101
|
Coordinated regulation of the immunoproteasome subunits by PML/RARα and PU.1 in acute promyelocytic leukemia. Oncogene 2013; 33:2700-8. [PMID: 23770850 DOI: 10.1038/onc.2013.224] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 03/21/2013] [Accepted: 04/08/2013] [Indexed: 12/13/2022]
Abstract
Recognition and elimination of malignant cells by cytotoxic T lymphocytes depends on antigenic peptides generated by proteasomes. It has been established that impairment of the immunoproteasome subunits, that is, PSMB8, PSMB9 and PSMB10 (PSMBs), is critical for malignant cells to escape immune recognition. We report here the regulatory mechanism of the repression of PU.1-dependent activation of PSMBs by PML/RARα in the pathogenesis of acute promyelocytic leukemia (APL) and the unidentified function of all-trans retinoic acid (ATRA) as an immunomodulator in the treatment of APL. Chromatin immunoprecipitation and luciferase reporter assays showed that PU.1 directly bound to and coordinately transactivated the promoters of PSMBs, indicating that PSMBs were transcriptional targets of PU.1 and PU.1 regulated their basal expression. Analysis of expression profiling data from a large population of acute myeloid leukemia (AML) patients revealed that the expression levels of PSMBs were significantly lower in APL patients than in non-APL AML patients. Further evidence demonstrated that the decrease in their expression was achieved through PML/RARα-mediated repression of both PU.1-dependent transactivation and PU.1 expression. Moreover, ATRA but not arsenic trioxide induced the expression of PSMBs in APL cells, indicating that ATRA treatment might activate the antigen-processing/presentation machinery. Finally, the above observations were confirmed in primary APL samples. Collectively, our data demonstrate that PML/RARα suppresses PU.1-dependent activation of the immunosubunits, which may facilitate the escape of APL cells from immune surveillance in leukemia development, and ATRA treatment is able to reactivate their expression, which would promote more efficient T-cell-mediated recognition in the treatment.
Collapse
|
102
|
Bockorny B, Dasanu CA. Intrinsic immune alterations in renal cell carcinoma and emerging immunotherapeutic approaches. Expert Opin Biol Ther 2013; 13:911-25. [PMID: 23586712 DOI: 10.1517/14712598.2013.778970] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Individuals affected by kidney cancer present a variety of immune abnormalities including cellular immune dysfunction, cytokine alterations and antigen presentation defects. On the other hand, spontaneous remissions are seen in up to 4% of renal cell carcinoma (RCC) patients and they are thought to occur via immune mechanisms. AREAS COVERED The authors comprehensively review the immune abnormalities in RCC patient and describe the kidney cancer immunotherapy candidates that are most advanced in their clinical development. Most relevant publications were identified through searching the PubMed database; the obtained information was thoroughly analyzed and synthesized. EXPERT OPINION As cure in advanced RCC cannot be accomplished with the current therapy standards such as tyrosine kinase inhibitors and mammalian target of rapamycin inhibitors, new treatment strategies are being sought. Enhancing the immune system represents an appealing avenue for kidney cancer therapy. Disappointingly, high-dose interleukin-2 and interferon-α cause severe toxicity and produce a questionable clinical benefit. The authors postulate that the 'durable responses' seen with these agents in only a handful of RCC patients represent spontaneous remissions. Promising immune strategies in RCC such as anti-cytotoxic T-lymphocyte-associated protein antibodies, anti-programmed cell death 1 (PD1)/PD1 ligand and tumor vaccines may expand the existing options for kidney cancer in future years.
Collapse
Affiliation(s)
- Bruno Bockorny
- University of Connecticut, Department of Medicine, 263 Farmington Avenue, Farmington, CT 06030-1235, USA.
| | | |
Collapse
|
103
|
Vago L, Toffalori C, Ciceri F, Fleischhauer K. Genomic loss of mismatched human leukocyte antigen and leukemia immune escape from haploidentical graft-versus-leukemia. Semin Oncol 2013. [PMID: 23206847 DOI: 10.1053/j.seminoncol.2012.09.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent developments in cell processing and immunosuppressive strategies has allowed the safe infusion of high numbers of donor T cells in the context of clinical haploidentical hematopoietic stem cell transplantation (HSCT). Haploidentical T cells display an intrinsic ability to recognize and eliminate residual patient leukemic cells, largely due to alloreactivity against the patient-specific human leukocyte antigen (HLA) molecules encoded on the mismatched haplotype. However, recent evidence has shown that leukemia, like many other tumors displaying pronounced genomic instability, is frequently able to evade this potent graft-versus-leukemia effect by undergoing de novo genomic mutations, which result in the permanent loss of only those HLA molecules targeted by haploidentical donor T-cell alloreactivity. This review summarizes the recent clinical and experimental evidence regarding this phenomenon, and its therapeutic and clinical consequences.
Collapse
Affiliation(s)
- Luca Vago
- Hematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milano, Italy.
| | | | | | | |
Collapse
|
104
|
Hodge JW, Garnett CT, Farsaci B, Palena C, Tsang KY, Ferrone S, Gameiro SR. Chemotherapy-induced immunogenic modulation of tumor cells enhances killing by cytotoxic T lymphocytes and is distinct from immunogenic cell death. Int J Cancer 2013; 133:624-36. [PMID: 23364915 DOI: 10.1002/ijc.28070] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 01/07/2013] [Indexed: 12/22/2022]
Abstract
Certain chemotherapeutic regimens trigger cancer cell death while inducing dendritic cell maturation and subsequent immune responses. However, chemotherapy-induced immunogenic cell death (ICD) has thus far been restricted to select agents. In contrast, several chemotherapeutic drugs modulate antitumor immune responses, despite not inducing classic ICD. In addition, in many cases tumor cells do not die after treatment. Here, using docetaxel, one of the most widely used cancer chemotherapeutic agents, as a model, we examined phenotypic and functional consequences of tumor cells that do not die from ICD. Docetaxel treatment of tumor cells did not induce ATP or high-mobility group box 1 (HMGB1) secretion, or cell death. However, calreticulin (CRT) exposure was observed in all cell lines examined after chemotherapy treatment. Killing by carcinoembryonic antigen (CEA), MUC-1, or PSA-specific CD8(+) CTLs was significantly enhanced after docetaxel treatment. This killing was associated with increases in components of antigen-processing machinery, and mediated largely by CRT membrane translocation, as determined by functional knockdown of CRT, PERK, or CRT-blocking peptide. A docetaxel-resistant cell line was selected (MDR-1(+), CD133(+)) by continuous exposure to docetaxel. These cells, while resistant to direct cytostatic effects of docetaxel, were not resistant to the chemomodulatory effects that resulted in enhancement of CTL killing. Here, we provide an operational definition of "immunogenic modulation," where exposure of tumor cells to nonlethal/sublethal doses of chemotherapy alters tumor phenotype to render the tumor more sensitive to CTL killing. These observations are distinct and complementary to ICD and highlight a mechanism whereby chemotherapy can be used in combination with immunotherapy.
Collapse
Affiliation(s)
- James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
105
|
Pistoia V, Morandi F, Pezzolo A, Raffaghello L, Prigione I. MYCN: from oncoprotein to tumor-associated antigen. Front Oncol 2012; 2:174. [PMID: 23162796 PMCID: PMC3499703 DOI: 10.3389/fonc.2012.00174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 11/01/2012] [Indexed: 12/31/2022] Open
Abstract
MYCN is a well-known oncogene over-expressed in different human malignancies including neuroblastoma (NB), rhabdomyosarcoma, medulloblastoma, astrocytoma, Wilms' tumor, and small cell lung cancer. In the case of NB, MYCN amplification is an established biomarker of poor-prognosis. MYCN belongs to a family of transcription factors (the most important of which is C-MYC) that show a high degree of homology. Down-regulation of MYC protein expression leads to tumor regression in animal models, indicating that MYC proteins represent interesting therapeutic targets. Pre-requisites for a candidate tumor-associated antigen (TAA) to be targeted by immunotherapeutic approaches are the following, (i) expression should be tumor-restricted, (ii) the putative TAA should be up-regulated in cancer cells, and (iii) protein should be processed into immunogenic peptides capable of associating to major histocompatibility complex molecules with high affinity. Indeed, the MYCN protein is not expressed in human adult tissues and up-regulated variably in NB cells, and MYCN peptides capable of associating to HLA-A1 or HLA-A2 molecules with high affinity have been identified. Thus the MYCN protein qualifies as putative TAA in NB. Additional issues that determine the feasibility of targeting a putative TAA with cytotoxic T lymphocytes (CTLs) and will be here discussed are the following, (i) the inadequacy of tumor cells per se to act as antigen-presenting cells witnessed, in the case of NB cells, by the low to absent expression of HLA class I molecules, the lack of co-stimulatory molecules and multiple defects in the HLA class I related antigen processing machinery, and (ii) the immune evasion mechanisms operated by cancer cells to fool the host immune system, such as up-regulation of soluble immunosuppressive molecules (e.g., soluble MICA and HLA-G in the case of NB) or generation of immunosuppressive cells in the tumor microenvironment. A final issue that deserves consideration is the strategy used to generate CTL.
Collapse
Affiliation(s)
- Vito Pistoia
- Laboratory of Oncology, Translational Research and Laboratory Medicine, G. Gaslini Institute Genoa, Italy
| | | | | | | | | |
Collapse
|
106
|
Smahel M. Biolistic DNA vaccination against cervical cancer. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 940:339-55. [PMID: 23104353 DOI: 10.1007/978-1-62703-110-3_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The development of cervical cancer is associated with infection by oncogenic human papillomaviruses (HPVs), of which type 16 (HPV16) is the most prevalent in HPV-induced malignant diseases. The viral oncoproteins E6 and E7 are convenient targets for anti-tumor immunization. To adapt the corresponding genes for DNA vaccination, their oncogenicity needs to be reduced and immunogenicity enhanced. The main modifications for achieving these aims include mutagenesis, rearrangement of gene parts, and fusion with supportive cellular or viral/bacterial genes or their functional parts. As HPVs are strictly human specific, an animal model of HPV infection does not exist. Therefore, immunization against HPV-induced tumors is most frequently tested in mouse models utilizing transplantable syngeneic tumor cells producing the HPV16 E6/E7 oncoproteins. In this chapter, one such cell line designated TC-1 is characterized and the effect of immunization with the modified E7 fusion gene against TC-1-induced subcutaneous tumors is described. As down-regulation of MHC class I molecules is one of the most important escape mechanisms of cervical carcinoma cells, the TC-1/A9 clone with reversibly reduced MHC class I expression has been developed and, herein, its response to DNA vaccination is also shown and compared with that of the TC-1 cells.
Collapse
Affiliation(s)
- Michal Smahel
- Department of Experimental Virology, Laboratory of Molecular Oncology, Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| |
Collapse
|
107
|
Post-transcriptional and epigenetic regulation of antigen processing machinery (APM) components and HLA-I in cervical cancers from Uighur women. PLoS One 2012; 7:e44952. [PMID: 23024775 PMCID: PMC3443204 DOI: 10.1371/journal.pone.0044952] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 08/14/2012] [Indexed: 11/24/2022] Open
Abstract
Normal function of human leukocyte antigen class I (HLA-I) and antigen processing machinery (APM) proteins is required for T cell-mediated anti-tumor or antiviral immunity, whereas the tumor survival indicates a failure of the host in immune surveillance associated with the dysfunction in antigen presentation, mainly due to the deregulation in HLA-I and APM expression or function. The posttranscriptional regulation of HLA-I and APM expression may associate with epigenetic modifications in cancer development which was not described so far. Here we showed that the development of cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma (CSCC) in Uighur women was accompanied with the partial or total loss of protein expression of HLA-I, ß2-m and APM components, including the transporter associated with antigen processing (TAP1/2), low molecular mass protein (LMP2, LMP7), endoplasmic reticulum aminopeptidase 1(ERAP1), chaperone molecules include calreticulin (CLR), calnexin (CNX) and ERp57, and this was proved again by analysis of transcription of the same genes in addition to three genes HLA-A, B and C coding for HLA-I. By bisulfite sequencing approach, we identified target CpG islands methylated at the gene promoter region of TAP1, TAP2, LMP7, tapasin and ERp57 in cervical carcinoma cells. Further analysis of CpG site specific methylation of these genes in cases of CSCC and CIN demonstrated an inverse correlation of altered CpG island methylation of TAP1, LMP7, and ERp57 with changes in protein expression. Moreover, promoter methylation of these genes was significantly higher in cases positive for human papillomavirus 16 (HPV 16) than negative ones. Our results suggested that epigenetic modifications are responsible for the aberrant expression of certain HLA-I and APM genes, and may help to understand unrevealed mechanisms of tumor escape from immune surveillance in cervical carcinogenesis.
Collapse
|
108
|
Zilberman S, Schenowitz C, Agaugué S, Benoît F, Riteau B, Rouzier R, Carosella ED, Rouas-Freiss N, Menier C. HLA-G1 and HLA-G5 active dimers are present in malignant cells and effusions: the influence of the tumor microenvironment. Eur J Immunol 2012; 42:1599-608. [PMID: 22678912 DOI: 10.1002/eji.201141761] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dimers of the nonclassical HLA-G class I molecule have recently been shown to be active structures that mediate inhibition of NK-cell cytotoxic activity through interaction with the immunoglobulin-like transcript (ILT)-2 inhibitory receptor. However, this has only been proven in trophoblasts and HLA-G transfectants. Here, we document for the first time the existence of HLA-G dimers in cancer. Indeed, we identified both surface and soluble HLA-G dimers in tumor cells and malignant ascites respectively. Interestingly, factors from the tumor microenvironment, such as interferons, enhanced the formation of HLA-G dimers and increased the protection of tumors from NK cell-mediated lysis. These data emphasize the impact of HLA-G conformation on its efficiency at inhibiting the antitumor response and thus favoring tumor progression. In view of these results, the effect of the tumor microenvironment on upregulation of HLA-G function deserves particular attention when designing cancer immunotherapy protocols.
Collapse
Affiliation(s)
- Sonia Zilberman
- CEA, IMETI, Service de Recherches en Hemato-Immunologie, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Jazirehi AR, Economou JS. Proteasome inhibition blocks NF-κB and ERK1/2 pathways, restores antigen expression, and sensitizes resistant human melanoma to TCR-engineered CTLs. Mol Cancer Ther 2012; 11:1332-41. [PMID: 22532603 DOI: 10.1158/1535-7163.mct-11-0814] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adoptive cell transfer (ACT) of ex vivo engineered autologous lymphocytes encoding high-affinity MART-1/HLA-A*0201-specific T-cell receptor (TCR)α/β chains (F5 CTL), densely infiltrate into sites of metastatic disease, mediating dramatic but partial clinical responses in patients with melanoma. We hypothesized that MART-1 downmodulation in addition to aberrant apoptotic/survival signaling could confer resistance to death signals delivered by transgenic CTLs. To explore this hypothesis, we established an in vitro model of resistant (R) lines from MART-1(+)/HLA-A*0201(+) F5 CTL-sensitive parental (P) lines under serial F5 CTL-selective pressure. We have recently reported that several melanoma R lines, while retaining MART-1 expression, exhibited constitutive NF-κB activation and overexpression of NF-κB-dependent resistance factors. Another established melanoma cell line M244, otherwise sensitive to F5 CTL, yielded R lines after serial F5 CTL-selective pressure, which had both reduced MART-1 expression levels, thus, could not be recognized, and were resistant to CTL-delivered apoptotic death signals. The proteasome inhibitor bortezomib blocked NF-κB activity, decreased phospho-ERK1/2, increased phospho-c-jun-NH(2)-kinase (p-JNK) levels, reduced expression of resistance factors, restored MART-1 expression to sufficient levels, which in combination allowed M244R lines be sensitized to F5 CTL killing. These findings suggest that proteasome inhibition in immune resistant tumors can restore proapoptotic signaling and improve tumor antigen expression.
Collapse
Affiliation(s)
- Ali R Jazirehi
- Department of Surgery and the Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
110
|
Dendritic cells loaded with mRNA encoding full-length tumor antigens prime CD4+ and CD8+ T cells in melanoma patients. Mol Ther 2012; 20:1063-74. [PMID: 22371843 DOI: 10.1038/mt.2012.11] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It is generally thought that dendritic cells (DCs) loaded with full-length tumor antigen could improve immunotherapy by stimulating broad T-cell responses and by allowing treatment irrespective of the patient's human leukocyte antigen (HLA) type. To investigate this, we determined the specificity of T cells from melanoma patients treated with DCs loaded with mRNA encoding a full-length tumor antigen fused to a signal peptide and an HLA class II sorting signal, allowing presentation in HLA class I and II. In delayed-type hypersensitive (DTH)-biopsies and blood, we found functional CD8(+) and CD4(+) T cells recognizing novel treatment-antigen-derived epitopes, presented by several HLA types. Additionally, we identified a CD8(+) response specific for the signal peptide incorporated to elicit presentation by HLA class II and a CD4(+) response specific for the fusion region of the signal peptide and one of the antigens. This demonstrates that the fusion proteins contain newly created immunogenic sequences and provides evidence that ex vivo-generated mRNA-modified DCs can induce effector CD8(+) and CD4(+) T cells from the naive T-cell repertoire of melanoma patients. Thus, this work provides definitive proof that DCs presenting the full antigenic spectrum of tumor antigens can induce T cells specific for novel epitopes and can be administered to patients irrespective of their HLA type.
Collapse
|
111
|
MHC class I-related antigen-processing machinery component defects in feline mammary carcinoma. Transl Oncol 2012; 5:48-55. [PMID: 22348176 DOI: 10.1593/tlo.11247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/06/2011] [Accepted: 11/16/2011] [Indexed: 11/18/2022] Open
Abstract
Defects in HLA class I antigen-processing machinery (APM) component expression and/or function are frequent in human tumors. These defects may provide tumor cells with a mechanism to escape from recognition and destruction by HLA class I antigen-restricted, tumor antigen-specific cytotoxic T cells. However, expression and functional properties of MHC class I antigens and APM components in malignant cells in other animal species have been investigated to a limited extent. However, this information can contribute to our understanding of the mechanisms underlying the association of MHC class I antigen and APM component defects with malignant transformation of cells and to identify animal models to validate targeted therapies to correct these defects. To overcome this limitation in the present study, we have investigated the expression of the catalytic subunits of proteasome (Y, X, and Z) and of immunoproteasome (LMP2, LMP7, and LMP10) as well as of MHC class I heavy chain (HC) in 25 primary feline mammary carcinomas (FMCs) and in 23 matched healthy mammary tissues. We found a reduced expression of MHC class I HC and of LMP2 and LMP7 in tumors compared with normal tissues. Concordantly, proteasomal cleavage specificities in extracts from FMCs were different from those in healthy tissues. In addition, correlation analysis showed that LMP2 and LMP7 were concordantly expressed in FMCs, and their expression was significantly correlated with that of MHC class I HC. The abnormalities we have found in the APM in FMCs may cause a defective processing of some tumor antigens.
Collapse
|
112
|
Zhao X, Bose A, Komita H, Taylor JL, Chi N, Lowe DB, Okada H, Cao Y, Mukhopadhyay D, Cohen PA, Storkus WJ. Vaccines targeting tumor blood vessel antigens promote CD8(+) T cell-dependent tumor eradication or dormancy in HLA-A2 transgenic mice. THE JOURNAL OF IMMUNOLOGY 2012; 188:1782-8. [PMID: 22246626 DOI: 10.4049/jimmunol.1101644] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have recently shown that effective cytokine gene therapy of solid tumors in HLA-A2 transgenic (HHD) mice lacking murine MHC class I molecule expression results in the generation of HLA-A2-restricted CD8(+) T effector cells selectively recognizing tumor blood vessel-associated pericytes and/or vascular endothelial cells. Using an HHD model in which HLA-A2(neg) tumor (MC38 colon carcinoma or B16 melanoma) cells are not recognized by the CD8(+) T cell repertoire, we now show that vaccines on the basis of tumor-associated blood vessel Ags (TBVA) elicit protective Tc1-dependent immunity capable of mediating tumor regression or extending overall survival. Vaccine efficacy was not observed if (HLA-A2(neg)) wild-type C57BL/6 mice were instead used as recipient animals. In the HHD model, effective vaccination resulted in profound infiltration of tumor lesions by CD8(+) (but not CD4(+)) T cells, in a coordinate reduction of CD31(+) blood vessels in the tumor microenvironment, and in the "spreading" of CD8(+) T cell responses to alternate TBVA that were not intrinsic to the vaccine. Protective Tc1-mediated immunity was durable and directly recognized pericytes and/or vascular endothelial cells flow-sorted from tumor tissue but not from tumor-uninvolved normal kidneys harvested from these same animals. Strikingly, the depletion of CD8(+), but not CD4(+), T cells at late time points after effective therapy frequently resulted in the recurrence of disease at the site of the regressed primary lesion. This suggests that the vaccine-induced anti-TBVA T cell repertoire can mediate the clinically preferred outcomes of either effectively eradicating tumors or policing a state of (occult) tumor dormancy.
Collapse
Affiliation(s)
- Xi Zhao
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
Controversy exists as to the role that the immune system plays in cancer therapy. While the immune system has been proposed to scavenge the body to prevent microscopic transformation from forming cancer, it has been difficult to mount its potential of shrinking established tumors. NK cells are components of the innate immune system. They can recognize targets without prior sensitization, making them ideal candidates to manipulate for therapeutic use against cancer. Initially, autologous NK cells were directed against tumors but it was realized that NK cells that recognize self cells are inhibited. More encouraging advances have been made with allogeneic NK cell therapy in clinical trials to overcome this limitation. In this article, we present developments in NK cell adoptive immunotherapy for hematologic and solid tumor malignancies.
Collapse
Affiliation(s)
- Melissa A Geller
- Obstetrics & Gynecology, University of Minnesota, Minneapolis, MN, USA
| | - Jeffrey S Miller
- Obstetrics & Gynecology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
114
|
Tanaka K, Tsuchikawa T, Miyamoto M, Maki T, Ichinokawa M, Kubota KC, Shichinohe T, Hirano S, Ferrone S, Dosaka-Akita H, Matsuno Y, Kondo S. Down-regulation of Human Leukocyte Antigen class I heavy chain in tumors is associated with a poor prognosis in advanced esophageal cancer patients. Int J Oncol 2011; 40:965-74. [PMID: 22134332 PMCID: PMC3584652 DOI: 10.3892/ijo.2011.1274] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/24/2011] [Indexed: 02/07/2023] Open
Abstract
The HLA class I antigen processing machinery (APM) plays a crucial role in the anticancer immune response. The aim of this study was to assess the clinical significance of APM components in esophageal cancer. A total of 11 esophageal cancer cell lines were evaluated by Western blot analysis for 13 HLA class I APM components. There was a different expression pattern among cancer cell lines for HLA class I heavy chain (HLA-HC), β2 microglobulin, Tapasin, TAP-1, TAP-2, LMP-7 and LMP-10. Immunohistochemical staining utilizing a tissue microarray method for HLA class I APM expression showing different expression patterns among cell lines was performed for 95 surgical specimens from patients with esophageal cancer. Prognostic factors were the down-regulation of HLA-HC, and the up-regulation of β2 microglobulin and TAP-1 in the cancer tissues. Multivariate analysis using a Cox regression model indicated that the down-regulation of HLA-HC, and up-regulation of TAP-1 in cancer tissues are independent, unfavorable prognostic factors (hazard ratio, 2.361 and 2.297; P=0.0141 and 0.0145, respectively). Although there was no significant difference in survival for selected p-stage I and II patients (n=54) in all APM components, only down-regulation of HLA-HC was an unfavorable prognostic factor by a Cox regression model for selected p-stage III and IV patients (n=41). In conclusion, the current results suggest that the down-regulation of HLA-HC in tumors is especially associated with a poor prognosis among advanced esophageal cancer patients.
Collapse
Affiliation(s)
- Kimitaka Tanaka
- Department of Surgical Oncology, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8648, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Interactions of dendritic cells with cancer cells and modulation of surface molecules affect functional properties of CD8+ T cells. Mol Immunol 2011; 48:1744-52. [DOI: 10.1016/j.molimm.2011.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/29/2011] [Accepted: 04/15/2011] [Indexed: 02/04/2023]
|
116
|
Wei H, Hongya P, Linlin J, Mujiang A, Kuijie W, Duohong Z, Qingang H, Zhiyuan Z. IFN-γ enhances the anti-tumour immune response of dendritic cells against oral squamous cell carcinoma. Arch Oral Biol 2011; 56:891-8. [DOI: 10.1016/j.archoralbio.2011.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 01/29/2011] [Accepted: 02/11/2011] [Indexed: 10/18/2022]
|
117
|
Differential down-modulation of HLA class I and II molecule expression on human tumor cell lines upon in vivo transfer. Cancer Immunol Immunother 2011; 60:1639-45. [PMID: 21833593 PMCID: PMC3197938 DOI: 10.1007/s00262-011-1086-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 07/20/2011] [Indexed: 12/27/2022]
Abstract
Previous evidence from our laboratory showed that Epstein–Barr virus–immortalized lymphoblastoid B cells undergo a prominent down-modulation of HLA-II molecule expression when injected intraperitoneally in SCID mice, while HLA-I remains almost unaffected. Since this phenomenon can alter the experimental outcome of therapeutic protocols of adoptive cell therapy, we decided to evaluate the behavior of MHC antigens in a panel of cell lines belonging to the B- and T-cell lineages, as well as in epithelial tumor cell lines. Cells were administered in mice either intraperitoneally or subcutaneously and recovered 4 days later for HLA molecule expression analysis. Collected data showed a highly heterogeneous in vivo behavior of the various cell lines, which could alternatively down-modulate, completely abrogate or maintain unchanged the expression of either MHC-I or MHC-II molecules. Moreover, the site of injection impacted differentially on these aspects. Although such phenomena still lack a comprehensive clarification, epigenetic mechanisms are likely to be involved as epigenetic drugs could partially counteract MHC down-modulation in vivo. Nonetheless, it has to be pointed out that careful attention must be paid to the assessment of therapeutic efficacy of translational protocols of adoptive immunotherapy, as modulation of MHC molecules on human target cells when transferred in a mouse environment could readily interfere with the desired and expected therapeutic effects.
Collapse
|
118
|
Hu YX, Cui Q, Liang B, Huang H. Relapsing Hematologic Malignancies after Haploidentical Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2011; 17:1099-111. [DOI: 10.1016/j.bbmt.2011.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 02/11/2011] [Indexed: 11/16/2022]
|
119
|
Singer K, Kastenberger M, Gottfried E, Hammerschmied CG, Büttner M, Aigner M, Seliger B, Walter B, Schlösser H, Hartmann A, Andreesen R, Mackensen A, Kreutz M. Warburg phenotype in renal cell carcinoma: high expression of glucose-transporter 1 (GLUT-1) correlates with low CD8(+) T-cell infiltration in the tumor. Int J Cancer 2011; 128:2085-95. [PMID: 20607826 DOI: 10.1002/ijc.25543] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many tumor cells are characterized by a dysregulated glucose metabolism associated with increased glycolysis in the presence of oxygen ("Warburg Effect"). Here, we analyzed for the first time a possible link between glucose metabolism and immune cell infiltration in renal cell carcinoma (RCC). RCC specimens revealed a highly significant increase in the expression of lactate dehydrogenase A (LDHA) and glucose-transporter 1 (GLUT-1) compared to the corresponding normal kidney tissue on mRNA level. Accordingly, tumor cell lines of different origin such as RCC, melanoma and hepatocellular carcinoma strongly expressed LDHA and GLUT-1 compared to their nonmalignant counterparts. In line with this finding, tumor cells secreted high amounts of lactate. High expression of GLUT-1 and LDH5, a tetramer of 4 LDHA subunits, was confirmed by tissue microarray analysis of 249 RCC specimens. Overall, 55/79 (69.6%) and 46/71 (64.7%) cases of clear cell carcinoma showed a constitutive, but heterogeneous expression of GLUT-1 and LDH5, respectively. The number of CD3(+), CD8(+) and FOXP3(+) T cells was significantly elevated in RCC lesions compared to normal kidney epithelium, but effector molecules such as granzyme B and perforin were decreased in tumor infiltrating T cells. Of interest, further analysis revealed an inverse correlation between GLUT-1 expression and the number of CD8(+) T cells in RCC lesions. Together, our data suggest that an accelerated glucose metabolism in RCC tissue is associated with a low infiltration of CD8(+) effector T cells. Targeting the glucose metabolism may represent an interesting tool to improve the efficacy of specific immunotherapeutic approaches in RCC.
Collapse
Affiliation(s)
- Katrin Singer
- Department of Internal Medicine 5, Haematology/Oncology, University of Erlangen, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Lisiero DN, Soto H, Liau LM, Prins RM. Enhanced sensitivity to IL-2 signaling regulates the clinical responsiveness of IL-12-primed CD8(+) T cells in a melanoma model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:5068-77. [PMID: 21430221 PMCID: PMC3532507 DOI: 10.4049/jimmunol.1003317] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The optimal expansion, trafficking, and function of adoptively transferred CD8(+) T cells are parameters that currently limit the effectiveness of antitumor immunity to established tumors. In this study, we addressed the mechanisms by which priming of self tumor-associated Ag-specific CD8(+) T cells influenced antitumor functionality in the presence of the inflammatory cytokine IL-12. In vitro priming of mouse tumor-specific CD8(+) T cells in the presence of IL-12 induced a diverse and rapid antitumor effector activity while still promoting the generation of memory cells. Importantly, IL-12-primed effector T cells dramatically reduced the growth of well-established s.c. tumors and significantly increased survival to highly immune resistant, established intracranial tumors. Control of tumor growth by CD8(+) T cells was dependent on IL-12-mediated upregulation of the high-affinity IL-2R (CD25) and a subsequent increase in the sensitivity to IL-2 stimulation. Finally, IL-12-primed human PBMCs generated tumor-specific T cells both phenotypically and functionally similar to IL-12-primed mouse tumor-specific T cells. These results highlight the ability of IL-12 to obviate the strict requirement for administering high levels of IL-2 during adoptive cell transfer-mediated antitumor responses. Furthermore, acquisition of a potent effector phenotype independent of cytokine support suggests that IL-12 could be added to adoptive cell transfer clinical strategies in cancer patients.
Collapse
Affiliation(s)
- Dominique N. Lisiero
- Graduate Program in Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Horacio Soto
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Linda M. Liau
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
- Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Robert M. Prins
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
- Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
121
|
Choi BD, Cai M, Bigner DD, Mehta AI, Kuan CT, Sampson JH. Bispecific antibodies engage T cells for antitumor immunotherapy. Expert Opin Biol Ther 2011; 11:843-53. [PMID: 21449821 DOI: 10.1517/14712598.2011.572874] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Although considerable evidence supports the hypothesis that T cells play a critical role in the immune response against cancer, the ability to mount and sustain tumor-specific cellular responses in vivo remains a challenge. A strategy that harnesses the cytotoxic advantage of T cell therapy is the use of bispecific antibodies designed to engage and activate endogenous polyclonal T cell populations via the CD3 complex, but only in the presence of a tumor antigen. While antibody constructs with dual specificity were first described as anticancer therapeutics over 25 years ago, it was not until recently that one subclass of bispecific single-chain antibody, the bispecific T cell engager (BiTE), emerged as superior to previous iterations in achieving efficacy in animal models and early clinical trials. AREAS COVERED The evolution of bispecific antibodies in antitumor immunotherapy is reviewed and the greatest hurdles impeding their clinical translation are discussed, specifically in the context of immunoprivileged sites as is the case for intracerebral malignancy. EXPERT OPINION The BiTE platform has great potential in the treatment of malignant disease. Despite burgeoning interest in bispecific antibodies and permutations thereof, the issues of stability and cost-effective production persist as obstacles.
Collapse
Affiliation(s)
- Bryan D Choi
- Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, Division of Neurosurgery, Department of Surgery, Durham, North Carolina 27710 , USA.
| | | | | | | | | | | |
Collapse
|
122
|
Serrano A, Castro-Vega I, Redondo M. Role of gene methylation in antitumor immune response: implication for tumor progression. Cancers (Basel) 2011; 3:1672-90. [PMID: 24212778 PMCID: PMC3757384 DOI: 10.3390/cancers3021672] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/09/2011] [Accepted: 03/24/2011] [Indexed: 12/27/2022] Open
Abstract
Cancer immunosurveillance theory has emphasized the role of escape mechanisms in tumor growth. In this respect, a very important factor is the molecular characterization of the mechanisms by which tumor cells evade immune recognition and destruction. Among the many escape mechanisms identified, alterations in classical and non-classical HLA (Human Leucocyte Antigens) class I and class II expression by tumor cells are of particular interest. In addition to the importance of HLA molecules, tumor-associated antigens and accessory/co-stimulatory molecules are also involved in immune recognition. The loss of HLA class I antigen expression and of co-stimulatory molecules can occur at genetic, transcriptional and post-transcriptional levels. Epigenetic defects are involved in at least some mechanisms that preclude mounting a successful host-antitumor response involving the HLA system, tumor-associated antigens, and accessory/co-stimulatory molecules. This review summarizes our current understanding of the role of methylation in the regulation of molecules involved in the tumor immune response.
Collapse
Affiliation(s)
- Alfonso Serrano
- Department of Immunology, Hospital Clinico Universitario, Campus Universitario Teatinos S/N, 29010 Malaga, Spain.
| | | | | |
Collapse
|
123
|
Tsuchikawa T, Ikeda H, Cho Y, Miyamoto M, Shichinohe T, Hirano S, Kondo S. Association of CD8+ T cell infiltration in oesophageal carcinoma lesions with human leucocyte antigen (HLA) class I antigen expression and survival. Clin Exp Immunol 2011; 164:50-6. [PMID: 21352198 DOI: 10.1111/j.1365-2249.2010.04311.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Oesophageal cancer is one of the most aggressive tumours with a poor prognosis. However, little is known about the immune response in the tumour microenvironment. To investigate the role of immunosurveillance in the clinical course of oesophageal squamous cell carcinoma, 98 formalin-fixed, paraffin-embedded primary tumours were analysed using immunohistochemical methods for human leucocyte antigen (HLA) class I heavy chain and β2-microglobulin expression and for CD4-, CD8- and CD57-positive cell infiltration. HLA class I expression of tumour cells was correlated positively with infiltration of CD8(+) T cells into the cancer nest, but not with the clinical course of disease. However, CD8(+) and CD4(+) T cell infiltration was correlated with prognosis. These results suggest that tumour antigen-specific cellular immune response plays a role in the clinical course of the disease and that HLA class I antigen expressed on tumour cells contribute to this association most probably by mediating the interactions between tumour cells and CD8(+) T cells.
Collapse
Affiliation(s)
- T Tsuchikawa
- Department of Surgical Oncology, Division of Cancer Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | | | | | | | | | | |
Collapse
|
124
|
Fernández-Morera JL, Calvanese V, Rodríguez-Rodero S, Menéndez-Torre E, Fraga MF. Epigenetic regulation of the immune system in health and disease. ACTA ACUST UNITED AC 2011; 76:431-9. [PMID: 21058938 DOI: 10.1111/j.1399-0039.2010.01587.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Epigenetics comprises various mechanisms that mold chromatin structures and regulate gene expression with stability, thus defining cell identity and function and adapting cells to environmental changes. Alteration of these mechanisms contributes to the inception of various pathological conditions. Given the complexity of the immune system, one would predict that a higher-order, supragenetic regulation is indispensable for generation of its constituents and control of its functions. Here, we summarize various aspects of immune system physiology and pathology in which epigenetic pathways have been implicated. Increasing knowledge in this field, together with the development of specific tools with which to manipulate epigenetic pathways, might form a basis for new strategies of immune function modulation, both to optimize immune therapies for infections or cancer and to control immune alterations in aging or autoimmunity.
Collapse
Affiliation(s)
- J L Fernández-Morera
- Endocrinology and Nutrition Service, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | | | | | | |
Collapse
|
125
|
Mutations of the von Hippel-Lindau gene confer increased susceptibility to natural killer cells of clear-cell renal cell carcinoma. Oncogene 2011; 30:2622-32. [PMID: 21258414 DOI: 10.1038/onc.2010.638] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The tumor suppressor gene von Hippel-Lindau (VHL) is involved in the development of sporadic clear-cell renal cell carcinoma (RCC). VHL interferes with angiogenesis and also controls cell adhesion and invasion. Therapies that target VHL-controlled genes are currently being evaluated in RCC patients. RCC is a immunogenic tumor and treatment with interleukin-2 (IL2) or interferon (IFN)-α results in regression in some patients. We used two renal tumor cell lines (RCC6 and RCC4) carrying VHL loss-of-function mutations to investigate the role of mutant VHL in susceptibility to natural killer (NK) cell-mediated lysis. The RCC6 and RCC4 cell lines were transfected with the wild-type gene to restore the function of VHL. The presence of the gene in RCC cells downregulated hypoxia-inducible factor (HIF)-1α and subsequently decreased vascular endothelial growth factor (VEGF) production. Relative to control transfectants and parental cells, pVHL-transfected cell lines activated resting and IL2-activated NK cells less strongly, as assessed by IFNγ secretion, NK degranulation and cell lysis. NKG2A, a human leukocyte antigen (HLA)-I-specific inhibitory NK receptor, controls the lysis of tumor targets. We show that HLA-I expression in RCC-pVHL cells is stronger than that in parental and controls cells, although the expression of activating receptor NK ligands remains unchanged. Blocking NKG2A/HLA-I interactions substantially increased lysis of RCC-pVHL, but had little effect on the lysis of VHL-mutated RCC cell lines. In addition, in response to IFNα, the exponential growth of RCC-pVHL was inhibited more than that of RCC-pE cells, indicating that VHL mutations may be involved in IFNα resistance. These results indicate that a decreased expression of HLA-I molecules in mutated VHL renal tumor cells sensitizes them to NK-mediated lysis. These results suggest that combined immunotherapy with anti-angiogenic drugs may be beneficial for patients with mutated VHL.
Collapse
|
126
|
Albers AE, Strauss L, Liao T, Hoffmann TK, Kaufmann AM. T cell-tumor interaction directs the development of immunotherapies in head and neck cancer. Clin Dev Immunol 2010; 2010:236378. [PMID: 21234340 PMCID: PMC3017942 DOI: 10.1155/2010/236378] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Accepted: 10/16/2010] [Indexed: 01/29/2023]
Abstract
The competent immune system controls disease effectively due to induction, function, and regulation of effector lymphocytes. Immunosurveillance is exerted mostly by cytotoxic T-lymphocytes (CTLs) while specific immune suppression is associated with tumor malignancy and progression. In squamous cell carcinoma of the head and neck, the presence, activity, but also suppression of tumor-specific CTL have been demonstrated. Functional CTL may exert a selection pressure on the tumor cells that consecutively escape by a combination of molecular and cellular evasion mechanisms. Certain of these mechanisms target antitumor effector cells directly or indirectly by affecting cells that regulate CTL function. This results in the dysfunction or apoptosis of lymphocytes and dysregulated lymphocyte homeostasis. Another important tumor-escape mechanism is to avoid recognition by dysregulation of antigen processing and presentation. Thus, both induction of functional CTL and susceptibility of the tumor and its microenvironment to become T cell targets should be considered in CTL-based immunotherapy.
Collapse
Affiliation(s)
- A. E. Albers
- Department of Otolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12200 Berlin, Germany
| | - L. Strauss
- Fondazione Humanitas per la Ricerca, 20089 Rozzano, Italy
| | - T. Liao
- Department of Otolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12200 Berlin, Germany
| | - T. K. Hoffmann
- Department of Otolaryngology, Head and Neck Surgery, Universität Essen, 45147 Essen, Germany
| | - A. M. Kaufmann
- Department of Gynecology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin and Campus Mitte, 12200 Berlin, Germany
| |
Collapse
|
127
|
Jazirehi AR, Baritaki S, Koya RC, Bonavida B, Economou JS. Molecular mechanism of MART-1+/A*0201+ human melanoma resistance to specific CTL-killing despite functional tumor-CTL interaction. Cancer Res 2010; 71:1406-17. [PMID: 21159666 DOI: 10.1158/0008-5472.can-10-1296] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Durable responses in metastatic melanoma patients remain generally difficult to achieve. Adoptive cell therapy (ACT) with ex vivo engineered lymphocytes expressing high affinity T-cell receptors (TCRα/β) for the melanoma antigen MART-1₂₇₋₃₅/HLA-A*0201 [recognized by F5 cytotoxic T lymphocytes (F5 CTL)] has been found to benefit certain patients. However, many other patients are inherently unresponsive and/or relapse for unknown reasons. To analyze the basis for the acquired resistance and strategies to reverse it, we established F5 CTL-resistant (R) human melanoma clones from relatively sensitive parental lines under selective F5 CTL pressure. Surface MART-1₂₇₋₃₅/HLA-A*0201 in these clones was unaltered and F5 CTLs recognized and interacted with them similar to the parental lines. Nevertheless, the R clones were resistant to F5 CTL killing, exhibited hyperactivation of the NF-κB survival pathway, and overexpression of the antiapoptotic genes B cell lymphoma protein 2 (Bcl-2), Bcl-2 related gene (long alternatively spliced variant of Bcl-x gene; Bcl-(xL)), and myeloid cell differentiation 1 (Mcl-1). Sensitivity to F5 CTL-killing could be increased by pharmacological inhibition of the NF-κB pathway, Bcl-2 family members, or the proteasome, the latter of which reduced NF-κB activity and diminished antiapoptotic gene expression. Specific gene-silencing (by siRNA) confirmed the protective role of antiapoptotic factors by reversing R clone resistance. Together, our findings suggest that long-term immunotherapy may impose a selection for the development of resistant cells that are unresponsive to highly avid and specific melanoma-reactive CTLs, despite maintaining expression of functional peptide:MHC complexes, due to activation of antiapoptotic signaling pathways. Though unresponsive to CTL, our results argue that resistant cells can be resensitized to immunotherapy with coadministration of targeted inhibitors to antiapoptotic survival pathways.
Collapse
Affiliation(s)
- Ali R Jazirehi
- Department of Surgery, Molecular and Medical Pharmacology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, California, USA.
| | | | | | | | | |
Collapse
|
128
|
Bao BY, Pao JB, Huang CN, Pu YS, Chang TY, Lan YH, Lu TL, Lee HZ, Juang SH, Chen LM, Hsieh CJ, Huang SP. Polymorphisms inside microRNAs and microRNA target sites predict clinical outcomes in prostate cancer patients receiving androgen-deprivation therapy. Clin Cancer Res 2010; 17:928-36. [PMID: 21149617 DOI: 10.1158/1078-0432.ccr-10-2648] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Recent evidence indicates that small noncoding RNA molecules, known as microRNAs (miRNAs), are involved in cancer initiation and progression. We hypothesized that genetic variations in miRNAs and miRNA target sites could be associated with the efficacy of androgen-deprivation therapy (ADT) in men with prostate cancer. EXPERIMENTAL DESIGN We systematically evaluated 61 common single nucleotide polymorphisms (SNPs) inside miRNAs and miRNA target sites in a cohort of 601 men with advanced prostate cancer treated with ADT. The prognostic significance of these SNPs on disease progression, prostate cancer-specific mortality (PCSM) and all-cause mortality (ACM) after ADT were assessed by Kaplan-Meier analysis and Cox regression model. RESULTS Four, seven, and four SNPs were significantly associated with disease progression, PCSM, and ACM, respectively, after ADT in univariate analysis. KIF3C rs6728684, CDON rs3737336, and IFI30 rs1045747 genotypes remained as significant predictors for disease progression; KIF3C rs6728684, PALLD rs1071738, GABRA1 rs998754, and SYT9 rs4351800 remained as significant predictors for PCSM; and SYT9 rs4351800 remained as a significant predictor for ACM in multivariate models that included clinicopathologic predictors. Moreover, strong combined genotype effects on disease progression and PCSM were also observed. Patients with a greater number of unfavorable genotypes had a shorter time to progression and worse prostate cancer-specific survival during ADT (P for trend < 0.001). CONCLUSION SNPs inside miRNAs and miRNA target sites have a potential value to improve outcome prediction in prostate cancer patients receiving ADT.
Collapse
Affiliation(s)
- Bo-Ying Bao
- Department of Pharmacy, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Maleno I, Aptsiauri N, Cabrera T, Gallego A, Paschen A, López-Nevot MA, Garrido F. Frequent loss of heterozygosity in the β2-microglobulin region of chromosome 15 in primary human tumors. Immunogenetics 2010; 63:65-71. [PMID: 21086121 DOI: 10.1007/s00251-010-0494-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 11/03/2010] [Indexed: 01/01/2023]
Abstract
Downregulation or total loss of HLA class I expression on tumor cells is known as a mechanism of cancer immune escape. Alterations of the HLA phenotype are frequently due to mutations affecting genes encoding the HLA class I heavy chains located on chromosome 6p21 or the β2-microglobulin (β2m) gene encoding the light chain of the HLA complex located on chromosome 15q21. Frequently irreversible total loss of HLA class I molecules is due to the coincidence of two molecular events, the mutation of one β2m gene and the loss of the second copy. The latter is detectable as loss of heterozygosity (LOH) of microsatellite markers in the β2m region on chromosome 15q21 (LOH-15q21). Thus, LOH-15q21 might be an important event in the processes of HLA class I downregulation and total loss. Here we studied the frequency of LOH-15q21 in tumor tissues of different entities. By determining the status of heterozygosity of two microsatellite markers we detected LOH-15q21 in 44% of bladder carcinomas (n = 69), in 35% of colon carcinomas (n = 95), in 16% of melanomas (n = 70) but only in 7% of renal cancers (n = 45). Moreover, we observed a frequent coincidence of LOH-15q21 and LOH-6p21 in colorectal carcinoma, bladder carcinoma and melanoma, but not for renal carcinoma. We believe that the high incidence of LOH-15q21 in some malignancies and especially the coincidence of LOH-15q21 and LOH-6p21 might have a strong impact on tumor immunogenicity and on the efficiency of cancer immunotherapy.
Collapse
Affiliation(s)
- Isabel Maleno
- Department of Clinical Analysis, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
130
|
Lampen MH, Verweij MC, Querido B, van der Burg SH, Wiertz EJHJ, van Hall T. CD8+ T cell responses against TAP-inhibited cells are readily detected in the human population. THE JOURNAL OF IMMUNOLOGY 2010; 185:6508-17. [PMID: 20980626 DOI: 10.4049/jimmunol.1001774] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Target cell recognition by CTLs depends on the presentation of peptides by HLA class I molecules. Tumors and herpes viruses have adopted strategies to greatly hamper this peptide presentation at the important bottleneck, the peptide transporter TAP. Previously, we described the existence of a CD8(+) CTL subpopulation that selectively recognizes such TAP-deficient cells in mouse models. In this study, we show that the human counterpart of this CTL subset is readily detectable in healthy subjects. Autologous PBMC cultures were initiated with dendritic cells rendered TAP-impaired by gene transfer of the viral evasion molecule UL49.5. Strikingly, specific reactivity to B-LCLs expressing one of the other viral TAP-inhibitors (US6, ICP47, or BNLF2a) was already observed after three rounds of stimulation. These short-term T cell cultures and isolated CD8(+) CTL clones derived thereof did not recognize the normal B-LCL, indicating that the cognate peptide-epitopes emerge at the cell surface upon an inhibition in the MHC class I processing pathway. A diverse set of TCRs was used by the clones, and the cellular reactivity was TCR-dependent and HLA class I-restricted, implying the involvement of a broad antigenic peptide repertoire. Our data indicate that the human CD8(+) T cell pool comprises a diverse reactivity to target cells with impairments in the intracellular processing pathway, and these might be exploited for cancers that are associated with such defects and for infections with immune-evading herpes viruses.
Collapse
Affiliation(s)
- Margit H Lampen
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
131
|
How do tumors actively escape from host immunosurveillance? Arch Immunol Ther Exp (Warsz) 2010; 58:435-48. [PMID: 20922572 DOI: 10.1007/s00005-010-0102-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 05/28/2010] [Indexed: 12/12/2022]
Abstract
The immunological background for the process of tumor growth is still obscure. However, our understanding of what happens could have important consequences, namely in the context of cancer immunotherapy. A tumor is able to grow in the host environment either because it is recognizable as normal tissue and tolerated by host immune cells, or because it can "escape" from host immunosurveillance. According to the second option the mechanisms of tumor recognition and consequent destruction are actively disturbed by such processes as: change of tumor immunogenicity, production of tumor-derived regulatory molecules, and interaction of cancer cells with tumor-infiltrating immune cells. The results of studies devoted to the problem of immunoregulation in the tumor environment seem to support the "escape" hypothesis.
Collapse
|
132
|
Bukur J, Herrmann F, Handke D, Recktenwald C, Seliger B. Identification of E2F1 as an important transcription factor for the regulation of tapasin expression. J Biol Chem 2010; 285:30419-26. [PMID: 20663889 PMCID: PMC2945534 DOI: 10.1074/jbc.m109.094284] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 06/23/2010] [Indexed: 11/06/2022] Open
Abstract
HER-2/neu overexpression in tumor cells caused abnormalities of MHC class I surface expression due to impaired expression of components of the antigen-processing machinery (APM) including the low molecular weight proteins, the transporter associated with antigen processing (TAP), and the chaperone tapasin, whereas the expression of MHC class I heavy chain as well as β(2)-microglobulin was only marginally affected. This oncogene-mediated deficient APM component expression could be reverted by interferon-γ treatment, suggesting a deregulation rather than structural alterations as underlying molecular mechanisms. To determine the level of regulation, the transcriptional activity of APM components was analyzed in HER-2/neu(-) and HER-2/neu(+) cells. All major APM components were transcriptionally down-regulated in HER-2/neu(+) when compared with HER-2/neu(-) cells, which was accompanied by a reduced binding of RNA polymerase II to the APM promoters. Site-directed mutagenesis of the p300- and E2F-binding sites in the APM promoters did not reconstitute the oncogene-mediated decreased transcription rate with the exception of tapasin, which was restored in HER-2/neu(+) cells to levels of wild type tapasin promoter activity in HER-2/neu(-) fibroblasts. The E2F-directed control of tapasin expression was further confirmed by chromatin immunoprecipitation analyses showing that E2F1 and p300 bind to the tapasin and APM promoters in both cell lines. Moreover, siRNA-mediated silencing of E2F1 was associated with an increased tapasin expression, whereas transient overexpression of E2F1 launch a reduced tapasin transcription, suggesting that E2F1 is an essential transcription factor for tapasin.
Collapse
Affiliation(s)
- Juergen Bukur
- From the Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| | - Felix Herrmann
- From the Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| | - Diana Handke
- From the Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| | - Christian Recktenwald
- From the Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| | - Barbara Seliger
- From the Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| |
Collapse
|
133
|
Abstract
Modulation of the immune system for therapeutic ends has a long history, stretching back to Edward Jenner's use of cowpox to induce immunity to smallpox in 1796. Since then, immunotherapy, in the form of prophylactic and therapeutic vaccines, has enabled doctors to treat and prevent a variety of infectious diseases, including cholera, poliomyelitis, diphtheria, measles and mumps. Immunotherapy is now increasingly being applied to oncology. Cancer immunotherapy attempts to harness the power and specificity of the immune system for the treatment of malignancy. Although cancer cells are less immunogenic than pathogens, the immune system is capable of recognizing and eliminating tumor cells. However, tumors frequently interfere with the development and function of immune responses. Thus, the challenge for cancer immunotherapy is to apply advances in cellular and molecular immunology and develop strategies that effectively and safely augment antitumor responses.
Collapse
Affiliation(s)
- Joseph F. Murphy
- Department of Surgery, Trinity Centre for Health Sciences, Adelaide and Meath incorporating the National Children’s Hospital, Tallaght, Dublin 24, Ireland
| |
Collapse
|
134
|
Abstract
Immune cells infiltrate tumors and make up a significant component of the multicellular cancer micro-environment, yet the immune system often fails to prevent tumor formation and progression. One explanation for this paradox is the presence of tolerance-promoting regulatory T cells (Tregs) that counteract antitumor immune cells. Tregs were known to be essential for maintaining self-tolerance. Recently, Tregs have been found to promote tolerance to tumors in mouse models. Moreover, Treg infiltration in human tumors and malignant ascites is associated with worse clinical outcomes for various types of cancers. As many reviews have discussed the development and function of Tregs, this review focuses on the cellular and molecular mechanisms by which Tregs influence antitumor immune responses, and also discusses how these mechanisms might be exploited to develop innovative immune-based approaches that can improve cancer therapy.
Collapse
Affiliation(s)
- Xuefang Cao
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
135
|
What is the role of alternate splicing in antigen presentation by major histocompatibility complex class I molecules? Immunol Res 2010; 46:32-44. [PMID: 19830395 DOI: 10.1007/s12026-009-8123-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The expression of major histocompatibility complex (MHC) class I molecules on the cell surface is critical for recognition by cytotoxic T lymphocytes (CTL). This recognition event leads to destruction of cells displaying MHC class I-viral peptide complexes or cells displaying MHC class I-mutant peptide complexes. Before they can be transported to the cell surface, MHC class I molecules must associate with their peptide ligand in the endoplasmic reticulum (ER) of the cell. Within the ER, numerous proteins assist in the appropriate assembly and folding of MHC class I molecules. These include the heterodimeric transporter associated with antigen processing (TAP1 and TAP2), the heterodimeric chaperone-oxidoreductase complex of tapasin and ERp57 and the general ER chaperones calreticulin and calnexin. Each of these accessory proteins has a well-defined role in antigen presentation by MHC class I molecules. However, alternate splice forms of MHC class I heavy chains, TAP and tapasin, have been reported suggesting additional complexity to the picture of antigen presentation. Here, we review the importance of these different accessory proteins and the progress in our understanding of alternate splicing in antigen presentation.
Collapse
|
136
|
Downregulation of tapasin expression in primary human oral squamous cell carcinoma: association with clinical outcome. Tumour Biol 2010; 31:451-9. [DOI: 10.1007/s13277-010-0054-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022] Open
|
137
|
Effects of fumonisin B1 on HLA class I antigen presentation and processing pathway in GES-1 cells in vitro. Hum Exp Toxicol 2010; 30:379-90. [DOI: 10.1177/0960327110371812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fumonisin B1 (FB1) is a food-borne mycotoxin produced by genus Fusarium and was classified as possible carcinogen to humans by the International Agency for Research on Cancer (IARC). Human leukocyte antigen (HLA) class I antigen presentation pathway plays an important role in immunosurveillance. Defects in HLA class I antigen presentation pathway can down-regulate the expression of HLA class I antigen on the surface of nucleated cells that will confer a survival advantage to randomly mutant cells and may lead to malignant transformation. In the present study, we analyzed the effects of FB1 on the expression of HLA class I heavy chain (classical HLA-A, -B and -C genes included), beta2-microglobulin (β2m), LMP2 and TAP1 genes in human gastric epithelial immortalized GES-1 cells in vitro using semi-quantitative Reverse Transcription Polymerase Chain Reaction (RT-PCR), Western blot and immunocytochemical methods in dose- and time-effect studies. Our results revealed that FB1 have an effect on HLA class I antigen presentation pathway via the decreased expression of HLA class I heavy chain and/or defects of LMP2 and TAP1 expression. However, the importance of this effect in carcinogenesis needs further investigation.
Collapse
|
138
|
Sharabi A, Ghera NH. Breaking tolerance in a mouse model of multiple myeloma by chemoimmunotherapy. Adv Cancer Res 2010; 107:1-37. [PMID: 20399959 DOI: 10.1016/s0065-230x(10)07001-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A unique mouse model of multiple myeloma (MM), namely 5T2MM-bearing mouse, was useful for elucidating the pathophysiological mechanisms underlying the disease. Increased accumulation of suppressive CD4(+)CD25(High)Foxp3(+) regulatory T cells (Tregs) was observed in the thymus and lymphoid peripheral organs during disease progression. Adoptive transfer of Tregs, but not other thymocytes, from 5T2MM-bearing mice led to increased progression of disease manifestations in young syngeneic mice. Depletion of Tregs, a proposed strategy in cancer immunotherapy, was tested using cyclophosphamide (CYC), an alkylating agent with selective cytotoxicity. Both low- and high-dose CYC, administered to sick mice with hind limb paralysis, caused the paralysis to disappear, the plasma tumor cells in the bone marrow (BM) cavity to be replaced by normal cell populations, and the survival of the mice to be significantly prolonged. Low-dose CYC, which selectively depletes Tregs, decreased MM incidence, in contrast to high-dose CYC, which was generally cytotoxic, and did not reduce MM incidence. In contrast, low-dose CYC induced Tregs to become susceptible to apoptosis by downregulating Bcl-xL and CTLA-4 in these cells, and by decreasing the production of IL-2 by effector CD4 cells. This treatment consequently triggered the recovery of IFN-gamma-producing natural killer T cells and the maturation of dendritic cells. Transient gradual depletion of Tregs in low-dose CYC-treated 5T2MM mice was maintained beyond 45 days. Thus, less frequent injections of low-dose CYC enabled us to recruit compatible immune-derived cells that would reduce tumor load and delay or prevent tumor recurrence, hence breaking immune tolerance toward MM tumor cells.
Collapse
Affiliation(s)
- Amir Sharabi
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
139
|
Meissner M, König V, Hrgovic I, Valesky E, Kaufmann R. Human leucocyte antigen class I and class II antigen expression in malignant fibrous histiocytoma, fibrosarcoma and dermatofibrosarcoma protuberans is significantly downregulated. J Eur Acad Dermatol Venereol 2010; 24:1326-32. [DOI: 10.1111/j.1468-3083.2010.03644.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
140
|
Li XL, Zhang D, Knight D, Odaka Y, Glass J, Mathis JM, Zhang QJ. Priming of immune responses against transporter associated with antigen processing (TAP)-deficient tumours: tumour direct priming. Immunology 2010; 128:420-8. [PMID: 20067541 DOI: 10.1111/j.1365-2567.2009.03127.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We previously showed that introduction of transporter associated with antigen processing (TAP) 1 into TAP-negative CMT.64, a major histocompatibility complex class I (MHC-I) down-regulated mouse lung carcinoma cell line, enhanced T-cell immunity against TAP-deficient tumour cells. Here, we have addressed two questions: (1) whether such immunity can be further augmented by co-expression of TAP1 with B7.1 or H-2K(b) genes, and (2) which T-cell priming mechanism (tumour direct priming or dendritic cell cross-priming) plays the major role in inducing an immune response against TAP-deficient tumours. We introduced the B7.1 or H-2K(b) gene into TAP1-expressing CMT.64 cells and determined which gene co-expressed with TAP1 was able to provide greater protective immunity against TAP-deficient tumour cells. Our results show that immunization of mice with B7.1 and TAP1 co-expressing but not H-2K(b) and TAP1 co-expressing CMT.64 cells dramatically augments T-cell-mediated immunity, as shown by an increase in survival of mice inoculated with live CMT.64 cells. In addition, our results suggest that induction of T-cell-mediated immunity against TAP-deficient tumour cells could be mainly through tumour direct priming rather than dendritic cell cross-priming as they show that T cells generated by tumour cell-lysate-loaded dendritic cells recognized TAP-deficient tumour cells much less than TAP-proficient tumour cells. These data suggest that direct priming by TAP1 and B7.1 co-expressing tumour cells is potentially a major mechanism to facilitate immune responses against TAP-deficient tumour cells.
Collapse
Affiliation(s)
- Xiao-Lin Li
- Department of Cellular Biology and Anatomy, Gene Therapy Program, Louisiana State University Health Sciences Center, Kings Hwy, Shreveport, LA 71130, USA
| | | | | | | | | | | | | |
Collapse
|
141
|
Mutation or loss of Wilms' tumor gene 1 (WT1) are not major reasons for immune escape in patients with AML receiving WT1 peptide vaccination. J Transl Med 2010; 8:5. [PMID: 20092642 PMCID: PMC2844374 DOI: 10.1186/1479-5876-8-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 01/21/2010] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Efficacy of cancer vaccines may be limited due to immune escape mechanisms like loss or mutation of target antigens. Here, we analyzed 10 HLA-A2 positive patients with acute myeloid leukemia (AML) for loss or mutations of the WT1 epitope or epitope flanking sequences that may abolish proper T cell recognition or epitope presentation. METHODS All patients had been enrolled in a WT1 peptide phase II vaccination trial (NCT00153582) and ultimately progressed despite induction of a WT1 specific T cell response. Blood and bone marrow samples prior to vaccination and during progression were analyzed for mRNA expression level of WT1. Base exchanges within the epitope sequence or flanking regions (10 amino acids N- and C-terminal of the epitope) were assessed with melting point analysis and sequencing. HLA class I expression and WT1 protein expression was analyzed by flow cytometry. RESULTS Only in one patient, downregulation of WT1 mRNA by 1 log and loss of WT1 detection on protein level at time of disease progression was observed. No mutation leading to a base exchange within the epitope sequence or epitope flanking sequences could be detected in any patient. Further, no loss of HLA class I expression on leukemic blasts was observed. CONCLUSION Defects in antigen presentation caused by loss or mutation of WT1 or downregulation of HLA molecules are not the major basis for escape from the immune response induced by WT1 peptide vaccination.
Collapse
|
142
|
Insights into the Role of GILT in HLA Class II Antigen Processing and Presentation by Melanoma. JOURNAL OF ONCOLOGY 2009; 2009:142959. [PMID: 20016802 PMCID: PMC2792950 DOI: 10.1155/2009/142959] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 09/12/2009] [Indexed: 01/05/2023]
Abstract
Metastatic melanoma is one of the deadliest of skin cancers and is increasing in incidence. Since current treatment regimens are ineffective at controlling and/or curing the disease, novel approaches, such as immunotherapy, for treating this malignant disease are being explored. In this review, we discuss potential melanoma antigens (Ags) and their role in utilizing the HLA class II pathway to elicit tumor Ag-specific CD4+ T cell responses in order to effectively induce long-lasting CD8+ antitumor memory. We also discuss the role of endolysosomal cathepsins and Gamma-Interferon-inducible Lysosomal Thiol reductase (GILT) in Ag processing and presentation, and at enhancing CD4+ T cell recognition of melanoma cells. This review also summarizes our current knowledge on GILT and highlights a novel mechanism of GILT-mediated immune responses against melanoma cells. At the end, we propose a strategy employing GILT in the development of a potential whole cell vaccine for combating metastatic melanoma.
Collapse
|
143
|
Shehata M, Mukherjee A, Deen S, Al-Attar A, Durrant LG, Chan S. Human leukocyte antigen class I expression is an independent prognostic factor in advanced ovarian cancer resistant to first-line platinum chemotherapy. Br J Cancer 2009; 101:1321-8. [PMID: 19755991 PMCID: PMC2768455 DOI: 10.1038/sj.bjc.6605315] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Loss of HLA class I is important in ovarian cancer prognosis but its role as a prognostic indicator in relation to therapy remains unproven. We studied the prognostic potential of this antigen and its significance in relation to platinum therapy. Methods: A total of 157 primary ovarian cancers were assessed for HLA class I immunohistochemically and linked to a comprehensive database of clinicopathological variables, treatment details, and platinum sensitivity. Results: Tumours expressing high levels of HLA class I had significantly improved survival (P=0.044). There was a 19-month difference in the median overall survival between tumours with high and low antigen expression. HLA class I antigen expression, stage, and platinum sensitivity were independently predictive of prognosis on multivariate analysis. HLA class I antigen was shown to be expressed at higher levels in patients with good overall survival in platinum-resistant patients (P=0.042). HLA class I significantly correlated with overall survival on multivariate analyses (P=0.034). Conclusion: Low-level HLA class I expression is an independent prognostic indicator of poor clinical outcome in ovarian cancer. The survival advantage of patients with platinum-resistant tumours expressing high levels of HLA class I suggests that immunotherapy may be of use in these ovarian cancers resistant to standard chemotherapy.
Collapse
Affiliation(s)
- M Shehata
- Academic and Clinical Department of Oncology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | | | | | | | | | | |
Collapse
|
144
|
Theodoratos A, Whittle B, Enders A, Tscharke DC, Roots CM, Goodnow CC, Fahrer AM. Mouse strains with point mutations in TAP1 and TAP2. Immunol Cell Biol 2009; 88:72-8. [PMID: 19721454 DOI: 10.1038/icb.2009.61] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report two new mouse strains: Jasmine (C57BL/6J/Apb-Tap2jas/Apb), with a point mutation in the transporter associated with antigen processing (TAP)2 ; and Rose, (C57BL/6J/Apb-Tap1rose/Apb), with a point mutation in TAP1. These strains were detected as the result of ethyl nitroso urea (ENU) screens for recessive point mutations affecting the immune system. As expected in cases of defective TAP expression, the mice have very low major histocompatibility complex (MHC)-I cell-surface expression, and few CD8(+) T cells. The Rose strain has an A to T substitution in exon 10 of TAP1, resulting in an asparagine to valine substitution at position 643. Jasmine has an A to C transversion in exon 5 of TAP2, resulting in a threonine to proline substitution at position 293 of the protein. The mutation does not affect mRNA levels, but results in a very severe reduction in TAP2 protein. TAP1 protein levels are also decreased in Jasmine mice, demonstrating a new role for mouse TAP2 in stabilizing TAP1 protein expression. Jasmine is the first strain available with defective TAP2. The two mouse strains provide additional animal models for the human condition Bare Lymphocyte syndrome type 1, and identify new residues important for TAP function.
Collapse
Affiliation(s)
- Angelo Theodoratos
- Biochemistry and Molecular Biology, Research School of Biology, The Australian National University, Canberra, Australia
| | | | | | | | | | | | | |
Collapse
|
145
|
Gonzalez-Gronow M, Selim MA, Papalas J, Pizzo SV. GRP78: a multifunctional receptor on the cell surface. Antioxid Redox Signal 2009; 11:2299-306. [PMID: 19331544 DOI: 10.1089/ars.2009.2568] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The 78 kDa glucose-regulated protein (GRP78) is an endoplasmic reticulum chaperone, whose function is generally thought to be restricted to controlling the structural maturation of nascent glycoproteins. However, GRP78 also is expressed on the cell surface where it functions as a receptor for a wide variety of ligands, behaving as an autoantigen for several classes of autoantibodies. GRP78 is a signaling receptor for activated alpha2-macroglobulin, plasminogen kringle 5, and microplasminogen, and it plays a critical role in viral entry of coxsackie B, and dengue fever viruses. GRP78 is also implicated in the regulation of tissue factor procoagulant activity and functions as a receptor for angiogenic peptides via a mechanism independent of the VEGF receptor. Cell surface GRP78 is found associated with such diverse proteins as the voltage-dependent anion channel (VDAC), the major histocompatibility complex class I (MHC-I), the teratocarcinoma-derived growth factor I (Cripto), and the DnaJ-like protein MTJ-1. These associations suggest a unique GRP78 cell surface topography, which appears to be compartmentalized to respond differently to agonists that bind to its N- or C-terminal domains. Here, we discuss the significance of these associations, and the possible mechanisms involved in the transportation of GRP78 from the cytosol to the cell surface.
Collapse
Affiliation(s)
- Mario Gonzalez-Gronow
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | |
Collapse
|
146
|
Kawabe M, Mandic M, Taylor JL, Vasquez CA, Wesa AK, Neckers LM, Storkus WJ. Heat shock protein 90 inhibitor 17-dimethylaminoethylamino-17-demethoxygeldanamycin enhances EphA2+ tumor cell recognition by specific CD8+ T cells. Cancer Res 2009; 69:6995-7003. [PMID: 19690146 DOI: 10.1158/0008-5472.can-08-4511] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
EphA2, a member of the receptor tyrosine kinase family, is commonly expressed by a broad range of cancer types, where its level of (over)expression correlates with poor clinical outcome. Because tumor cell expressed EphA2 is a nonmutated "self" protein, specific CD8(+) T cells are subject to self-tolerance mechanisms and typically exhibit only moderate-to-low functional avidity, rendering them marginally competent to recognize EphA2(+) tumor cells in vitro or in vivo. We have recently reported that the ability of specific CD8(+) T cells to recognize EphA2(+) tumor cells can be augmented after the cancer cells are pretreated with EphA2 agonists that promote proteasomal degradation and up-regulated expression of EphA2/class I complexes on the tumor cell membrane. In the current study, we show that treatment of EphA2(+) tumor cells with the irreversible heat shock protein 90 inhibitor, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), similarly enhances their recognition by EphA2-specific CD8(+) T-cell lines and clones in vitro via a mechanism that is dependent on proteasome and transporter-associated protein function as well as the retrotranslocation of EphA2 into the tumor cytoplasm. When 17-DMAG and agonist anti-EphA2 monoclonal antibodies are coapplied, T-cell recognition of tumor cells is further increased over that observed for either agent alone. These studies suggest that EphA2 represents a novel heat shock protein 90 client protein and that the treatment of cancer patients with 17-DMAG-based "pulse" therapy may improve the antitumor efficacy of CD8(+) T effector cells reactive against EphA2-derived epitopes.
Collapse
Affiliation(s)
- Mayumi Kawabe
- Department of Immunology, University of Pittsburgh School of Medicine, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
147
|
Vago L, Perna SK, Zanussi M, Mazzi B, Barlassina C, Stanghellini MTL, Perrelli NF, Cosentino C, Torri F, Angius A, Forno B, Casucci M, Bernardi M, Peccatori J, Corti C, Bondanza A, Ferrari M, Rossini S, Roncarolo MG, Bordignon C, Bonini C, Ciceri F, Fleischhauer K. Loss of mismatched HLA in leukemia after stem-cell transplantation. N Engl J Med 2009; 361:478-88. [PMID: 19641204 DOI: 10.1056/nejmoa0811036] [Citation(s) in RCA: 420] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Transplantation of hematopoietic stem cells from partially matched family donors is a promising therapy for patients who have a hematologic cancer and are at high risk for relapse. The donor T-cell infusions associated with such transplantation can promote post-transplantation immune reconstitution and control residual disease. METHODS We identified 43 patients who underwent haploidentical transplantation and infusion of donor T cells for acute myeloid leukemia or myelodysplastic syndrome and conducted post-transplantation studies that included morphologic examination of bone marrow, assessment of hematopoietic chimerism with the use of short-tandem-repeat amplification, and HLA typing. The genomic rearrangements in mutant variants of leukemia were studied with the use of genomic HLA typing, microsatellite mapping, and single-nucleotide-polymorphism arrays. The post-transplantation immune responses against the original cells and the mutated leukemic cells were analyzed with the use of mixed lymphocyte cultures. RESULTS In 5 of 17 patients with leukemia relapse after haploidentical transplantation and infusion of donor T cells, we identified mutant variants of the original leukemic cells. In the mutant leukemic cells, the HLA haplotype that differed from the donor's haplotype had been lost because of acquired uniparental disomy of chromosome 6p. T cells from the donor and the patient after transplantation did not recognize the mutant leukemic cells, whereas the original leukemic cells taken at the time of diagnosis were efficiently recognized and killed. CONCLUSIONS After transplantation of haploidentical hematopoietic stem cells and infusion of donor T cells, leukemic cells can escape from the donor's antileukemic T cells through the loss of the mismatched HLA haplotype. This event leads to relapse.
Collapse
Affiliation(s)
- Luca Vago
- Hospital San Raffaele-Telethon Institute for Gene Therapy, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Li XL, Liu YY, Knight D, Odaka Y, Mathis JM, Shi R, Glass J, Zhang QJ. Effect of B7.1 costimulation on T-cell based immunity against TAP-negative cancer can be facilitated by TAP1 expression. PLoS One 2009; 4:e6385. [PMID: 19629186 PMCID: PMC2711302 DOI: 10.1371/journal.pone.0006385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 06/18/2009] [Indexed: 11/28/2022] Open
Abstract
Tumors deficient in expression of the transporter associated with antigen processing (TAP) usually fail to induce T-cell-mediated immunity and are resistant to T-cell lysis. However, we have found that introduction of the B7.1 gene into TAP-negative (TAP−) or TAP1-transfected (TAP1+) murine lung carcinoma CMT.64 cells can augment the capacity of the cells to induce a protective immune response against wild-type tumor cells. Differences in the strength of the protective immune responses were observed between TAP− and TAP1+ B7.1 expressing CMT.64 cells depending on the doses of γ-irradiated cell immunization. While mice immunized with either high or low dose of B7.1-expressing TAP1+ cells rejected TAP− tumors, only high dose immunization with B7.1-expressing TAP− cells resulted in tumor rejection. The induced protective immunity was T-cell dependent as demonstrated by dramatically reduced antitumor immunity in mice depleted of CD8 or CD4 cells. Augmentation of T-cell mediated immune response against TAP− tumor cells was also observed in a virally infected tumor cell system. When mice were immunized with a high dose of γ-irradiated CMT.64 cells infected with vaccinia viruses carrying B7.1 and/or TAP1 genes, we found that the cells co-expressing B7.1 and TAP1, but not those expressing B7.1 alone, induced protective immunity against CMT.64 cells. In addition, inoculation with live tumor cells transfected with several different gene(s) revealed that only B7.1- and TAP1-coexpressing tumor cells significantly decreased tumorigenicity. These results indicate that B7.1-provoked antitumor immunity against TAP− cancer is facilitated by TAP1-expression, and thus both genes should be considered for cancer therapy in the future.
Collapse
Affiliation(s)
- Xiao-Lin Li
- Department of Cellular Biology and Anatomy, Gene Therapy Program, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Yong-Yu Liu
- College of Pharmacy, Basic Pharmaceutical Sciences, University of Louisiana, Monroe, Louisiana, United States of America
| | - David Knight
- Department of Cellular Biology and Anatomy, Gene Therapy Program, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Yoshinobu Odaka
- Department of Cellular Biology and Anatomy, Gene Therapy Program, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - J. Michael Mathis
- Department of Cellular Biology and Anatomy, Gene Therapy Program, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Runhua Shi
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Jonathan Glass
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Qian-Jin Zhang
- Department of Cellular Biology and Anatomy, Gene Therapy Program, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
149
|
Wang H, Wei H, Zhang R, Hou S, Li B, Qian W, Zhang D, Kou G, Dai J, Guo Y. Genetically targeted T cells eradicate established breast cancer in syngeneic mice. Clin Cancer Res 2009; 15:943-50. [PMID: 19188165 DOI: 10.1158/1078-0432.ccr-08-2381] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The purpose of the present study was to evaluate the capacity and mechanisms of genetically modified erbB2-specific T cells to eradicate erbB2+ tumors in syngeneic mice. EXPERIMENTAL DESIGN Primary mouse T cells were modified to target the breast tumor-associated antigen erbB2 through retroviral-mediated transfer of a chimeric antigen receptor, termed single-chain antibody (scFv)-CD28-zeta. Antitumor efficacy of scFv-CD28-zeta-modified T cells was analyzed in mice bearing D2F2/E2 breast tumors. RESULTS The scFv-CD28-zeta-modified T cells were shown to specifically secrete T cytotoxic-1 cytokines and lyse erbB2+ breast tumor cells following receptor stimulation in vitro. Treatment with scFv-CD28-zeta-modified T cells was able to lead to long-term, tumor-free survival in mice bearing erbB2+ D2F2/E2 breast tumors. Importantly, the surviving mice developed a host memory response to D2F2/E2 tumor cells, and this host response was able to protect against a rechallenge with erbB2+ D2F2/E2 tumor cells and parental erbB2(-) D2F2 tumor cells. In addition, scFv-CD28-zeta T-cell expression of perforin and interferon-gamma were essential for complete antitumor efficacy. CONCLUSIONS Treatment with scFv-CD28-zeta-modified T cells was able to induce a host antitumor immunity in syngeneic mice. Complete tumor elimination by scFv-CD28-zeta-modified T cells required T cell-derived interferon-gamma and perforin, indicating that cytotoxicity and cytokine secretion play a role in the in vivo response.
Collapse
Affiliation(s)
- Hao Wang
- International Joint Cancer Institute and Changhai Hospital Cancer Center, The Second Military Medical University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Seliger B. Different regulation of MHC class I antigen processing components in human tumors. J Immunotoxicol 2009; 5:361-7. [PMID: 19404870 DOI: 10.1080/15476910802482870] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In recent years, progress has been made in understanding how peptides presented by MHC Class I molecules were generated, in particular which proteases are involved in this process and how intracellular pathways influence antigen presentation in professional antigen-presenting cells and various types of tumor cells. This review will give an overview of MHC Class I abnormalities in malignancies and their underlying molecular mechanisms. Dependent on the tumor types structural alterations in particular of the MHC Class I heavy chain, beta(2)-m and the TAP1 subunit have been found at a low frequency, whereas dysregulation of MHC Class I antigen processing components appears to be the major mechanism of MHC Class I down-regulation in tumors of distinct origin. This could occur at the epigenetic, transcriptional and/or post-transcriptional level. The lack or suppression of MHC Class I surface expression due to antigen-processing deficiencies are accompanied by reduced recognition and lysis by antigen-specific cytotoxic T-lymphocytes, which is further often associated with disease progression.
Collapse
Affiliation(s)
- Barbara Seliger
- Martin-Luther-Universitat Halle-Wittenberg, Institute of Medical Immunology, Halle (Saale), Germany.
| |
Collapse
|