101
|
Yang J, Shi X, Hu L, Luo D, Peng J, Xiong S, Kong F, Liu B, Yuan X. InDel marker detection by integration of multiple softwares using machine learning techniques. BMC Bioinformatics 2016; 17:548. [PMID: 27806691 PMCID: PMC6889189 DOI: 10.1186/s12859-016-1312-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/25/2016] [Indexed: 01/04/2023] Open
Abstract
Background In the biological experiments of soybean species, molecular markers are widely used to verify the soybean genome or construct its genetic map. Among a variety of molecular markers, insertions and deletions (InDels) are preferred with the advantages of wide distribution and high density at the whole-genome level. Hence, the problem of detecting InDels based on next-generation sequencing data is of great importance for the design of InDel markers. To tackle it, this paper integrated machine learning techniques with existing software and developed two algorithms for InDel detection, one is the best F-score method (BF-M) and the other is the Support Vector Machine (SVM) method (SVM-M), which is based on the classical SVM model. Results The experimental results show that the performance of BF-M was promising as indicated by the high precision and recall scores, whereas SVM-M yielded the best performance in terms of recall and F-score. Moreover, based on the InDel markers detected by SVM-M from soybeans that were collected from 56 different regions, highly polymorphic loci were selected to construct an InDel marker database for soybean. Conclusions Compared to existing software tools, the two algorithms proposed in this work produced substantially higher precision and recall scores, and remained stable in various types of genomic regions. Moreover, based on SVM-M, we have constructed a database for soybean InDel markers and published it for academic research.
Collapse
Affiliation(s)
- Jianqiu Yang
- School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China
| | - Xinyi Shi
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Lun Hu
- School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China
| | - Daipeng Luo
- School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China
| | - Jing Peng
- School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China
| | - Shengwu Xiong
- School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China
| | - Fanjing Kong
- The Key Lab of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Baohui Liu
- The Key Lab of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xiaohui Yuan
- The Key Lab of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China.
| |
Collapse
|
102
|
Viengkone M, Derocher AE, Richardson ES, Malenfant RM, Miller JM, Obbard ME, Dyck MG, Lunn NJ, Sahanatien V, Davis CS. Assessing polar bear ( Ursus maritimus) population structure in the Hudson Bay region using SNPs. Ecol Evol 2016; 6:8474-8484. [PMID: 28031799 PMCID: PMC5167041 DOI: 10.1002/ece3.2563] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 09/14/2016] [Accepted: 09/20/2016] [Indexed: 12/28/2022] Open
Abstract
Defining subpopulations using genetics has traditionally used data from microsatellite markers to investigate population structure; however, single‐nucleotide polymorphisms (SNPs) have emerged as a tool for detection of fine‐scale structure. In Hudson Bay, Canada, three polar bear (Ursus maritimus) subpopulations (Foxe Basin (FB), Southern Hudson Bay (SH), and Western Hudson Bay (WH)) have been delineated based on mark–recapture studies, radiotelemetry and satellite telemetry, return of marked animals in the subsistence harvest, and population genetics using microsatellites. We used SNPs to detect fine‐scale population structure in polar bears from the Hudson Bay region and compared our results to the current designations using 414 individuals genotyped at 2,603 SNPs. Analyses based on discriminant analysis of principal components (DAPC) and STRUCTURE support the presence of four genetic clusters: (i) Western—including individuals sampled in WH, SH (excluding Akimiski Island in James Bay), and southern FB (south of Southampton Island); (ii) Northern—individuals sampled in northern FB (Baffin Island) and Davis Strait (DS) (Labrador coast); (iii) Southeast—individuals from SH (Akimiski Island in James Bay); and (iv) Northeast—individuals from DS (Baffin Island). Population structure differed from microsatellite studies and current management designations demonstrating the value of using SNPs for fine‐scale population delineation in polar bears.
Collapse
Affiliation(s)
- Michelle Viengkone
- Department of Biological Sciences University of Alberta Edmonton AB Canada
| | | | - Evan Shaun Richardson
- Wildlife Research Division Science and Technology Branch Environment and Climate Change Canada University of Alberta Edmonton AB Canada
| | - René Michael Malenfant
- Department of Biological Sciences University of Alberta Edmonton AB Canada; Department of Biology University of New Brunswick Fredericton NB Canada
| | - Joshua Moses Miller
- Department of Biological Sciences University of Alberta Edmonton AB Canada; Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
| | - Martyn E Obbard
- Wildlife Research and Monitoring Section Ontario Ministry of Natural Resources and Forestry Trent University Peterborough ON Canada
| | - Markus G Dyck
- Department of Environment Government of Nunavut Igloolik NU Canada
| | - Nick J Lunn
- Wildlife Research Division Science and Technology Branch Environment and Climate Change Canada University of Alberta Edmonton AB Canada
| | - Vicki Sahanatien
- Department of Biological Sciences University of Alberta Edmonton AB Canada
| | - Corey S Davis
- Department of Biological Sciences University of Alberta Edmonton AB Canada
| |
Collapse
|
103
|
Ye F, Yu XD, Wang Q, Zhao P. Identification of SNPs in a nonmodel macrofungus ( Lepista nuda, Basidiomycota) through RAD sequencing. SPRINGERPLUS 2016; 5:1793. [PMID: 27795935 PMCID: PMC5063826 DOI: 10.1186/s40064-016-3459-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/04/2016] [Indexed: 11/10/2022]
Abstract
Lepista nuda is a wild edible fungus that is valued for its odor and taste. Recent studies identified intraspecific morphological and genetic differences in L. nuda. Although single-nucleotide polymorphisms (SNPs) are useful for revealing intraspecific differences, the traditional methods used for investigating SNPs are time consuming and expensive, and they only locate a limited number of SNPs. This study used a “restriction-site associated DNA” (RAD) method combined with high throughput sequencing to efficiently identify a large number of SNPs in two samples of L. nuda. A total of 7 and 9 billion bp of raw data were obtained from the two collections. A total of 712 SNPs were found. These SNPs will be useful for the further analysis of the genetic variation within L. nuda. The study also confirms that the RAD method can be used to identify SNPs in a nonmodel macrofungus for which a reference genome is unavailable.
Collapse
Affiliation(s)
- Fei Ye
- College of Jilin Agricultural Science and Technology, Jilin, People's Republic of China
| | - Xiao-Dan Yu
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, 110866 Liaoning People's Republic of China
| | - Qing Wang
- Provincial Key Laboratory of Forest Protection, Liaoning Academy of Forestry, Shenyang, Liaoning People's Republic of China
| | - Peng Zhao
- Key Laboratory of Shandong Province for Edible Mushroom Technology, Institute of Mycological Science and Technology, Ludong University, Yantai, Shandong People's Republic of China
| |
Collapse
|
104
|
Onyango MG, Aitken NC, Jack C, Chuah A, Oguya J, Djikeng A, Kemp S, Bellis GA, Nicholas A, Walker PJ, Duchemin JB. Genotyping of whole genome amplified reduced representation libraries reveals a cryptic population of Culicoides brevitarsis in the Northern Territory, Australia. BMC Genomics 2016; 17:769. [PMID: 27716062 PMCID: PMC5045647 DOI: 10.1186/s12864-016-3124-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/26/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The advent of genotyping by Next Generation Sequencing has enabled rapid discovery of thousands of single nucleotide polymorphism (SNP) markers and high throughput genotyping of large populations at an affordable cost. Genotyping by sequencing (GBS), a reduced representation library sequencing method, allows highly multiplexed sequencing of genomic subsets. This method has limitations for small organisms with low amounts of genomic DNA, such as the bluetongue virus (BTV) vectors, Culicoides midges. RESULTS This study employed the GBS method to isolate SNP markers de novo from whole genome amplified Culicoides brevitarsis genomic DNA. The individuals were collected from regions representing two different Australian patterns of BTV strain distribution: the Northern Territory (NT) and the east coast. We isolated 8145 SNPs using GBS. Phylogenetic analysis conducted using the filtered 3263 SNPs revealed the presence of a distinct C. brevitarsis sub-population in the NT and this was confirmed by analysis of mitochondrial DNA. Two loci showed a very strong signal for selection and were unique to the NT population. Bayesian analysis with STRUCTURE indicated a possible two-population cluster. CONCLUSIONS The results suggest that genotyping vectors with high density markers in combination with biological and environmental data is useful. However, more extensive sampling over a wider spatial and temporal range is needed. The presence of sub-structure in populations and loci under natural selection indicates the need for further investigation of the role of vectors in shaping the two Australian systems of BTV transmission. The described workflow is transferable to genotyping of small, non-model organisms, including arthropod vectors of pathogens of economic and medical importance.
Collapse
Affiliation(s)
- Maria G Onyango
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, 5 Portalington Road, Geelong, 3220, VIC, Australia.,School of Medicine, Deakin University, 75 Pidgons Road, Waurn Ponds, 3216, VIC, Australia
| | - Nicola C Aitken
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Cameron Jack
- The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Aaron Chuah
- The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - James Oguya
- International Livestock Research Institute (ILRI), P.O. Box 30709, 00100, Nairobi, Kenya
| | - Appolinaire Djikeng
- International Livestock Research Institute (ILRI), P.O. Box 30709, 00100, Nairobi, Kenya.,Biosciences eastern and central Africa-ILRI Hub (BecA-ILRI Hub), ILRI, PO Box 30709, 00100, Nairobi, Kenya
| | - Steve Kemp
- International Livestock Research Institute (ILRI), P.O. Box 30709, 00100, Nairobi, Kenya
| | - Glenn A Bellis
- Northern Australia Quarantine Strategy, 1 Pederson Road, Marrara, 0812, NT, Australia.,Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, 0909, NT, Australia
| | - Adrian Nicholas
- NSW Department of Primary Industries, Biosecurity, 4 Marsden Park Road, Calala, 2340, NSW, Australia
| | - Peter J Walker
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, 5 Portalington Road, Geelong, 3220, VIC, Australia
| | - Jean-Bernard Duchemin
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, 5 Portalington Road, Geelong, 3220, VIC, Australia.
| |
Collapse
|
105
|
Hindrikson M, Remm J, Pilot M, Godinho R, Stronen AV, Baltrūnaité L, Czarnomska SD, Leonard JA, Randi E, Nowak C, Åkesson M, López-Bao JV, Álvares F, Llaneza L, Echegaray J, Vilà C, Ozolins J, Rungis D, Aspi J, Paule L, Skrbinšek T, Saarma U. Wolf population genetics in Europe: a systematic review, meta-analysis and suggestions for conservation and management. Biol Rev Camb Philos Soc 2016; 92:1601-1629. [PMID: 27682639 DOI: 10.1111/brv.12298] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 08/01/2016] [Accepted: 08/26/2016] [Indexed: 01/04/2023]
Abstract
The grey wolf (Canis lupus) is an iconic large carnivore that has increasingly been recognized as an apex predator with intrinsic value and a keystone species. However, wolves have also long represented a primary source of human-carnivore conflict, which has led to long-term persecution of wolves, resulting in a significant decrease in their numbers, genetic diversity and gene flow between populations. For more effective protection and management of wolf populations in Europe, robust scientific evidence is crucial. This review serves as an analytical summary of the main findings from wolf population genetic studies in Europe, covering major studies from the 'pre-genomic era' and the first insights of the 'genomics era'. We analyse, summarize and discuss findings derived from analyses of three compartments of the mammalian genome with different inheritance modes: maternal (mitochondrial DNA), paternal (Y chromosome) and biparental [autosomal microsatellites and single nucleotide polymorphisms (SNPs)]. To describe large-scale trends and patterns of genetic variation in European wolf populations, we conducted a meta-analysis based on the results of previous microsatellite studies and also included new data, covering all 19 European countries for which wolf genetic information is available: Norway, Sweden, Finland, Estonia, Latvia, Lithuania, Poland, Czech Republic, Slovakia, Germany, Belarus, Russia, Italy, Croatia, Bulgaria, Bosnia and Herzegovina, Greece, Spain and Portugal. We compared different indices of genetic diversity in wolf populations and found a significant spatial trend in heterozygosity across Europe from south-west (lowest genetic diversity) to north-east (highest). The range of spatial autocorrelation calculated on the basis of three characteristics of genetic diversity was 650-850 km, suggesting that the genetic diversity of a given wolf population can be influenced by populations up to 850 km away. As an important outcome of this synthesis, we discuss the most pressing issues threatening wolf populations in Europe, highlight important gaps in current knowledge, suggest solutions to overcome these limitations, and provide recommendations for science-based wolf conservation and management at regional and Europe-wide scales.
Collapse
Affiliation(s)
- Maris Hindrikson
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| | - Jaanus Remm
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| | - Malgorzata Pilot
- School of Life Sciences, University of Lincoln, Green Lane, LN6 7DL, Lincoln, UK
| | - Raquel Godinho
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Astrid Vik Stronen
- Department of Chemistry and Bioscience, Section of Biology and Environmental Science, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg Øst, Denmark
| | - Laima Baltrūnaité
- Laboratory of Mammalian Biology, Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| | - Sylwia D Czarnomska
- Mammal Research Institute Polish Academy of Sciences, Waszkiewicza 1, 17-230, Białowieża, Poland
| | - Jennifer A Leonard
- Department of Integrative Ecology, Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Avd. Americo Vespucio s/n, 41092, Seville, Spain
| | - Ettore Randi
- Department of Chemistry and Bioscience, Section of Biology and Environmental Science, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg Øst, Denmark
- Laboratorio di Genetica, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), 40064, Ozzano dell'Emilia, Bologna, Italy
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystrasse 12, 63571, Gelnhausen, Germany
| | - Mikael Åkesson
- Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Sciences, SE-730 91, Riddarhyttan, Sweden
| | | | - Francisco Álvares
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| | - Luis Llaneza
- ARENA Asesores en Recursos Naturales S.L. c/Perpetuo Socorro, n° 12 Entlo 2B, 27003, Lugo, Spain
| | - Jorge Echegaray
- Department of Integrative Ecology, Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Avd. Americo Vespucio s/n, 41092, Seville, Spain
| | - Carles Vilà
- Department of Integrative Ecology, Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Avd. Americo Vespucio s/n, 41092, Seville, Spain
| | - Janis Ozolins
- Latvian State Forest Research Institute "Silava", Rigas iela 111, LV-2169, Salaspils, Latvia
| | - Dainis Rungis
- Latvian State Forest Research Institute "Silava", Rigas iela 111, LV-2169, Salaspils, Latvia
| | - Jouni Aspi
- Department of Genetics and Physiology, University of Oulu, 90014, Oulu, Finland
| | - Ladislav Paule
- Department of Phytology, Faculty of Forestry, Technical University, T.G. Masaryk str. 24, SK-96053, Zvolen, Slovakia
| | - Tomaž Skrbinšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000, Ljubljana, Slovenia
| | - Urmas Saarma
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| |
Collapse
|
106
|
Kaiser SA, Taylor SA, Chen N, Sillett TS, Bondra ER, Webster MS. A comparative assessment of
SNP
and microsatellite markers for assigning parentage in a socially monogamous bird. Mol Ecol Resour 2016; 17:183-193. [DOI: 10.1111/1755-0998.12589] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/14/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Sara A. Kaiser
- Macaulay Library Cornell Lab of Ornithology 159 Sapsucker Woods Rd Ithaca NY 14850 USA
- Migratory Bird Center Center for Conservation Genomics Smithsonian Conservation Biology Institute National Zoological Park MRC 5503 Washington DC 20013 USA
| | - Scott A. Taylor
- Fuller Evolutionary Biology Program Cornell Lab of Ornithology 159 Sapsucker Woods Rd Ithaca NY 14850 USA
- Department of Ecology and Evolutionary Biology University of Colorado at Boulder 1900 Pleasant Street 334 UCB Boulder CO 80309 USA
| | - Nancy Chen
- Fuller Evolutionary Biology Program Cornell Lab of Ornithology 159 Sapsucker Woods Rd Ithaca NY 14850 USA
- Department of Ecology and Evolutionary Biology Cornell University E145 Corson Hall 215 Tower Road Ithaca NY 14853 USA
| | - T. Scott Sillett
- Migratory Bird Center Center for Conservation Genomics Smithsonian Conservation Biology Institute National Zoological Park MRC 5503 Washington DC 20013 USA
| | - Eliana R. Bondra
- Department of Ecology and Evolutionary Biology Cornell University E145 Corson Hall 215 Tower Road Ithaca NY 14853 USA
| | - Michael S. Webster
- Macaulay Library Cornell Lab of Ornithology 159 Sapsucker Woods Rd Ithaca NY 14850 USA
| |
Collapse
|
107
|
Cañas-Álvarez JJ, González-Rodríguez A, Munilla S, Varona L, Díaz C, Baro JA, Altarriba J, Molina A, Piedrafita J. Genetic diversity and divergence among Spanish beef cattle breeds assessed by a bovine high-density SNP chip. J Anim Sci 2016; 93:5164-74. [PMID: 26641036 DOI: 10.2527/jas.2015-9271] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The availability of SNP chips for massive genotyping has proven to be useful to genetically characterize populations of domestic cattle and to assess their degree of divergence. In this study, the Illumina BovineHD BeadChip genotyping array was used to describe the genetic variability and divergence among 7 important autochthonous Spanish beef cattle breeds. The within-breed genetic diversity, measured as the marker expected heterozygosity, was around 0.30, similar to other European cattle breeds. The analysis of molecular variance revealed that 94.22% of the total variance was explained by differences within individuals whereas only 4.46% was the result of differences among populations. The degree of genetic differentiation was small to moderate as the pairwise fixation index of genetic differentiation among breeds (F) estimates ranged from 0.026 to 0.068 and the Nei's D genetic distances ranged from 0.009 to 0.016. A neighbor joining (N-J) phylogenetic tree showed 2 main groups of breeds: Pirenaica, Bruna dels Pirineus, and Rubia Gallega on the one hand and Avileña-Negra Ibérica, Morucha, and Retinta on the other. In turn, Asturiana de los Valles occupied an independent and intermediate position. A principal component analysis (PCA) applied to a distance matrix based on marker identity by state, in which the first 2 axes explained up to 17.3% of the variance, showed a grouping of animals that was similar to the one observed in the N-J tree. Finally, a cluster analysis for ancestries allowed assigning all the individuals to the breed they belong to, although it revealed some degree of admixture among breeds. Our results indicate large within-breed diversity and a low degree of divergence among the autochthonous Spanish beef cattle breeds studied. Both N-J and PCA groupings fit quite well to the ancestral trunks from which the Spanish beef cattle breeds were supposed to derive.
Collapse
|
108
|
An assessment of spatio-temporal genetic variation in the South African abalone (Haliotis midae), using SNPs: implications for conservation management. CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0879-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
109
|
Thomé MTC, Carstens BC. Phylogeographic model selection leads to insight into the evolutionary history of four-eyed frogs. Proc Natl Acad Sci U S A 2016; 113:8010-7. [PMID: 27432969 PMCID: PMC4961127 DOI: 10.1073/pnas.1601064113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Phylogeographic research investigates biodiversity at the interface between populations and species, in a temporal and geographic context. Phylogeography has benefited from analytical approaches that allow empiricists to estimate parameters of interest from the genetic data (e.g., θ = 4Neμ, population divergence, gene flow), and the widespread availability of genomic data allow such parameters to be estimated with greater precision. However, the actual inferences made by phylogeographers remain dependent on qualitative interpretations derived from these parameters' values and as such may be subject to overinterpretation and confirmation bias. Here we argue in favor of using an objective approach to phylogeographic inference that proceeds by calculating the probability of multiple demographic models given the data and the subsequent ranking of these models using information theory. We illustrate this approach by investigating the diversification of two sister species of four-eyed frogs of northeastern Brazil using single nucleotide polymorphisms obtained via restriction-associated digest sequencing. We estimate the composite likelihood of the observed data given nine demographic models and then rank these models using Akaike information criterion. We demonstrate that estimating parameters under a model that is a poor fit to the data is likely to produce values that lead to spurious phylogeographic inferences. Our results strongly imply that identifying which parameters to estimate from a given system is a key step in the process of phylogeographic inference and is at least as important as being able to generate precise estimates of these parameters. They also illustrate that the incorporation of model uncertainty should be a component of phylogeographic hypothesis tests.
Collapse
Affiliation(s)
- Maria Tereza C Thomé
- Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista, Campus Rio Claro, 13506900 Rio Claro, SP, Brazil
| | - Bryan C Carstens
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
110
|
Roffler GH, Amish SJ, Smith S, Cosart T, Kardos M, Schwartz MK, Luikart G. SNP discovery in candidate adaptive genes using exon capture in a free-ranging alpine ungulate. Mol Ecol Resour 2016; 16:1147-64. [PMID: 27327375 DOI: 10.1111/1755-0998.12560] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 06/04/2016] [Accepted: 06/07/2016] [Indexed: 11/30/2022]
Abstract
Identification of genes underlying genomic signatures of natural selection is key to understanding adaptation to local conditions. We used targeted resequencing to identify SNP markers in 5321 candidate adaptive genes associated with known immunological, metabolic and growth functions in ovids and other ungulates. We selectively targeted 8161 exons in protein-coding and nearby 5' and 3' untranslated regions of chosen candidate genes. Targeted sequences were taken from bighorn sheep (Ovis canadensis) exon capture data and directly from the domestic sheep genome (Ovis aries v. 3; oviAri3). The bighorn sheep sequences used in the Dall's sheep (Ovis dalli dalli) exon capture aligned to 2350 genes on the oviAri3 genome with an average of 2 exons each. We developed a microfluidic qPCR-based SNP chip to genotype 476 Dall's sheep from locations across their range and test for patterns of selection. Using multiple corroborating approaches (lositan and bayescan), we detected 28 SNP loci potentially under selection. We additionally identified candidate loci significantly associated with latitude, longitude, precipitation and temperature, suggesting local environmental adaptation. The three methods demonstrated consistent support for natural selection on nine genes with immune and disease-regulating functions (e.g. Ovar-DRA, APC, BATF2, MAGEB18), cell regulation signalling pathways (e.g. KRIT1, PI3K, ORRC3), and respiratory health (CYSLTR1). Characterizing adaptive allele distributions from novel genetic techniques will facilitate investigation of the influence of environmental variation on local adaptation of a northern alpine ungulate throughout its range. This research demonstrated the utility of exon capture for gene-targeted SNP discovery and subsequent SNP chip genotyping using low-quality samples in a nonmodel species.
Collapse
Affiliation(s)
- Gretchen H Roffler
- Alaska Science Center, U.S. Geological Survey, 4210 University Drive, Anchorage, AK, 99508, USA.,Wildlife Biology Program, Department of Ecosystem Sciences and Conservation, College of Forestry and Conservation, University of Montana, Missoula, MT, 59812, USA
| | - Stephen J Amish
- Fish and Wildlife Genomics Group, Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Seth Smith
- Fish and Wildlife Genomics Group, Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Ted Cosart
- Fish and Wildlife Genomics Group, Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Marty Kardos
- Fish and Wildlife Genomics Group, Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA.,Evolutionary Biology Centre, Uppsala University, SE-75236, Uppsala, Sweden
| | - Michael K Schwartz
- Evolutionary Biology Centre, Uppsala University, SE-75236, Uppsala, Sweden.,US Forest Service Rocky Mountain Research Station, National Genomics Center for Wildlife and Fish Conservation, 800 E. Beckwith Ave., Missoula, MT, 59801, USA
| | - Gordon Luikart
- Fish and Wildlife Genomics Group, Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA.,Flathead Lake Biological Station, University of Montana, Polson, MT, 59860, USA
| |
Collapse
|
111
|
Wang L, Wan ZY, Lim HS, Yue GH. Genetic variability, local selection and demographic history: genomic evidence of evolving towards allopatric speciation in Asian seabass. Mol Ecol 2016; 25:3605-21. [PMID: 27262162 DOI: 10.1111/mec.13714] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 05/09/2016] [Accepted: 05/31/2016] [Indexed: 12/25/2022]
Abstract
Genomewide analysis of genetic divergence is critically important in understanding the genetic processes of allopatric speciation. We sequenced RAD tags of 131 Asian seabass individuals of six populations from South-East Asia and Australia/Papua New Guinea. Using 32 433 SNPs, we examined the genetic diversity and patterns of population differentiation across all the populations. We found significant evidence of genetic heterogeneity between South-East Asian and Australian/Papua New Guinean populations. The Australian/Papua New Guinean populations showed a rather lower level of genetic diversity. FST and principal components analysis revealed striking divergence between South-East Asian and Australian/Papua New Guinean populations. Interestingly, no evidence of contemporary gene flow was observed. The demographic history was further tested based on the folded joint site frequency spectrum. The scenario of ancient migration with historical population size changes was suggested to be the best fit model to explain the genetic divergence of Asian seabass between South-East Asia and Australia/Papua New Guinea. This scenario also revealed that Australian/Papua New Guinean populations were founded by ancestors from South-East Asia during mid-Pleistocene and were completely isolated from the ancestral population after the last glacial retreat. We also detected footprints of local selection, which might be related to differential ecological adaptation. The ancient gene flow was examined and deemed likely insufficient to counteract the genetic differentiation caused by genetic drift. The observed genomic pattern of divergence conflicted with the 'genomic islands' scenario. Altogether, Asian seabass have likely been evolving towards allopatric speciation since the split from the ancestral population during mid-Pleistocene.
Collapse
Affiliation(s)
- Le Wang
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| | - Zi Yi Wan
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore
| | - Huan Sein Lim
- Marine Aquaculture Center, Agri-Food & Veterinary Authority of Singapore, 5 Maxwell Road, Singapore, 069110, Singapore
| | - Gen Hua Yue
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, 117604, Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| |
Collapse
|
112
|
Gagnon MC, Kawchuk L, Tremblay DM, Carisse O, Danies G, Fry WE, Lévesque CA, Bilodeau GJ. Identification of the Dominant Genotypes of Phytophthora infestans in Canada Using Real-Time PCR with ASO-PCR Assays. PLANT DISEASE 2016; 100:1482-1491. [PMID: 30686184 DOI: 10.1094/pdis-07-15-0763-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phytophthora infestans, a pathogenic oomycete that is the causal agent of potato and tomato late blight, has devastating effects worldwide. The genetic composition of P. infestans populations in Canada has changed considerably over the last few years, with the appearance of several new genotypes showing different mating types and sensitivity to the fungicide metalaxyl. Genetic markers allowing for a rapid assessment of genotypes from small amounts of biological material would be beneficial for the early detection and control of this pathogen throughout Canada. Mining of the P. infestans genome revealed several regions containing single-nucleotide polymorphisms (SNP) within both nuclear genes and flanking sequences of microsatellite loci. Allele-specific oligonucleotide polymerase chain reaction (ASO-PCR) assays were developed from 14 of the 50 SNP found by sequencing. Nine optimized ASO-PCR assays were validated using a blind test comprising P. infestans and other Phytophthora spp. The assays revealed diagnostic profiles unique to each of the five dominant genotypes present in Canada. The markers developed in this study can be used with environmental samples such as infected leaves, and will contribute to the genomic toolbox available to assess the genetic diversity of P. infestans at the intraspecific level. For late blight management, early warning about P. infestans genotypes present in potato and tomato fields will help growers select the most appropriate fungicides and application strategies.
Collapse
Affiliation(s)
| | | | | | | | - Giovanna Danies
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY
| | - William E Fry
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY
| | | | | |
Collapse
|
113
|
Establishment and application of a real-time loop-mediated isothermal amplification system for the detection of CYP2C19 polymorphisms. Sci Rep 2016; 6:26533. [PMID: 27246657 PMCID: PMC4887897 DOI: 10.1038/srep26533] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/03/2016] [Indexed: 11/15/2022] Open
Abstract
Single-nucleotide polymorphisms (SNPs) represent the most widespread type of genetic variation (approximately 90%) in the human genome, and the demand to overcome such variation has received more attention now than ever before. The capacity to rapidly assess SNPs that correlate with disease predisposition, drug efficacy and drug toxicity is a key step for the development of personalized medicine. In this work, a rapid one-step SNP detection method, real-time loop-mediated isothermal amplification (RT-LAMP), was first applied for CYP2C19 polymorphisms testing. The optimized method was established with specifically designed primers for target amplification by real-time detection in approximately 30 min under isothermal conditions. RT-LAMP amplified few copies of template to produce significant amounts of product and quantitatively detected human DNA with compatible specificity and sensitivity. The success in the establishment of this RT-LAMP protocol for CYP2C19 polymorphism testing is significant for the extension of this technique for the detection of other SNPs, which will further facilitate the development of personalized medicine.
Collapse
|
114
|
Spitzer R, Norman AJ, Schneider M, Spong G. Estimating population size using single-nucleotide polymorphism-based pedigree data. Ecol Evol 2016; 6:3174-84. [PMID: 27096081 PMCID: PMC4829048 DOI: 10.1002/ece3.2076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 01/01/2023] Open
Abstract
Reliable population estimates are an important aspect of sustainable wildlife management and conservation but can be difficult to obtain for rare and elusive species. Here, we test a new census method based on pedigree reconstruction recently developed by Creel and Rosenblatt (2013). Using a panel of 96 single-nucleotide polymorphisms (SNPs), we genotyped fecal samples from two Swedish brown bear populations for pedigree reconstruction. Based on 433 genotypes from central Sweden (CS) and 265 from northern Sweden (NS), the population estimates (N = 630 for CS, N = 408 for NS) fell within the 95% CI of the official estimates. The precision and accuracy improved with increasing sampling intensity. Like genetic capture-mark-recapture methods, this method can be applied to data from a single sampling session. Pedigree reconstruction combined with noninvasive genetic sampling may thus augment population estimates, particularly for rare and elusive species for which sampling may be challenging.
Collapse
Affiliation(s)
- Robert Spitzer
- Wildlife Ecology GroupDepartment of Wildlife, Fish and Environmental StudiesSwedish University of Agricultural SciencesSE‐901 83UmeåSweden
| | - Anita J. Norman
- Molecular Ecology GroupDepartment of Wildlife, Fish and Environmental StudiesSwedish University of Agricultural SciencesSE‐901 83UmeåSweden
| | | | - Göran Spong
- Molecular Ecology GroupDepartment of Wildlife, Fish and Environmental StudiesSwedish University of Agricultural SciencesSE‐901 83UmeåSweden
- Forestry and Environmental ResourcesCollege of Natural ResourcesNorth Carolina State UniversityRaleigh27695North Carolina
| |
Collapse
|
115
|
Xu Q, Huang SQ, Ma F, Tang B, Zhang CY. Controllable Mismatched Ligation for Bioluminescence Screening of Known and Unknown Mutations. Anal Chem 2016; 88:2431-9. [DOI: 10.1021/acs.analchem.5b04540] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Qinfeng Xu
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Si-qiang Huang
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Fei Ma
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan, Shandong 250014, China
| | - Bo Tang
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan, Shandong 250014, China
| | - Chun-yang Zhang
- College
of Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan, Shandong 250014, China
- Single-Molecule
Detection and Imaging Laboratory, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| |
Collapse
|
116
|
Humble E, Martinez-Barrio A, Forcada J, Trathan PN, Thorne MAS, Hoffmann M, Wolf JBW, Hoffman JI. A draft fur seal genome provides insights into factors affecting SNP validation and how to mitigate them. Mol Ecol Resour 2016; 16:909-21. [DOI: 10.1111/1755-0998.12502] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 12/01/2015] [Accepted: 12/15/2015] [Indexed: 01/19/2023]
Affiliation(s)
- E. Humble
- Department of Animal Behaviour; University of Bielefeld; Postfach 100131 33501 Bielefeld Germany
- British Antarctic Survey; High Cross, Madingley Road Cambridge CB3 OET UK
| | - A. Martinez-Barrio
- Science of Life Laboratories and Department of Cell and Molecular Biology; Uppsala University; Husargatan 3 75124 Uppsala Sweden
| | - J. Forcada
- British Antarctic Survey; High Cross, Madingley Road Cambridge CB3 OET UK
| | - P. N. Trathan
- British Antarctic Survey; High Cross, Madingley Road Cambridge CB3 OET UK
| | - M. A. S. Thorne
- British Antarctic Survey; High Cross, Madingley Road Cambridge CB3 OET UK
| | - M. Hoffmann
- Max Planck Institute for Developmental Biology; Spemannstrasse 35 72076 Tübingen Germany
| | - J. B. W. Wolf
- Science of Life Laboratories and Department of Evolutionary Biology; Evolutionary Biology Centre; Uppsala University; Norbyvägen 18D 75236 Uppsala Sweden
| | - J. I. Hoffman
- Department of Animal Behaviour; University of Bielefeld; Postfach 100131 33501 Bielefeld Germany
| |
Collapse
|
117
|
Murat C, Martin F. Truffle Genomics: Investigating an Early Diverging Lineage of Pezizomycotina. SOIL BIOLOGY 2016. [DOI: 10.1007/978-3-319-31436-5_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
118
|
Vera M, Bello X, Álvarez-Dios JA, Pardo BG, Sánchez L, Carlsson J, Carlsson JE, Bartolomé C, Maside X, Martinez P. Screening of repetitive motifs inside the genome of the flat oyster (Ostrea edulis): Transposable elements and short tandem repeats. Mar Genomics 2015; 24 Pt 3:335-41. [DOI: 10.1016/j.margen.2015.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/03/2015] [Accepted: 08/25/2015] [Indexed: 10/23/2022]
|
119
|
Ferchaud AL, Hansen MM. The impact of selection, gene flow and demographic history on heterogeneous genomic divergence: three-spine sticklebacks in divergent environments. Mol Ecol 2015; 25:238-59. [DOI: 10.1111/mec.13399] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Anne-Laure Ferchaud
- Department of Bioscience; Aarhus University; Ny Munkegade 114-116 DK-8000 Aarhus C Denmark
| | - Michael M. Hansen
- Department of Bioscience; Aarhus University; Ny Munkegade 114-116 DK-8000 Aarhus C Denmark
| |
Collapse
|
120
|
Edwards SV, Shultz AJ, Campbell-Staton SC. Next-generation sequencing and the expanding domain of phylogeography. FOLIA ZOOLOGICA 2015. [DOI: 10.25225/fozo.v64.i3.a2.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Scott V. Edwards
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, U.S.A.
| | - Allison J. Shultz
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, U.S.A.
| | - Shane C. Campbell-Staton
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, U.S.A.
| |
Collapse
|
121
|
Zhang BD, Xue DX, Wang J, Li YL, Liu BJ, Liu JX. Development and preliminary evaluation of a genomewide single nucleotide polymorphisms resource generated by RAD-seq for the small yellow croaker (Larimichthys polyactis). Mol Ecol Resour 2015; 16:755-68. [PMID: 26439680 DOI: 10.1111/1755-0998.12476] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 01/30/2023]
Abstract
Recent advances in high-throughput sequencing technologies have offered the possibility to generate genomewide sequence data to delineate previously unidentified genetic structure, obtain more accurate estimates of demographic parameters and to evaluate potential adaptive divergence. Here, we identified 27 556 single nucleotide polymorphisms for the small yellow croaker (Larimichthys polyactis) using restriction-site-associated DNA (RAD) sequencing of 24 individuals from two populations. Significant sources of genetic variation were identified, with an average nucleotide diversity (π) of 0.00105 ± 0.000425 across individuals, and long-term effective population size was thus estimated to range between 26 172 and 261 716. According to the results, no differentiation between the two populations was detected based on the SNP data set of top quality score per contig or neutral loci. However, the two analysed populations were highly differentiated based on SNP data set of both top FST value per contig and the outlier SNPs. Moreover, local adaptation was highlighted by an FST -based outlier tests implemented in LOSITAN and a total of 538 potentially locally selected SNPs were identified. blast2go annotation of contigs containing the outlier SNPs yielded hits for 37 (66%) of 56 significant blastx matches. Candidate genes for local adaptation constituted a wide array of biological functions, including cellular response to oxidative stress, actin filament binding, ion transmembrane transport and synapse assembly. The generated SNP resources in this study provided a valuable tool for future population genetics and genomics studies of L. polyactis.
Collapse
Affiliation(s)
- Bai-Dong Zhang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dong-Xiu Xue
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Juan Wang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yu-Long Li
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing-Jian Liu
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Xian Liu
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
122
|
Blackmore T, Thomas I, McMahon R, Powell W, Hegarty M. Genetic-geographic correlation revealed across a broad European ecotypic sample of perennial ryegrass (Lolium perenne) using array-based SNP genotyping. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1917-1932. [PMID: 26093611 PMCID: PMC4572065 DOI: 10.1007/s00122-015-2556-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 06/05/2015] [Indexed: 05/29/2023]
Abstract
Publically available SNP array increases the marker density for genotyping of forage crop, Lolium perenne. Applied to 90 European ecotypes composed of 716 individuals identifies a significant genetic-geographic correlation. Grassland ecosystems are ubiquitous across temperate and tropical regions, totalling 37% of the terrestrial land cover of the planet, and thus represent a global resource for understanding local adaptations to environment. However, genomic resources for grass species (outside cereals) are relatively poor. The advent of next-generation DNA sequencing and high-density SNP genotyping platforms enables the development of dense marker assays for population genetics analyses and genome-wide association studies. A high-density SNP marker resource (Illumina Infinium assay) for perennial ryegrass (Lolium perenne) was created and validated in a broad ecotype collection of 716 individuals sampled from 90 sites across Europe. Genetic diversity within and between populations was assessed. A strong correlation of geographic origin to genetic structure was found using principal component analysis, with significant correlation to longitude and latitude (P < 0.001). The potential of this array as a resource for studies of germplasm diversity and identifying traits underpinning adaptive variation is highlighted.
Collapse
Affiliation(s)
- T Blackmore
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, SY23 3EE, Wales, UK.
| | - I Thomas
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, SY23 3EE, Wales, UK
| | - R McMahon
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, SY23 3EE, Wales, UK
| | - W Powell
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, SY23 3EE, Wales, UK
| | - M Hegarty
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, SY23 3EE, Wales, UK.
| |
Collapse
|
123
|
DaCosta JM, Sorenson MD. ddRAD-seq phylogenetics based on nucleotide, indel, and presence-absence polymorphisms: Analyses of two avian genera with contrasting histories. Mol Phylogenet Evol 2015; 94:122-35. [PMID: 26279345 DOI: 10.1016/j.ympev.2015.07.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 07/22/2015] [Accepted: 07/29/2015] [Indexed: 11/16/2022]
Abstract
Genotype-by-sequencing (GBS) methods have revolutionized the field of molecular ecology, but their application in molecular phylogenetics remains somewhat limited. In addition, most phylogenetic studies based on large GBS data sets have relied on analyses of concatenated data rather than species tree methods that explicitly account for genealogical stochasticity among loci. We explored the utility of "double-digest" restriction site-associated DNA sequencing (ddRAD-seq) for phylogenetic analyses of the Lagonosticta firefinches (family Estrildidae) and the Vidua brood parasitic finches (family Viduidae). As expected, the number of homologous loci shared among samples was negatively correlated with genetic distance due to the accumulation of restriction site polymorphisms. Nonetheless, for each genus, we obtained data sets of ∼3000 loci shared in common among all samples, including a more distantly related outgroup taxon. For all samples combined, we obtained >1000 homologous loci despite ∼20my divergence between estrildid and parasitic finches. In addition to nucleotide polymorphisms, the ddRAD-seq data yielded large sets of indel and locus presence-absence polymorphisms, all of which had higher consistency indices than mtDNA sequence data in the context of concatenated parsimony analyses. Species tree methods, using individual gene trees or single nucleotide polymorphisms as input, generated results broadly consistent with analyses of concatenated data, particularly for Lagonosticta, which appears to have a well resolved, bifurcating history. Results for Vidua were also generally consistent across methods and data sets, although nodal support and results from different species tree methods were more variable. Lower gene tree congruence in Vidua is likely the result of its unique evolutionary history, which includes rapid speciation by host shift and occasional hybridization and introgression due to incomplete reproductive isolation. We conclude that ddRAD-seq is a cost-effective method for generating robust phylogenetic data sets, particularly for analyses of closely related species and genera.
Collapse
|
124
|
Liu W, Xiao Z, Bao X, Yang X, Fang J, Xiang X. Identifying Litchi (Litchi chinensis Sonn.) Cultivars and Their Genetic Relationships Using Single Nucleotide Polymorphism (SNP) Markers. PLoS One 2015; 10:e0135390. [PMID: 26261993 PMCID: PMC4532366 DOI: 10.1371/journal.pone.0135390] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/21/2015] [Indexed: 11/19/2022] Open
Abstract
Litchi is an important fruit tree in tropical and subtropical areas of the world. However, there is widespread confusion regarding litchi cultivar nomenclature and detailed information of genetic relationships among litchi germplasm is unclear. In the present study, the potential of single nucleotide polymorphism (SNP) for the identification of 96 representative litchi accessions and their genetic relationships in China was evaluated using 155 SNPs that were evenly spaced across litchi genome. Ninety SNPs with minor allele frequencies above 0.05 and a good genotyping success rate were used for further analysis. A relatively high level of genetic variation was observed among litchi accessions, as quantified by the expected heterozygosity (He = 0.305). The SNP based multilocus matching identified two synonymous groups, 'Heiye' and 'Wuye', and 'Chengtuo' and 'Baitangli 1'. A subset of 14 SNPs was sufficient to distinguish all the non-redundant litchi genotypes, and these SNPs were proven to be highly stable by repeated analyses of a selected group of cultivars. Unweighted pair-group method of arithmetic averages (UPGMA) cluster analysis divided the litchi accessions analyzed into four main groups, which corresponded to the traits of extremely early-maturing, early-maturing, middle-maturing, and late-maturing, indicating that the fruit maturation period should be considered as the primary criterion for litchi taxonomy. Two subpopulations were detected among litchi accessions by STRUCTURE analysis, and accessions with extremely early- and late-maturing traits showed membership coefficients above 0.99 for Cluster 1 and Cluster 2, respectively. Accessions with early- and middle-maturing traits were identified as admixture forms with varying levels of membership shared between the two clusters, indicating their hybrid origin during litchi domestication. The results of this study will benefit litchi germplasm conservation programs and facilitate maximum genetic gains in litchi breeding programs.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Zhidan Xiao
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
- College of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiuli Bao
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyan Yang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Jing Fang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Xu Xiang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| |
Collapse
|
125
|
Iacolina L, Scandura M, Goedbloed DJ, Alexandri P, Crooijmans RPMA, Larson G, Archibald A, Apollonio M, Schook LB, Groenen MAM, Megens HJ. Genomic diversity and differentiation of a managed island wild boar population. Heredity (Edinb) 2015; 116:60-7. [PMID: 26243137 PMCID: PMC4675874 DOI: 10.1038/hdy.2015.70] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 03/19/2015] [Accepted: 05/05/2015] [Indexed: 12/24/2022] Open
Abstract
The evolution of island populations in natural systems is driven by local adaptation and genetic drift. However, evolutionary pathways may be altered by humans in several ways. The wild boar (WB) (Sus scrofa) is an iconic game species occurring in several islands, where it has been strongly managed since prehistoric times. We examined genomic diversity at 49 803 single-nucleotide polymorphisms in 99 Sardinian WBs and compared them with 196 wild specimens from mainland Europe and 105 domestic pigs (DP; 11 breeds). High levels of genetic variation were observed in Sardinia (80.9% of the total number of polymorphisms), which can be only in part associated to recent genetic introgression. Both Principal Component Analysis and Bayesian clustering approach revealed that the Sardinian WB population is highly differentiated from the other European populations (FST=0.126–0.138), and from DP (FST=0.169). Such evidences were mostly unaffected by an uneven sample size, although clustering results in reference populations changed when the number of individuals was standardized. Runs of homozygosity (ROHs) pattern and distribution in Sardinian WB are consistent with a past expansion following a bottleneck (small ROHs) and recent population substructuring (highly homozygous individuals). The observed effect of a non-random selection of Sardinian individuals on diversity, FST and ROH estimates, stressed the importance of sampling design in the study of structured or introgressed populations. Our results support the heterogeneity and distinctiveness of the Sardinian population and prompt further investigations on its origins and conservation status.
Collapse
Affiliation(s)
- L Iacolina
- Department of Science for Nature and Environmental Resources, University of Sassari, Sassari, Italy.,Department of Chemistry and Bioscience, Faculty of Engineering and Science, Section of Biology and Environmental Science, Aalborg East, Denmark
| | - M Scandura
- Department of Science for Nature and Environmental Resources, University of Sassari, Sassari, Italy
| | - D J Goedbloed
- Braunschweig, Zoological Institute, Braunschweig, Germany
| | - P Alexandri
- Wageningen University, Animal Breeding and Genomics Centre, Wageningen, the Netherlands.,Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - R P M A Crooijmans
- Wageningen University, Animal Breeding and Genomics Centre, Wageningen, the Netherlands
| | - G Larson
- Durham Evolution and Ancient DNA, Durham University, Department of Archaeology, Durham, UK
| | - A Archibald
- The Roslin Institute, R(D)SVS, University of Edinburgh, Division of Genetics and Genomics, Midlothian, UK
| | - M Apollonio
- Department of Science for Nature and Environmental Resources, University of Sassari, Sassari, Italy
| | - L B Schook
- University of Illinois, Laboratory of Comparative Genomics, Urbana, IL, USA
| | - M A M Groenen
- Wageningen University, Animal Breeding and Genomics Centre, Wageningen, the Netherlands
| | - H-J Megens
- Wageningen University, Animal Breeding and Genomics Centre, Wageningen, the Netherlands
| |
Collapse
|
126
|
Leaché AD, Banbury BL, Felsenstein J, de Oca ANM, Stamatakis A. Short Tree, Long Tree, Right Tree, Wrong Tree: New Acquisition Bias Corrections for Inferring SNP Phylogenies. Syst Biol 2015; 64:1032-47. [PMID: 26227865 PMCID: PMC4604835 DOI: 10.1093/sysbio/syv053] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 07/24/2015] [Indexed: 01/01/2023] Open
Abstract
Single nucleotide polymorphisms (SNPs) are useful markers for phylogenetic studies owing in part to their ubiquity throughout the genome and ease of collection. Restriction site associated DNA sequencing (RADseq) methods are becoming increasingly popular for SNP data collection, but an assessment of the best practises for using these data in phylogenetics is lacking. We use computer simulations, and new double digest RADseq (ddRADseq) data for the lizard family Phrynosomatidae, to investigate the accuracy of RAD loci for phylogenetic inference. We compare the two primary ways RAD loci are used during phylogenetic analysis, including the analysis of full sequences (i.e., SNPs together with invariant sites), or the analysis of SNPs on their own after excluding invariant sites. We find that using full sequences rather than just SNPs is preferable from the perspectives of branch length and topological accuracy, but not of computational time. We introduce two new acquisition bias corrections for dealing with alignments composed exclusively of SNPs, a conditional likelihood method and a reconstituted DNA approach. The conditional likelihood method conditions on the presence of variable characters only (the number of invariant sites that are unsampled but known to exist is not considered), while the reconstituted DNA approach requires the user to specify the exact number of unsampled invariant sites prior to the analysis. Under simulation, branch length biases increase with the amount of missing data for both acquisition bias correction methods, but branch length accuracy is much improved in the reconstituted DNA approach compared to the conditional likelihood approach. Phylogenetic analyses of the empirical data using concatenation or a coalescent-based species tree approach provide strong support for many of the accepted relationships among phrynosomatid lizards, suggesting that RAD loci contain useful phylogenetic signal across a range of divergence times despite the presence of missing data. Phylogenetic analysis of RAD loci requires careful attention to model assumptions, especially if downstream analyses depend on branch lengths.
Collapse
Affiliation(s)
- Adam D Leaché
- Department of Biology, University of Washington, Seattle, WA 98195, USA; Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98195, USA;
| | - Barbara L Banbury
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Joseph Felsenstein
- Department of Biology, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Adrián Nieto-Montes de Oca
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, México 04510, Distrito Federal, México
| | - Alexandros Stamatakis
- Exelixis Laboratory, Scientific Computing Group, Heidelberg Institute for Theoretical Studies (HITS gGmbH), Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany; and Department of Informatics, Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Am Fasanengarten 5, 76131 Karlsruhe, Germany
| |
Collapse
|
127
|
Oliveira R, Randi E, Mattucci F, Kurushima JD, Lyons LA, Alves PC. Toward a genome-wide approach for detecting hybrids: informative SNPs to detect introgression between domestic cats and European wildcats (Felis silvestris). Heredity (Edinb) 2015; 115:195-205. [PMID: 26103945 DOI: 10.1038/hdy.2015.25] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 12/13/2014] [Accepted: 02/03/2015] [Indexed: 01/16/2023] Open
Abstract
Endemic gene pools have been severely endangered by human-mediated hybridization, which is posing new challenges in the conservation of several vertebrate species. The endangered European wildcat is an example of this problem, as several natural populations are suffering introgression of genes from the domestic cat. The implementation of molecular methods for detecting hybridization is crucial for supporting appropriate conservation programs on the wildcat. In this study, genetic variation at 158 single-nucleotide polymorphisms (SNPs) was analyzed in 139 domestic cats, 130 putative European wildcats and 5 captive-bred hybrids (N=274). These SNPs were variable both in wild (HE=0.107) and domestic cats (HE=0.340). Although we did not find any SNP that was private in any population, 22 SNPs were monomorphic in wildcats and pairwise FCT values revealed marked differences between domestic and wildcats, with the most divergent 35 loci providing an average FCT>0.74. The power of all the loci to accurately identify admixture events and discriminate the different hybrid categories was evaluated. Results from simulated and real genotypes show that the 158 SNPs provide successful estimates of admixture, with 100% hybrid individuals (two to three generations in the past) being correctly identified in STRUCTURE and over 92% using the NEWHYBRIDS' algorithm. None of the unclassified cats were wrongly allocated to another hybrid class. Thirty-five SNPs, showing the highest FCT values, provided the most parsimonious panel for robust inferences of parental and first generations of admixed ancestries. This approach may be used to further reconstruct the evolution of wildcat populations and, hopefully, to develop sound conservation guidelines for its legal protection in Europe.
Collapse
Affiliation(s)
- R Oliveira
- 1] CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO-Laboratório Associado, Vairão, Portugal [2] Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - E Randi
- 1] Laboratorio di Genetica, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Bologna, Italy [2] Department 18/Section of Environmental Engineering, Aalborg University, Aalborg, Denmark
| | - F Mattucci
- Laboratorio di Genetica, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Bologna, Italy
| | - J D Kurushima
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - L A Lyons
- 1] Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA [2] Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, MI, USA
| | - P C Alves
- 1] CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO-Laboratório Associado, Vairão, Portugal [2] Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal [3] Wildlife Biology Program, University of Montana, Missoula, MT, USA
| |
Collapse
|
128
|
Dierickx EG, Shultz AJ, Sato F, Hiraoka T, Edwards SV. Morphological and genomic comparisons of Hawaiian and Japanese Black-footed Albatrosses (Phoebastria nigripes) using double digest RADseq: implications for conservation. Evol Appl 2015; 8:662-78. [PMID: 26240604 PMCID: PMC4516419 DOI: 10.1111/eva.12274] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/14/2015] [Indexed: 01/01/2023] Open
Abstract
Evaluating the genetic and demographic independence of populations of threatened species is important for determining appropriate conservation measures, but different technologies can yield different conclusions. Despite multiple studies, the taxonomic status and extent of gene flow between the main breeding populations of Black-footed Albatross (Phoebastria nigripes), a Near-Threatened philopatric seabird, are still controversial. Here, we employ double digest RADseq to quantify the extent of genomewide divergence and gene flow in this species. Our genomewide data set of 9760 loci containing 3455 single nucleotide polymorphisms yielded estimates of genetic diversity and gene flow that were generally robust across seven different filtering and sampling protocols and suggest a low level of genomic variation (θ per site = ∼0.00002-0.00028), with estimates of effective population size (N e = ∼500-15 881) falling far below current census size. Genetic differentiation was small but detectable between Japan and Hawaii (F ST ≈ 0.038-0.049), with no F ST outliers. Additionally, using museum specimens, we found that effect sizes of morphological differences by sex or population rarely exceeded 4%. These patterns suggest that the Hawaiian and Japanese populations exhibit small but significant differences and should be considered separate management units, although the evolutionary and adaptive consequences of this differentiation remain to be identified.
Collapse
Affiliation(s)
- Elisa G Dierickx
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University Cambridge, MA, USA ; Department of Zoology, University of Cambridge Cambridge, UK
| | - Allison J Shultz
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University Cambridge, MA, USA
| | - Fumio Sato
- Yamashina Institute for Ornithology Abiko, Japan
| | | | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University Cambridge, MA, USA
| |
Collapse
|
129
|
Genetic identities and local inbreeding in pure diploid clones with homoplasic markers: SNPs may be misleading. INFECTION GENETICS AND EVOLUTION 2015; 33:227-32. [PMID: 25960105 DOI: 10.1016/j.meegid.2015.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 11/21/2022]
Abstract
Expected values for observed heterozygosity, genetic diversity, and inbreeding of individuals relative to inbreeding of the population (F(IS)) are derived in the case of one locus displaying homoplasy with K possible allelic states (KAM model) in a clonal diploid population. Heterozygosity (H(O)) and genetic diversity (H(S)) are substantially affected by homoplasy as long as the number of alleles K ⩽ 10, while F(IS) remains weakly affected in any case. Simulations suggest that in big populations, or in case of maximum homoplasy (K = 2), expected values can appear far from the observed ones because equilibrium takes too many generations to be reached at homoplasic markers in clonally propagating populations. This raises some concern on the use of SNPs, at least in clonal populations.
Collapse
|
130
|
McTavish EJ, Hillis DM. How do SNP ascertainment schemes and population demographics affect inferences about population history? BMC Genomics 2015; 16:266. [PMID: 25887858 PMCID: PMC4428227 DOI: 10.1186/s12864-015-1469-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/17/2015] [Indexed: 12/15/2022] Open
Abstract
Background The selection of variable sites for inclusion in genomic analyses can influence results, especially when exemplar populations are used to determine polymorphic sites. We tested the impact of ascertainment bias on the inference of population genetic parameters using empirical and simulated data representing the three major continental groups of cattle: European, African, and Indian. We simulated data under three demographic models. Each simulated data set was subjected to three ascertainment schemes: (I) random selection; (II) geographically biased selection; and (III) selection biased toward loci polymorphic in multiple groups. Empirical data comprised samples of 25 individuals representing each continental group. These cattle were genotyped for 47,506 loci from the bovine 50 K SNP panel. We compared the inference of population histories for the empirical and simulated data sets across different ascertainment conditions using FST and principal components analysis (PCA). Results Bias toward shared polymorphism across continental groups is apparent in the empirical SNP data. Bias toward uneven levels of within-group polymorphism decreases estimates of FST between groups. Subpopulation-biased selection of SNPs changes the weighting of principal component axes and can affect inferences about proportions of admixture and population histories using PCA. PCA-based inferences of population relationships are largely congruent across types of ascertainment bias, even when ascertainment bias is strong. Conclusions Analyses of ascertainment bias in genomic data have largely been conducted on human data. As genomic analyses are being applied to non-model organisms, and across taxa with deeper divergences, care must be taken to consider the potential for bias in ascertainment of variation to affect inferences. Estimates of FST, time of separation, and population divergence as estimated by principal components analysis can be misleading if this bias is not taken into account. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1469-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily Jane McTavish
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA. .,Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, Heidelberg, D-69118, Germany.
| | - David M Hillis
- Department of Integrative Biology, University of Texas, One University Station C0990, Austin, TX, 78712, USA.
| |
Collapse
|
131
|
Garrick RC, Bonatelli IAS, Hyseni C, Morales A, Pelletier TA, Perez MF, Rice E, Satler JD, Symula RE, Thomé MTC, Carstens BC. The evolution of phylogeographic data sets. Mol Ecol 2015; 24:1164-71. [DOI: 10.1111/mec.13108] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/21/2015] [Accepted: 02/04/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Ryan C. Garrick
- Department of Biology; University of Mississippi; Oxford MS 38677 USA
| | - Isabel A. S. Bonatelli
- Departamento de Biologia; Universidade Federal de São Carlos; Campus Sorocaba Caixa Postal 18052780 Sorocaba São Paulo Brazil
| | - Chaz Hyseni
- Department of Biology; University of Mississippi; Oxford MS 38677 USA
| | - Ariadna Morales
- Department of Evolution, Ecology and Organismal Biology; The Ohio State University; 318 W. 12th Avenue Columbus OH 43210-1293 USA
| | - Tara A. Pelletier
- Department of Evolution, Ecology and Organismal Biology; The Ohio State University; 318 W. 12th Avenue Columbus OH 43210-1293 USA
| | - Manolo F. Perez
- Departamento de Biologia; Universidade Federal de São Carlos; Campus Sorocaba Caixa Postal 18052780 Sorocaba São Paulo Brazil
| | - Edwin Rice
- Department of Evolution, Ecology and Organismal Biology; The Ohio State University; 318 W. 12th Avenue Columbus OH 43210-1293 USA
| | - Jordan D. Satler
- Department of Evolution, Ecology and Organismal Biology; The Ohio State University; 318 W. 12th Avenue Columbus OH 43210-1293 USA
| | - Rebecca E. Symula
- Department of Biology; University of Mississippi; Oxford MS 38677 USA
| | - Maria Tereza C. Thomé
- Departamento de Zoologia; Instituto de Biociências; UNESP - Univ Estadual Paulista; Campus Rio Claro Caixa Postal 19913506-900 Rio Claro São Paulo Brazil
| | - Bryan C. Carstens
- Department of Evolution, Ecology and Organismal Biology; The Ohio State University; 318 W. 12th Avenue Columbus OH 43210-1293 USA
| |
Collapse
|
132
|
Payen T, Murat C, Gigant A, Morin E, De Mita S, Martin F. A survey of genome-wide single nucleotide polymorphisms through genome resequencing in the Périgord black truffle (Tuber melanosporum
Vittad.). Mol Ecol Resour 2015; 15:1243-55. [DOI: 10.1111/1755-0998.12391] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 02/09/2015] [Accepted: 02/13/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Thibaut Payen
- INRA; Laboratoire d'Excellence ARBRE; UMR1136 Interactions Arbres-Microorganismes; F-54280 Champenoux France
- UMR1136 Interactions Arbres-Microorganismes; Université de Lorraine; Vandoeuvre-lès-Nancy F-54500 France
| | - Claude Murat
- INRA; Laboratoire d'Excellence ARBRE; UMR1136 Interactions Arbres-Microorganismes; F-54280 Champenoux France
- UMR1136 Interactions Arbres-Microorganismes; Université de Lorraine; Vandoeuvre-lès-Nancy F-54500 France
| | - Anaïs Gigant
- INRA; Laboratoire d'Excellence ARBRE; UMR1136 Interactions Arbres-Microorganismes; F-54280 Champenoux France
- UMR1136 Interactions Arbres-Microorganismes; Université de Lorraine; Vandoeuvre-lès-Nancy F-54500 France
| | - Emmanuelle Morin
- INRA; Laboratoire d'Excellence ARBRE; UMR1136 Interactions Arbres-Microorganismes; F-54280 Champenoux France
- UMR1136 Interactions Arbres-Microorganismes; Université de Lorraine; Vandoeuvre-lès-Nancy F-54500 France
| | - Stéphane De Mita
- INRA; Laboratoire d'Excellence ARBRE; UMR1136 Interactions Arbres-Microorganismes; F-54280 Champenoux France
- UMR1136 Interactions Arbres-Microorganismes; Université de Lorraine; Vandoeuvre-lès-Nancy F-54500 France
| | - Francis Martin
- INRA; Laboratoire d'Excellence ARBRE; UMR1136 Interactions Arbres-Microorganismes; F-54280 Champenoux France
- UMR1136 Interactions Arbres-Microorganismes; Université de Lorraine; Vandoeuvre-lès-Nancy F-54500 France
| |
Collapse
|
133
|
Golparian D, Unemo M. Will Genome Analysis Elucidate Evolution, Global Transmission and Virulence of Neisseria Meningitidis Lineages? EBioMedicine 2015; 2:186-7. [PMID: 26137558 PMCID: PMC4484816 DOI: 10.1016/j.ebiom.2015.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 02/02/2015] [Accepted: 02/02/2015] [Indexed: 11/25/2022] Open
Affiliation(s)
- Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, National Reference Laboratory for Pathogenic Neisseria, Department of Laboratory Medicine, Clinical Microbiology, Örebro University Hospital, Örebro, Sweden
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, National Reference Laboratory for Pathogenic Neisseria, Department of Laboratory Medicine, Clinical Microbiology, Örebro University Hospital, Örebro, Sweden
| |
Collapse
|
134
|
Choi KS. Diversity of clades I and II within Anopheles funestus sensu stricto in southern Africa. Genes Genomics 2015. [DOI: 10.1007/s13258-014-0236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
135
|
Kim SK, Nair RM, Lee J, Lee SH. Genomic resources in mungbean for future breeding programs. FRONTIERS IN PLANT SCIENCE 2015; 6:626. [PMID: 26322067 PMCID: PMC4530597 DOI: 10.3389/fpls.2015.00626] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/28/2015] [Indexed: 05/03/2023]
Abstract
Among the legume family, mungbean (Vigna radiata) has become one of the important crops in Asia, showing a steady increase in global production. It provides a good source of protein and contains most notably folate and iron. Beyond the nutritional value of mungbean, certain features make it a well-suited model organism among legume plants because of its small genome size, short life-cycle, self-pollinating, and close genetic relationship to other legumes. In the past, there have been several efforts to develop molecular markers and linkage maps associated with agronomic traits for the genetic improvement of mungbean and, ultimately, breeding for cultivar development to increase the average yields of mungbean. The recent release of a reference genome of the cultivated mungbean (V. radiata var. radiata VC1973A) and an additional de novo sequencing of a wild relative mungbean (V. radiata var. sublobata) has provided a framework for mungbean genetic and genome research, that can further be used for genome-wide association and functional studies to identify genes related to specific agronomic traits. Moreover, the diverse gene pool of wild mungbean comprises valuable genetic resources of beneficial genes that may be helpful in widening the genetic diversity of cultivated mungbean. This review paper covers the research progress on molecular and genomics approaches and the current status of breeding programs that have developed to move toward the ultimate goal of mungbean improvement.
Collapse
Affiliation(s)
- Sue K. Kim
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | | | - Jayern Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | - Suk-Ha Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National UniversitySeoul, South Korea
- *Correspondence: Suk-Ha Lee, Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea,
| |
Collapse
|
136
|
Genome-wide genetic diversity, population structure and admixture analysis in African and Asian cattle breeds. Animal 2014; 9:218-26. [PMID: 25359181 DOI: 10.1017/s1751731114002560] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Knowledge about genetic diversity and population structure is useful for designing effective strategies to improve the production, management and conservation of farm animal genetic resources. Here, we present a comprehensive genome-wide analysis of genetic diversity, population structure and admixture based on 244 animals sampled from 10 cattle populations in Asia and Africa and genotyped for 69,903 autosomal single-nucleotide polymorphisms (SNPs) mainly derived from the indicine breed. Principal component analysis, STRUCTURE and distance analysis from high-density SNP data clearly revealed that the largest genetic difference occurred between the two domestic lineages (taurine and indicine), whereas Ethiopian cattle populations represent a mosaic of the humped zebu and taurine. Estimation of the genetic influence of zebu and taurine revealed that Ethiopian cattle were characterized by considerable levels of introgression from South Asian zebu, whereas Bangladeshi populations shared very low taurine ancestry. The relationships among Ethiopian cattle populations reflect their history of origin and admixture rather than phenotype-based distinctions. The high within-individual genetic variability observed in Ethiopian cattle represents an untapped opportunity for adaptation to changing environments and for implementation of within-breed genetic improvement schemes. Our results provide a basis for future applications of genome-wide SNP data to exploit the unique genetic makeup of indigenous cattle breeds and to facilitate their improvement and conservation.
Collapse
|
137
|
Malenfant RM, Coltman DW, Davis CS. Design of a 9K illumina BeadChip for polar bears (Ursus maritimus) from RAD and transcriptome sequencing. Mol Ecol Resour 2014; 15:587-600. [DOI: 10.1111/1755-0998.12327] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 12/30/2022]
Affiliation(s)
- René M. Malenfant
- Department of Biological Sciences; University of Alberta; CW405 Biological Sciences Building Edmonton AB T6G 2E9 Canada
| | - David W. Coltman
- Department of Biological Sciences; University of Alberta; CW405 Biological Sciences Building Edmonton AB T6G 2E9 Canada
| | - Corey S. Davis
- Department of Biological Sciences; University of Alberta; CW405 Biological Sciences Building Edmonton AB T6G 2E9 Canada
| |
Collapse
|
138
|
Souza RA, Falcão JP. A novel high-resolution melting analysis-based method for Yersinia enterocolitica genotyping. J Microbiol Methods 2014; 106:129-134. [PMID: 25181694 DOI: 10.1016/j.mimet.2014.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 11/18/2022]
Abstract
Pathogenic Yersinia enterocolitica strains are associated with biotypes 1B, 2-5, while environmental strains with biotype 1A. In this work a method for Y. enterocolitica genotyping based on HRMA to determine SNPs was developed and the genetic diversity of 50 strains was determined. The strains were clustered into three groups consistent with the pathogenic profile of each biotype. The results provided a better understanding of the Y. enterocolitica genetic variability.
Collapse
Affiliation(s)
- Roberto A Souza
- Brazilian Reference Center on Yersinia spp. other than Y. pestis, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Brazil
| | - Juliana P Falcão
- Brazilian Reference Center on Yersinia spp. other than Y. pestis, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Brazil.
| |
Collapse
|
139
|
Benavides JA, Cross PC, Luikart G, Creel S. Limitations to estimating bacterial cross-species transmission using genetic and genomic markers: inferences from simulation modeling. Evol Appl 2014; 7:774-87. [PMID: 25469159 PMCID: PMC4227858 DOI: 10.1111/eva.12173] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 04/30/2014] [Indexed: 12/12/2022] Open
Abstract
Cross-species transmission (CST) of bacterial pathogens has major implications for human health, livestock, and wildlife management because it determines whether control actions in one species may have subsequent effects on other potential host species. The study of bacterial transmission has benefitted from methods measuring two types of genetic variation: variable number of tandem repeats (VNTRs) and single nucleotide polymorphisms (SNPs). However, it is unclear whether these data can distinguish between different epidemiological scenarios. We used a simulation model with two host species and known transmission rates (within and between species) to evaluate the utility of these markers for inferring CST. We found that CST estimates are biased for a wide range of parameters when based on VNTRs and a most parsimonious reconstructed phylogeny. However, estimations of CST rates lower than 5% can be achieved with relatively low bias using as low as 250 SNPs. CST estimates are sensitive to several parameters, including the number of mutations accumulated since introduction, stochasticity, the genetic difference of strains introduced, and the sampling effort. Our results suggest that, even with whole-genome sequences, unbiased estimates of CST will be difficult when sampling is limited, mutation rates are low, or for pathogens that were recently introduced.
Collapse
Affiliation(s)
| | - Paul C Cross
- U.S. Geological Survey, Northern Rocky Mountain Science Center Bozeman, MT, USA
| | - Gordon Luikart
- Flathead Lake Biological Station, Fish and Wildlife Genomics Group, Division of Biological Sciences, University of Montana Polson, MT, USA
| | - Scott Creel
- Department of Ecology, Montana State University Bozeman, MT, USA
| |
Collapse
|
140
|
Single nucleotide polymorphisms reveal genetic structuring of the carpathian newt and provide evidence of interspecific gene flow in the nuclear genome. PLoS One 2014; 9:e97431. [PMID: 24820116 PMCID: PMC4018350 DOI: 10.1371/journal.pone.0097431] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/19/2014] [Indexed: 12/25/2022] Open
Abstract
Genetic variation within species is commonly structured in a hierarchical manner which may result from superimposition of processes acting at different spatial and temporal scales. In organisms of limited dispersal ability, signatures of past subdivision are detectable for a long time. Studies of contemporary genetic structure in such taxa inform about the history of isolation, range changes and local admixture resulting from geographically restricted hybridization with related species. Here we use a set of 139 transcriptome-derived, unlinked nuclear single nucleotide polymorphisms (SNP) to assess the genetic structure of the Carpathian newt (Lissotriton montandoni, Lm) and introgression from its congener, the smooth newt (L. vulgaris, Lv). Two substantially differentiated groups of Lm populations likely originated from separate refugia, both located in the Eastern Carpathians. The colonization of the present range in north-western and south-western directions was accompanied by a modest loss of variation; admixture between the two groups has occurred in the middle of the Eastern Carpathians. Local, apparently recent introgression of Lv alleles into several Lm populations was detected, demonstrating increased power for admixture detection in comparison to a previous study based on a limited number of microsatellite markers. The level of introgression was higher in Lm populations classified as admixed than in syntopic populations. We discuss the possible causes and propose further tests to distinguish between alternatives. Several outlier loci were identified in tests of interspecific differentiation, suggesting genomic heterogeneity of gene flow between species.
Collapse
|
141
|
Janes JK, Li Y, Keeling CI, Yuen MMS, Boone CK, Cooke JEK, Bohlmann J, Huber DPW, Murray BW, Coltman DW, Sperling FAH. How the mountain pine beetle (Dendroctonus ponderosae) breached the Canadian Rocky Mountains. Mol Biol Evol 2014; 31:1803-15. [PMID: 24803641 PMCID: PMC4069619 DOI: 10.1093/molbev/msu135] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins), a major pine forest pest native to western North America, has extended its range north and eastward during an ongoing outbreak. Determining how the MPB has expanded its range to breach putative barriers, whether physical (nonforested prairie and high elevation of the Rocky Mountains) or climatic (extreme continental climate where temperatures can be below −40 °C), may contribute to our general understanding of range changes as well as management of the current epidemic. Here, we use a panel of 1,536 single nucleotide polymorphisms (SNPs) to assess population genetic structure, connectivity, and signals of selection within this MPB range expansion. Biallelic SNPs in MPB from southwestern Canada revealed higher genetic differentiation and lower genetic connectivity than in the northern part of its range. A total of 208 unique SNPs were identified using different outlier detection tests, of which 32 returned annotations for products with putative functions in cholesterol synthesis, actin filament contraction, and membrane transport. We suggest that MPB has been able to spread beyond its previous range by adjusting its cellular and metabolic functions, with genome scale differentiation enabling populations to better withstand cooler climates and facilitate longer dispersal distances. Our study is the first to assess landscape-wide selective adaptation in an insect. We have shown that interrogation of genomic resources can identify shifts in genetic diversity and putative adaptive signals in this forest pest species.
Collapse
Affiliation(s)
- Jasmine K Janes
- Department of Biological Sciences, University of Alberta, Edmonton, AB, CanadaAlberta Biodiversity Monitoring Institute, University of Alberta, Edmonton, AB, Canada
| | - Yisu Li
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | | | - Macaire M S Yuen
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Celia K Boone
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, BC, Canada
| | - Janice E K Cooke
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Dezene P W Huber
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, BC, Canada
| | - Brent W Murray
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, BC, Canada
| | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Felix A H Sperling
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
142
|
Rašić G, Filipović I, Weeks AR, Hoffmann AA. Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti. BMC Genomics 2014; 15:275. [PMID: 24726019 PMCID: PMC4023594 DOI: 10.1186/1471-2164-15-275] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/02/2014] [Indexed: 11/10/2022] Open
Abstract
Background Genetic markers are widely used to understand the biology and population dynamics of disease vectors, but often markers are limited in the resolution they provide. In particular, the delineation of population structure, fine scale movement and patterns of relatedness are often obscured unless numerous markers are available. To address this issue in the major arbovirus vector, the yellow fever mosquito (Aedes aegypti), we used double digest Restriction-site Associated DNA (ddRAD) sequencing for the discovery of genome-wide single nucleotide polymorphisms (SNPs). We aimed to characterize the new SNP set and to test the resolution against previously described microsatellite markers in detecting broad and fine-scale genetic patterns in Ae. aegypti. Results We developed bioinformatics tools that support the customization of restriction enzyme-based protocols for SNP discovery. We showed that our approach for RAD library construction achieves unbiased genome representation that reflects true evolutionary processes. In Ae. aegypti samples from three continents we identified more than 18,000 putative SNPs. They were widely distributed across the three Ae. aegypti chromosomes, with 47.9% found in intergenic regions and 17.8% in exons of over 2,300 genes. Pattern of their imputed effects in ORFs and UTRs were consistent with those found in a recent transcriptome study. We demonstrated that individual mosquitoes from Indonesia, Australia, Vietnam and Brazil can be assigned with a very high degree of confidence to their region of origin using a large SNP panel. We also showed that familial relatedness of samples from a 0.4 km2 area could be confidently established with a subset of SNPs. Conclusions Using a cost-effective customized RAD sequencing approach supported by our bioinformatics tools, we characterized over 18,000 SNPs in field samples of the dengue fever mosquito Ae. aegypti. The variants were annotated and positioned onto the three Ae. aegypti chromosomes. The new SNP set provided much greater resolution in detecting population structure and estimating fine-scale relatedness than a set of polymorphic microsatellites. RAD-based markers demonstrate great potential to advance our understanding of mosquito population processes, critical for implementing new control measures against this major disease vector.
Collapse
Affiliation(s)
- Gordana Rašić
- Pest and Disease Vector Group, Department of Genetics, The University of Melbourne, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
143
|
Bidon T, Janke A, Fain SR, Eiken HG, Hagen SB, Saarma U, Hallström BM, Lecomte N, Hailer F. Brown and polar bear Y chromosomes reveal extensive male-biased gene flow within brother lineages. Mol Biol Evol 2014; 31:1353-63. [PMID: 24667925 DOI: 10.1093/molbev/msu109] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Brown and polar bears have become prominent examples in phylogeography, but previous phylogeographic studies relied largely on maternally inherited mitochondrial DNA (mtDNA) or were geographically restricted. The male-specific Y chromosome, a natural counterpart to mtDNA, has remained underexplored. Although this paternally inherited chromosome is indispensable for comprehensive analyses of phylogeographic patterns, technical difficulties and low variability have hampered its application in most mammals. We developed 13 novel Y-chromosomal sequence and microsatellite markers from the polar bear genome and screened these in a broad geographic sample of 130 brown and polar bears. We also analyzed a 390-kb-long Y-chromosomal scaffold using sequencing data from published male ursine genomes. Y chromosome evidence support the emerging understanding that brown and polar bears started to diverge no later than the Middle Pleistocene. Contrary to mtDNA patterns, we found 1) brown and polar bears to be reciprocally monophyletic sister (or rather brother) lineages, without signals of introgression, 2) male-biased gene flow across continents and on phylogeographic time scales, and 3) male dispersal that links the Alaskan ABC islands population to mainland brown bears. Due to female philopatry, mtDNA provides a highly structured estimate of population differentiation, while male-biased gene flow is a homogenizing force for nuclear genetic variation. Our findings highlight the importance of analyzing both maternally and paternally inherited loci for a comprehensive view of phylogeographic history, and that mtDNA-based phylogeographic studies of many mammals should be reevaluated. Recent advances in sequencing technology render the analysis of Y-chromosomal variation feasible, even in nonmodel organisms.
Collapse
Affiliation(s)
- Tobias Bidon
- Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
| | - Axel Janke
- Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, GermanyGoethe University Frankfurt, Institute for Ecology, Evolution & Diversity, Frankfurt am Main, Germany
| | - Steven R Fain
- National Fish and Wildlife Forensic Laboratory, Ashland, OR
| | - Hans Geir Eiken
- Bioforsk, Norwegian Institute for Agricultural and Environmental Research, Svanvik, Norway
| | - Snorre B Hagen
- Bioforsk, Norwegian Institute for Agricultural and Environmental Research, Svanvik, Norway
| | - Urmas Saarma
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Björn M Hallström
- Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, GermanyScience for Life Laboratory, School of Biotechnology, KTH, Stockholm, Sweden
| | - Nicolas Lecomte
- Canada Research Chair in Polar and Boreal Ecology, Department of Biology, University of Moncton, Moncton, Canada
| | - Frank Hailer
- Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
| |
Collapse
|
144
|
Díaz-Sacco JJ, Izawa M, Imai H. Successful DNA Typing of Feces to Determine the Species and Sex of the Endangered Iriomote Cat (Prionailurus bengalensis iriomotensis) by using the 16S rRNA Gene and an SNP Marker in a Zinc-Finger Protein Gene. MAMMAL STUDY 2014. [DOI: 10.3106/041.039.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
145
|
Characterization of the aap1 gene of Agaricus bisporus, a homolog of the yeast YAP1. C R Biol 2014; 337:29-43. [DOI: 10.1016/j.crvi.2013.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/22/2013] [Accepted: 10/25/2013] [Indexed: 11/19/2022]
|
146
|
The Role of Genomics in Conservation and Reproductive Sciences. REPRODUCTIVE SCIENCES IN ANIMAL CONSERVATION 2014; 753:71-96. [DOI: 10.1007/978-1-4939-0820-2_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
147
|
Figueiredo J, Simões MJ, Gomes P, Barroso C, Pinho D, Conceição L, Fonseca L, Abrantes I, Pinheiro M, Egas C. Assessment of the geographic origins of pinewood nematode isolates via single nucleotide polymorphism in effector genes. PLoS One 2013; 8:e83542. [PMID: 24391785 PMCID: PMC3877046 DOI: 10.1371/journal.pone.0083542] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 11/05/2013] [Indexed: 11/18/2022] Open
Abstract
The pinewood nematode, Bursaphelenchus xylophilus, is native to North America but it only causes damaging pine wilt disease in those regions of the world where it has been introduced. The accurate detection of the species and its dispersal routes are thus essential to define effective control measures. The main goals of this study were to analyse the genetic diversity among B. xylophilus isolates from different geographic locations and identify single nucleotide polymorphism (SNPs) markers for geographic origin, through a comparative transcriptomic approach. The transcriptomes of seven B. xylophilus isolates, from Continental Portugal (4), China (1), Japan (1) and USA (1), were sequenced in the next generation platform Roche 454. Analysis of effector gene transcripts revealed inter-isolate nucleotide diversity that was validated by Sanger sequencing in the genomic DNA of the seven isolates and eight additional isolates from different geographic locations: Madeira Island (2), China (1), USA (1), Japan (2) and South Korea (2). The analysis identified 136 polymorphic positions in 10 effector transcripts. Pairwise comparison of the 136 SNPs through Neighbor-Joining and the Maximum Likelihood methods and 5-mer frequency analysis with the alignment-independent bilinear multivariate modelling approach correlated the SNPs with the isolates geographic origin. Furthermore, the SNP analysis indicated a closer proximity of the Portuguese isolates to the Korean and Chinese isolates than to the Japanese or American isolates. Each geographic cluster carried exclusive alleles that can be used as SNP markers for B. xylophilus isolate identification.
Collapse
Affiliation(s)
- Joana Figueiredo
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Maria José Simões
- Genoinseq, Next Generation Sequencing Unit, Biocant, Cantanhede, Portugal
| | - Paula Gomes
- Genoinseq, Next Generation Sequencing Unit, Biocant, Cantanhede, Portugal
| | - Cristina Barroso
- Genoinseq, Next Generation Sequencing Unit, Biocant, Cantanhede, Portugal
| | - Diogo Pinho
- Genoinseq, Next Generation Sequencing Unit, Biocant, Cantanhede, Portugal
| | - Luci Conceição
- IMAR-CMA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Luís Fonseca
- IMAR-CMA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Isabel Abrantes
- IMAR-CMA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Miguel Pinheiro
- Genoinseq, Next Generation Sequencing Unit, Biocant, Cantanhede, Portugal
| | - Conceição Egas
- Genoinseq, Next Generation Sequencing Unit, Biocant, Cantanhede, Portugal
| |
Collapse
|
148
|
Ruane S, Bryson RW, Pyron RA, Burbrink FT. Coalescent Species Delimitation in Milksnakes (Genus Lampropeltis) and Impacts on Phylogenetic Comparative Analyses. Syst Biol 2013; 63:231-50. [DOI: 10.1093/sysbio/syt099] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
149
|
Riahi L, Ayari B, Zoghlami N, Dereeper A, Laucou V, Mliki A, This P. High efficiency and informativeness of a set of SNP molecular markers in Tunisian local grapevines discrimination. BIOCHEM SYST ECOL 2013. [DOI: 10.1016/j.bse.2013.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
150
|
Agunbiade TA, Sun W, Coates BS, Djouaka R, Tamò M, Ba MN, Binso-Dabire C, Baoua I, Olds BP, Pittendrigh BR. Development of reference transcriptomes for the major field insect pests of cowpea: a toolbox for insect pest management approaches in west Africa. PLoS One 2013; 8:e79929. [PMID: 24278221 PMCID: PMC3838393 DOI: 10.1371/journal.pone.0079929] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 09/27/2013] [Indexed: 11/19/2022] Open
Abstract
Cowpea is a widely cultivated and major nutritional source of protein for many people that live in West Africa. Annual yields and longevity of grain storage is greatly reduced by feeding damage caused by a complex of insect pests that include the pod sucking bugs, Anoplocnemis curvipes Fabricius (Hemiptera: Coreidae) and Clavigralla tomentosicollis Stål (Hemiptera: Coreidae); as well as phloem-feeding cowpea aphids, Aphis craccivora Koch (Hemiptera: Aphididae) and flower thrips, Megalurothrips sjostedti Trybom (Thysanoptera: Thripidae). Efforts to control these pests remain a challenge and there is a need to understand the structure and movement of these pest populations in order to facilitate the development of integrated pest management strategies (IPM). Molecular tools have the potential to help facilitate a better understanding of pest populations. Towards this goal, we used 454 pyrosequencing technology to generate 319,126, 176,262, 320,722 and 227,882 raw reads from A. curvipes, A. craccivora, C. tomentosicollis and M. sjostedti, respectively. The reads were de novo assembled into 11,687, 7,647, 10,652 and 7,348 transcripts for A. curvipes, A. craccivora, C. tomentosicollis and M. sjostedti, respectively. Functional annotation of the resulting transcripts identified genes putatively involved in insecticide resistance, pathogen defense and immunity. Additionally, sequences that matched the primary aphid endosymbiont, Buchnera aphidicola, were identified among A. craccivora transcripts. Furthermore, 742, 97, 607 and 180 single nucleotide polymorphisms (SNPs) were respectively predicted among A. curvipes, A. craccivora, C. tomentosicollis and M. sjostedti transcripts, and will likely be valuable tools for future molecular genetic marker development. These results demonstrate that Roche 454-based transcriptome sequencing could be useful for the development of genomic resources for cowpea pest insects in West Africa.
Collapse
Affiliation(s)
- Tolulope A. Agunbiade
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| | - Weilin Sun
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Brad S. Coates
- Corn Insects and Crop Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America
| | | | - Manuele Tamò
- International Institute of Tropical Agriculture, Cotonou, Benin
| | - Malick N. Ba
- Institut de l’Environnement et de Recherches Agricoles, Ouagadougou, Burkina Faso
| | | | - Ibrahim Baoua
- Institut National de la Recherche Agronomique du Niger, Maradi, Niger
| | - Brett P. Olds
- Department of Animal Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Barry R. Pittendrigh
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|