101
|
Yang ZH, Yang TT, Liu Y, Zhang HB, Tang BP, Liu QN, Ma YF. The complete mitochondrial genome of Sinna extrema (Lepidoptera: Nolidae) and its implications for the phylogenetic relationships of Noctuoidea species. Int J Biol Macromol 2019; 137:317-326. [DOI: 10.1016/j.ijbiomac.2019.06.238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 10/26/2022]
|
102
|
Wang W, Huang Y, Bartlett CR, Zhou F, Meng R, Qin D. Characterization of the complete mitochondrial genomes of two species of the genus Aphaena Guérin-Méneville (Hemiptera: Fulgoridae) and its phylogenetic implications. Int J Biol Macromol 2019; 141:29-40. [PMID: 31470055 DOI: 10.1016/j.ijbiomac.2019.08.222] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 12/27/2022]
Abstract
The complete mitochondrial genomes (mitogenomes) of Aphaena (Callidepsa) amabilis and Aphaena (Aphaena) discolor nigrotibiata were sequenced. The mitogenomes of these two species are 16,237 bp and 16,116 bp in length with an A + T content of 77.9% and 77.0%, respectively. Each contains 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs) and a control region (A + T-rich region). All PCGs initiate with the standard start codon of ATN and terminate with the complete stop codon of TAA or TAG except for atp6, where nad1 ends with an incomplete T codon. All tRNAs have the typical clover-leaf structure except for trnS1 and trnV which have a reduced DHU arm. Moreover, these two mitogenomes have trnL2, trnR and trnT with an unpaired base in the acceptor stem. The putative A + T-rich region includes multiple types of tandem repeat regions. These phylogenetic analyses are reconstructed based on 13 protein-coding genes of 25 auchenorrhynchan mitogenomes, with both maximum likelihood and Bayesian analyses yielding robust identical phylogenetic trees. These results support a monophyletic Auchenorrhyncha and the relationship (Pyrops + (Lycorma + Aphaena)) within Fulgoridae.
Collapse
Affiliation(s)
- Wenqian Wang
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Entomological Museum, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yixin Huang
- Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Charles R Bartlett
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE 19716, USA
| | - Fanmei Zhou
- Wuzhishan National Nature Reserve, Zhou Fanmei Photographic Art Gallery, Wuzhishan, Hainan 572200, China
| | - Rui Meng
- Post-Entry Quarantine Station for Tropical Plant, Haikou Customs District, Haikou, Hainan 570105, China
| | - Daozheng Qin
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Entomological Museum, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
103
|
Complete mitochondrial genomes confirm the generic placement of the plateau vole, Neodon fuscus. Biosci Rep 2019; 39:BSR20182349. [PMID: 31262975 PMCID: PMC6689105 DOI: 10.1042/bsr20182349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/25/2019] [Accepted: 05/31/2019] [Indexed: 11/22/2022] Open
Abstract
The plateau vole, Neodon fuscus is endemic to China and is distributed mainly in Qinghai Province. It is of public health interest, as it is, a potential reservoir of Toxoplasma gondii and the intermediate host of Echinococcus multilocularis. However, genetic data of this species are lacking, and its name and taxonomy are still a controversy. In the present study, we determined the nucleotide sequence of the entire mitochondrial (mt) genome of N. fuscus and analyzed its evolutionary relationship. The mitogenome was 16328 bp in length and contained 13 protein-coding genes, 22 genes for transfer RNAs (tRNA), two ribosomal RNA genes and two major noncoding regions (OL region and D-loop region). Most genes were located on the heavy strand. All tRNA genes had typical cloverleaf structures except for tRNASer (GCU). The mt genome of N. fuscus was rich in A+T (58.45%). Maximum likelihood (ML) and Bayesian methods yielded phylogenetic trees from 33 mt genomes of Arvicolinae, in which N. fuscus formed a sister group with Neodon irene and Neodon sikimensis to the exclusion of species of Microtus and other members of the Arvicolinae. Further phylogenetic analyses (ML only) based on the cytb gene sequences also demonstrated that N. fuscus had a close relationship with N. irene. The complete mitochondrial genome was successfully assembled and annotated, providing the necessary information for the phylogenetic analyses. Although the name Lasiopodomys fuscus was used in the book ‘Wilson & Reeder’s Mammal Species of the World’, we have confirmed here that its appropriate name is N. fuscus through an analysis of the evolutionary relationships.
Collapse
|
104
|
Jiang L, Peng L, Tang M, You Z, Zhang M, West A, Ruan Q, Chen W, Merilä J. Complete mitochondrial genome sequence of the Himalayan Griffon, Gyps himalayensis (Accipitriformes: Accipitridae): Sequence, structure, and phylogenetic analyses. Ecol Evol 2019; 9:8813-8828. [PMID: 31410282 PMCID: PMC6686361 DOI: 10.1002/ece3.5433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 11/12/2022] Open
Abstract
This is the first study to describe the mitochondrial genome of the Himalayan Griffon, Gyps himalayensis, which is an Old World vulture belonging to the family Accipitridae and occurring along the Himalayas and the adjoining Tibetan Plateau. Its mitogenome is a closed circular molecule 17,381 bp in size containing 13 protein-coding genes, 22 tRNA coding genes, two rRNA-coding genes, a control region (CR), and an extra pseudo-control region (CCR) that are conserved in most Accipitridae mitogenomes. The overall base composition of the G. himalayensis mitogenome is 24.55% A, 29.49% T, 31.59% C, and 14.37% G, which is typical for bird mitochondrial genomes. The alignment of the Accipitridae species control regions showed high levels of genetic variation and abundant AT content. At the 5' end of the domain I region, a long continuous poly-C sequence was found. Two tandem repeats were found in the pseudo-control regions. Phylogenetic analysis with Bayesian inference and maximum likelihood based on 13 protein-coding genes indicated that the relationships at the family level were (Falconidae + (Cathartidae + (Sagittariidae + (Accipitridae + Pandionidae))). In the Accipitridae clade, G. himalayensis is more closely related to Aegypius monachus than to Spilornis cheela. The complete mitogenome of G. himalayensis provides a potentially useful resource for further exploration of the taxonomic status and phylogenetic history of Gyps species.
Collapse
Affiliation(s)
- Lichun Jiang
- Key Laboratory for Molecular Biology and Biopharmaceutics, School of Life Science and TechnologyMianyang Normal UniversityMianyangSichuanChina
- Ecological Security and Protection Key Laboratory of Sichuan ProvinceMianyang Normal UniversityMianyangSichuanChina
| | - Liqing Peng
- Ecological Security and Protection Key Laboratory of Sichuan ProvinceMianyang Normal UniversityMianyangSichuanChina
| | - Min Tang
- Ecological Security and Protection Key Laboratory of Sichuan ProvinceMianyang Normal UniversityMianyangSichuanChina
| | - Zhangqiang You
- Ecological Security and Protection Key Laboratory of Sichuan ProvinceMianyang Normal UniversityMianyangSichuanChina
| | - Min Zhang
- Key Laboratory for Molecular Biology and Biopharmaceutics, School of Life Science and TechnologyMianyang Normal UniversityMianyangSichuanChina
| | - Andrea West
- Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelongVicAustralia
| | - Qiping Ruan
- Key Laboratory for Molecular Biology and Biopharmaceutics, School of Life Science and TechnologyMianyang Normal UniversityMianyangSichuanChina
| | - Wei Chen
- Key Laboratory for Molecular Biology and Biopharmaceutics, School of Life Science and TechnologyMianyang Normal UniversityMianyangSichuanChina
- Ecological Security and Protection Key Laboratory of Sichuan ProvinceMianyang Normal UniversityMianyangSichuanChina
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty Biological & Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
105
|
Qin J, Li J, Gao Q, Wilson JJ, Zhang AB. Mitochondrial phylogeny and comparative mitogenomics of closely related pine moth pests (Lepidoptera: Dendrolimus). PeerJ 2019; 7:e7317. [PMID: 31372319 PMCID: PMC6659665 DOI: 10.7717/peerj.7317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/18/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Pine moths, Dendrolimus spp. (Lasiocampidae), are serious economic pests of conifer forests. Six closely related species (Dendrolimus punctatus, D. tabulaeformis, D. spectabilis, D. superans, D. houi, and D. kikuchii) occur in China and cause serious damage to coniferophyte. The complete mito genomes of Dendrolimus genus are significant to resolve the phylogenetic relationship and provide theoretical support in pest control. METHODS The complete mitogenomes of three species (D. superans, D. houi, and D. kikuchii) were sequenced based on PCR-amplified with universal primers, which were used to amplify initial fragments. Phylogenetic analyses were carried out with 78 complete mitogenomes of lepidopteran species from 10 superfamilies. RESULTS The complete mitochondrial genomes of these three species were 15,417, 15,381, and 15,377 bp in length, separately. The phylogenetic analyses produced consistent results for six Dendrolimus species based on complete mitogenomes, two major clades were formed, one containing D. spectabilis clustered with D. punctatus + D. tabulaeformis, and D. superans as the sister group to this three-taxon clade, the other containing D. kikuchii and D. houi. Comparative analyses of the congeneric mitochondrial genomes were performed, which showed that non-coding regions were more variable than the A+T rich region. The mitochondrial nucleotide diversity was more variable when compared within than among genus, and the concatenated tRNA region was the most conserved and the nd6 genes was the most variable.
Collapse
Affiliation(s)
- Jie Qin
- College of Life Sciences, Capital Normal University, Beijing, P. R. China
| | - Jing Li
- College of Life Sciences, Capital Normal University, Beijing, P. R. China
| | - Qiang Gao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P. R. China
| | - John-James Wilson
- International College Beijing, China Agricultural University, Beijing, P. R. China
| | - Ai-bing Zhang
- College of Life Sciences, Capital Normal University, Beijing, P. R. China
| |
Collapse
|
106
|
Zhou C, Tu H, Chen Y, Dou L, Meng Y, Yang N, Yue B, Wu Y. The complete mitochondrial genome of Aquila nipalensis and its phylogenetic position. Mitochondrial DNA B Resour 2019; 4:2152-2153. [PMID: 33365450 PMCID: PMC7687378 DOI: 10.1080/23802359.2019.1623118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Mitochondrial genome sequences are valuable resources for systematics and conservation biology studies. In this paper, we present the complete mitogenome of Aquila nipalensis which was 18,450 bp in length. The gene content and arrangement were typical for avian mtDNA. The overall A + T content of was 54.1%, and the AT skew was calculated as 0.12 for the complete mitogenome of A. nipalensis. The maximum-likelihood (ML) tree based on the concatenated 12 protein-coding genes (PCGs) revealed the basal phylogenetic position of A. nipalensis in Aquila.
Collapse
Affiliation(s)
- Chuang Zhou
- Key Laboratory of Bioresources and Ecoenvironment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, P. R. China
| | - Hongmei Tu
- Key Laboratory of Bioresources and Ecoenvironment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, P. R. China
| | - Yingzhu Chen
- Key Laboratory of Bioresources and Ecoenvironment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, P. R. China
| | - Liang Dou
- Key Laboratory of Bioresources and Ecoenvironment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, P. R. China
| | - Yang Meng
- Key Laboratory of Bioresources and Ecoenvironment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, P. R. China
| | - Nan Yang
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, P. R. China
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, P. R. China
| | - Yongjie Wu
- Key Laboratory of Bioresources and Ecoenvironment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
107
|
Liu F, Li Y, Liu J, Zhang Y, Bao Z, Wang S. The complete mitochondrial genome and phylogenetic analysis of Spondylus violaceus. Mitochondrial DNA B Resour 2019; 4:2908-2909. [PMID: 33365786 PMCID: PMC7707842 DOI: 10.1080/23802359.2019.1661296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spondylus violaceus is a species of the bivalve family Spondylidae, commonly known as thorny oyster. Here, we report the complete mitochondrial genome of S. violaceus. The mitochondrial genome of S. violaceus is 30,160 bp in length, which contains 12 protein-coding genes, 2 ribosomal RNA genes and 19 transfer RNA genes. The overall AT content (58.31%) was higher than GC content (41.69%). This is the first record of complete mitochondrial genome in the family Spondylidae, providing the basis for future taxonomic and phylogenetic studies of this bivalve family.
Collapse
Affiliation(s)
- Fuyun Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yuli Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
108
|
Yang M, Song L, Shi Y, Li J, Zhang Y, Song N. The first mitochondrial genome of the family Epicopeiidae and higher-level phylogeny of Macroheterocera (Lepidoptera: Ditrysia). Int J Biol Macromol 2019; 136:123-132. [PMID: 31199977 DOI: 10.1016/j.ijbiomac.2019.06.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/09/2019] [Accepted: 06/09/2019] [Indexed: 12/28/2022]
Abstract
The Macroheterocera clade contains most of the Lepidoptera species. However, extensive comparative and phylogenetic analyses of this group using complete mitochondrial genomes (mitogenome) are limited particularly in the context of increasing macroheteroceran mitogenomes reported to date. In this study, complete mitogenome of the Epicopeia hainesii is determined as the first Epicopeiidae species with mitogenome available. The whole mitogenome is circular with 15,395 bp long, and is highly biased toward A + T nucleotides (80.6%) in nucleotide composition. Comparative analyses show that gene content and arrangement of macroheteroceran mitogenomes are generally conservative and are typical of Lepidoptera but exceptions exist. In newly sequenced mitogenome, the motif "ATACTAA" is putatively located at the end of gene nad1, rather than in intergenic sequences between trnS2 and nad1 genes routinely observed in Lepidoptera. Interestingly, multiple phylogenetic analyses recover the six macroheteroceran superfamilies as Mimallonoidea + (Drepanoidea + ((Bombycoidea + Lasiocampoidea) + (Noctuoidea + Geometroidea))), providing supports for a large-scale transcriptomic study rather than various mitogenome- and multiple-gene-based investigations. In addition, our analyses consistently place the Epicopeiidae as sister group with Geometroidea, firstly demonstrating that this family is closer with Geometroidea than Drepanoidea based on mitogenome data.
Collapse
Affiliation(s)
- Mingsheng Yang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466000, China; Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu Song
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466000, China
| | - Yuxia Shi
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466000, China
| | - Junhao Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466000, China
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Entomological Museum, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Nan Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| |
Collapse
|
109
|
Tang Y, Zheng X, Zhong H, Li Q. Phylogenetics and comparative analysis of the mitochondrial genomes of three violet‐ringed octopuses. ZOOL SCR 2019. [DOI: 10.1111/zsc.12359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yan Tang
- Key Laboratory of Mariculture Ocean University of China Qingdao China
- Institute of Evolution and Marine Biodiversity Ocean University of China Qingdao China
| | - Xiaodong Zheng
- Key Laboratory of Mariculture Ocean University of China Qingdao China
- Institute of Evolution and Marine Biodiversity Ocean University of China Qingdao China
| | - Hong Zhong
- Shenzhen BGTX Foods Co., Ltd. Shenzhen China
| | - Qi Li
- Key Laboratory of Mariculture Ocean University of China Qingdao China
| |
Collapse
|
110
|
Bondarenko N, Bondarenko A, Starunov V, Slyusarev G. Comparative analysis of the mitochondrial genomes of Orthonectida: insights into the evolution of an invertebrate parasite species. Mol Genet Genomics 2019; 294:715-727. [PMID: 30848356 DOI: 10.1007/s00438-019-01543-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/26/2019] [Indexed: 11/26/2022]
Abstract
Among invertebrates, only a few groups still have uncertain phylogenetic position, Orthonectida, a small group of rare multi-cellular parasites of marine invertebrates, being one of them. Recent molecular and morphological findings suggest that orthonectids belong to Lophotrochozoa and are close to Annelida. Nevertheless, phylogenetic relationships between orthonectids and annelids are unclear, and the phylogeny within the group itself has never been studied. Sequencing of mitochondrial genomes is used here to clarify this issue. Complete mt genomes of the orthonectids Intoshia variabili and Rhopalura litoralis were characterized and compared with Intoshia linei mt genome. Our results show that Orthonectida mt genomes have undergone reduction and gene loss, and that they have complicated organization revealed in strand asymmetry in nucleotide composition, in some features of intergenic non-coding regions, tRNA duplication and folding. Moreover, all species of Orthonectida have a unique gene order with complicated rearrangement landscape. Significant differences in mitochondrial genomes in the three orthonectid species could be explained by the fact that their host species belong to different taxa (flat worms, nemertines and gastropods). Among the analyzed mt genomes of Orthonectida, I. linei possesses the closest gene order to the ancestral genome. All Orthonectida species are monophyletic, and in the phylogenetic tree are close to Pleistoannelida, and specifically, to Clitellata.
Collapse
Affiliation(s)
- N Bondarenko
- Department of Invertebrate Zoology, Faculty of Biology, Saint-Petersburg State University, Universitetskaja nab. 7/9, 199034, St. Petersburg, Russia.
| | - A Bondarenko
- Faculty of Physics, Saint-Petersburg State University, Universitetskaja nab. 7/9, 199034, St. Petersburg, Russia
| | - V Starunov
- Department of Invertebrate Zoology, Faculty of Biology, Saint-Petersburg State University, Universitetskaja nab. 7/9, 199034, St. Petersburg, Russia
| | - G Slyusarev
- Department of Invertebrate Zoology, Faculty of Biology, Saint-Petersburg State University, Universitetskaja nab. 7/9, 199034, St. Petersburg, Russia
| |
Collapse
|
111
|
Kumar V, Tyagi K, Kundu S, Chakraborty R, Singha D, Chandra K. The first complete mitochondrial genome of marigold pest thrips, Neohydatothrips samayunkur (Sericothripinae) and comparative analysis. Sci Rep 2019; 9:191. [PMID: 30655597 PMCID: PMC6336932 DOI: 10.1038/s41598-018-37889-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 12/10/2018] [Indexed: 11/16/2022] Open
Abstract
Complete mitogenomes from the order Thysanoptera are limited to representatives of the subfamily Thripinae. Therefore, in the present study, we sequenced the mitochondrial genome of Neohydatothrips samayunkur (15,295 bp), a member of subfamily Sericothripinae. The genome possesses the canonical 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), and two ribosomal RNA genes (rRNAs) as well as two putative control regions (CRs). The majority strand was 77.42% A + T content, and 22.58% G + C with weakly positive AT skew (0.04) and negative GC skew (-0.03). The majority of PCGs start with ATN codons as observed in other insect mitochondrial genomes. The GCG codon (Alanine) was not used in N. samayunkur. Most tRNAs have the typical cloverleaf secondary structure, however the DHU stem and loop were absent in trnV and trnS1, while the TΨC loop was absent in trnR and trnT. The two putative control regions (CR1 and CR2) show 99% sequence similarity indicated a possible duplication, and shared 57 bp repeats were identified. N. samayunkur showed extensive gene rearrangements, with 11 PCGs, 22 tRNAs, and two rRNAs translocated when compared to the ancestral insect. The gene trnL2 was separated from the 'trnL2-cox2' gene block, which is a conserved, ancestral gene order found in all previously sequenced thrips mitogenomes. Both maximum likelihood (ML) and Bayesian inference (BI) phylogenetic trees resulted in similar topologies. The phylogenetic position of N. samayunkur indicates that subfamily Sericothripinae is sister to subfamily Thripinae. More molecular data from different taxonomic groups is needed to understand thrips phylogeny and evolution.
Collapse
Affiliation(s)
- Vikas Kumar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Kaomud Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India.
| | - Shantanu Kundu
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Rajasree Chakraborty
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Devkant Singha
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Kailash Chandra
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M- Block, New Alipore, Kolkata, 700 053, West Bengal, India
| |
Collapse
|
112
|
Zhou C, Chen Y, Hao Y, Meng Y, Yue B, Zeng T. Characterization of the complete mitochondrial genome and phylogenetic analysis of Otus sunia (Strigiformes: Strigidae). Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2019.1574643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Chuang Zhou
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P. R. China
| | - Yinzhu Chen
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P. R. China
| | - Yanqin Hao
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P. R. China
| | - Yang Meng
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P. R. China
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P. R. China
| | - Tao Zeng
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
113
|
Wang G, Li X, Wang J, Zhang J, Liu W, Lu C, Guo Y, Dong B. The complete mitochondrial genome and phylogenetic analysis of Acaudina molpdioides. Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2019.1572476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Guilin Wang
- Laboratory for Morphogenesis and Evolution, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiang Li
- Laboratory for Morphogenesis and Evolution, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jinhui Wang
- East China Sea branch, State Oceanic Administration, Shanghai, China
| | - Jin Zhang
- Laboratory for Morphogenesis and Evolution, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wei Liu
- Ningde Marine Environment Monitoring Center, State Oceanic Administration, Ningde, China
- Key Laboratory of Integrated Monitoring and Applied Technology for Marine Harmful Algal Blooms, State Oceanic Administration, Shanghai, China
| | - Chao Lu
- Ningde Marine Environment Monitoring Center, State Oceanic Administration, Ningde, China
- Key Laboratory of Integrated Monitoring and Applied Technology for Marine Harmful Algal Blooms, State Oceanic Administration, Shanghai, China
| | - Yuchen Guo
- Ningde Marine Environment Monitoring Center, State Oceanic Administration, Ningde, China
- Key Laboratory of Integrated Monitoring and Applied Technology for Marine Harmful Algal Blooms, State Oceanic Administration, Shanghai, China
| | - Bo Dong
- Laboratory for Morphogenesis and Evolution, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
114
|
Su T, He B, Li K, Liang A. Comparative analysis of the mitochondrial genomes of oriental spittlebug trible Cosmoscartini: insights into the relationships among closely related taxa. BMC Genomics 2018; 19:961. [PMID: 30587118 PMCID: PMC6307326 DOI: 10.1186/s12864-018-5365-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 12/12/2018] [Indexed: 11/29/2022] Open
Abstract
Background Cosmoscartini (Hemiptera: Cercopoidea: Cercopidae) is a large and brightly colored Old World tropical tribe, currently containing over 310 phytophagous species (including some economically important pests of eucalyptus in China) in approximately 17 genera. However, very limited information of Cosmoscartini is available except for some scattered taxonomic studies. Even less is known about its phylogenetic relationship, especially among closely related genera or species. In this study, the detailed comparative genomic and phylogenetic analyses were performed on nine newly sequenced mitochondrial genomes (mitogenomes) of Cosmoscartini, with the purpose of exploring the taxonomic status of the previously defined genus Okiscarta and some closely related species within the genus Cosmoscarta. Results Mitogenomes of Cosmoscartini display similar genomic characters in terms of gene arrangement, nucleotide composition, codon usage and overlapping regions. However, there are also many differences in intergenic spacers, mismatches of tRNAs, and the control region. Additionally, the secondary structures of rRNAs within Cercopidae are inferred for the first time. Based on comparative genomic (especially for the substitution pattern of tRNA secondary structure) and phylogenetic analyses, the representative species of Okiscarta uchidae possesses similar structures with other Cosmoscarta species and is placed consistently in Cosmoscarta. Although Cosmoscarta bimacula is difficult to be distinguished from Cosmoscarta bispecularis by traditional morphological methods, evidence from mitogenomes highly support the relationships of (C. bimacula + Cosmoscarta rubroscutellata) + (C. bispecularis + Cosmoscarta sp.). Conclusions This study presents mitogenomes of nine Cosmoscartini species and represents the first detailed comparative genomic and phylogenetic analyses within Cercopidae. It is indicated that knowledge of mitogenomes can be effectively used to resolve phylogenetic relationships at low taxonomic levels. Sequencing more mitogenomes at various taxonomic levels will also improve our understanding of mitogenomic evolution and phylogeny in Cercopidae. Electronic supplementary material The online version of this article (10.1186/s12864-018-5365-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tianjuan Su
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo He
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Kui Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aiping Liang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
115
|
Su T, Liang A. Comparative analysis of seven mitochondrial genomes of Phymatostetha (Hemiptera: Cercopidae) and phylogenetic implications. Int J Biol Macromol 2018; 125:1112-1117. [PMID: 30578900 DOI: 10.1016/j.ijbiomac.2018.12.174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 11/25/2022]
Abstract
In this study, we present seven mitochondrial genomes (mitogenomes) of Phymatostetha. Each mitogenome contains the entire set of 37 genes, which arranged in the same order as the putative ancestral pattern of insects. The nucleotide composition of Phymatostetha mitogenomes is biased toward A/T, with rRNAs and PCG12 (i.e. the first and second codon positions of PCGs) exhibit the highest and lowest A + T content, respectively. Relative synonymous codon usage of PCGs also show that degenerate codons are biased to use more A/T than G/C. All tRNAs exhibit typical clover-leaf structure, with the exception of trnS1. Additionally, unpaired nucleotides are detected in trnS1 anticodon stem and trnR acceptor stem. Phylogenetic relationships, based on the dataset of 13 PCGs, 22tRNAs, and two rRNAs, are analyzed using both the Bayesian and maximum likelihood methods. Our results clearly revealed the systematic status of Phymatostetha species and robustly supported the monophyly of this genus, in which Phymatostetha semele is sister to other Phymatostetha species. It was demonstrated that mitogenome was an effective molecular marker to adequately resolve phylogeny at low taxonomic levels.
Collapse
Affiliation(s)
- Tianjuan Su
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aiping Liang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
116
|
Su T, Liang A. Characterization of the complete mitochondrial genome of Phymatostetha huangshanensis (Hemiptera: Cercopidae) and phylogenetic analysis. Int J Biol Macromol 2018; 119:60-69. [DOI: 10.1016/j.ijbiomac.2018.07.135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 11/25/2022]
|
117
|
Yang M, Song L, Shi Y, Yin Y, Wang Y, Zhang P, Chen J, Lou L, Liu X. The complete mitochondrial genome of a medicinal insect, Hydrillodes repugnalis (Lepidoptera: Noctuoidea: Erebidae), and related phylogenetic analysis. Int J Biol Macromol 2018; 123:485-493. [PMID: 30359659 DOI: 10.1016/j.ijbiomac.2018.10.149] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/21/2018] [Accepted: 10/21/2018] [Indexed: 02/08/2023]
Abstract
The complete mitochondrial genome (mitogenome) of an important medicinal insect Hydrillodes repugnalis (Lepidoptera: Noctuoidea) was sequenced and analyzed. The mitogenome is circular with 15,570 bp long, and shows typical gene content and arrangement. Nucleotide composition is highly biased toward A + T nucleotides (81.1%). All protein-coding genes (PCGs) initiate with canonical start codon ATN, except for cox1 being CGA. The typical stop codon TAA is used for most PCGs, while the nad4l uses the TAG, and cox1 and cox2 use incomplete termination codon T. All tRNAs have a typical clover-leaf structure, except for trnS1 (AGN) lacking the dihydrouridine arm. Comparative mitogenome analysis showed that the motif "ATGATAA" between atp8 and atp6, and the motif "ATACTAA" between trnS2 and nad1 are commonly present in noctuoid mitogenomes. In A + T-rich regions, the motif "ATAGA" and subsequent poly-T structure, the motif "ATTTA" and followed macrosatellite (AT)n element and an "A"-rich 3' end upstream of the trnM gene can be recognized across noctuoid mitogenomes. Phylogenetic analyses showed that H. repugnalis is nested into the Erebidae clade, consistently being sister to the Aganainae. Within Noctuoidea, the (Notodontidae + (Erebidae + (Nolidae + (Euteliidae + Noctuidae)))) was consistently recovered firstly based on multiple mitochondrial datasets.
Collapse
Affiliation(s)
- Mingsheng Yang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466000, China
| | - Lu Song
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466000, China
| | - Yuxia Shi
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466000, China
| | - Yanjun Yin
- Yongqiao District Plant Protection Station, Suzhou, Anhui 234000, China
| | - Yueying Wang
- Suzhou Academy of Agricultural Sciences, Suzhou, Anhui 234000, China
| | - Peipei Zhang
- Suzhou Academy of Agricultural Sciences, Suzhou, Anhui 234000, China
| | - Jiaqin Chen
- Oil Crops Research Institute of Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550000, China
| | - Lijiao Lou
- Oil Crops Research Institute of Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550000, China
| | - Xiaomeng Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466000, China.
| |
Collapse
|
118
|
Xin ZZ, Liu Y, Li CF, Zhang DZ, Jiang SH, Zhang HB, Zhou CL, Tang BP, Liu QN, Dai LS. Mitochondrial genome of Argopecten irradians reveals higher-level phylogenetic relationships in Anisomyaria. Int J Biol Macromol 2018; 117:1089-1092. [PMID: 29874557 DOI: 10.1016/j.ijbiomac.2018.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 11/25/2022]
Abstract
The complete mitochondrial genome of Argopecten irradians strain Zhongkehong was sequenced and annotated: it is 16,212 bp in length and contains twelve protein-coding genes (atp8 is absent, as in most species in Anisomyaria), two ribosomal RNA genes, and 21 transfer RNA genes (trnS is absent and there are two copies of trnF). The heavy strand has an overall A + T content of 57.3%; GC and AT skews are 0.249 and -0.262, respectively, indicating more Gs and more Ts than Cs and As. Phylogenetic analysis based on Bayesian Inference and Maximum Likelihood of the twelve protein-coding genes shows that A. irradians has close relationships with A. purpuratus and A. ventricosus; this indicated that A. irradians belongs to the Pectinidae family. The Pectinidae was sister to (Ostreidae + Mytilidae). This work provides general information on the evolution of cultured scallops.
Collapse
Affiliation(s)
- Zhao-Zhe Xin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, PR China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, PR China
| | - Yu Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, PR China
| | - Chao-Feng Li
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, PR China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, PR China.
| | - Sen-Hao Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, PR China
| | - Hua-Bin Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, PR China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, PR China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, PR China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, PR China.
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
119
|
Huang Y, Liu Y, Zhu XY, Xin ZZ, Zhang HB, Zhang DZ, Wang JL, Tang BP, Zhou CL, Liu QN, Dai LS. Comparative mitochondrial genome analysis of Grammodes geometrica and other noctuid insects reveals conserved mitochondrial genome organization and phylogeny. Int J Biol Macromol 2018; 125:1257-1265. [PMID: 30240711 DOI: 10.1016/j.ijbiomac.2018.09.104] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 12/01/2022]
Abstract
The mitochondrial genome (mitogenome) plays an important role in revealing molecular evolution. In this study, the complete mitogenome of Grammodes geometrica (G. geometrica) (Lepidoptera: Erebidae) was sequenced and characterized. The nucleotide composition of the genome is highly A + T biased, accounting for 80.49%. Most protein-coding genes (PCGs) are initiated by ATN codons except for the cytochrome oxidase subunit 1 (cox1) gene, which was initiated by CGA. The order and orientation of genes with the order trnM-trnI-trnQ-nad2 is a typical rearrangement compared with those ancestral insects in which trnM is located between trnQ and nad2. Most tRNA genes were folded into the typical cloverleaf structure except for trnS1 (AGN). The A + T-rich region contains the conserved motif "ATAGA" followed by a 19 bp poly-T stretch, which was also observed in other Noctuoidea species. In addition, we reconstructed phylogenetic trees among the nucleotide alignments of five families of Noctuoidea species except the Oenosandridae. Finally, we achieved a well-supported tree, which showed that G. geometrica belongs to the Erebidae family. Moreover, the relationships at the family-level can be displayed as follows: (Notodontidae + (Erebidae + (Nolidae + (Euteliidae + Noctuidae)))).
Collapse
Affiliation(s)
- Yan Huang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Yu Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
| | - Xiao-Yu Zhu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China
| | - Zhao-Zhe Xin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
| | - Hua-Bin Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China.
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China
| | - Jia-Lian Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China.
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China.
| |
Collapse
|
120
|
The complete mitochondrial genome of Dosinia japonica (Bivalvia: Veneridae). CONSERV GENET RESOUR 2018. [DOI: 10.1007/s12686-017-0828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
121
|
Complete mitochondrial genome of the first deep-sea spongicolid shrimp Spongiocaris panglao (Decapoda: Stenopodidea): Novel gene arrangement and the phylogenetic position and origin of Stenopodidea. Gene 2018; 676:123-138. [PMID: 30021129 DOI: 10.1016/j.gene.2018.07.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022]
Abstract
Stenopodidea Claus, 1872 (Crustacea: Decapoda) is one of the major groups of decapods crustaceans. Hitherto, only one complete mitochondrial genome (mitogenome) from the family Stenopodidae is available for the infraorder Stenopodidea. Here, we determined the complete mitogenome of Spongiocaris panglao de Grave and Saito, 2016 using Illumina sequencing, representing the first species from the family Spongicolidae. The 15,909 bp genome is a circular molecule and consists of 13 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes and one control region. Although the overall genome organization is typical for metazoans, the mitogenome of S. panglao shows some derived characters. A + T content of 77.42% in S. pamglao mitogenome is second-highest among the dacapods described to date. The trnR gene exhibit modified secondary structure with the TψC loop completely missing, which might be a putative autapomorphy of S. pamglao mitogenome. Compared with the shallow-water stenopodidean species S. hispidus, the control region of S. pamglao exhibits three characteristics: larger size, higher A + T content, and more tandem repeat sequences. The gene order exhibited difference from the ancestral mitogenome pattern of the Pancrustacea, with 5 tRNA genes rearrangement. The result from BI was agreed with most morphological characters and molecular evidences, revealing that Stenopodidea and Reptantia had the closest relationship, as the sister group of Caridea. Still, the alternative hypothesis supported from ML topology cannot be completely rejected based on the current data. Estimated times revealed that the two stenopodideans families Stenopodidae and Spongicolidae diverged from each other around 122 Mya. The divergence time of spongicolid shrimp is in good agreement with the origin of their hexactinellid hosts (78-144 Mya).
Collapse
|
122
|
Shen ZC, Chen L, Chen L, Li YX. Information from the mitochondrial genomes of two egg parasitoids, Gonatocerus sp. and Telenomus sp., reveals a controversial phylogenetic relationship between Mymaridae and Scelionidae. Genomics 2018; 111:1059-1065. [PMID: 31533898 DOI: 10.1016/j.ygeno.2018.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/15/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
Abstract
The taxonomic status and phylogenetic affinities of Mymaridae and Scelionidae are controversial, based on similarities between these families in the characteristics of adults, larvae, and eggs. In this study, we sequenced the mitochondrial (mt) genomes of representatives from these two families and found that the derived secondary structure of tRNA-Arg was the same in each family due to the absence of the D-stem. The segment of "cox1 trnL2cox2 trnK trnD atp8 atp6 cox3" in Gonatocerus sp. (Mymaridae) is conserved and distinct from those of four other species of Chalcidoidea but similar to that in Proctotrupoidea and Platygastroidea. However, phylogenetic analysis indicated that Gonatocerus sp. was sister group to other species of Chalcidoidea. Comparisons based on complete gene orders may be more useful in a phylogenetic and systematic context, as different branches may exhibit partially homoplastic gene orders.
Collapse
Affiliation(s)
- Zhao-Can Shen
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Long Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan-Xi Li
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
123
|
Gene arrangement and sequence of mitochondrial genomes yield insights into the phylogeny and evolution of bees and sphecid wasps (Hymenoptera: Apoidea). Mol Phylogenet Evol 2018; 124:1-9. [DOI: 10.1016/j.ympev.2018.02.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 02/12/2018] [Accepted: 02/27/2018] [Indexed: 11/21/2022]
|
124
|
Li Q, Wang X, Chen X, Han B. Complete mitochondrial genome of the tea looper caterpillar, Ectropis obliqua (Lepidoptera: Geometridae) with a phylogenetic analysis of Geometridae. Int J Biol Macromol 2018; 114:491-496. [DOI: 10.1016/j.ijbiomac.2018.02.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 10/18/2022]
|
125
|
Characterization of the Complete Mitochondrial Genome Sequences of Three Croakers (Perciformes, Sciaenidae) and Novel Insights into the Phylogenetics. Int J Mol Sci 2018; 19:ijms19061741. [PMID: 29895774 PMCID: PMC6032254 DOI: 10.3390/ijms19061741] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 11/18/2022] Open
Abstract
The three croakers (Nibea coibor, Protonibea diacanthus and Argyrosomus amoyensis, Perciformes, Sciaenidae) are important commercial species inhabiting the Eastern Indian Ocean and Western Pacific. Molecular data employed in previous research on phylogenetic reconstruction have not been adequate and complete, and systematic and comprehensive phylogenetic relationships for these fish are unresolved. We sequenced the complete mitochondrial genomes of the three croakers using next-generation sequencing for the first time. We analyzed the composition and phylogenies between 19 species in the family Sciaenidae using the mitochondrial protein coding sequences of 204 species in the Series Eupercaria. We present the characterization of the complete mitochondrial genome sequences of the three croakers. Gene arrangement and distribution of the three croakers are canonically identical and consistent with other vertebrates. We found that the family Sciaenidae is an independent branch that is isolated from the order Perciformes and does not belong to any extant classification. Therefore, this family is expected to belong to a new classification at the order level and needs further analysis. The evolution of Sciaenidae has lagged far behind the Perciformes differentiation. This study presents a novel insight into the phylogenetics of the family Sciaenidae from the order Perciformes and facilitates additional studies on the evolution and phylogeny of Series Eupercaria.
Collapse
|
126
|
Statistical Evaluation of Monophyly in the ‘Broad-Nosed Weevils’ through Molecular Phylogenetic Analysis Combining Mitochondrial Genome and Single-Locus Sequences (Curculionidae: Entiminae, Cyclominae, and Hyperinae). DIVERSITY 2018. [DOI: 10.3390/d10020021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
127
|
Yang M, Song L, Mao J, Shi Y, Wu C, Zhang Y, Huang L, Peng W, Liu X. Complete mitochondrial genome of the soybean leaffolder, Omiodes indicata (Lepidoptera: Pyraloidea: Crambidae), and phylogenetic analysis for Pyraloidea. Int J Biol Macromol 2018. [PMID: 29540301 DOI: 10.1016/j.ijbiomac.2018.03.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Complete mitochondrial genome (mitogenome) of the Omiodes indicata was sequenced and characterized. The circular mitogenome is 15,367bp long, including 13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and an A+T-rich region. Nucleotide composition is highly biased toward A+T nucleotides (81.6%). All 13 PCGs initiate with canonical start codon (ATN), except for cox1 that initiates with CGA. All tRNAs have a typical clover-leaf structure, except for trnS1 (AGN) in which the base pairs of the dihydrouridine (DHU) arm are reduced. In O. indicata, the motifs "ATGATAA" and "ATACTAA" between atp8 and atp6, trnS2 and nad1, respectively, and the motifs "ATAG" and "ATTTA" in the A+T-rich region can be identified. Comparative phylogenetic analyses based on four datasets show that the dataset including all coding positions of 13 PCGs exhibit the highest informativeness in resolving higher phylogeny of Pyraloidea. Bayesian inference (BI) and maximum likelihood (ML) analyses yield generally well-supported phylogenetic relationships among the eleven pyraloid subfamilies involved. However, the relationships among the five subfamilies (Acentropinae, Crambinae, Glaphyriinae, Schoenobiinae and Scopariinae) in ML analysis are ambiguous, which might be resolved by ample sampling in future mitogenome-based phylogenetic studies.
Collapse
Affiliation(s)
- Mingsheng Yang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Lu Song
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Jianhang Mao
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Yuxia Shi
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Changjing Wu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Yunxia Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Li Huang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Weifeng Peng
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Xiaomeng Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China.
| |
Collapse
|
128
|
Sarvani RK, Parmar DR, Tabasum W, Thota N, Sreenivas A, Gaur A. Characterization of the complete mitogenome of Indian Mouse Deer, Moschiola indica (Artiodactyla: Tragulidae) and its evolutionary significance. Sci Rep 2018; 8:2697. [PMID: 29426945 PMCID: PMC5807545 DOI: 10.1038/s41598-018-20946-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/24/2018] [Indexed: 11/09/2022] Open
Abstract
The mitochondrial genome of Indian mouse deer (Moschiola indica) was sequenced, assembled and characterized for the first time using 22 pairs of polymerase chain reaction (PCR) primers. The mitogenome of M. indica which is 16,444 bp in size was found very similar to most vertebrates in organisation that harbours 13 protein-coding genes, 22 transfer RNA, 2 ribosomal RNA and 1A + T-rich region. Its comparison with over 52 mitogenomes of the order Artiodactyla, showed a conserved nature of gene organisation, codon usage, gene orientation and evolutionary rates of proteins except that M. indica possesses an extra copy of trnF. The complete mitogenome and protein-coding genes of M. indica were found to be highly A + T biased. Rate of protein evolution was highest in atp8 and lowest in cox3. Further, a higher purifying selection pressure was found to be acting on family Tragulidae compared to Bovidae and Cervidae. The phylogenetic analysis of M. indica placed the Tragulidae as sister-group of all other ruminants, similar to previous analyses. Moschiola forms the sister-group to the other two tragulid genera Tragulus (from Asia) and Hyemoschus (from Africa), which is unexpected as usually the Asian species are thought to form a monophyletic group.
Collapse
Affiliation(s)
- Rama K Sarvani
- Laboratory for Conservation of Endangered Species (LaCONES), CSIR-Centre for Cellular and Molecular Biology (CCMB) Annexe 1, Hyderguda, Attapur, Hyderabad, 500048, India
| | - Drashti R Parmar
- Laboratory for Conservation of Endangered Species (LaCONES), CSIR-Centre for Cellular and Molecular Biology (CCMB) Annexe 1, Hyderguda, Attapur, Hyderabad, 500048, India
| | - Wajeeda Tabasum
- Laboratory for Conservation of Endangered Species (LaCONES), CSIR-Centre for Cellular and Molecular Biology (CCMB) Annexe 1, Hyderguda, Attapur, Hyderabad, 500048, India
| | - Neelima Thota
- Laboratory for Conservation of Endangered Species (LaCONES), CSIR-Centre for Cellular and Molecular Biology (CCMB) Annexe 1, Hyderguda, Attapur, Hyderabad, 500048, India
| | - Ara Sreenivas
- Laboratory for Conservation of Endangered Species (LaCONES), CSIR-Centre for Cellular and Molecular Biology (CCMB) Annexe 1, Hyderguda, Attapur, Hyderabad, 500048, India
| | - Ajay Gaur
- Laboratory for Conservation of Endangered Species (LaCONES), CSIR-Centre for Cellular and Molecular Biology (CCMB) Annexe 1, Hyderguda, Attapur, Hyderabad, 500048, India.
| |
Collapse
|
129
|
Tabasum W, Parmar DR, Jayaraman A, Mitra S, Sreenivas A, Kunteepuram V, Gaur A. The complete mitochondrial genome of Eld's deer ( Rucervus eldii eldii ) and its phylogenetic implications. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
130
|
Liu N, Li N, Yang P, Sun C, Fang J, Wang S. The complete mitochondrial genome of Damora sagana and phylogenetic analyses of the family Nymphalidae. Genes Genomics 2017; 40:109-122. [PMID: 29892904 DOI: 10.1007/s13258-017-0614-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/26/2017] [Indexed: 11/30/2022]
Abstract
The monotypic genus Damora (Nymphalidae, Heliconiinae) contains a single species, Damora sagana, which is widely distributed across southern China. Herein, its complete mitogenome was sequenced to further understand lepidopteran mitogenome characteristics, reconstruct the nymphalid family phylogeny, and infer the subdivision of Heliconiinae species. The circular mitogenome was 15,151 bp long, abundant in A and T, and comprised of 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and one control region with a gene arrangement typical of lepidopteran mitogenomes. ATN codons initiated all PCGs, except cytochrome c oxidase subunit 1 (COX1), which was initiated by a CGA sequence as has been observed in other lepidopterans. Three PCGs (COX1, COX2 and ND4) employed a single T termination signal, whereas others had the typical complete termination codon (TAA). All tRNA genes were folded into the typical cloverleaf structure except for tRNA-Ser (AGN). The A+T-rich region included the conserved motif 'ATAGA' followed by a 17 bp poly-T stretch, which was also observed in tribe Argynnini mitogenomes. A phylogenetic tree was constructed via multiple methods using the 13 PCGs data of D. sagana and other available mitogenomes of nymphalid species. All three phylogenetic trees yielded the same topology. These results were consistent with those from previous studies of most major nymphalid groups, except those regarding tribe subdivision in certain subfamilies such as Argynnini + (Acraeini + Heliconiini) for Heliconiine. Furthermore, our analyses identified that the genus Cethosia was grouped with the genus Acraea composing the tribe Acraeini with strong support.
Collapse
Affiliation(s)
- Naiyi Liu
- School of Life Sciences, Anhui University, Hefei, China
| | - Na Li
- School of Life Sciences, Anhui University, Hefei, China
| | - Pengyu Yang
- School of Life Sciences, Anhui University, Hefei, China
| | - Chunqin Sun
- School of Life Sciences, Anhui University, Hefei, China
| | - Jie Fang
- School of Life Sciences, Anhui University, Hefei, China.
| | - Shuyan Wang
- School of Life Sciences, Anhui University, Hefei, China.
| |
Collapse
|
131
|
Characterization of the complete mitochondrial genome of Japanagallia spinosa and Durgades nigropicta (Hemiptera: Cicadellidae: Megophthalminae). BIOCHEM SYST ECOL 2017. [DOI: 10.1016/j.bse.2017.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
132
|
Complete mitochondrial genome of Taharana fasciana (Insecta, Hemiptera: Cicadellidae) and comparison with other Cicadellidae insects. Genetica 2017; 145:593-602. [DOI: 10.1007/s10709-017-9984-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/11/2017] [Indexed: 11/25/2022]
|
133
|
Song N, Cai W, Li H. Deep-level phylogeny of Cicadomorpha inferred from mitochondrial genomes sequenced by NGS. Sci Rep 2017; 7:10429. [PMID: 28874826 PMCID: PMC5585334 DOI: 10.1038/s41598-017-11132-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/21/2017] [Indexed: 11/09/2022] Open
Abstract
Recent development and advancement of next-generation sequencing (NGS) technologies have enabled the determination of mitochondrial genome (mitogenome) at extremely efficiency. In this study, complete or partial mitogenomes for 19 cicadomorphan species and six fulgoroid species were reconstructed by using the method of high-throughput sequencing from pooled DNA samples. Annotation analyses showed that the mitogenomes obtained have the typical insect mitogenomic content and structure. Combined with the existing hemipteran mitogenomes, a series of datasets with all 37 mitochondrial genes (up to 14,381 nt total) under different coding schemes were compiled to test previous hypotheses of deep-level phylogeny of Cicadomorpha. Thirty-seven species representing Cicadomorpha constituted the ingroup. A taxon sampling with nine species from Fulgoroidea and six from Heteroptera comprised the outgroup. The phylogenetic reconstructions congruently recovered the monophyly of each superfamily within Cicadomorpha. Furthermore, the hypothesis (Membracoidea + (Cicadoidea + Cercopoidea)) was strongly supported under the heterogeneous CAT model.
Collapse
Affiliation(s)
- Nan Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Wanzhi Cai
- Department of Entomology, China Agricultural University, Beijing, 100094, China
| | - Hu Li
- Department of Entomology, China Agricultural University, Beijing, 100094, China
| |
Collapse
|
134
|
Xin ZZ, Liu Y, Zhang DZ, Wang ZF, Tang BP, Zhang HB, Zhou CL, Chai XY, Liu QN. Comparative mitochondrial genome analysis of Spilarctia subcarnea and other noctuid insects. Int J Biol Macromol 2017; 107:121-128. [PMID: 28866019 DOI: 10.1016/j.ijbiomac.2017.08.153] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/27/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022]
Abstract
This study was performed to better understand the phylogenetic relationships within the lepidopteran superfamily Noctuoidea. The mitochondrial genome (mitogenome) has been extensively used for studying phylogenetic relationships at different taxonomic levels. In this study, the complete mitogenome of Spilarctia subcarnea (Noctuoidea: Erebidae) was sequenced and annotated. The mitogenome is 15,441bp in length, containing 13 typical protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs) and a noncoding control region (CR). The order and orientation of genes of S. subcarnea mitogenome with the order trnM-trnI-trnQ-nad2 is different from the ancestral insects in which trnM is located between trnQ and nad2 (trnI-trnQ-trnM-nad2). The phylogenetic relationships based on mitochondrial sequences using Bayesian inference and Maximum likelihood methods showed that S. subcarnea was closely related to Lemyra melli, supporting that S. subcarnea belongs to Erebidae. These analyses confirm that Lymantriidae should be included as subfamilies within Erebidae. The Erebidae was sister to (Nolidae+(Euteliidae+Noctuidae)); Notodontidae is sister to the other families of Noctuoidea in our study.
Collapse
Affiliation(s)
- Zhao-Zhe Xin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 210009, PR China
| | - Yu Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 210009, PR China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Zheng-Fei Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China.
| | - Hua-Bin Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Xin-Yue Chai
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China.
| |
Collapse
|
135
|
Yao J, Yang H, Dai R. Characterization of the complete mitochondrial genome of Acanthoscelides obtectus (Coleoptera: Chrysomelidae: Bruchinae) with phylogenetic analysis. Genetica 2017; 145:397-408. [PMID: 28730527 DOI: 10.1007/s10709-017-9975-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/04/2017] [Indexed: 11/26/2022]
Abstract
Acanthoscelides obtectus is a common species of the subfamily Bruchinae and a worldwide-distributed seed-feeding beetle. The complete mitochondrial genome of A. obtectus is 16,130 bp in length with an A + T content of 76.4%. It contains a positive AT skew and a negative GC skew. The mitogenome of A. obtectus contains 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes and a non-coding region (D-loop). All PCGs start with an ATN codon, and seven (ND3, ATP6, COIII, ND3, ND4L, ND6, and Cytb) of them terminate with TAA, while the remaining five (COI, COII, ND1, ND4, and ND5) terminate with a single T, ATP8 terminates with TGA. Except tRNA Ser , the secondary structures of 21 tRNAs that can be folded into a typical clover-leaf structure were identified. The secondary structures of lrRNA and srRNA were also predicted in this study. There are six domains with 48 helices in lrRNA and three domains with 32 helices in srRNA. The control region of A. obtectus is 1354 bp in size with the highest A + T content (83.5%) in a mitochondrial gene. Thirteen PCGs in 19 species have been used to infer their phylogenetic relationships. Our results show that A. obtectus belongs to the family Chrysomelidae (subfamily-Bruchinae). This is the first study on phylogenetic analyses involving the mitochondrial genes of A. obtectus and could provide basic data for future studies of mitochondrial genome diversities and the evolution of related insect lineages.
Collapse
Affiliation(s)
- Jie Yao
- The Provincial Key Laboratory for Agricultural Pest Management Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Hong Yang
- The Provincial Key Laboratory for Agricultural Pest Management Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Renhuai Dai
- The Provincial Key Laboratory for Agricultural Pest Management Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, Guizhou, People's Republic of China.
| |
Collapse
|
136
|
Complete mitochondrial genome of Clistocoeloma sinensis (Brachyura: Grapsoidea): Gene rearrangements and higher-level phylogeny of the Brachyura. Sci Rep 2017. [PMID: 28646134 PMCID: PMC5482888 DOI: 10.1038/s41598-017-04489-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Deciphering the animal mitochondrial genome (mitogenome) is very important to understand their molecular evolution and phylogenetic relationships. In this study, the complete mitogenome of Clistocoeloma sinensis was determined. The mitogenome of C. sinensis was 15,706 bp long, and its A+T content was 75.7%. The A+T skew of the mitogenome of C. sinensis was slightly negative (−0.020). All the transfer RNA genes had the typical cloverleaf structure, except for the trnS1 gene, which lacked a dihydroxyuridine arm. The two ribosomal RNA genes had 80.2% A+T content. The A+T-rich region spanned 684 bp. The gene order within the complete mitogenome of C. sinensis was identical to the pancrustacean ground pattern except for the translocation of trnH. Additionally, the gene order of trnI-trnQ-trnM in the pancrustacean ground pattern becomes trnQ-trnI-trnM in C. sinensis. Our phylogenetic analysis showed that C. sinensis and Sesarmops sinensis cluster together with high nodal support values, indicating that C. sinensis and S. sinensis have a sister group relationship. The results support that C. sinensis belongs to Grapsoidea, Sesarmidae. Our findings also indicate that Varunidae and Sesarmidae species share close relationships. Thus, mitogenomes are likely to be valuable tools for systematics in other groups of Crustacea.
Collapse
|
137
|
Jiang L, Zhao L, Cheng D, Zhu L, Zhang M, Ruan Q, Chen W. The complete mitochondrial genome sequence of the Sichuan Digging Frog, Kaloula rugifera (Anura: Microhylidae) and its phylogenetic implications. Gene 2017; 626:367-375. [PMID: 28536079 DOI: 10.1016/j.gene.2017.05.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/30/2017] [Accepted: 05/19/2017] [Indexed: 10/19/2022]
Abstract
The Sichuan Digging Frog (Kaloula rugifera) belongs to the family Dicroglossidae, which is endemic to northeastern Sichuan and southernmost Gansu provinces, in southwestern China. In this study, the complete mitochondrial genome of K. rugifera was sequenced. The mitogenome was 17,074bp in length, consisting of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and a non-coding control region. As in other vertebrates, most mitochondrial genes are encoded on the heavy strand, except for ND6 and eight tRNA genes which are encoded on the light strand. The overall base composition of the K. rugifera is 30.32% A, 25.76% C, 29.72% T, and 14.20% G, which is consistent with the lowest frequency for G content in typical amphibian animals' mitochondrial genomes. The alignment of the Kaloula species control regions exhibited high genetic variability and rich A+T content. Besides, 3 types of tandem repeat units were also identified in the control region. Phylogenetic tree demonstrated that K. rugifera was clustered together with K. borealis and K. verrucosa and they had a close relationship with each other. The complete mitogenome of K. rugifera can provide an important data for the studies on phylogenetic relationship to further explore the taxonomic status of Kaloula species.
Collapse
Affiliation(s)
- Lichun Jiang
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, Sichuan 621000, PR China; Key Laboratory for Molecular Biology and Biopharmaceutics, School of Life Science and Technology, Mianyang Normal University, Mianyang, Sichuan 621000, PR China
| | - Li Zhao
- Key Laboratory for Molecular Biology and Biopharmaceutics, School of Life Science and Technology, Mianyang Normal University, Mianyang, Sichuan 621000, PR China
| | - Dongmei Cheng
- Key Laboratory for Molecular Biology and Biopharmaceutics, School of Life Science and Technology, Mianyang Normal University, Mianyang, Sichuan 621000, PR China
| | - Lilan Zhu
- Key Laboratory for Molecular Biology and Biopharmaceutics, School of Life Science and Technology, Mianyang Normal University, Mianyang, Sichuan 621000, PR China
| | - Min Zhang
- Key Laboratory for Molecular Biology and Biopharmaceutics, School of Life Science and Technology, Mianyang Normal University, Mianyang, Sichuan 621000, PR China
| | - Qiping Ruan
- Key Laboratory for Molecular Biology and Biopharmaceutics, School of Life Science and Technology, Mianyang Normal University, Mianyang, Sichuan 621000, PR China.
| | - Wei Chen
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, Sichuan 621000, PR China.
| |
Collapse
|
138
|
Yi L, Ai Y, Ming L, Hai L, He J, Guo FC, Qiao XY, Ji R. Molecular diversity and phylogenetic analysis of domestic and wild Bactrian camel populations based on the mitochondrial ATP8 and ATP6 genes. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
139
|
Das SP, Swain S, Jena J, Das P. Genetic diversity and population structure of Cirrhinus mrigala revealed by mitochondrial ATPase 6 gene. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:495-500. [PMID: 28399684 DOI: 10.1080/24701394.2017.1310852] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The genetic diversity and population structure of Cirrhinus mrigala were studied using partial mitochondrial ATPase 6 gene. 155 individuals were collected from six distant rivers of peninsular India. A total of 11 haplotypes were found with haplotype diversity value of 0.46711 and nucleotide diversity 0.00154 indicating a low degree of genetic divergence among populations. The result of AMOVA analysis also revealed that 97.53% of the genetic variation contained within populations and 2.47% occurred among populations. An overall fixation index was found to be 0.02466 (p < .05). Pairwise Fst analysis showed significant genetic differentiation between the Kaveri and rest of the populations. The minimum spanning tree of the haplotype data demonstrated a common ancestral origin of the mrigal populations in peninsular rivers. From the overall results of the present study it may be inferred that mrigal population in peninsular India have low genetic differentiation. This information would be very essential for setting up of genetic improvement programmes, effective management, and conservation of natural genetic resources of mrigal.
Collapse
Affiliation(s)
- Sofia Priyadarsani Das
- a Fish Genetics and Biotechnology , Central Institute of Freshwater Aquaculture , Bhubaneswar , Bhubaneswar , India
| | - Subrat Swain
- a Fish Genetics and Biotechnology , Central Institute of Freshwater Aquaculture , Bhubaneswar , Bhubaneswar , India
| | - Joykrushna Jena
- b National Bureau of Fish Genetic Resources , Lucknow , India
| | - Paramananda Das
- a Fish Genetics and Biotechnology , Central Institute of Freshwater Aquaculture , Bhubaneswar , Bhubaneswar , India
| |
Collapse
|
140
|
Pu DQ, Liu HL, Gong YY, Ji PC, Li YJ, Mou FS, Wei SJ. Mitochondrial genomes of the hoverflies Episyrphus balteatus and Eupeodes corollae (Diptera: Syrphidae), with a phylogenetic analysis of Muscomorpha. Sci Rep 2017; 7:44300. [PMID: 28276531 PMCID: PMC5343577 DOI: 10.1038/srep44300] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/06/2017] [Indexed: 12/11/2022] Open
Abstract
The hoverflies Episyrphus balteatus and Eupeodes corollae (Diptera: Muscomorpha: Syrphidae) are important natural aphid predators. We obtained mitochondrial genome sequences from these two species using methods of PCR amplification and sequencing. The complete Episyrphus mitochondrial genome is 16,175 bp long while the incomplete one of Eupeodes is 15,326 bp long. All 37 typical mitochondrial genes are present in both species and arranged in ancestral positions and directions. The two mitochondrial genomes showed a biased A/T usage versus G/C. The cox1, cox2, cox3, cob and nad1 showed relatively low level of nucleotide diversity among protein-coding genes, while the trnM was the most conserved one without any nucleotide variation in stem regions within Muscomorpha. Phylogenetic relationships among the major lineages of Muscomorpha were reconstructed using a complete set of mitochondrial genes. Bayesian and maximum likelihood analyses generated congruent topologies. Our results supported the monophyly of five species within the Syrphidae (Syrphoidea). The Platypezoidea was sister to all other species of Muscomorpha in our phylogeny. Our study demonstrated the power of the complete mitochondrial gene set for phylogenetic analysis in Muscomorpha.
Collapse
Affiliation(s)
- De-qiang Pu
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610300, China
| | - Hong-ling Liu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Yi-yun Gong
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610300, China
| | - Pei-cheng Ji
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610300, China
| | - Yue-jian Li
- Institute of Horticulture Research, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Fang-sheng Mou
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610300, China
| | - Shu-jun Wei
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
141
|
Paulauskas A, Galdikaitė-Brazienė E, Radzijevskaja J, Aleksandravičienė A, Galdikas M. Genetic diversity of Ixodes ricinus (Ixodida: Ixodidae) ticks in sympatric and allopatric zones in Baltic countries. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2016; 41:244-253. [PMID: 27860008 DOI: 10.1111/jvec.12219] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
Ixodes ricinus (Linnaeus 1758) and Ixodes persulcatus (Schulze 1930) ticks are involved in the transmission of a wide variety of pathogens with considerable impact on human and animal health. The co-distribution zone of these two tick species is situated in the Baltic countries, which provides a special setting for the population studies. In the present study, genetic variability of I. ricinus ticks collected in allopatric and sympatric locations in the Baltic countries has been investigated using a sequence analysis of the mitochondrial DNA control region, 16S rRNA and cytb genes. There were 32 haplotypes (Hd: 0.8551) and 27 haplotypes (Hd:0.8213) of control region sequences from ticks in allopatric and sympatric zones detected, respectively. Out of 47 16S rRNA gene haplotypes, 32 haplotypes (Hd: 0.7213) were found in the allopatric zone and 27 (Hd:0.9572) in the sympatric zone. The Cytb gene was very conserved and monomorphic in ticks from the allopatric zone, whereas three unique haplotypes were observed in the sympatric zone. The higher number of unique haplotypes of the control region was detected in the allopatric zone. Median joining network and Fst analysis did not reveal a clear separation between ticks from the two zones.
Collapse
Affiliation(s)
- A Paulauskas
- Vytautas Magnus University, Vileikos St. 8, Kaunas, Lithuania
| | | | - J Radzijevskaja
- Vytautas Magnus University, Vileikos St. 8, Kaunas, Lithuania
| | | | - M Galdikas
- Vytautas Magnus University, Vileikos St. 8, Kaunas, Lithuania
| |
Collapse
|
142
|
Characterization of complete mitochondrial genome of fives tripe wrasse (Thalassoma quinquevittatum, Lay & Bennett, 1839) and phylogenetic analysis. Gene 2016; 598:71-78. [PMID: 27816474 DOI: 10.1016/j.gene.2016.10.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/16/2016] [Accepted: 10/28/2016] [Indexed: 11/21/2022]
Abstract
To further supplement the genome-level features in related species, T. quinquevittatum complete mtDNA was firstly sequenced and de novo assembled by next-generation sequencing. The full-length mtDNA of T. quinquevittatum was a 16,896bp fragment, which was atypical of Labridae, with 2 ribosomal RNA (rRNA) genes, 13 protein-coding genes (PCGs), 23 transfer RNA (tRNA) genes, and a major non-coding control region (D-loop region). Additionally, the mtDNA of T. quinquevittatum exhibited characteristics of A (27.1%), T (29.3%), G (17.8%), and C (25.8%) with a high A+T content (56.4%). Furthermore, the analysis of the average Ka/Ks in the 13 PCGs of three Labridae species indicated a strong purifying selection within this group. Additionally, the phylogenetic analysis based on 13 concatenated PCGs nucleotide and amino acid datasets, showed high value support for the following sister clade among the four genera (T. quinquevittatum, Halichoeres trimaculatus, Halichoeres melanurus, Parajulis poecilepterus). The complete mtDNA of the T. quinquevittatum provided important information for the study in population genetics and evolutionary theory.
Collapse
|
143
|
Chen PY, Zheng BY, Liu JX, Wei SJ. Next-Generation Sequencing of Two Mitochondrial Genomes from Family Pompilidae (Hymenoptera: Vespoidea) Reveal Novel Patterns of Gene Arrangement. Int J Mol Sci 2016; 17:ijms17101641. [PMID: 27727175 PMCID: PMC5085674 DOI: 10.3390/ijms17101641] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/14/2016] [Accepted: 09/20/2016] [Indexed: 01/09/2023] Open
Abstract
Animal mitochondrial genomes have provided large and diverse datasets for evolutionary studies. Here, the first two representative mitochondrial genomes from the family Pompilidae (Hymenoptera: Vespoidea) were determined using next-generation sequencing. The sequenced region of these two mitochondrial genomes from the species Auplopus sp. and Agenioideus sp. was 16,746 bp long with an A + T content of 83.12% and 16,596 bp long with an A + T content of 78.64%, respectively. In both species, all of the 37 typical mitochondrial genes were determined. The secondary structure of tRNA genes and rRNA genes were predicted and compared with those of other insects. Atypical trnS1 using abnormal anticodons TCT and lacking D-stem pairings was identified. There were 49 helices belonging to six domains in rrnL and 30 helices belonging to three domains in rrns present. Compared with the ancestral organization, four and two tRNA genes were rearranged in mitochondrial genomes of Auplopus and Agenioideus, respectively. In both species, trnM was shuffled upstream of the trnI-trnQ-trnM cluster, and trnA was translocated from the cluster trnA-trnR-trnN-trnS1-trnE-trnF to the region between nad1 and trnL1, which is novel to the Vespoidea. In Auplopus, the tRNA cluster trnW-trnC-trnY was shuffled to trnW-trnY-trnC. Phylogenetic analysis within Vespoidea revealed that Pompilidae and Mutillidae formed a sister lineage, and then sistered Formicidae. The genomes presented in this study have enriched the knowledge base of molecular markers, which is valuable in respect to studies about the gene rearrangement mechanism, genomic evolutionary processes and phylogeny of Hymenoptera.
Collapse
Affiliation(s)
- Peng-Yan Chen
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
- Department of Entomology, South China Agricultural University, Guangzhou 510640, China.
| | - Bo-Ying Zheng
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Jing-Xian Liu
- Department of Entomology, South China Agricultural University, Guangzhou 510640, China.
| | - Shu-Jun Wei
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
144
|
Song N, An S, Yin X, Cai W, Li H. Application of RNA-seq for mitogenome reconstruction, and reconsideration of long-branch artifacts in Hemiptera phylogeny. Sci Rep 2016; 6:33465. [PMID: 27633117 PMCID: PMC5025853 DOI: 10.1038/srep33465] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 08/31/2016] [Indexed: 11/15/2022] Open
Abstract
Hemiptera make up the largest nonholometabolan insect assemblage. Despite previous efforts to elucidate phylogeny within this group, relationships among the major sub-lineages remain uncertain. In particular, mitochondrial genome (mitogenome) data are still sparse for many important hemipteran insect groups. Recent mitogenomic analyses of Hemiptera have usually included no more than 50 species, with conflicting hypotheses presented. Here, we determined the nearly complete nucleotide sequence of the mitogenome for the aphid species of Rhopalosiphum padi using RNA-seq plus gap filling. The 15,205 bp mitogenome included all mitochondrial genes except for trnF. The mitogenome organization and size for R. padi are similar to previously reported aphid species. In addition, the phylogenetic relationships for Hemiptera were examined using a mitogenomic dataset which included sequences from 103 ingroup species and 19 outgroup species. Our results showed that the seven species representing the Aleyrodidae exhibit extremely long branches, and always cluster with long-branched outgroups. This lead to the failure of recovering a monophyletic Hemiptera in most analyses. The data treatment of Degen-coding for protein-coding genes and the site-heterogeneous CAT model show improved suppression of the long-branch effect. Under these conditions, the Sternorrhyncha was often recovered as the most basal clade in Hemiptera.
Collapse
Affiliation(s)
- Nan Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shiheng An
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xinming Yin
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Wanzhi Cai
- Department of Entomology, China Agricultural University, Beijing, China
| | - Hu Li
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
145
|
Li Q, Wei SJ, Tang P, Wu Q, Shi M, Sharkey MJ, Chen XX. Multiple Lines of Evidence from Mitochondrial Genomes Resolve Phylogenetic Relationships of Parasitic Wasps in Braconidae. Genome Biol Evol 2016; 8:2651-62. [PMID: 27503293 PMCID: PMC5630901 DOI: 10.1093/gbe/evw184] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2016] [Indexed: 11/30/2022] Open
Abstract
The rapid increase in the number of mitochondrial genomes in public databases provides opportunities for insect phylogenetic studies; but it also provides challenges because of gene rearrangements and variable substitution rates among both lineages and sites. Typically, phylogenetic studies use mitochondrial sequence data but exclude other features of the mitochondrial genome from analyses. Here, we undertook large-scale sequencing of mitochondrial genomes from a worldwide collection of specimens belonging to Braconidae, one of the largest families of Metazoa. The strand-asymmetry of base composition in the mitochondrial genomes of braconids is reversed, providing evidence for monophyly of the Braconidae. We have reconstructed a backbone phylogeny of the major lineages of Braconidae from gene order of the mitochondrial genomes. Standard phylogenetic analyses of DNA sequences provided strong support for both Cyclostomes and Noncyclostomes. Four subfamily complexes, that is, helconoid, euphoroid, sigalphoid, and microgastroid, within the Noncyclostomes were reconstructed robustly, the first three of which formed a monophyletic group sister to the last one. Aphidiinae was recovered as a lineage sister to other groups of Cyclostomes, while the Ichneutinae was recovered as paraphyletic. Separate analyses of the subdivided groups showed congruent relationships, employing different matrices and methods, for the internal nodes of the Cyclostomes and the microgastroid complex of subfamilies. This research, using multiple lines of evidence from mitochondrial genomes, illustrates multiple uses of mitochondrial genomes for phylogenetic inference in Braconidae.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Jun Wei
- Beijing Academy of Agriculture and Forestry Sciences, Institute of Plant and Environmental Protection, Beijing, China
| | - Pu Tang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qiong Wu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Min Shi
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | | | - Xue-Xin Chen
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
146
|
Husemann M, Sturm S, Curto M, Meimberg H, Habel JC. Four new mitochondrial genomes of the genus zosterops (aves: passeriformes: zosteropidae) from East Africa with a phylogenetic evaluation of the group. MITOCHONDRIAL DNA PART B-RESOURCES 2016; 1:544-548. [PMID: 33473551 PMCID: PMC7799947 DOI: 10.1080/23802359.2016.1198937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The white-eye birds of the genus Zosterops have been recognized for their high speciation rates in the past, but the relationships of the East African populations are not yet fully resolved. We sequenced and annotated mitogenomes of four populations currently assigned to three East African white-eye species, Zosterops senegalensis, Z. abyssinicus and Z. poliogaster. For Z. senegalensis specimens from two distant populations were sequenced; for the other taxa we used samples collected at one site. The mitogenomes ranged between 17,827 and 17,974 bp, in size similar to previously published mitogenomes analyzed for this genus from other geographic regions. The mitogenomes contain the classical set of 13 coding genes, two structural rRNA genes and 22 tRNA genes. We constructed a phylogeny using all complete mitogenomes currently available for the genus. The phylogeny supports an Asian or Oceanic origin of the genus Zosterops. The East African species represent a monophyletic clade, but the two specimens of Zosterops senegalensis from different regions do not group together, supporting previous hypotheses of cryptic species within the genus. The new genetic resources provided here may help to further explore the relationships and evolution of the genus.
Collapse
Affiliation(s)
- Martin Husemann
- Department of General Zoology, Institute of Biology, Martin-Luther University Halle-Wittenberg, Halle, Saale, Germany.,Department of Ecology and Ecosystem Management, Terrestrial Ecology Research Group, School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany.,Centrum Für Naturkunde, Universität Hamburg, Hamburg, Germany
| | - Sarah Sturm
- Department of Ecology and Ecosystem Management, Terrestrial Ecology Research Group, School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Manuel Curto
- Research Center in Biodiversity and Genetic Resources (CIBIO)/InBio Associated Laboratory, University of Porto, Vairão, Portugal.,Institute for Integrative Nature Conservation Research, University of Natural Resources and Life Sciences (BoKu), Vienna, Austria
| | - Harald Meimberg
- Institute for Integrative Nature Conservation Research, University of Natural Resources and Life Sciences (BoKu), Vienna, Austria
| | - Jan Christian Habel
- Department of Ecology and Ecosystem Management, Terrestrial Ecology Research Group, School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| |
Collapse
|
147
|
Jing H, Yan P, Li W, Li X, Song Z. The complete mitochondrial genome of Triplophysa lixianensis (Teleostei: Cypriniformes: Balitoridae) with phylogenetic consideration. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
148
|
Addamo AM, Vertino A, Stolarski J, García-Jiménez R, Taviani M, Machordom A. Merging scleractinian genera: the overwhelming genetic similarity between solitary Desmophyllum and colonial Lophelia. BMC Evol Biol 2016; 16:108. [PMID: 27193263 PMCID: PMC4870751 DOI: 10.1186/s12862-016-0654-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/12/2016] [Indexed: 12/16/2022] Open
Abstract
Background In recent years, several types of molecular markers and new microscale skeletal characters have shown potential as powerful tools for phylogenetic reconstructions and higher-level taxonomy of scleractinian corals. Nonetheless, discrimination of closely related taxa is still highly controversial in scleractinian coral research. Here we used newly sequenced complete mitochondrial genomes and 30 microsatellites to define the genetic divergence between two closely related azooxanthellate taxa of the family Caryophylliidae: solitary Desmophyllum dianthus and colonial Lophelia pertusa. Results In the mitochondrial control region, an astonishing 99.8 % of nucleotides between L. pertusa and D. dianthus were identical. Variability of the mitochondrial genomes of the two species is represented by only 12 non-synonymous out of 19 total nucleotide substitutions. Microsatellite sequence (37 loci) analysis of L. pertusa and D. dianthus showed genetic similarity is about 97 %. Our results also indicated that L. pertusa and D. dianthus show high skeletal plasticity in corallum shape and similarity in skeletal ontogeny, micromorphological (septal and wall granulations) and microstructural characters (arrangement of rapid accretion deposits, thickening deposits). Conclusions Molecularly and morphologically, the solitary Desmophyllum and the dendroid Lophelia appear to be significantly more similar to each other than other unambiguous coral genera analysed to date. This consequently leads to ascribe both taxa under the generic name Desmophyllum (priority by date of publication). Findings of this study demonstrate that coloniality may not be a robust taxonomic character in scleractinian corals. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0654-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Maria Addamo
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Agostina Vertino
- Dipartimento di Scienze dell'Ambiente e del Territorio e di Scienze della Terra, Università di Milano Bicocca (UNIMIB), Piazza della Scienza 4, 20126, Milan, Italy.,Department of Geology Renard Centre of Marine Geology, Universiteit Ghent, Krijgslaan 281, B-9000, Ghent, Belgium
| | - Jaroslaw Stolarski
- Polskiej Akademii Nauk, Instytut Paleobiologii, Twarda 51/55, PL-00-818, Warsaw, Poland
| | - Ricardo García-Jiménez
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Marco Taviani
- Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine (ISMAR), Via Gobetti 101, 40129, Bologna, Italy.,Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, 02543, MA, USA.,Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Annie Machordom
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| |
Collapse
|
149
|
Complete mitochondrial genome of the Himalayan serow (Capricornis thar) and its phylogenetic status within the genus Capricornis. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
150
|
Park JS, Kim MJ, Jeong SY, Kim SS, Kim I. Complete mitochondrial genomes of two gelechioids, Mesophleps albilinella and Dichomeris ustalella (Lepidoptera: Gelechiidae), with a description of gene rearrangement in Lepidoptera. Curr Genet 2016; 62:809-826. [PMID: 26952721 DOI: 10.1007/s00294-016-0585-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/20/2016] [Accepted: 02/24/2016] [Indexed: 10/22/2022]
Abstract
We sequenced the entire mitochondrial genome (mitogenome) of two gelechioids, Mesophleps albilinella and Dichomeris ustalella, and compared their genome organization and sequence composition to those of available gelechioid mitogenomes for an enhanced understanding of Gelechioidea genomic characteristics. We compared all available lepidopteran mitogenome arrangements, including that of M. albilinella, which is unique in Gelechioidea, to comprehend the extensiveness and mechanisms of gene rearrangement in Lepidoptera. The genomes of M. albilinella and D. ustalella are 15,274 and 15,410 bp in size, respectively, with the typical sets of mitochondrial (mt) genes. The COI gene begins with CGA (arginine) in all sequenced gelechioids, including M. albilinella and D. ustalella, reinforcing the feature as a synapomorphic trait, at least in the Gelechioidea. Each 353- and 321-bp long A + T-rich region of M. albilinella and D. ustalella contains one (D. ustalella) or two (M. albilinella) tRNA-like structures. The M. albilinella mitogenome has a unique gene arrangement among the Gelechioidea: ARNESF (the underline signifies an inverted gene) at the ND3 and ND5 junction, as opposed to the ARNSEF that is found in ancestral insects. An extensive search of available lepidopteran mitogenomes, including that of M. albilinella, turned up six rearrangements that differ from those of ancestral insects. Most of the rearrangements can be explained by the tandem duplication-random loss model, but inversion, which requires recombination, is also found in two cases, including M. albilinella. Excluding the MIQ rearrangement at the A + T-rich region and ND2 junction, which is found in nearly all Ditrysia, most of the remaining rearrangements found in Lepidoptera appear to be independently derived in that they are automorphic at several taxonomic scales, although current mitogenomic data are limited, particularly for congeneric data.
Collapse
Affiliation(s)
- Jeong Sun Park
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, 33, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Min Jee Kim
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, 33, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Su Yeon Jeong
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, 33, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Sung Soo Kim
- Research Institute for East Asian Environment and Biology, Seoul, 24, Arisu-ro 25na-gil, Gangdong-gu, Seoul, 05207, Republic of Korea
| | - Iksoo Kim
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, 33, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|