101
|
A novel protein family of neuronal modulators. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractA number of proteins homologous to recoverin have been identified in the brains of the several vertebrate species. The brainderived members originally contain four EF-hand domains, but NH2- terminal domain is aberrant. Many of these proteins inhibited light-induced rhodopsin phosphorylation at high [Ca2+], suggesting that the brain-derived members may act as a Ca2+-sensitive modulator of receptor phosphorylation, as recoverin does.
Collapse
|
102
|
The structure of rhodopsin and mechanisms of visual adaptation. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractRapidly advancing studies on rhodopsin have focused on new strategies for crystallization of this integral membrane protein for x-ray analysis and on alternative methods for structural determination from nuclear magnetic resonance data. Functional studies of the interactions between the apoprotein and its chromophore have clarified the role of the chromophore in deactivation of opsin and in photoactivation of the pigment.
Collapse
|
103
|
Crucial steps in photoreceptor adaptation: Regulation of phosphodiesterase and guanylate cyclase activities and Ca 2+-buffering. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThis commentary discusses the balance of phosphodiesterase and guanylate cyclase activities in vertebrate photoreceptors at moderate light intensities. The rate of cGMP hydrolysis and synthesis seem to equal each other. Ca2+ as regulator of both enzyme activities is also effectively buffered in photoreceptor cells by cytoplasmic buffer components.
Collapse
|
104
|
The atomic structure of visual rhodopsin: How and when? Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractStrong arguments are presented by Hargrave suggesting that the crystallization of visual rhodopsin for high resolution analysis by X-ray crystallography or electron microscopy is feasible. However, the effort needed to achieve this goal will most likely exceed the resources of a single laboratory and a concerted approach to the research is necessary.
Collapse
|
105
|
Molecular insights gained from covalently tethering cGMP to the ligand-binding sites of retinal rod cGMP-gated channels. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractA photoaffinity analog of cGMP has been used to biochemically identify a new ligand-binding subunit of the retinal rod cGMP-activated ion channel, as well as amino acids in contact with cGMP in the original subunit. Covalent tethering of this probe to channels in excised menbrane patches has revealed a functional heteogeneity in the ligand-binding sites that may arise from the two biochemically identified subunits.
Collapse
|
106
|
Abstract
AbstractRecent findings emphasize the complexity, both genetic and functional, of the manifold genes and mutations causing inherited retinal degeneration in humans. Knowledge of the genetic bases of these diseases can contribute to design of rational therapy, as well as elucidating the function of each gene product in normal visual processes.
Collapse
|
107
|
Channel structure and divalent cation regulation of phototransduction. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe identification of additional subunits of the cGMP-gated cation channel suggests exciting questions about their regulatory roles and about structure/functional relationships. How do the different subunits interact? How is the complex assembled into the plasma membrane? Divalent cations have been implicated in the regulation of adaptation. One often overlooked cation is magnesium. Could this ion play a role in phototransduction?
Collapse
|
108
|
Structure of the cGMP-gated channel. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x0003939x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe subunit structure of the cGMP-gated cation channel of rod photoreceptors is rapidly being defined, and in the process the mode of regulation by Ca2+-calmodulin unraveled. Intriguingly, early results suggest that additional subunits of unknown function are associated with the channel and remain to be identified.
Collapse
|
109
|
Linking genotypes with phenotypes in human retinal degenerations: Implications for future research and treatment. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractAlthough undoubtedly it will be incomplete by the time it is published, the target article by Daiger et al. organizes mutations in genes that produce retinal degenerations in humans into categories of clinically relevant phenotypes. Such classifications should help us understand the link between altered photoreceptor cell proteins and subsequent cell death, and they may yield insight into methods for preventing consequent blindness.
Collapse
|
110
|
Genetic and clinical heterogeneity in tapetal retinal dystrophies. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x0003925x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractLarge scale DNA-mutation screening in patients with hereditary retinal diseases greatly enhances our knowledge about retinal function and diseases. Scientists, clinicians, patients, and families involved with retinal disorders may directly benefit from these developments. However, certain aspects of this expanding knowledge, such as the correlation between genotype and phenotype, may be much more complicated than we expect at present.
Collapse
|
111
|
The determination of rhodopsin structure may require alternative approaches. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractThe structure of rhodopsin is a subject of intense interest. Solving the structure by traditional methods has proved exceedingly challenging. It may therefore be useful to confront the problem by a combination of alternate techniques. These include FTIR (Fourier transform infrared spectroscopy) and AFM (atomic force microscopy) on the intact protein. Furthermore, additional insights may be gained through structural investigations of discrete rhodopsin domains.
Collapse
|
112
|
Na-Ca + K exchanger and Ca 2+ homeostasis in retinal rod outer segments: Inactivation of the Ca 2+ efflux mode and possible involvement of intracellular Ca 2+ stores in Ca 2+ homeostasis. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractInactivation of the Ca2+ extrusion mode of the retinal rod Na- Ca + K exchanger is suggested to be the mechanism that prevents lowering of cytosolic free Ca2+ to < 1 nM when rod cells are saturated for a prolonged time under bright light conditions. Under these conditions, Ca2+ fluxes across disk membranes can contribute significantly to Ca2+ homeostasis in rods.
Collapse
|
113
|
Nuclear magnetic resonance studies on the structure and function of rhodopsin. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractMagic angle spinning (MAS) NMR methods provide a means of obtaining high resolution structural data on rhodopsin and its photoin termediates. Current work has focused on the structure of the retinal chromophore and its interactions with surrounding protein charges. The recent development of MAS NMR methods for measuring internuclear distances with a resolution of ∼0.2 will complement diffraction methods for addressing key mechanistic questions.
Collapse
|
114
|
Glutamate accumulation in the photoreceptor-presumed final common path of photoreceptor cell death. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractGenetic abnormalities of three factors related to the photoreceptor mechanism have been reported in both animal models and humans. Apoptotic mechanism has also been suggested as a final common pathway of photoreceptor cell death. Our findings of increased level of glutamate in photoreceptor cells in rds mice suggest that amino acid might mediate between these two pathological mechanisms.
Collapse
|
115
|
Unique lipids and unique properties of retinal proteins. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractAmino-terminal heteroacylation has been identified in retinal proteins including recoverin and α subunit of G-protein, transducin. The tissue-specific modification seems to mediate not only a proteinmembrane interaction but also a specific protein-protein interaction. The mechanism generating the heterogeneity and its physiological role are still unclear, but an interesting idea for the latter postulates a fine regulation of the signal transduction pathway by distinct N-acyl groups.
Collapse
|
116
|
Further insight into the structural and regulatory properties of the cGMP-gated channel. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractRecent studies from several different laboratories have provided further insight into structure-function relationships of cyclic nucleotide-gated channel and in particular the cCMPgated channel of rod photoreceptors. Site-directed mutagenesis and rod-olfactory chimeria constructs have defined important amino acids and peptide segments of the channel that are important in ion blockage, ligand specificity, and gating properties. Molecular cloning studies have indicated that cyclic nucleotide-gated channels consist of two subunits that are required to reproduce the properties of the native channels. Biochemical analysis of the cGMP-gated channel of rodcells have indicated that the 240 kDa protein that co-purifies with the 63 kDa channel subunit contains both the previously cloned second subunit of the channel and a glutamic acid-rich protein. The regulatory properties of the cGMP-gated channel from rod cells has also been studied in more detail. Studies indicate that the beta subunit of the cGMP-gated channel of rod cells contains the binding site for calmodulin. Interaction of calmodulin with the channel alters the apparent affinity of the channel for cGMP in all in vitro systems that have been studied. The significance of these recent studies are discussed in relation to the commentaries on the target article.
Collapse
|
117
|
Unsolved issues in S-modulin/recoverin study. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractS-Modulin is a frog homolog of recoverin. The function and the underlying mechanism of the action of these proteins are now understood in general. However, there remain some unsolved issues including; two distinct effects of S-modulin; Ca2+-dependent binding of S-modulin to membranes and a possible target protein; S-modulin-like proteins in other neurons. These issues are considered in this commentary.
Collapse
|
118
|
Mechanisms of photoreceptor degenerations. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe candidate gene approach has identified many causes of photoreceptor rod cell death in retinitis pigmentosa. Some mutations lead to increased cyclicGMP concentrations in rods. Rod photoreceptors are also particularly susceptible to some mutations in housekeeping genes. Although many more cases of macular degeneration than retinitis pigmentosa occur each year, there is much less known about both genetic and sporadic forms of this disease.
Collapse
|
119
|
Reduced cytoplasmic calcium concentration may be both necessary and sufficient for photoreceptor light adaptation. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractLight adaptation is modulated almost exclusively by changes in intracellular Ca2+ concentration, and other Ca2+-independent mechanisms are likely to play only a minor role. Changes in Ca2+i may be not only necessary for light adaptation to take place but sufficient to cause it.
Collapse
|
120
|
The genetic kaleidoscope of vision. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractSite-specific phenotypic effects of the 73 known alleles in the rhodopsin gene that cause retinal degeneration are difficult to interpret because most alleles are documented in only one case or one family, which means variation in effects could actually arise from interactions with other loci. However, sample sizes necessary to detect epistatic interaction may place an answer to this question beyond our grasp.
Collapse
|
121
|
Evidence that the type I adenylyl cyclase may be important for neuroplasticity: Mutant mice deficient in the gene for type I adenylyl cyclase show altered behavior and LTP. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x0003956x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe regulatory properties of the neurospecific, type I adenylyl cyclase and its distribution within brain have suggested that this enzyme may be important for neuroplasticity. To address this issue, the murine, Ca2+ -stimulated adenylyl cyclase (type I), was inactivated by targeted mutagenesis. Ca2+ -stimulated adenylyl cyclase activity was reduced 40% to 60% in the hippocampus, neocortex, and cerebellum. Long term potentiation in the CA1 region of the hippocampus from mutants was perturbed relative to controls. Both the initial slope and maxim um extent of changes in synaptic response were reduced. Although mutant mice learned to find a hidden platform normally in the Morris water task, they did not display a preference for the region where the platform had been when it was removed. The behavioral phenotype of these mice is very similar to that exhibited by mice which have been surgically lesioned in the hippocampus. These results indicate that disruption of the gene for the type I adenylyl cyclase produces changes in spatial memory and indicate that the cAMP signal transduction pathway may play an important role for synaptic plasticity.
Collapse
|
122
|
Calcium/calmodulin-sensitive adenylyl cyclase as an example of a molecular associative integrator. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractEvidence suggests that the Ca2+/calmodulin-sensitive adenylyl cyclase may play a key role in neural plasticity and learning in Aplysia, Drosophila, and mammals. This dually-regulated enzyme has been proposed as a possible site of stimulus convergence during associative learning. This commentary discusses the evidence that is required to demonstrate that a protein in a second messenger cascade actually functions as a molecular site of associative integration. It also addresses the issue of how a dually-regulated protein could contribute to the temporal pairing requirements of classical conditioning: that relationship between stimuli display both temporal contiguity and predictability.
Collapse
|
123
|
The key to rhodopsin function lies in the structure of its interface with transducin. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractLight activated rhodopsin functions by catalyzing the exchange of GTP for GDP on numerous copies of transducin. Peptide mapping has shown that at least six regions, three on rhodopsin and three on the transducin alpha subunit, are involved in the active interface between the two proteins. The most informative structural studies of rhodopsin should include focus on the transducin interaction.
Collapse
|
124
|
Cremers FP, Bitner-Glindzicz M, Pembrey ME, Ropers HH. Mapping and cloning hereditary deafness genes. Curr Opin Genet Dev 1995; 5:371-5. [PMID: 7549433 DOI: 10.1016/0959-437x(95)80053-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the past two years, considerable progress has been made in the mapping and cloning of human deafness genes. Highlights are the chromosomal localization of at least five genes for autosomal forms of non-syndromic deafness and, more recently, the cloning of an X-linked deafness gene, DFN3, and the Usher syndrome type IB gene. This last gene encodes a myosin-like protein and was identified as the human homolog of the mouse shaker-1 gene. The DFN3 gene Brain 4 encodes a POU domain containing transcription factor that is involved in the development of the inner ear.
Collapse
Affiliation(s)
- F P Cremers
- Department of Human Genetics, University Hospital Nijimegen, The Netherlands
| | | | | | | |
Collapse
|
125
|
Abstract
Usher's syndrome, type 3 (USH3) is characterized by progressive hearing loss. Usher's syndrome, type 3 has been supposed to be rare, occurring in 2% to 4% of all patients with Usher's syndrome. In a nationwide study we collected data on 229 patients with Usher's syndrome in Finland. Definite cases of USH3 were found in 30 (13%) of the 229 patients. An additional 61 patients had clinical evidence of earlier progression of their hearing impairment. We suggest that 91 (40%) of the 229 patients with Usher's syndrome represent cases of USH3.
Collapse
Affiliation(s)
- L Pakarinen
- Department of Otorhinolaryngology and Phoniatrics, Tampere University Hospital, Finland
| | | | | | | | | |
Collapse
|
126
|
Thäte C, Pongratz J, König A, Klamt B, Tsaoussidou S, Higgins M, Shows T, Jones C, Gessler M. CpG island clones for chromosome 11p--a resource for mapping and gene identification. Mamm Genome 1995; 6:421-5. [PMID: 7647465 DOI: 10.1007/bf00355644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A NotI end fragment library has been constructed for human Chromosome (Chr) 11p. Seventy-two clones were mapped to chromosomal subregions by use of somatic cell hybrids. The clones detect 44 different CpG islands, and we have isolated cosmid contigs for 36 of them. Extrapolation from the known 11p13 NotI restriction map suggests that every second CpG island from 11p containing a Not site is already represented in the clone collection. By sequence analysis all of the 11p13 clones exhibit typical features of CpG islands, and cross-species hybridization has been detected with at least one fragment in most cases. The cosmids serve as valuable linking clones for long-range restriction mapping. They also provide excellent starting material for transcript isolation procedures to identify genes on chromosome 11p associated with developmental anomalies and various tumor types. Several transcribed sequences have already been isolated with some of these clones.
Collapse
Affiliation(s)
- C Thäte
- Theodor-Boveri-Institut für Biowissenschaften (Biozentrum), Physiologische Chemie I, Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Cremers CW, Brown SD, Steel KP, Brunner HG, Read AP, Kimberling WJ. Gene linkage and genetic deafness. Int J Pediatr Otorhinolaryngol 1995; 32 Suppl:S167-74. [PMID: 7665287 DOI: 10.1016/0165-5876(94)01154-p] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- C W Cremers
- Department of Otorhinolaryngology, University Hospital Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
128
|
Abstract
PURPOSE To assess the state of knowledge of photoreceptor dystrophies. METHODS The current literature concerning photoreceptor dystrophies is reviewed, and their potential impact on concepts of pathogenesis of disease and clinical practice is assessed. RESULTS As a result of cooperative investigative work between researchers in various disciplines, major advances in the classification of retinal photoreceptor dystrophies have been made. Until recently, classification of retinal dystrophies was based on clinical observation alone, and it was evident that this method was imprecise and of limited value. Largely through the work of molecular biologists, it has been shown that diseases clinically indistinguishable from one another may be a result of mutations on a variety of genes; conversely, different mutations on a single gene may give rise to a variety of phenotypes. It is reassuring that it is possible to generate concepts as to potential pathogenetic mechanisms that exist in retinal dystrophies in light of this new knowledge. More important for the clinician is the potential impact on clinical practice. There is as yet no therapy by which the course of most of these disorders can be modified. However, there is a considerable body of work in which therapeutic intervention is being explored, and many researchers now see treatment as a justifiable objective of their work. CONCLUSIONS Knowledge of the causative mutation is of value to the clinician in that it provides a precise diagnosis and allows the distribution of the abnormal gene to be documented fully within a family. To take full advantage of the opportunities provided by current research, clinical practice will have to be modified, particularly if therapy can be justified.
Collapse
Affiliation(s)
- A C Bird
- Institute of Ophthalmology, Moorfields Eye Hospital, London University, United Kingdom
| |
Collapse
|
129
|
Weil D, Blanchard S, Kaplan J, Guilford P, Gibson F, Walsh J, Mburu P, Varela A, Levilliers J, Weston MD. Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature 1995; 374:60-1. [PMID: 7870171 DOI: 10.1038/374060a0] [Citation(s) in RCA: 766] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Usher syndrome represents the association of a hearing impairment with retinitis pigmentosa and is the most frequent cause of deaf-blindness in humans. It is inherited as an autosomal recessive trait which is clinically and genetically heterogeneous. Some patients show abnormal organization of microtubules in the axoneme of their photoreceptors cells (connecting cilium), nasal ciliar cells and sperm cells, as well as widespread degeneration of the organ of Corti. Usher syndrome type 1 (USH1) is characterized by a profound congenital sensorineural hearing loss, constant vestibular dysfunction and prepubertal onset of retinitis pigmentosa. Of three different genes responsible for USH1. USH1B maps to 11q13.5 (ref. 10) and accounts for about 75% of USH1 patients. The mouse deafness shaker-1 (sh1) mutation has been localized to the homologous murine region. Taking into account the cytoskeletal abnormalities in USH patients, the identification of a gene encoding an unconventional myosin as a candidate for shaker-1 (ref. 14) led us to consider the human homologue as a good candidate for the gene that is defective in USH1B. Here we present evidence that a gene encoding myosin VIIA is responsible for USH1B. Two different premature stop codons, a six-base-pair deletion and two different missense mutations were detected in five unrelated families. In one of these families, the mutations were identified in both alleles. These mutations, which are located at the amino-terminal end of the motor domain of the protein, are likely to result in the absence of a functional protein. Thus USH1B appears as a primary cytoskeletal protein defect. These results implicate the genes encoding other unconventional myosins and their interacting proteins as candidates for other genetic forms of Usher syndrome.
Collapse
Affiliation(s)
- D Weil
- Unité de Génétique Moléculaire Humaine (URA CNRS 1968), Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Gibson F, Walsh J, Mburu P, Varela A, Brown KA, Antonio M, Beisel KW, Steel KP, Brown SD. A type VII myosin encoded by the mouse deafness gene shaker-1. Nature 1995; 374:62-4. [PMID: 7870172 DOI: 10.1038/374062a0] [Citation(s) in RCA: 496] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Genetic deafness is common, affecting about 1 in 2,000 births. Many of these show primary abnormalities of the sensory neuroepithelia of the inner ear, as do several hearing-impaired mouse mutants, suggesting that genes involved in sensory transduction could be affected. Here we report the identification of one such gene, the mouse shaker-1 (sh1) gene. Shaker-1 homozygotes show hyperactivity, head-tossing and circling due to vestibular dysfunction, together with typical neuroepithelial-type cochlear defects involving dysfunction and progressive degeneration of the organ of Corti. The sh1 gene encodes an unconventional myosin molecule of the type VII family. Three mutations are described, two mis-sense mutations and a splice acceptor site mutation, all in the region encoding the myosin head. The myosin type VII molecule encoded by sh1 is the first molecule to be identified that is known, by virtue of its mutations, to be involved in auditory transduction.
Collapse
Affiliation(s)
- F Gibson
- Department of Biochemistry and Molecular Genetics, St Mary's Hospital Medical School, Imperial College of Science, Technology and Medicine, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
van Aarem A, Cremers CW, Pinckers AJ, Huygen PL, Hombergen GC, Kimberling BJ. The Usher syndrome type 2A: clinical findings in obligate carriers. Int J Pediatr Otorhinolaryngol 1995; 31:159-74. [PMID: 7782174 DOI: 10.1016/0165-5876(94)01081-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ten obligate carriers of Usher syndrome type 2A from 5 different families with 2 affected persons all underwent audiologic, vestibular and ophthalmologic examinations. They had a sensorineural hearing loss which was in excess of that expected for their age at all of the frequencies (0.25-8 kHz) tested, however, only a 10 dB (average) excess in hearing loss at 0.25-0.5 kHz proved to be significant. The speech discrimination scores obtained conformed with the hearing thresholds. Tympanometry, acoustic reflex and brain stem auditory-evoked potential findings were generally normal. Some vestibular abnormalities were found in a minority of the carrier sample, but not beyond the level of false positivity. Ophthalmologic findings were essentially normal, although in 5 carriers there was a subnormal electrooculography (EOG). These findings are not sufficient specific for carrier detection.
Collapse
Affiliation(s)
- A van Aarem
- Department of Otorhinolaryngology, University Hospital Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
132
|
Nowak NJ, Shows TB. Genetics of chromosome 11: loci for pediatric and adult malignancies, developmental disorders, and other diseases. Cancer Invest 1995; 13:646-59. [PMID: 7583717 DOI: 10.3109/07357909509024936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- N J Nowak
- Department of Human Genetics, Roswell Park Cancer Institute, Buffalo, New York, 14263, USA
| | | |
Collapse
|
133
|
Evans K, Gregory CY, Fryer A, Whittaker J, Duvall-Young J, Bird AC, Jay MR, Bhattacharya SS. The role of molecular genetics in the prenatal diagnosis of retinal dystrophies. Eye (Lond) 1995; 9 ( Pt 1):24-8. [PMID: 7713246 DOI: 10.1038/eye.1995.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Inherited retinal dystrophies are important causes of incurable blindness in developed countries. Advances in molecular genetics promise significant improvements in their management. Immediate benefits of present knowledge are presymptomatic and prenatal diagnosis in selected cases. To study the predictive power of these techniques a simulated genetic risk estimation was undertaken in a cone-rod retinal dystrophy pedigree known to be linked to chromosome 19. Using data on five fully informative, flanking DNA markers, phenotype was correctly assigned with only a 2% probability of error. If the two most closely linked markers were found to be uninformative, this error probability remained unchanged. Using genetic risk calculations and direct mutation detection many retinal dystrophies could now be identified by prenatal diagnosis.
Collapse
Affiliation(s)
- K Evans
- Department of Clinical Ophthalmology, Moorfields Eye Hospital, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Rosenfeld PJ, McKusick VA, Amberger JS, Dryja TP. Recent advances in the gene map of inherited eye disorders: primary hereditary diseases of the retina, choroid, and vitreous. J Med Genet 1994; 31:903-15. [PMID: 7891370 PMCID: PMC1016688 DOI: 10.1136/jmg.31.12.903] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- P J Rosenfeld
- Howe Laboratory, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston 02114
| | | | | | | |
Collapse
|
135
|
Coucke P, Van Camp G, Djoyodiharjo B, Smith SD, Frants RR, Padberg GW, Darby JK, Huizing EH, Cremers CW, Kimberling WJ. Linkage of autosomal dominant hearing loss to the short arm of chromosome 1 in two families. N Engl J Med 1994; 331:425-31. [PMID: 8035838 DOI: 10.1056/nejm199408183310702] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND At least half of the cases of profound deafness of early onset are caused by genetic factors, but few of the genetic defects have been identified. This is particularly true of the most common hereditary forms of deafness, which occur in the absence of any associated syndrome. METHODS We studied a large Indonesian family in which hearing loss was inherited in an autosomal dominant pattern. The hearing loss first affects the high frequencies during the teens or 20s and becomes profound within 10 years. To locate the responsible gene, we performed genetic-linkage analysis, using microsatellite markers distributed over the entire genome. We then performed linkage analyses in an American family and a Dutch family with similar patterns of hereditary hearing loss. RESULTS In the extended Indonesian family, a gene linked to deafness mapped to chromosome 1p, with a multipoint lod score of more than 7. In the American family, deafness was linked to the same locus on chromosome 1p, with a multipoint lod score of more than 5. In the Dutch family, however, this locus was ruled out. The flanking markers D1S255 and D1S211 defined a region of 6 cM on chromosome 1p that is likely to contain the gene associated with deafness in the first two families. CONCLUSIONS In some families with early-onset autosomal dominant hearing loss, the responsible gene is on chromosome 1p.
Collapse
Affiliation(s)
- P Coucke
- Department of Medical Genetics, University of Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Kajiwara K, Berson EL, Dryja TP. Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. Science 1994; 264:1604-8. [PMID: 8202715 DOI: 10.1126/science.8202715] [Citation(s) in RCA: 475] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In spite of recent advances in identifying genes causing monogenic human disease, very little is known about the genes involved in polygenic disease. Three families were identified with mutations in the unlinked photoreceptor-specific genes ROM1 and peripherin/RDS, in which only double heterozygotes develop retinitis pigmentosa (RP). These findings indicate that the allelic and nonallelic heterogeneity known to be a feature of monogenic RP is complicated further by interactions between unlinked mutations causing digenic RP. Recognition of the inheritance pattern exemplified by these three families might facilitate the identification of other examples of digenic inheritance in human disease.
Collapse
Affiliation(s)
- K Kajiwara
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston 02114
| | | | | |
Collapse
|
137
|
Smith RJ, Berlin CI, Hejtmancik JF, Keats BJ, Kimberling WJ, Lewis RA, Möller CG, Pelias MZ, Tranebjaerg L. Clinical diagnosis of the Usher syndromes. Usher Syndrome Consortium. AMERICAN JOURNAL OF MEDICAL GENETICS 1994; 50:32-8. [PMID: 8160750 DOI: 10.1002/ajmg.1320500107] [Citation(s) in RCA: 217] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The Usher syndromes are genetically distinct disorders which share specific phenotypic characteristics. This paper describes a set of clinical criteria recommended for the diagnosis of Usher syndrome type I and Usher syndrome type II. These criteria have been adopted by the Usher Syndrome Consortium and are used in studies reported by members of this Consortium.
Collapse
Affiliation(s)
- R J Smith
- Department of Otolaryngology, University of Iowa, Iowa City 52242
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Affiliation(s)
- G C Black
- Department of Biochemistry, University of Oxford, United Kingdom
| | | |
Collapse
|
139
|
Kwitek-Black AE, Carmi R, Duyk GM, Buetow KH, Elbedour K, Parvari R, Yandava CN, Stone EM, Sheffield VC. Linkage of Bardet-Biedl syndrome to chromosome 16q and evidence for non-allelic genetic heterogeneity. Nat Genet 1993; 5:392-6. [PMID: 8298649 DOI: 10.1038/ng1293-392] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Bardet-Biedl syndrome is an autosomal recessive disorder characterized by mental retardation, obesity, retinitis pigmentosa, polydactyly and hypogonadism. Other findings include hypertension, diabetes mellitus and renal and cardiovascular anomalies. We have performed a genome-wide search for linkage in a large inbred Bedouin family. Pairwise analysis established linkage with the locus D16S408 with no recombination and a lod score of 4.2. A multilocus lod score of 5.3 was observed. By demonstrating homozygosity, in all affected individuals, for the same allele of marker D16S408, further support for linkage is found, and the utility of homozygosity mapping using inbred families is demonstrated. In a second family, linkage was excluded at this locus, suggesting non-allelic genetic heterogeneity in this disorder.
Collapse
|
140
|
Pieke Dahl S, Kimberling WJ, Gorin MB, Weston MD, Furman JM, Pikus A, Möller C. Genetic heterogeneity of Usher syndrome type II. J Med Genet 1993; 30:843-8. [PMID: 7901420 PMCID: PMC1016567 DOI: 10.1136/jmg.30.10.843] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Usher syndrome is an autosomal recessive disorder characterised by retinitis pigmentosa and congenital sensorineural hearing loss. A gene for Usher syndrome type II (USH2) has been localised to chromosome 1q32-q41. DNA from a family with four of seven sibs affected with clinical characteristics of Usher syndrome type II was genotyped using markers spanning the 1q32-1q41 region. These included D1S70 and D1S81, which are believed to flank USH2. Genotypic results and subsequent linkage analysis indicated non-linkage of this family to these markers. The A test analysis for heterogeneity with this family and 32 other Usher type II families was statistically significant at p < 0.05. Further clinical evaluation of this family was done in light of the linkage results to determine if any phenotypic characteristics would allow for clinical identification of the unlinked type. No clear phenotypic differences were observed; however, this unlinked family may represent a previously unreported subtype of Usher type II characterised by a milder form of retinitis pigmentosa and mild vestibular abnormalities. Heterogeneity of Usher syndrome type II complicates efforts to isolate and clone Usher syndrome genes using linkage analysis and limits the use of DNA markers in early detection of Usher type II.
Collapse
Affiliation(s)
- S Pieke Dahl
- Genetics Department, Boys Town National Research Hospital, Omaha, NE 68131
| | | | | | | | | | | | | |
Collapse
|
141
|
Kimberling WJ, Möller CG, Davenport S, Priluck IA, Beighton PH, Greenberg J, Reardon W, Weston MD, Kenyon JB, Grunkemeyer JA. Linkage of Usher syndrome type I gene (USH1B) to the long arm of chromosome 11. Genomics 1992; 14:988-94. [PMID: 1478677 DOI: 10.1016/s0888-7543(05)80121-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Usher syndrome is the most commonly recognized cause of combined visual and hearing loss in technologically developed countries. There are several different types and all are inherited in an autosomal recessive manner. There may be as many as five different genes responsible for at least two closely related phenotypes. The nature of the gene defects is unknown, and positional cloning strategies are being employed to identify the genes. This is a report of the localization of one gene for Usher syndrome type I to chromosome 11q, probably distal to marker D11S527. Another USH1 gene had been previously localized to chromosome 14q, and this second localization establishes the existence of a new and independent locus for Usher syndrome.
Collapse
Affiliation(s)
- W J Kimberling
- Center for Hereditary Communication Disorders, Boys Town National Research Hospital, Omaha, Nebraska 68131
| | | | | | | | | | | | | | | | | | | |
Collapse
|