia by Gabapentinoid Drugs: Involvement of Modulation of Synaptogenesis and Trafficking of Glutamate-Gated Ion Channels. J Pharmacol Exp Ther 2024; 388:121-133. [PMID: 37918854 DOI: 10.1124/jpet.123.001669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
Gabapentinoids have clinically been used for treating epilepsy, neuropathic pain, and several other neurologic disorders for >30 years; however, the definitive molecular mechanism responsible for their therapeutic actions remained uncertain. The conventional pharmacological observation regarding their efficacy in chronic pain modulation is the weakening of glutamate release at presynaptic terminals in the spinal cord. While the α2/δ-1 subunit of voltage-gated calcium channels (VGCCs) has been identified as the primary drug receptor for gabapentinoids, the lack of consistent effect of this drug class on VGCC function is indicative of a minor role in regulating this ion channel's activity. The current review targets the efficacy and mechanism of gabapentinoids in treating chronic pain. The discovery of interaction of α2/δ-1 with thrombospondins established this protein as a major synaptogenic neuronal receptor for thrombospondins. Other findings identified α2/δ-1 as a powerful regulator of N-methyl-D-aspartate receptor (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) by potentiating the synaptic expression, a putative pathophysiological mechanism of neuropathic pain. Further, the interdependent interactions between thrombospondin and α2/δ-1 contribute to chronic pain states, while gabapentinoid ligands efficaciously reverse such pain conditions. Gabapentin normalizes and even blocks NMDAR and AMPAR synaptic targeting and activity elicited by nerve injury. SIGNIFICANCE STATEMENT: Gabapentinoid drugs are used to treat various neurological conditions including chronic pain. In chronic pain states, gene expression of cacnα2/δ-1 and thrombospondins are upregulated and promote aberrant excitatory synaptogenesis. The complex trait of protein associations that involve interdependent interactions between α2/δ-1 and thrombospondins, further, association of N-methyl-D-aspartate receptor and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor with the C-tail of α2/δ-1, constitutes a macromolecular signaling complex that forms the crucial elements for the pharmacological mode of action of gabapentinoids.
Collapse
|
107
|
Ameroso D, Rios M. Synaptic plasticity and the role of astrocytes in central metabolic circuits. WIREs Mech Dis 2024; 16:e1632. [PMID: 37833830 PMCID: PMC10842964 DOI: 10.1002/wsbm.1632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Neural circuits in the brain, primarily in the hypothalamus, are paramount to the homeostatic control of feeding and energy utilization. They integrate hunger, satiety, and body adiposity cues from the periphery and mediate the appropriate behavioral and physiological responses to satisfy the energy demands of the animal. Notably, perturbations in central homeostatic circuits have been linked to the etiology of excessive feeding and obesity. Considering the ever-changing energy requirements of the animal and required adaptations, it is not surprising that brain-feeding circuits remain plastic in adulthood and are subject to changes in synaptic strength as a consequence of nutritional status. Indeed, synapse density, probability of presynaptic transmitter release, and postsynaptic responses in hypothalamic energy balance centers are tailored to behavioral and physiological responses required to sustain survival. Mounting evidence supports key roles of astrocytes facilitating some of this plasticity. Here we discuss these synaptic plasticity mechanisms and the emerging roles of astrocytes influencing energy and glucose balance control in health and disease. This article is categorized under: Cancer > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Dominique Ameroso
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
| | - Maribel Rios
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111
| |
Collapse
|
108
|
Cazzaniga S, Real G, Finazzi S, Lorini LF, Forget P, Bugada D. How to Modulate Peripheral and Central Nervous System to Treat Acute Postoperative Pain and Prevent Pain Persistence. Curr Neuropharmacol 2024; 22:23-37. [PMID: 37563811 PMCID: PMC10716883 DOI: 10.2174/1570159x21666230810103508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 08/12/2023] Open
Abstract
Chronic postoperative pain (CPSP) is a major issue after surgery, which may impact on patient's quality of life. Traditionally, CPSP is believed to rely on maladaptive hyperalgesia and risk factors have been identified that predispose to CPSP, including acute postoperative pain. Despite new models of prediction are emerging, acute pain is still a modifiable factor that can be challenged with perioperative analgesic strategies. In this review we present the issue of CPSP, focusing on molecular mechanism underlying the development of acute and chronic hyperalgesia. Also, we focus on how perioperative strategies can impact directly or indirectly (by reducing postoperative pain intensity) on the development of CPSP.
Collapse
Affiliation(s)
- Sara Cazzaniga
- Emergency and Intensive Care Department, ASST Papa Giovanni XXIII, 24127, Bergamo, Italy
| | - Giovanni Real
- Department of Health Sciences, University of Milan, 20122, Milan, Italy
| | - Simone Finazzi
- Department of Health Sciences, University of Milan, 20122, Milan, Italy
| | - Luca F Lorini
- Emergency and Intensive Care Department, ASST Papa Giovanni XXIII, 24127, Bergamo, Italy
| | - Patrice Forget
- School of Medicine, Medical Sciences and Nutrition, Epidemiology Group, Institute of Applied Health Sciences, University of Aberdeen, Scotland, United Kingdom
- Department of Anaesthesia, NHS Grampian, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | - Dario Bugada
- Emergency and Intensive Care Department, ASST Papa Giovanni XXIII, 24127, Bergamo, Italy
| |
Collapse
|
109
|
Imrie G, Gray MB, Raghuraman V, Farhy-Tselnicker I. Gene Expression at the Tripartite Synapse: Bridging the Gap Between Neurons and Astrocytes. ADVANCES IN NEUROBIOLOGY 2024; 39:95-136. [PMID: 39190073 DOI: 10.1007/978-3-031-64839-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Astrocytes, a major class of glial cells, are an important element at the synapse where they engage in bidirectional crosstalk with neurons to regulate numerous aspects of neurotransmission, circuit function, and behavior. Mutations in synapse-related genes expressed in both neurons and astrocytes are central factors in a vast number of neurological disorders, making the proteins that they encode prominent targets for therapeutic intervention. Yet, while the roles of many of these synaptic proteins in neurons are well established, the functions of the same proteins in astrocytes are largely unknown. This gap in knowledge must be addressed to refine therapeutic approaches. In this chapter, we integrate multiomic meta-analysis and a comprehensive overview of current literature to show that astrocytes express an astounding number of genes that overlap with the neuronal and synaptic transcriptomes. Further, we highlight recent reports that characterize the expression patterns and potential novel roles of these genes in astrocytes in both physiological and pathological conditions, underscoring the importance of considering both cell types when investigating the function and regulation of synaptic proteins.
Collapse
Affiliation(s)
- Gillian Imrie
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Madison B Gray
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Vishnuvasan Raghuraman
- Department of Biology, Texas A&M University, College Station, TX, USA
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA
| | - Isabella Farhy-Tselnicker
- Department of Biology, Texas A&M University, College Station, TX, USA.
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA.
- Center for Biological Clocks Research, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
110
|
Harder EV, Franklin JP, VanRyzin JW, Reissner KJ. Astrocyte-Neuron Interactions in Substance Use Disorders. ADVANCES IN NEUROBIOLOGY 2024; 39:165-191. [PMID: 39190075 DOI: 10.1007/978-3-031-64839-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Engagement of astrocytes within the brain's reward circuitry has been apparent for approximately 30 years, when noncontingent drug administration was observed to lead to cytological markers of reactive astrocytes. Since that time, advanced approaches in rodent behavior and astrocyte monitoring have revealed complex interactions between astrocytes with drug type, animal sex, brain region, and dose and duration of drug administration. A number of studies now collectively reveal that rodent drug self-administration followed by prolonged abstinence results in decreased features of structure and synaptic colocalization of astrocytes. In addition, stimulation of astrocytes in the nucleus accumbens with DREADD receptors or pharmacological compounds opposes drug-seeking behavior. These findings provide a clear path for ongoing investigation into astrocytes as mediators of drug action in the brain and underscore the potential therapeutic utility of astrocytes in the regulation of drug craving and relapse vulnerability.
Collapse
Affiliation(s)
- Eden V Harder
- Department of Psychology & Neuroscience, Neuroscience Center, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Janay P Franklin
- Department of Psychology & Neuroscience, Neuroscience Center, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan W VanRyzin
- Department of Psychology & Neuroscience, Neuroscience Center, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Kathryn J Reissner
- Department of Psychology & Neuroscience, Neuroscience Center, UNC Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
111
|
Kim JD, Copperi F, Diano S. Microglia in Central Control of Metabolism. Physiology (Bethesda) 2024; 39:0. [PMID: 37962895 PMCID: PMC11283896 DOI: 10.1152/physiol.00021.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 11/15/2023] Open
Abstract
Beyond their role as brain immune cells, microglia act as metabolic sensors in response to changes in nutrient availability, thus playing a role in energy homeostasis. This review highlights the evidence and challenges of studying the role of microglia in metabolism regulation.
Collapse
Affiliation(s)
- Jung Dae Kim
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, United States
| | - Francesca Copperi
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, United States
| | - Sabrina Diano
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, United States
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York, United States
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, United States
| |
Collapse
|
112
|
Sharma T, Kumar R, Mukherjee S. Neuronal Vulnerability to Degeneration in Parkinson's Disease and Therapeutic Approaches. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:715-730. [PMID: 37185323 DOI: 10.2174/1871527322666230426155432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 05/17/2023]
Abstract
Parkinson's disease is the second most common neurodegenerative disease affecting millions of people worldwide. Despite the crucial threat it poses, currently, no specific therapy exists that can completely reverse or halt the progression of the disease. Parkinson's disease pathology is driven by neurodegeneration caused by the intraneuronal accumulation of alpha-synuclein (α-syn) aggregates in Lewy bodies in the substantia nigra region of the brain. Parkinson's disease is a multiorgan disease affecting the central nervous system (CNS) as well as the autonomic nervous system. A bidirectional route of spreading α-syn from the gut to CNS through the vagus nerve and vice versa has also been reported. Despite our understanding of the molecular and pathophysiological aspects of Parkinson's disease, many questions remain unanswered regarding the selective vulnerability of neuronal populations, the neuromodulatory role of the locus coeruleus, and alpha-synuclein aggregation. This review article aims to describe the probable factors that contribute to selective neuronal vulnerability in Parkinson's disease, such as genetic predisposition, bioenergetics, and the physiology of neurons, as well as the interplay of environmental and exogenous modulators. This review also highlights various therapeutic strategies with cell transplants, through viral gene delivery, by targeting α-synuclein and aquaporin protein or epidermal growth factor receptors for the treatment of Parkinson's disease. The application of regenerative medicine and patient-specific personalized approaches have also been explored as promising strategies in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Tanushree Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
- Molecular and Human Genetics, Banaras Hindu University Varanasi, Uttar Pradesh, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Sayali Mukherjee
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
| |
Collapse
|
113
|
Bove F, Angeloni B, Sanginario P, Rossini PM, Calabresi P, Di Iorio R. Neuroplasticity in levodopa-induced dyskinesias: An overview on pathophysiology and therapeutic targets. Prog Neurobiol 2024; 232:102548. [PMID: 38040324 DOI: 10.1016/j.pneurobio.2023.102548] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/29/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Levodopa-induced dyskinesias (LIDs) are a common complication in patients with Parkinson's disease (PD). A complex cascade of electrophysiological and molecular events that induce aberrant plasticity in the cortico-basal ganglia system plays a key role in the pathophysiology of LIDs. In the striatum, multiple neurotransmitters regulate the different forms of physiological synaptic plasticity to provide it in a bidirectional and Hebbian manner. In PD, impairment of both long-term potentiation (LTP) and long-term depression (LTD) progresses with disease and dopaminergic denervation of striatum. The altered balance between LTP and LTD processes leads to unidirectional changes in plasticity that cause network dysregulation and the development of involuntary movements. These alterations have been documented, in both experimental models and PD patients, not only in deep brain structures but also at motor cortex. Invasive and non-invasive neuromodulation treatments, as deep brain stimulation, transcranial magnetic stimulation, or transcranial direct current stimulation, may provide strategies to modulate the aberrant plasticity in the cortico-basal ganglia network of patients affected by LIDs, thus restoring normal neurophysiological functioning and treating dyskinesias. In this review, we discuss the evidence for neuroplasticity impairment in experimental PD models and in patients affected by LIDs, and potential neuromodulation strategies that may modulate aberrant plasticity.
Collapse
Affiliation(s)
- Francesco Bove
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Benedetta Angeloni
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pasquale Sanginario
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Paolo Calabresi
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Di Iorio
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
114
|
Dicks LMT. Our Mental Health Is Determined by an Intrinsic Interplay between the Central Nervous System, Enteric Nerves, and Gut Microbiota. Int J Mol Sci 2023; 25:38. [PMID: 38203207 PMCID: PMC10778721 DOI: 10.3390/ijms25010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Bacteria in the gut microbiome play an intrinsic part in immune activation, intestinal permeability, enteric reflex, and entero-endocrine signaling. The gut microbiota communicates with the central nervous system (CNS) through the production of bile acids, short-chain fatty acids (SCFAs), glutamate (Glu), γ-aminobutyric acid (GABA), dopamine (DA), norepinephrine (NE), serotonin (5-HT), and histamine. A vast number of signals generated in the gastrointestinal tract (GIT) reach the brain via afferent fibers of the vagus nerve (VN). Signals from the CNS are returned to entero-epithelial cells (EES) via efferent VN fibers and communicate with 100 to 500 million neurons in the submucosa and myenteric plexus of the gut wall, which is referred to as the enteric nervous system (ENS). Intercommunications between the gut and CNS regulate mood, cognitive behavior, and neuropsychiatric disorders such as autism, depression, and schizophrenia. The modulation, development, and renewal of nerves in the ENS and changes in the gut microbiome alter the synthesis and degradation of neurotransmitters, ultimately influencing our mental health. The more we decipher the gut microbiome and understand its effect on neurotransmission, the closer we may get to developing novel therapeutic and psychobiotic compounds to improve cognitive functions and prevent mental disorders. In this review, the intricate control of entero-endocrine signaling and immune responses that keep the gut microbiome in a balanced state, and the influence that changing gut bacteria have on neuropsychiatric disorders, are discussed.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
115
|
Jauregui GV, Vukić D, Onyango IG, Arias C, Novotný JS, Texlová K, Wang S, Kovačovicova KL, Polakova N, Zelinkova J, Čarna M, Strašil VL, Head BP, Havas D, Mistrik M, Zorec R, Verkhratsky A, Keegan L, O'Connel M, Rissman R, Stokin GB. Amyloid precursor protein induces reactive astrogliosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.571817. [PMID: 38187544 PMCID: PMC10769227 DOI: 10.1101/2023.12.18.571817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
We present in vitro and in vivo evidence demonstrating that Amyloid Precursor Protein (APP) acts as an essential instigator of reactive astrogliosis. Cell-specific overexpression of APP in cultured astrocytes led to remodelling of the intermediate filament network, enhancement of cytokine production and activation of cellular programs centred around the interferon (IFN) pathway, all signs of reactive astrogliosis. Conversely, APP deletion in cultured astrocytes abrogated remodelling of the intermediate filament network and blunted expression of IFN stimulated gene (ISG) products in response to lipopolysaccharide (LPS). Following traumatic brain injury (TBI), mouse reactive astrocytes also exhibited an association between APP and IFN, while APP deletion curbed the increase in glial fibrillary acidic protein (GFAP) observed canonically in astrocytes in response to TBI. Thus, APP represents a molecular inducer and regulator of reactive astrogliosis.
Collapse
Affiliation(s)
- Gretsen Velezmoro Jauregui
- Translational Ageing and Neuroscience Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czech Republic
| | - Dragana Vukić
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomedical Research, Faculty of Science, Masaryk University, Brno Czech Republic
| | - Isaac G Onyango
- Translational Ageing and Neuroscience Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czech Republic
| | - Carlos Arias
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Jan S Novotný
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Kateřina Texlová
- Translational Ageing and Neuroscience Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czech Republic
| | - Shanshan Wang
- Veterans Affairs San Diego Healthcare System, San Diego, USA
- Department of Anesthesia, University of California San Diego, San Diego, USA
| | | | - Natalie Polakova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Jana Zelinkova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Maria Čarna
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | | | - Brian P Head
- Veterans Affairs San Diego Healthcare System, San Diego, USA
- Department of Anesthesia, University of California San Diego, San Diego, USA
| | | | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Robert Zorec
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Technology Park, Ljubljana, Slovenia
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Achucarro Centre for Neuroscience, IIKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Stem Cell Biology, State Research Institute Centre for innovative Medicine, Vilnius, Lithuania
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, China
| | - Liam Keegan
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Mary O'Connel
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Robert Rissman
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Gorazd B Stokin
- Translational Ageing and Neuroscience Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
- Department of Neurology, Gloucestershire Royal Hospital, Gloucestershire NHS Foundation Trust, Gloucester, UK
| |
Collapse
|
116
|
Naghieh P, Delavar A, Amiri M, Peremans H. Astrocyte's self-repairing characteristics improve working memory in spiking neuronal networks. iScience 2023; 26:108241. [PMID: 38047076 PMCID: PMC10692671 DOI: 10.1016/j.isci.2023.108241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/23/2023] [Accepted: 10/15/2023] [Indexed: 12/05/2023] Open
Abstract
Astrocytes play a significant role in the working memory (WM) mechanism, yet their contribution to spiking neuron-astrocyte networks (SNAN) is underexplored. This study proposes a non-probabilistic SNAN incorporating a self-repairing (SR) mechanism through endocannabinoid pathways to facilitate WM function. Four experiments were conducted with different damaging patterns, replicating close-to-realistic synaptic impairments. Simulation results suggest that the SR process enhances WM performance by improving the consistency of neuronal firing. Moreover, the intercellular astrocytic [Ca]2+ transmission via gap junctions improves WM and SR processes. With increasing damage, WM and SR activities initially fail for non-matched samples and then for smaller and minimally overlapping matched samples. Simulation results also indicate that the inclusion of the SR mechanism in both random and continuous forms of damage improves the resilience of the WM by approximately 20%. This study highlights the importance of astrocytes in synaptically impaired networks.
Collapse
Affiliation(s)
- Pedram Naghieh
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abolfazl Delavar
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahmood Amiri
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Engineering Management, University of Antwerp, Antwerp, Belgium
| | - Herbert Peremans
- Department of Engineering Management, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
117
|
Ferrucci L, Cantando I, Cordella F, Di Angelantonio S, Ragozzino D, Bezzi P. Microglia at the Tripartite Synapse during Postnatal Development: Implications for Autism Spectrum Disorders and Schizophrenia. Cells 2023; 12:2827. [PMID: 38132147 PMCID: PMC10742295 DOI: 10.3390/cells12242827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Synapses are the fundamental structures of neural circuits that control brain functions and behavioral and cognitive processes. Synapses undergo formation, maturation, and elimination mainly during postnatal development via a complex interplay with neighboring astrocytes and microglia that, by shaping neural connectivity, may have a crucial role in the strengthening and weakening of synaptic functions, that is, the functional plasticity of synapses. Indeed, an increasing number of studies have unveiled the roles of microglia and astrocytes in synapse formation, maturation, and elimination as well as in regulating synaptic function. Over the past 15 years, the mechanisms underlying the microglia- and astrocytes-dependent regulation of synaptic plasticity have been thoroughly studied, and researchers have reported that the disruption of these glial cells in early postnatal development may underlie the cause of synaptic dysfunction that leads to neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia.
Collapse
Affiliation(s)
- Laura Ferrucci
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy; (L.F.); (F.C.); (S.D.A.); (D.R.)
| | - Iva Cantando
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland;
| | - Federica Cordella
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy; (L.F.); (F.C.); (S.D.A.); (D.R.)
- Center for Life Nano- & Neuro-Science, IIT, 00161 Rome, Italy
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy; (L.F.); (F.C.); (S.D.A.); (D.R.)
- Center for Life Nano- & Neuro-Science, IIT, 00161 Rome, Italy
| | - Davide Ragozzino
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy; (L.F.); (F.C.); (S.D.A.); (D.R.)
- IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Paola Bezzi
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy; (L.F.); (F.C.); (S.D.A.); (D.R.)
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland;
| |
Collapse
|
118
|
Krohn J, Domart F, Do TT, Dresbach T. The synaptic vesicle protein Mover/TPRG1L is associated with lipid droplets in astrocytes. Glia 2023; 71:2799-2814. [PMID: 37539560 DOI: 10.1002/glia.24452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Crucial brain functions such as neurotransmission, myelination, and signaling pose a high demand for lipids. Lipid dysregulation is associated with neuroinflammation and neurodegeneration. Astrocytes protect neurons from lipid induced damage by accumulating and metabolizing toxic lipids in organelles called lipid droplets (LDs). LDs have long been considered as lipid storage compartments in adipocytes, but less is known about their biogenesis and composition in the brain. In particular, proteins covering the LD surface are not yet fully identified. Here, we report that the presynaptic protein Mover/TPRG1L, which regulates the probability of neurotransmitter release in neurons, is a component of the LD coat in astrocytes. Using conventional and super-resolution microscopy, we demonstrate that Mover surrounds naive and oleic acid induced astrocytic LDs. We confirm the identity of astrocytic LDs using the neutral lipid stains Bodipy and LipidTox, as well as immunofluorescence for perilipin-2, a known component of the LD coat. In astrocytes, recombinant Mover was sufficient to induce an accumulation of LDs. Furthermore, we identified point mutations that abolish targeting to LDs and show similarities in the required binding sequences for association to the presynapse and LDs. Our results show that Mover is not only a presynaptic protein but also a candidate for LD regulation. This highlights the dual role of Mover in synaptic transmission and regulation of astrocytic LDs, which may be particularly important in the context of lipid-related neurological disorders.
Collapse
Affiliation(s)
- Jeremy Krohn
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Georg-August University of Göttingen, Göttingen, Germany
| | - Florelle Domart
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Georg-August University of Göttingen, Göttingen, Germany
| | - Thanh Thao Do
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Georg-August University of Göttingen, Göttingen, Germany
| | - Thomas Dresbach
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Georg-August University of Göttingen, Göttingen, Germany
| |
Collapse
|
119
|
Su C, Miao J, Guo J. The relationship between TGF-β1 and cognitive function in the brain. Brain Res Bull 2023; 205:110820. [PMID: 37979810 DOI: 10.1016/j.brainresbull.2023.110820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Transforming growth factor-β1 (TGF-β1), a multifunctional cytokine, plays a pivotal role in synaptic formation, plasticity, and neurovascular unit regulation. This review highlights TGF-β1's potential impact on cognitive function, particularly in the context of neurodegenerative disorders. However, despite the growing body of evidence, a comprehensive understanding of TGF-β1's precise role remains elusive. Further research is essential to unravel the complex mechanisms through which TGF-β1 influences cognitive function and to explore therapeutic avenues for targeting TGF-β1 in neurodegenerative conditions. This investigation sheds light on TGF-β1's contribution to cognitive function and offers prospects for innovative treatments and interventions. This review delves into the intricate relationship between TGF-β1 and cognitive function.
Collapse
Affiliation(s)
- Chen Su
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China
| | - Jie Miao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030000, China.
| |
Collapse
|
120
|
Courtney CD, Sobieski C, Ramakrishnan C, Ingram RJ, Wojnowski NM, DeFazio RA, Deisseroth K, Christian-Hinman CA. Optoα1AR activation in astrocytes modulates basal hippocampal synaptic excitation and inhibition in a stimulation-specific manner. Hippocampus 2023; 33:1277-1291. [PMID: 37767862 PMCID: PMC10842237 DOI: 10.1002/hipo.23580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Astrocytes play active roles at synapses and can monitor, respond, and adapt to local synaptic activity. While there is abundant evidence that astrocytes modulate excitatory transmission in the hippocampus, evidence for astrocytic modulation of hippocampal synaptic inhibition remains more limited. Furthermore, to better investigate roles for astrocytes in modulating synaptic transmission, more tools that can selectively activate native G protein signaling pathways in astrocytes with both spatial and temporal precision are needed. Here, we utilized AAV8-GFAP-Optoα1AR-eYFP (Optoα1AR), a viral vector that enables activation of Gq signaling in astrocytes via light-sensitive α1-adrenergic receptors. To determine if stimulating astrocytic Optoα1AR modulates hippocampal synaptic transmission, recordings were made in CA1 pyramidal cells with surrounding astrocytes expressing Optoα1AR, channelrhodopsin (ChR2), or GFP. Both high-frequency (20 Hz, 45-ms light pulses, 5 mW, 5 min) and low-frequency (0.5 Hz, 1-s pulses at increasing 1, 5, and 10 mW intensities, 90 s per intensity) blue light stimulation were tested. 20 Hz Optoα1AR stimulation increased both inhibitory and excitatory postsynaptic current (IPSC and EPSC) frequency, and the effect on miniature IPSCs (mIPSCs) was largely reversible within 20 min. However, low-frequency stimulation of Optoα1AR did not modulate either IPSCs or EPSCs, suggesting that astrocytic Gq -dependent modulation of basal synaptic transmission in the hippocampus is stimulation-dependent. By contrast, low-frequency stimulation of astrocytic ChR2 was effective in increasing both synaptic excitation and inhibition. Together, these data demonstrate that Optoα1AR activation in astrocytes changes basal GABAergic and glutamatergic transmission, but only following high-frequency stimulation, highlighting the importance of temporal dynamics when using optical tools to manipulate astrocyte function.
Collapse
Affiliation(s)
- Connor D. Courtney
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Courtney Sobieski
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | | | - Robbie J. Ingram
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Natalia M. Wojnowski
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - R. Anthony DeFazio
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Catherine A. Christian-Hinman
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
121
|
Postnov D, Semyachkina-Glushkovskaya O, Litvinenko E, Kurths J, Penzel T. Mechanisms of Activation of Brain's Drainage during Sleep: The Nightlife of Astrocytes. Cells 2023; 12:2667. [PMID: 37998402 PMCID: PMC10670149 DOI: 10.3390/cells12222667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
The study of functions, mechanisms of generation, and pathways of movement of cerebral fluids has a long history, but the last decade has been especially productive. The proposed glymphatic hypothesis, which suggests a mechanism of the brain waste removal system (BWRS), caused an active discussion on both the criticism of some of the perspectives and our intensive study of new experimental facts. It was especially found that the intensity of the metabolite clearance changes significantly during the transition between sleep and wakefulness. Interestingly, at the cellular level, a number of aspects of this problem have been focused on, such as astrocytes-glial cells, which, over the past two decades, have been recognized as equal partners of neurons and perform many important functions. In particular, an important role was assigned to astrocytes within the framework of the glymphatic hypothesis. In this review, we return to the "astrocytocentric" view of the BWRS function and the explanation of its activation during sleep from the viewpoint of new findings over the last decade. Our main conclusion is that the BWRS's action may be analyzed both at the systemic (whole-brain) and at the local (cellular) level. The local level means here that the neuro-glial-vascular unit can also be regarded as the smallest functional unit of sleep, and therefore, the smallest functional unit of the BWRS.
Collapse
Affiliation(s)
- Dmitry Postnov
- Department of Optics and Biophotonics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia;
| | - Oxana Semyachkina-Glushkovskaya
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (O.S.-G.); (J.K.)
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
| | - Elena Litvinenko
- Department of Optics and Biophotonics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia;
| | - Jürgen Kurths
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (O.S.-G.); (J.K.)
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
| | - Thomas Penzel
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (O.S.-G.); (J.K.)
- Charité — Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
122
|
Câmara BO, Guimarães JG, Pereira Junior ML. Analog neuromorphic circuit for spontaneous Ca 2+ oscillations. Sci Rep 2023; 13:20107. [PMID: 37973824 PMCID: PMC10654768 DOI: 10.1038/s41598-023-47433-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
This study proposes an innovative analog neuromorphic circuit design to mimic spontaneous Ca2+ oscillations observed in astrocytes. Unlike traditional models, this approach does not rely on synaptic stimulation, suggesting that astrocytes may play a key role in generating neuronal activity. The circuit is built using transistor differential pairs to approximate the nonlinear sigmoidal biological functions, and its performance is validated through simulation and compared against mathematical models using phase diagram analysis. Results indicate a good fit between the circuit and the mathematical model. Finally, the circuit's ability to simulate the release of glutamate and ATP through spontaneous oscillations is demonstrated.
Collapse
Affiliation(s)
- Beatriz O Câmara
- Department of Electrical Engineering, Faculty of Technology, University of Brasília, 70910-900, Brasília, Brazil
| | - Janaina G Guimarães
- Federal University of Santa Catarina, Control Engineering, Automation and Computer Science, 89036-256, Blumenau, Santa Catarina, Brazil
| | - Marcelo L Pereira Junior
- Department of Electrical Engineering, Faculty of Technology, University of Brasília, 70910-900, Brasília, Brazil.
| |
Collapse
|
123
|
Wang Y, Wang L, Fan H, Ma J, Cao H, Wang X. Breathing cluster in complex neuron-astrocyte networks. CHAOS (WOODBURY, N.Y.) 2023; 33:113118. [PMID: 37967261 DOI: 10.1063/5.0146906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/20/2023] [Indexed: 11/17/2023]
Abstract
Brain activities are featured by spatially distributed neural clusters of coherent firings and a spontaneous slow switching of the clusters between the coherent and incoherent states. Evidences from recent in vivo experiments suggest that astrocytes, a type of glial cell regarded previously as providing only structural and metabolic supports to neurons, participate actively in brain functions by regulating the neural firing activities, yet the underlying mechanism remains unknown. Here, introducing astrocyte as a reservoir of the glutamate released from the neuron synapses, we propose the model of the complex neuron-astrocyte network, and investigate the roles of astrocytes in regulating the cluster synchronization behaviors of networked chaotic neurons. It is found that a specific set of neurons on the network are synchronized and form a cluster, while the remaining neurons are kept as desynchronized. Moreover, during the course of network evolution, the cluster is switching between the synchrony and asynchrony states in an intermittent fashion, henceforth the phenomenon of "breathing cluster." By the method of symmetry-based analysis, we conduct a theoretical investigation on the synchronizability of the cluster. It is revealed that the contents of the cluster are determined by the network symmetry, while the breathing of the cluster is attributed to the interplay between the neural network and the astrocyte. The phenomenon of breathing cluster is demonstrated in different network models, including networks with different sizes, nodal dynamics, and coupling functions. The findings shed light on the cellular mechanism of astrocytes in regulating neural activities and give insights into the state-switching of the neocortex.
Collapse
Affiliation(s)
- Ya Wang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Liang Wang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Huawei Fan
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Jun Ma
- Department of Physics, Lanzhou University of Technology, Lanzhou 730050, China
| | - Hui Cao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Xingang Wang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
124
|
Murphy-Royal C, Ching S, Papouin T. A conceptual framework for astrocyte function. Nat Neurosci 2023; 26:1848-1856. [PMID: 37857773 PMCID: PMC10990637 DOI: 10.1038/s41593-023-01448-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 09/01/2023] [Indexed: 10/21/2023]
Abstract
The participation of astrocytes in brain computation was hypothesized in 1992, coinciding with the discovery that these cells display a form of intracellular Ca2+ signaling sensitive to neuroactive molecules. This finding fostered conceptual leaps crystalized around the idea that astrocytes, once thought to be passive, participate actively in brain signaling and outputs. A multitude of disparate roles of astrocytes has since emerged, but their meaningful integration has been muddied by the lack of consensus and models of how we conceive the functional position of these cells in brain circuitry. In this Perspective, we propose an intuitive, data-driven and transferable conceptual framework we coin 'contextual guidance'. It describes astrocytes as 'contextual gates' that shape neural circuitry in an adaptive, state-dependent fashion. This paradigm provides fresh perspectives on principles of astrocyte signaling and its relevance to brain function, which could spur new experimental avenues, including in computational space.
Collapse
Affiliation(s)
- Ciaran Murphy-Royal
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) & Département de Neurosciences, Université de Montréal, Montréal, Quebec, Canada
| | - ShiNung Ching
- Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Thomas Papouin
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
125
|
Stopper G, Caudal LC, Rieder P, Gobbo D, Stopper L, Felix L, Everaerts K, Bai X, Rose CR, Scheller A, Kirchhoff F. Novel algorithms for improved detection and analysis of fluorescent signal fluctuations. Pflugers Arch 2023; 475:1283-1300. [PMID: 37700120 PMCID: PMC10567899 DOI: 10.1007/s00424-023-02855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/02/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023]
Abstract
Fluorescent dyes and genetically encoded fluorescence indicators (GEFI) are common tools for visualizing concentration changes of specific ions and messenger molecules during intra- as well as intercellular communication. Using advanced imaging technologies, fluorescence indicators are a prerequisite for the analysis of physiological molecular signaling. Automated detection and analysis of fluorescence signals require to overcome several challenges, including correct estimation of fluorescence fluctuations at basal concentrations of messenger molecules, detection, and extraction of events themselves as well as proper segmentation of neighboring events. Moreover, event detection algorithms need to be sensitive enough to accurately capture localized and low amplitude events exhibiting a limited spatial extent. Here, we present two algorithms (PBasE and CoRoDe) for accurate baseline estimation and automated detection and segmentation of fluorescence fluctuations.
Collapse
Affiliation(s)
- Gebhard Stopper
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Laura C Caudal
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Phillip Rieder
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Davide Gobbo
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Laura Stopper
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Lisa Felix
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Katharina Everaerts
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Xianshu Bai
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Anja Scheller
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Frank Kirchhoff
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany.
| |
Collapse
|
126
|
Verma H, Gangwar P, Yadav A, Yadav B, Rao R, Kaur S, Kumar P, Dhiman M, Taglialatela G, Mantha AK. Understanding the neuronal synapse and challenges associated with the mitochondrial dysfunction in mild cognitive impairment and Alzheimer's disease. Mitochondrion 2023; 73:19-29. [PMID: 37708950 DOI: 10.1016/j.mito.2023.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/26/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
Synaptic mitochondria are crucial for maintaining synaptic activity due to their high energy requirements, substantial calcium (Ca2+) fluctuation, and neurotransmitter release at the synapse. To provide a continuous energy supply, neurons use special mechanisms to transport and distribute healthy mitochondria to the synapse while eliminating the damaged mitochondria from the synapse. Along the neuron, mitochondrial membrane potential (ψ) gradient exists and is highest in the somal region. Lower ψ in the synaptic region renders mitochondria more vulnerable to oxidative stress-mediated damage. Secondly, mitochondria become susceptible to the release of cytochrome c, and mitochondrial DNA (mtDNA) is not shielded from the reactive oxygen species (ROS) by the histone proteins (unlike nuclear DNA), leading to activation of caspases and pronounced oxidative DNA base damage, which ultimately causes synaptic loss. Both synaptic mitochondrial dysfunction and synaptic failure are crucial factors responsible for Alzheimer's disease (AD). Furthermore, amyloid beta (Aβ) and hyper-phosphorylated Tau, the two leading players of AD, exaggerate the disease-like pathological conditions by reducing the mitochondrial trafficking, blocking the bi-directional transport at the synapse, enhancing the mitochondrial fission via activating the mitochondrial fission proteins, enhancing the swelling of mitochondria by increasing the influx of water through mitochondrial permeability transition pore (mPTP) opening, as well as reduced ATP production by blocking the activity of complex I and complex IV. Mild cognitive impairment (MCI) is also associated with decline in cognitive ability caused by synaptic degradation. This review summarizes the challenges associated with the synaptic mitochondrial dysfunction linked to AD and MCI and the role of phytochemicals in restoring the synaptic activity and rendering neuroprotection in AD.
Collapse
Affiliation(s)
- Harkomal Verma
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Prabhakar Gangwar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Anuradha Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Bharti Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Rashmi Rao
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Sharanjot Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Giulio Taglialatela
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Anil Kumar Mantha
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India.
| |
Collapse
|
127
|
Mitroshina E, Kalinina E, Vedunova M. Optogenetics in Alzheimer's Disease: Focus on Astrocytes. Antioxidants (Basel) 2023; 12:1856. [PMID: 37891935 PMCID: PMC10604138 DOI: 10.3390/antiox12101856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, resulting in disability and mortality. The global incidence of AD is consistently surging. Although numerous therapeutic agents with promising potential have been developed, none have successfully treated AD to date. Consequently, the pursuit of novel methodologies to address neurodegenerative processes in AD remains a paramount endeavor. A particularly promising avenue in this search is optogenetics, enabling the manipulation of neuronal activity. In recent years, research attention has pivoted from neurons to glial cells. This review aims to consider the potential of the optogenetic correction of astrocyte metabolism as a promising strategy for correcting AD-related disorders. The initial segment of the review centers on the role of astrocytes in the genesis of neurodegeneration. Astrocytes have been implicated in several pathological processes associated with AD, encompassing the clearance of β-amyloid, neuroinflammation, excitotoxicity, oxidative stress, and lipid metabolism (along with a critical role in apolipoprotein E function). The effect of astrocyte-neuronal interactions will also be scrutinized. Furthermore, the review delves into a number of studies indicating that changes in cellular calcium (Ca2+) signaling are one of the causes of neurodegeneration. The review's latter section presents insights into the application of various optogenetic tools to manipulate astrocytic function as a means to counteract neurodegenerative changes.
Collapse
Affiliation(s)
- Elena Mitroshina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia (M.V.)
| | | | | |
Collapse
|
128
|
Pfau DR, Baribeau S, Brown F, Khetarpal N, Marc Breedlove S, Jordan CL. Loss of TRPC2 function in mice alters sex differences in brain regions regulating social behaviors. J Comp Neurol 2023; 531:1550-1561. [PMID: 37496437 PMCID: PMC10642801 DOI: 10.1002/cne.25528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/15/2023] [Accepted: 06/29/2023] [Indexed: 07/28/2023]
Abstract
The transient receptor potential cation channel 2 (TRPC2) conveys pheromonal information from the vomeronasal organ (VNO) to the brain. Both male and female mice lacking this gene show altered sex-typical behavior as adults. We asked whether TRPC2, highly expressed in the VNO, normally participates in the development of VNO-recipient brain regions controlling mounting and aggression, two behaviors affected by TRPC2 loss. We now report significant effects of TRPC2 loss in both the posterodorsal aspect of the medial amygdala (MePD) and ventromedial nucleus of the hypothalamus (VMH) of male and female mice. In the MePD, a sex difference in neuron number was eliminated by the TRPC2 knockout (KO), but the effect was complex, with fewer neurons in the right MePD of females, and fewer neurons in the left MePD of males. In contrast, MePD astrocytes were unaffected by the KO. In the ventrolateral (vl) aspect of the VMH, KO females were like wildtype (WT) females, but TRPC2 loss had a dramatic effect in males, with fewer neurons than WT males and a smaller VMHvl overall. We also discovered a glial sex difference in VMHvl of WTs, with females having more astrocytes than males. Interestingly, TRPC2 loss increased astrocyte number in males in this region. We conclude that TRPC2 normally participates in the sexual differentiation of the mouse MePD and VMHvl. These changes in two key VNO-recipient regions may underlie the effects of the TRPC2 KO on behavior.
Collapse
Affiliation(s)
- Daniel R Pfau
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | - Sarah Baribeau
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | - Felix Brown
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | - Niki Khetarpal
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | - S Marc Breedlove
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | - Cynthia L Jordan
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
129
|
Campos ACP, Pagano RL, Lipsman N, Hamani C. What do we know about astrocytes and the antidepressant effects of DBS? Exp Neurol 2023; 368:114501. [PMID: 37558154 DOI: 10.1016/j.expneurol.2023.114501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/29/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Treatment-resistant depression (TRD) is a debilitating condition that affects millions of individuals worldwide. Deep brain stimulation (DBS) has been widely used with excellent outcomes in neurological disorders such as Parkinson's disease, tremor, and dystonia. More recently, DBS has been proposed as an adjuvant therapy for TRD. To date, the antidepressant efficacy of DBS is still controversial, and its mechanisms of action remain poorly understood. Astrocytes are the most abundant cells in the nervous system. Once believed to be a "supporting" element for neuronal function, astrocytes are now recognized to play a major role in brain homeostasis, neuroinflammation and neuroplasticity. Because of its many roles in complex multi-factorial disorders, including TRD, understanding the effect of DBS on astrocytes is pivotal to improve our knowledge about the antidepressant effects of this therapy. In depression, the number of astrocytes and the expression of astrocytic markers are decreased. One of the potential consequences of this reduced astrocytic function is the development of aberrant glutamatergic neurotransmission, which has been documented in several models of depression-like behavior. Evidence from preclinical work suggests that DBS may directly influence astrocytic activity, modulating the release of gliotransmitters, reducing neuroinflammation, and altering structural tissue organization. Compelling evidence for an involvement of astrocytes in potential mechanisms of DBS derive from studies suggesting that pharmacological lesions or the inhibition of these cells abolishes the antidepressant-like effect of DBS. In this review, we summarize preclinical data suggesting that the modulation of astrocytes may be an important mechanism for the antidepressant-like effects of DBS.
Collapse
Affiliation(s)
- Ana Carolina P Campos
- Sunnybrook Research Institute, Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Centre, Toronto, Canada; Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Rosana L Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Nir Lipsman
- Sunnybrook Research Institute, Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Centre, Toronto, Canada; Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Clement Hamani
- Sunnybrook Research Institute, Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Centre, Toronto, Canada; Division of Neurosurgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
130
|
Thaker AA, McConnell BV, Rogers DM, Carlson NE, Coughlan C, Jensen AM, Lopez-Paniagua D, Holden SK, Pressman PS, Pelak VS, Filley CM, Potter H, Solano DA, Heffernan KS, Bettcher BM. Astrogliosis, neuritic microstructure, and sex effects: GFAP is an indicator of neuritic orientation in women. Brain Behav Immun 2023; 113:124-135. [PMID: 37394144 PMCID: PMC10584366 DOI: 10.1016/j.bbi.2023.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND Data from human studies suggest that immune dysregulation is associated with Alzheimer's disease (AD) pathology and cognitive decline and that neurites may be affected early in the disease trajectory. Data from animal studies further indicate that dysfunction in astrocytes and inflammation may have a pivotal role in facilitating dendritic damage, which has been linked with negative cognitive outcomes. To elucidate these relationships further, we have examined the relationship between astrocyte and immune dysregulation, AD-related pathology, and neuritic microstructure in AD-vulnerable regions in late life. METHODS We evaluated panels of immune, vascular, and AD-related protein markers in blood and conducted in vivo multi-shell neuroimaging using Neurite Orientation Dispersion and Density Imaging (NODDI) to assess indices of neuritic density (NDI) and dispersion (ODI) in brain regions vulnerable to AD in a cohort of older adults (n = 109). RESULTS When examining all markers in tandem, higher plasma GFAP levels were strongly related to lower neurite dispersion (ODI) in grey matter. No biomarker associations were found with higher neuritic density. Associations between GFAP and neuritic microstructure were not significantly impacted by symptom status, APOE status, or plasma Aβ42/40 ratio; however, there was a large sex effect observed for neurite dispersion, wherein negative associations between GFAP and ODI were only observed in females. DISCUSSION This study provides a comprehensive, concurrent appraisal of immune, vascular, and AD-related biomarkers in the context of advanced grey matter neurite orientation and dispersion methodology. Sex may be an important modifier of the complex associations between astrogliosis, immune dysregulation, and brain microstructure in older adults.
Collapse
Affiliation(s)
- Ashesh A Thaker
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brice V McConnell
- Department of Neurology, Behavioral Neurology Section, University of Colorado Alzheimer's & Cognition Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Dustin M Rogers
- Department of Biostatistics and Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Nichole E Carlson
- Department of Biostatistics and Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Christina Coughlan
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandria M Jensen
- Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Dan Lopez-Paniagua
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Samantha K Holden
- Department of Neurology, Behavioral Neurology Section, University of Colorado Alzheimer's & Cognition Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Peter S Pressman
- Department of Neurology, Behavioral Neurology Section, University of Colorado Alzheimer's & Cognition Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Victoria S Pelak
- Department of Neurology, Behavioral Neurology Section, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; Department of Ophthalmology, Sue Anschutz-Rodgers University of Colorado Eye Center, University of Colorado School of Medicine, Aurora, CO, USA
| | - Christopher M Filley
- Behavioral Neurology Section, Departments of Neurology and Psychiatry, University of Colorado Alzheimer's & Cognition Center, Marcus Institute for Brain Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Huntington Potter
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - D Adriana Solano
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kate S Heffernan
- Division of Neuropharmacology and Neurological Disorders, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Brianne M Bettcher
- Department of Neurology, Behavioral Neurology Section, University of Colorado Alzheimer's & Cognition Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
131
|
Chandra B, Voas MG, Davies EL, Roberts-Galbraith RH. Ets-1 transcription factor regulates glial cell regeneration and function in planarians. Development 2023; 150:dev201666. [PMID: 37665145 PMCID: PMC10508700 DOI: 10.1242/dev.201666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
Glia play multifaceted roles in nervous systems in response to injury. Depending on the species, extent of injury and glial cell type in question, glia can help or hinder the regeneration of neurons. Studying glia in the context of successful regeneration could reveal features of pro-regenerative glia that could be exploited for new human therapies. Planarian flatworms completely regenerate their nervous systems after injury - including glia - and thus provide a strong model system for exploring glia in the context of regeneration. Here, we report that planarian glia regenerate after neurons, and that neurons are required for correct glial numbers and localization during regeneration. We also identify the planarian transcription factor-encoding gene ets-1 as a key regulator of glial cell maintenance and regeneration. Using ets-1 (RNAi) to perturb glia, we show that glial loss is associated with altered neuronal gene expression, impeded animal movement and impaired nervous system architecture - particularly within the neuropil. Importantly, our work reveals the inter-relationships of glia and neurons in the context of robust neural regeneration.
Collapse
Affiliation(s)
- Bidushi Chandra
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Matthew G. Voas
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Erin L. Davies
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | |
Collapse
|
132
|
Stanca S, Rossetti M, Bongioanni P. Astrocytes as Neuroimmunocytes in Alzheimer's Disease: A Biochemical Tool in the Neuron-Glia Crosstalk along the Pathogenetic Pathways. Int J Mol Sci 2023; 24:13880. [PMID: 37762184 PMCID: PMC10531177 DOI: 10.3390/ijms241813880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
This work aimed at assessing Alzheimer's disease (AD) pathogenesis through the investigation of the astrocytic role to transduce the load of amyloid-beta (Aβ) into neuronal death. The backbone of this review is focused on the deepening of the molecular pathways eliciting the activation of astrocytes crucial phenomena in the understanding of AD as an autoimmune pathology. The complex relations among astrocytes, Aβ and tau, together with the role played by the tripartite synapsis are discussed. A review of studies published from 1979 to 2023 on Scopus, PubMed and Google Scholar databases was conducted. The selected papers focused not only on the morphological and metabolic characteristics of astrocytes, but also on the latest notions about their multifunctional involvement in AD pathogenesis. Astrocytes participate in crucial pathways, including pruning and sprouting, by which the AD neurodegeneration evolves from an aggregopathy to neuroinflammation, loss of synapses and neuronal death. A1 astrocytes stimulate the production of pro-inflammatory molecules which have been correlated with the progression of AD cognitive impairment. Further research is needed to "hold back" the A1 polarization and, thus, to slow the worsening of the disease. AD clinical expression is the result of dysfunctional neuronal interactions, but this is only the end of a process involving a plurality of protagonists. One of these is the astrocyte, whose importance this work intends to put under the spotlight in the AD scenario, reflecting the multifaceted nature of this disease in the functional versatility of this glial population.
Collapse
Affiliation(s)
- Stefano Stanca
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi 10, 56126 Pisa, Italy
- NeuroCare Onlus, 56100 Pisa, Italy
| | - Martina Rossetti
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi 10, 56126 Pisa, Italy
- NeuroCare Onlus, 56100 Pisa, Italy
| | - Paolo Bongioanni
- NeuroCare Onlus, 56100 Pisa, Italy
- Medical Specialties Department, Azienda Ospedaliero-Universitaria Pisana, 56100 Pisa, Italy
| |
Collapse
|
133
|
de Kock CPJ, Feldmeyer D. Shared and divergent principles of synaptic transmission between cortical excitatory neurons in rodent and human brain. Front Synaptic Neurosci 2023; 15:1274383. [PMID: 37731775 PMCID: PMC10508294 DOI: 10.3389/fnsyn.2023.1274383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Information transfer between principal neurons in neocortex occurs through (glutamatergic) synaptic transmission. In this focussed review, we provide a detailed overview on the strength of synaptic neurotransmission between pairs of excitatory neurons in human and laboratory animals with a specific focus on data obtained using patch clamp electrophysiology. We reach two major conclusions: (1) the synaptic strength, measured as unitary excitatory postsynaptic potential (or uEPSP), is remarkably consistent across species, cortical regions, layers and/or cell-types (median 0.5 mV, interquartile range 0.4-1.0 mV) with most variability associated with the cell-type specific connection studied (min 0.1-max 1.4 mV), (2) synaptic function cannot be generalized across human and rodent, which we exemplify by discussing the differences in anatomical and functional properties of pyramidal-to-pyramidal connections within human and rodent cortical layers 2 and 3. With only a handful of studies available on synaptic transmission in human, it is obvious that much remains unknown to date. Uncovering the shared and divergent principles of synaptic transmission across species however, will almost certainly be a pivotal step toward understanding human cognitive ability and brain function in health and disease.
Collapse
Affiliation(s)
- Christiaan P. J. de Kock
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Dirk Feldmeyer
- Research Center Juelich, Institute of Neuroscience and Medicine, Jülich, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University Hospital, Aachen, Germany
- Jülich-Aachen Research Alliance, Translational Brain Medicine (JARA Brain), Aachen, Germany
| |
Collapse
|
134
|
Mihailova V, Stoyanova II, Tonchev AB. Glial Populations in the Human Brain Following Ischemic Injury. Biomedicines 2023; 11:2332. [PMID: 37760773 PMCID: PMC10525766 DOI: 10.3390/biomedicines11092332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
There is a growing interest in glial cells in the central nervous system due to their important role in maintaining brain homeostasis under physiological conditions and after injury. A significant amount of evidence has been accumulated regarding their capacity to exert either pro-inflammatory or anti-inflammatory effects under different pathological conditions. In combination with their proliferative potential, they contribute not only to the limitation of brain damage and tissue remodeling but also to neuronal repair and synaptic recovery. Moreover, reactive glial cells can modulate the processes of neurogenesis, neuronal differentiation, and migration of neurons in the existing neural circuits in the adult brain. By discovering precise signals within specific niches, the regulation of sequential processes in adult neurogenesis holds the potential to unlock strategies that can stimulate the generation of functional neurons, whether in response to injury or as a means of addressing degenerative neurological conditions. Cerebral ischemic stroke, a condition falling within the realm of acute vascular disorders affecting the circulation in the brain, stands as a prominent global cause of disability and mortality. Extensive investigations into glial plasticity and their intricate interactions with other cells in the central nervous system have predominantly relied on studies conducted on experimental animals, including rodents and primates. However, valuable insights have also been gleaned from in vivo studies involving poststroke patients, utilizing highly specialized imaging techniques. Following the attempts to map brain cells, the role of various transcription factors in modulating gene expression in response to cerebral ischemia is gaining increasing popularity. Although the results obtained thus far remain incomplete and occasionally ambiguous, they serve as a solid foundation for the development of strategies aimed at influencing the recovery process after ischemic brain injury.
Collapse
Affiliation(s)
- Victoria Mihailova
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University Varna, 9000 Varna, Bulgaria; (I.I.S.); (A.B.T.)
| | | | | |
Collapse
|
135
|
Lee YF, Russ AN, Zhao Q, Perle SJ, Maci M, Miller MR, Hou SS, Algamal M, Zhao Z, Li H, Gelwan N, Liu Z, Gomperts SN, Araque A, Galea E, Bacskai BJ, Kastanenka KV. Optogenetic targeting of astrocytes restores slow brain rhythm function and slows Alzheimer's disease pathology. Sci Rep 2023; 13:13075. [PMID: 37567942 PMCID: PMC10421876 DOI: 10.1038/s41598-023-40402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023] Open
Abstract
Patients with Alzheimer's disease (AD) exhibit non-rapid eye movement (NREM) sleep disturbances in addition to memory deficits. Disruption of NREM slow waves occurs early in the disease progression and is recapitulated in transgenic mouse models of beta-amyloidosis. However, the mechanisms underlying slow-wave disruptions remain unknown. Because astrocytes contribute to slow-wave activity, we used multiphoton microscopy and optogenetics to investigate whether they contribute to slow-wave disruptions in APP/PS1 mice. The power but not the frequency of astrocytic calcium transients was reduced in APP/PS1 mice compared to nontransgenic controls. Optogenetic activation of astrocytes at the endogenous frequency of slow waves restored slow-wave power, reduced amyloid deposition, prevented neuronal calcium elevations, and improved memory performance. Our findings revealed malfunction of the astrocytic network driving slow-wave disruptions. Thus, targeting astrocytes to restore circuit activity underlying sleep and memory disruptions in AD could ameliorate disease progression.
Collapse
Affiliation(s)
- Yee Fun Lee
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Alyssa N Russ
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Qiuchen Zhao
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Stephen J Perle
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Megi Maci
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Morgan R Miller
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Steven S Hou
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Moustafa Algamal
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Zhuoyang Zhao
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Hanyan Li
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Noah Gelwan
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Zhe Liu
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Stephen N Gomperts
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Elena Galea
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Brian J Bacskai
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Ksenia V Kastanenka
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
136
|
Badia-Soteras A, Heistek TS, Kater MSJ, Mak A, Negrean A, van den Oever MC, Mansvelder HD, Khakh BS, Min R, Smit AB, Verheijen MHG. Retraction of Astrocyte Leaflets From the Synapse Enhances Fear Memory. Biol Psychiatry 2023; 94:226-238. [PMID: 36702661 DOI: 10.1016/j.biopsych.2022.10.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND The formation and retrieval of fear memories depends on orchestrated synaptic activity of neuronal ensembles within the hippocampus, and it is becoming increasingly evident that astrocytes residing in the environment of these synapses play a central role in shaping cellular memory representations. Astrocyte distal processes, known as leaflets, fine-tune synaptic activity by clearing neurotransmitters and limiting glutamate diffusion. However, how astroglial synaptic coverage contributes to mnemonic processing of fearful experiences remains largely unknown. METHODS We used electron microscopy to observe changes in astroglial coverage of hippocampal synapses during consolidation of fear memory in mice. To manipulate astroglial synaptic coverage, we depleted ezrin, an integral leaflet-structural protein, from hippocampal astrocytes using CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 gene editing. Next, a combination of Föster resonance energy transfer analysis, genetically encoded glutamate sensors, and whole-cell patch-clamp recordings was used to determine whether the proximity of astrocyte leaflets to the synapse is critical for synaptic integrity and function. RESULTS We found that consolidation of a recent fear memory is accompanied by a transient retraction of astrocyte leaflets from hippocampal synapses and increased activation of NMDA receptors. Accordingly, astrocyte-specific depletion of ezrin resulted in shorter astrocyte leaflets and reduced astrocyte contact with the synaptic cleft, which consequently boosted extrasynaptic glutamate diffusion and NMDA receptor activation. Importantly, after fear conditioning, these cellular phenotypes translated to increased retrieval-evoked activation of CA1 pyramidal neurons and enhanced fear memory expression. CONCLUSIONS Together, our data show that withdrawal of astrocyte leaflets from the synaptic cleft is an experience-induced, temporally regulated process that gates the strength of fear memories.
Collapse
Affiliation(s)
- Aina Badia-Soteras
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Tim S Heistek
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mandy S J Kater
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Aline Mak
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Adrian Negrean
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Michel C van den Oever
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Rogier Min
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mark H G Verheijen
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
137
|
Çarçak N, Onat F, Sitnikova E. Astrocytes as a target for therapeutic strategies in epilepsy: current insights. Front Mol Neurosci 2023; 16:1183775. [PMID: 37583518 PMCID: PMC10423940 DOI: 10.3389/fnmol.2023.1183775] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023] Open
Abstract
Astrocytes are specialized non-neuronal glial cells of the central nervous system, contributing to neuronal excitability and synaptic transmission (gliotransmission). Astrocytes play a key roles in epileptogenesis and seizure generation. Epilepsy, as a chronic disorder characterized by neuronal hyperexcitation and hypersynchronization, is accompanied by substantial disturbances of glial cells and impairment of astrocytic functions and neuronal signaling. Anti-seizure drugs that provide symptomatic control of seizures primarily target neural activity. In epileptic patients with inadequate control of seizures with available anti-seizure drugs, novel therapeutic candidates are needed. These candidates should treat epilepsy with anti-epileptogenic and disease-modifying effects. Evidence from human and animal studies shows that astrocytes have value for developing new anti-seizure and anti-epileptogenic drugs. In this review, we present the key functions of astrocytes contributing to neuronal hyperexcitability and synaptic activity following an etiology-based approach. We analyze the role of astrocytes in both development (epileptogenesis) and generation of seizures (ictogenesis). Several promising new strategies that attempted to modify astroglial functions for treating epilepsy are being developed: (1) selective targeting of glia-related molecular mechanisms of glutamate transport; (2) modulation of tonic GABA release from astrocytes; (3) gliotransmission; (4) targeting the astrocytic Kir4.1-BDNF system; (5) astrocytic Na+/K+/ATPase activity; (6) targeting DNA hypo- or hypermethylation of candidate genes in astrocytes; (7) targeting astrocytic gap junction regulators; (8) targeting astrocytic adenosine kinase (the major adenosine-metabolizing enzyme); and (9) targeting microglia-astrocyte communication and inflammatory pathways. Novel disease-modifying therapeutic strategies have now been developed, such as astroglia-targeted gene therapy with a broad spectrum of genetic constructs to target astroglial cells.
Collapse
Affiliation(s)
- Nihan Çarçak
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Filiz Onat
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Medical Pharmacology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Evgenia Sitnikova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
138
|
Pereira MJ, Ayana R, Holt MG, Arckens L. Chemogenetic manipulation of astrocyte activity at the synapse- a gateway to manage brain disease. Front Cell Dev Biol 2023; 11:1193130. [PMID: 37534103 PMCID: PMC10393042 DOI: 10.3389/fcell.2023.1193130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/14/2023] [Indexed: 08/04/2023] Open
Abstract
Astrocytes are the major glial cell type in the central nervous system (CNS). Initially regarded as supportive cells, it is now recognized that this highly heterogeneous cell population is an indispensable modulator of brain development and function. Astrocytes secrete neuroactive molecules that regulate synapse formation and maturation. They also express hundreds of G protein-coupled receptors (GPCRs) that, once activated by neurotransmitters, trigger intracellular signalling pathways that can trigger the release of gliotransmitters which, in turn, modulate synaptic transmission and neuroplasticity. Considering this, it is not surprising that astrocytic dysfunction, leading to synaptic impairment, is consistently described as a factor in brain diseases, whether they emerge early or late in life due to genetic or environmental factors. Here, we provide an overview of the literature showing that activation of genetically engineered GPCRs, known as Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), to specifically modulate astrocyte activity partially mimics endogenous signalling pathways in astrocytes and improves neuronal function and behavior in normal animals and disease models. Therefore, we propose that expressing these genetically engineered GPCRs in astrocytes could be a promising strategy to explore (new) signalling pathways which can be used to manage brain disorders. The precise molecular, functional and behavioral effects of this type of manipulation, however, differ depending on the DREADD receptor used, targeted brain region and timing of the intervention, between healthy and disease conditions. This is likely a reflection of regional and disease/disease progression-associated astrocyte heterogeneity. Therefore, a thorough investigation of the effects of such astrocyte manipulation(s) must be conducted considering the specific cellular and molecular environment characteristic of each disease and disease stage before this has therapeutic applicability.
Collapse
Affiliation(s)
- Maria João Pereira
- Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
| | - Rajagopal Ayana
- Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
| | - Matthew G. Holt
- Instituto de Investigação e Inovação em Saúde (i3S), Laboratory of Synapse Biology, Universidade do Porto, Porto, Portugal
| | - Lutgarde Arckens
- Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
139
|
Abstract
Striosomes form neurochemically specialized compartments of the striatum embedded in a large matrix made up of modules called matrisomes. Striosome-matrix architecture is multiplexed with the canonical direct-indirect organization of the striatum. Striosomal functions remain to be fully clarified, but key information is emerging. First, striosomes powerfully innervate nigral dopamine-containing neurons and can completely shut down their activity, with a following rebound excitation. Second, striosomes receive limbic and cognition-related corticostriatal afferents and are dynamically modulated in relation to value-based actions. Third, striosomes are spatially interspersed among matrisomes and interneurons and are influenced by local and global neuromodulatory and oscillatory activities. Fourth, striosomes tune engagement and the motivation to perform reinforcement learning, to manifest stereotypical behaviors, and to navigate valence conflicts and valence discriminations. We suggest that, at an algorithmic level, striosomes could serve as distributed scaffolds to provide formats of the striatal computations generated through development and refined through learning. We propose that striosomes affect subjective states. By transforming corticothalamic and other inputs to the functional formats of the striatum, they could implement state transitions in nigro-striato-nigral circuits to affect bodily and cognitive actions according to internal motives whose functions are compromised in neuropsychiatric conditions.
Collapse
Affiliation(s)
- Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Ayano Matsushima
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
140
|
Suthard RL, Senne RA, Buzharsky MD, Pyo AY, Dorst KE, Diep AH, Cole RH, Ramirez S. Basolateral Amygdala Astrocytes Are Engaged by the Acquisition and Expression of a Contextual Fear Memory. J Neurosci 2023; 43:4997-5013. [PMID: 37268419 PMCID: PMC10324998 DOI: 10.1523/jneurosci.1775-22.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
Astrocytes are key cellular regulators within the brain. The basolateral amygdala (BLA) is implicated in fear memory processing, yet most research has entirely focused on neuronal mechanisms, despite a significant body of work implicating astrocytes in learning and memory. In the present study, we used in vivo fiber photometry in C57BL/6J male mice to record from amygdalar astrocytes across fear learning, recall, and three separate periods of extinction. We found that BLA astrocytes robustly responded to foot shock during acquisition, their activity remained remarkably elevated across days in comparison to unshocked control animals, and their increased activity persisted throughout extinction. Further, we found that astrocytes responded to the initiation and termination of freezing bouts during contextual fear conditioning and recall, and this behavior-locked pattern of activity did not persist throughout the extinction sessions. Importantly, astrocytes do not display these changes while exploring a novel context, suggesting that these observations are specific to the original fear-associated environment. Chemogenetic inhibition of fear ensembles in the BLA did not affect freezing behavior or astrocytic calcium dynamics. Overall, our work presents a real-time role for amygdalar astrocytes in fear processing and provides new insight into the emerging role of these cells in cognition and behavior.SIGNIFICANCE STATEMENT We show that basolateral amygdala astrocytes are robustly responsive to negative experiences, like shock, and display changed calcium activity patterns through fear learning and memory. Additionally, astrocytic calcium responses become time locked to the initiation and termination of freezing behavior during fear learning and recall. We find that astrocytes display calcium dynamics unique to a fear-conditioned context, and chemogenetic inhibition of BLA fear ensembles does not have an impact on freezing behavior or calcium dynamics. These findings show that astrocytes play a key real-time role in fear learning and memory.
Collapse
Affiliation(s)
- Rebecca L Suthard
- Graduate Program for Neuroscience, Boston University, Boston, Massachusetts 02215
- Department of Psychological and Brain Sciences, Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, Massachusetts 02215
| | - Ryan A Senne
- Graduate Program for Neuroscience, Boston University, Boston, Massachusetts 02215
- Department of Psychological and Brain Sciences, Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, Massachusetts 02215
| | - Michelle D Buzharsky
- Undergraduate Program in Neuroscience, Boston University, Boston, Massachusetts 02215
| | - Angela Y Pyo
- Department of Psychological and Brain Sciences, Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, Massachusetts 02215
| | - Kaitlyn E Dorst
- Graduate Program for Neuroscience, Boston University, Boston, Massachusetts 02215
- Department of Psychological and Brain Sciences, Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, Massachusetts 02215
| | - Anh H Diep
- Undergraduate Program in Neuroscience, Boston University, Boston, Massachusetts 02215
| | - Rebecca H Cole
- Undergraduate Program in Neuroscience, Boston University, Boston, Massachusetts 02215
| | - Steve Ramirez
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215
- Department of Psychological and Brain Sciences, Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
141
|
Cunha-Garcia D, Monteiro-Fernandes D, Correia JS, Neves-Carvalho A, Vilaça-Ferreira AC, Guerra-Gomes S, Viana JF, Oliveira JF, Teixeira-Castro A, Maciel P, Duarte-Silva S. Genetic Ablation of Inositol 1,4,5-Trisphosphate Receptor Type 2 (IP 3R2) Fails to Modify Disease Progression in a Mouse Model of Spinocerebellar Ataxia Type 3. Int J Mol Sci 2023; 24:10606. [PMID: 37445783 PMCID: PMC10341520 DOI: 10.3390/ijms241310606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a rare neurodegenerative disease caused by an abnormal polyglutamine expansion within the ataxin-3 protein (ATXN3). This leads to neurodegeneration of specific brain and spinal cord regions, resulting in a progressive loss of motor function. Despite neuronal death, non-neuronal cells, including astrocytes, are also involved in SCA3 pathogenesis. Astrogliosis is a common pathological feature in SCA3 patients and animal models of the disease. However, the contribution of astrocytes to SCA3 is not clearly defined. Inositol 1,4,5-trisphosphate receptor type 2 (IP3R2) is the predominant IP3R in mediating astrocyte somatic calcium signals, and genetically ablation of IP3R2 has been widely used to study astrocyte function. Here, we aimed to investigate the relevance of IP3R2 in the onset and progression of SCA3. For this, we tested whether IP3R2 depletion and the consecutive suppression of global astrocytic calcium signalling would lead to marked changes in the behavioral phenotype of a SCA3 mouse model, the CMVMJD135 transgenic line. This was achieved by crossing IP3R2 null mice with the CMVMJD135 mouse model and performing a longitudinal behavioral characterization of these mice using well-established motor-related function tests. Our results demonstrate that IP3R2 deletion in astrocytes does not modify SCA3 progression.
Collapse
Affiliation(s)
- Daniela Cunha-Garcia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Daniela Monteiro-Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Joana Sofia Correia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Andreia Neves-Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Ana Catarina Vilaça-Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Sónia Guerra-Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - João Filipe Viana
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - João Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
- IPCA-EST-2Ai, Polytechnic Institute of Cávado and Ave, Applied Artificial Intelligence Laboratory, Campus of IPCA, 4750-810 Barcelos, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| |
Collapse
|
142
|
Lin J, Cheng X, Wang H, Du L, Li X, Zhao G, Xie C. Activation of astrocytes in the basal forebrain in mice facilitates isoflurane-induced loss of consciousness and prolongs recovery. BMC Anesthesiol 2023; 23:213. [PMID: 37340348 DOI: 10.1186/s12871-023-02166-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/06/2023] [Indexed: 06/22/2023] Open
Abstract
OBJECTIVES General anesthesia results in a state of unconsciousness that is similar to sleep. In recent years, increasing evidence has reported that astrocytes play a crucial role in regulating sleep. However, whether astrocytes are involved in general anesthesia is unknown. METHODS In the present study, the designer receptors exclusively activated by designer drugs (DREADDs) approach was utilized to specifically activate astrocytes in the basal forebrain (BF) and observed its effect on isoflurane anesthesia. One the other side, L-α-aminoadipic acid was used to selectively inhibit astrocytes in the BF and investigated its influence on isoflurane-induced hypnotic effect. During the anesthesia experiment, cortical electroencephalography (EEG) signals were recorded as well. RESULTS The chemogenetic activation group had a significantly shorter isoflurane induction time, longer recovery time, and higher delta power of EEG during anesthesia maintenance and recovery periods than the control group. Inhibition of astrocytes in the BF delayed isoflurane-induced loss of consciousness, promoted recovery, decreased delta power and increased beta and gamma power during maintenance and recovery periods. CONCLUSIONS The present study suggests that astrocytes in the BF region are involved in isoflurane anesthesia and may be a potential target for regulating the consciousness state of anesthesia.
Collapse
Affiliation(s)
- Jialing Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou City, 510120, People's Republic of China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510120, People's Republic of China
| | - Xuefeng Cheng
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou City, 510120, People's Republic of China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510120, People's Republic of China
| | - Haoyuan Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou City, 510120, People's Republic of China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510120, People's Republic of China
| | - Lin Du
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou City, 510120, People's Republic of China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510120, People's Republic of China
| | - Xiangyu Li
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou City, 510120, People's Republic of China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510120, People's Republic of China
| | - Gaofeng Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou City, 510120, People's Republic of China.
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510120, People's Republic of China.
| | - Chuangbo Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou City, 510120, People's Republic of China.
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510120, People's Republic of China.
| |
Collapse
|
143
|
Gerstner JR, Flores CC, Lefton M, Rogers B, Davis CJ. FABP7: a glial integrator of sleep, circadian rhythms, plasticity, and metabolic function. Front Syst Neurosci 2023; 17:1212213. [PMID: 37404868 PMCID: PMC10315501 DOI: 10.3389/fnsys.2023.1212213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023] Open
Abstract
Sleep and circadian rhythms are observed broadly throughout animal phyla and influence neural plasticity and cognitive function. However, the few phylogenetically conserved cellular and molecular pathways that are implicated in these processes are largely focused on neuronal cells. Research on these topics has traditionally segregated sleep homeostatic behavior from circadian rest-activity rhythms. Here we posit an alternative perspective, whereby mechanisms underlying the integration of sleep and circadian rhythms that affect behavioral state, plasticity, and cognition reside within glial cells. The brain-type fatty acid binding protein, FABP7, is part of a larger family of lipid chaperone proteins that regulate the subcellular trafficking of fatty acids for a wide range of cellular functions, including gene expression, growth, survival, inflammation, and metabolism. FABP7 is enriched in glial cells of the central nervous system and has been shown to be a clock-controlled gene implicated in sleep/wake regulation and cognitive processing. FABP7 is known to affect gene transcription, cellular outgrowth, and its subcellular localization in the fine perisynaptic astrocytic processes (PAPs) varies based on time-of-day. Future studies determining the effects of FABP7 on behavioral state- and circadian-dependent plasticity and cognitive processes, in addition to functional consequences on cellular and molecular mechanisms related to neural-glial interactions, lipid storage, and blood brain barrier integrity will be important for our knowledge of basic sleep function. Given the comorbidity of sleep disturbance with neurological disorders, these studies will also be important for our understanding of the etiology and pathophysiology of how these diseases affect or are affected by sleep.
Collapse
Affiliation(s)
- Jason R. Gerstner
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Steve Gleason Institute for Neuroscience, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Carlos C. Flores
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Micah Lefton
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Brooke Rogers
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Christopher J. Davis
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Steve Gleason Institute for Neuroscience, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
144
|
Faissner A. Low-density lipoprotein receptor-related protein-1 (LRP1) in the glial lineage modulates neuronal excitability. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1190240. [PMID: 37383546 PMCID: PMC10293750 DOI: 10.3389/fnetp.2023.1190240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023]
Abstract
The low-density lipoprotein related protein receptor 1 (LRP1), also known as CD91 or α-Macroglobulin-receptor, is a transmembrane receptor that interacts with more than 40 known ligands. It plays an important biological role as receptor of morphogens, extracellular matrix molecules, cytokines, proteases, protease inhibitors and pathogens. In the CNS, it has primarily been studied as a receptor and clearance agent of pathogenic factors such as Aβ-peptide and, lately, Tau protein that is relevant for tissue homeostasis and protection against neurodegenerative processes. Recently, it was found that LRP1 expresses the Lewis-X (Lex) carbohydrate motif and is expressed in the neural stem cell compartment. The removal of Lrp1 from the cortical radial glia compartment generates a strong phenotype with severe motor deficits, seizures and a reduced life span. The present review discusses approaches that have been taken to address the neurodevelopmental significance of LRP1 by creating novel, lineage-specific constitutive or conditional knockout mouse lines. Deficits in the stem cell compartment may be at the root of severe CNS pathologies.
Collapse
|
145
|
Escobar AP, Bonansco C, Cruz G, Dagnino-Subiabre A, Fuenzalida M, Negrón I, Sotomayor-Zárate R, Martínez-Pinto J, Jorquera G. Central and Peripheral Inflammation: A Common Factor Causing Addictive and Neurological Disorders and Aging-Related Pathologies. Int J Mol Sci 2023; 24:10083. [PMID: 37373230 PMCID: PMC10298583 DOI: 10.3390/ijms241210083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Many diseases and degenerative processes affecting the nervous system and peripheral organs trigger the activation of inflammatory cascades. Inflammation can be triggered by different environmental conditions or risk factors, including drug and food addiction, stress, and aging, among others. Several pieces of evidence show that the modern lifestyle and, more recently, the confinement associated with the COVID-19 pandemic have contributed to increasing the incidence of addictive and neuropsychiatric disorders, plus cardiometabolic diseases. Here, we gather evidence on how some of these risk factors are implicated in activating central and peripheral inflammation contributing to some neuropathologies and behaviors associated with poor health. We discuss the current understanding of the cellular and molecular mechanisms involved in the generation of inflammation and how these processes occur in different cells and tissues to promote ill health and diseases. Concomitantly, we discuss how some pathology-associated and addictive behaviors contribute to worsening these inflammation mechanisms, leading to a vicious cycle that promotes disease progression. Finally, we list some drugs targeting inflammation-related pathways that may have beneficial effects on the pathological processes associated with addictive, mental, and cardiometabolic illnesses.
Collapse
Affiliation(s)
- Angélica P. Escobar
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Christian Bonansco
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Gonzalo Cruz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Alexies Dagnino-Subiabre
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Marco Fuenzalida
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Ignacio Negrón
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Jonathan Martínez-Pinto
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gonzalo Jorquera
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile
| |
Collapse
|
146
|
Cervetto C, Maura G, Guidolin D, Amato S, Ceccoli C, Agnati LF, Marcoli M. Striatal astrocytic A2A-D2 receptor-receptor interactions and their role in neuropsychiatric disorders. Neuropharmacology 2023:109636. [PMID: 37321323 DOI: 10.1016/j.neuropharm.2023.109636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/26/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
It is now generally accepted that astrocytes are active players in synaptic transmission, so that a neurocentric perspective of the integrative signal communication in the central nervous system is shifting towards a neuro-astrocentric perspective. Astrocytes respond to synaptic activity, release chemical signals (gliotransmitters) and express neurotransmitter receptors (G protein-coupled and ionotropic receptors), thus behaving as co-actors with neurons in signal communication in the central nervous system. The ability of G protein-coupled receptors to physically interact through heteromerization, forming heteromers and receptor mosaics with new distinct signal recognition and transduction pathways, has been intensively studied at neuronal plasma membrane, and has changed the view of the integrative signal communication in the central nervous system. One of the best-known examples of receptor-receptor interaction through heteromerization, with relevant consequences for both the physiological and the pharmacological points of view, is given by adenosine A2A and dopamine D2 receptors on the plasma membrane of striatal neurons. Here we review evidence that native A2A and D2 receptors can interact through heteromerization at the plasma membrane of astrocytes as well. Astrocytic A2A-D2 heteromers were found able to control the release of glutamate from the striatal astrocyte processes. A2A-D2 heteromers on striatal astrocytes and astrocyte processes are discussed as far as their potential relevance in the control of glutamatergic transmission in striatum is concerned, including potential roles in glutamatergic transmission dysregulation in pathological conditions including schizophrenia or the Parkinson's disease.
Collapse
Affiliation(s)
- Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy; Center for Promotion of 3Rs in Teaching and Research (Centro 3R), Pisa, Italy.
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy.
| | - Diego Guidolin
- Department of Neuroscience, University of Padova, Italy.
| | - Sarah Amato
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy.
| | - Cristina Ceccoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy.
| | - Luigi F Agnati
- Department of Biochemical, Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, Modena, Italy.
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy; Center for Promotion of 3Rs in Teaching and Research (Centro 3R), Pisa, Italy; Center of Excellence for Biomedical Research, University of Genova, Italy.
| |
Collapse
|
147
|
Gerasimov E, Bezprozvanny I, Vlasova OL. Activation of Gq-Coupled Receptors in Astrocytes Restores Cognitive Function in Alzheimer's Disease Mice Model. Int J Mol Sci 2023; 24:9969. [PMID: 37373117 PMCID: PMC10298315 DOI: 10.3390/ijms24129969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most widespread neurodegenerative diseases. Most of the current AD therapeutic developments are directed towards improving neuronal cell function or facilitating Aβ amyloid clearance from the brain. However, some recent evidence suggests that astrocytes may play a significant role in the pathogenesis of AD. In this paper, we evaluated the effects of the optogenetic activation of Gq-coupled exogenous receptors expressed in astrocytes as a possible way of restoring brain function in the AD mouse model. We evaluated the effects of the optogenetic activation of astrocytes on long-term potentiation, spinal morphology and behavioral readouts in 5xFAD mouse model of AD. We determined that in vivo chronic activation of astrocytes resulted in the preservation of spine density, increased mushroom spine survival, and improved performance in cognitive behavioral tests. Furthermore, chronic optogenetic stimulation of astrocytes resulted in the elevation of EAAT-2 glutamate uptake transporter expression, which could be a possible explanation for the observed in vivo neuroprotective effects. The obtained results suggest that the persistent activation of astrocytes may be considered a potential therapeutic approach for the treatment of AD and possibly other neurodegenerative disorders.
Collapse
Affiliation(s)
- Evgenii Gerasimov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (E.G.); (I.B.)
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (E.G.); (I.B.)
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Olga L. Vlasova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (E.G.); (I.B.)
| |
Collapse
|
148
|
Pathak D, Sriram K. Neuron-astrocyte omnidirectional signaling in neurological health and disease. Front Mol Neurosci 2023; 16:1169320. [PMID: 37363320 PMCID: PMC10286832 DOI: 10.3389/fnmol.2023.1169320] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Astrocytes are an abundantly distributed population of glial cells in the central nervous system (CNS) that perform myriad functions in the normal and injured/diseased brain. Astrocytes exhibit heterogeneous phenotypes in response to various insults, a process known as astrocyte reactivity. The accuracy and precision of brain signaling are primarily based on interactions involving neurons, astrocytes, oligodendrocytes, microglia, pericytes, and dendritic cells within the CNS. Astrocytes have emerged as a critical entity within the brain because of their unique role in recycling neurotransmitters, actively modulating the ionic environment, regulating cholesterol and sphingolipid metabolism, and influencing cellular crosstalk in diverse neural injury conditions and neurodegenerative disorders. However, little is known about how an astrocyte functions in synapse formation, axon specification, neuroplasticity, neural homeostasis, neural network activity following dynamic surveillance, and CNS structure in neurological diseases. Interestingly, the tripartite synapse hypothesis came to light to fill some knowledge gaps that constitute an interaction of a subpopulation of astrocytes, neurons, and synapses. This review highlights astrocytes' role in health and neurological/neurodegenerative diseases arising from the omnidirectional signaling between astrocytes and neurons at the tripartite synapse. The review also recapitulates the disruption of the tripartite synapse with a focus on perturbations of the homeostatic astrocytic function as a key driver to modulate the molecular and physiological processes toward neurodegenerative diseases.
Collapse
|
149
|
Mohamed W, Kumar J, Alghamdi BS, Soliman AH, Toshihide Y. Neurodegeneration and inflammation crosstalk: Therapeutic targets and perspectives. IBRO Neurosci Rep 2023; 14:95-110. [PMID: 37388502 PMCID: PMC10300452 DOI: 10.1016/j.ibneur.2022.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/19/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Glia, which was formerly considered to exist just to connect neurons, now plays a key function in a wide range of physiological events, including formation of memory, learning, neuroplasticity, synaptic plasticity, energy consumption, and homeostasis of ions. Glial cells regulate the brain's immune responses and confers nutritional and structural aid to neurons, making them an important player in a broad range of neurological disorders. Alzheimer's, ALS, Parkinson's, frontotemporal dementia (FTD), and epilepsy are a few of the neurodegenerative diseases that have been linked to microglia and astroglia cells, in particular. Synapse growth is aided by glial cell activity, and this activity has an effect on neuronal signalling. Each glial malfunction in diverse neurodegenerative diseases is distinct, and we will discuss its significance in the progression of the illness, as well as its potential for future treatment.
Collapse
Affiliation(s)
- Wael Mohamed
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan, Malaysia
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Menoufia, Egypt
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, UKM Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|
150
|
Purushotham SS, Buskila Y. Astrocytic modulation of neuronal signalling. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1205544. [PMID: 37332623 PMCID: PMC10269688 DOI: 10.3389/fnetp.2023.1205544] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023]
Abstract
Neuronal signalling is a key element in neuronal communication and is essential for the proper functioning of the CNS. Astrocytes, the most prominent glia in the brain play a key role in modulating neuronal signalling at the molecular, synaptic, cellular, and network levels. Over the past few decades, our knowledge about astrocytes and their functioning has evolved from considering them as merely a brain glue that provides structural support to neurons, to key communication elements. Astrocytes can regulate the activity of neurons by controlling the concentrations of ions and neurotransmitters in the extracellular milieu, as well as releasing chemicals and gliotransmitters that modulate neuronal activity. The aim of this review is to summarise the main processes through which astrocytes are modulating brain function. We will systematically distinguish between direct and indirect pathways in which astrocytes affect neuronal signalling at all levels. Lastly, we will summarize pathological conditions that arise once these signalling pathways are impaired focusing on neurodegeneration.
Collapse
Affiliation(s)
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- The MARCS Institute, Western Sydney University, Campbelltown, NSW, Australia
| |
Collapse
|