101
|
Yoshida S, Müller HAJ, Wodarz A, Ephrussi A. PKA-R1 spatially restricts Oskar expression for Drosophila embryonic patterning. Development 2004; 131:1401-10. [PMID: 14993189 DOI: 10.1242/dev.01034] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Targeting proteins to specific domains within the cell is central to the generation of polarity, which underlies many processes including cell fate specification and pattern formation during development. The anteroposterior and dorsoventral axes of the Drosophila melanogaster embryo are determined by the activities of localized maternal gene products. At the posterior pole of the oocyte, Oskar directs the assembly of the pole plasm, and is thus responsible for formation of abdomen and germline in the embryo. Tight restriction of oskar activity is achieved by mRNA localization, localization-dependent translation, anchoring of the RNA and protein, and stabilization of Oskar at the posterior pole. Here we report that the type 1 regulatory subunit of cAMP-dependent protein kinase (Pka-R1) is crucial for the restriction of Oskar protein to the oocyte posterior. Mutations in PKA-R1 cause premature and ectopic accumulation of Oskar protein throughout the oocyte. This phenotype is due to misregulation of PKA catalytic subunit activity and is suppressed by reducing catalytic subunit gene dosage. These data demonstrate that PKA mediates the spatial restriction of Oskar for anteroposterior patterning of the Drosophila embryo and that control of PKA activity by PKA-R1 is crucial in this process.
Collapse
Affiliation(s)
- Shoko Yoshida
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
102
|
Cook HA, Koppetsch BS, Wu J, Theurkauf WE. The Drosophila SDE3 homolog armitage is required for oskar mRNA silencing and embryonic axis specification. Cell 2004; 116:817-29. [PMID: 15035984 DOI: 10.1016/s0092-8674(04)00250-8] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 02/13/2004] [Accepted: 02/17/2004] [Indexed: 11/27/2022]
Abstract
Polarization of the microtubule cytoskeleton during early oogenesis is required to specify the posterior of the Drosophila oocyte, which is essential for asymmetric mRNA localization during mid-oogenesis and for embryonic axis specification. The posterior determinant oskar mRNA is translationally silent until mid-oogenesis. We show that mutations in armitage and three components of the RNAi pathway disrupt oskar mRNA translational silencing, polarization of the microtubule cytoskeleton, and posterior localization of oskar mRNA. armitage encodes a homolog of SDE3, a presumptive RNA helicase involved in posttranscriptional gene silencing (RNAi) in Arabidopsis, and is required for RNAi in Drosophila ovaries. Armitage forms an asymmetric network associated with the polarized microtubule cytoskeleton and is concentrated with translationally silent oskar mRNA in the oocyte. We conclude that RNA silencing is essential for establishment of the cytoskeletal polarity that initiates embryonic axis specification and for translational control of oskar mRNA.
Collapse
Affiliation(s)
- Heather A Cook
- Program in Molecular Medicine and the Program in Cell Dynamics, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
103
|
Palacios IM, Gatfield D, St Johnston D, Izaurralde E. An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay. Nature 2004; 427:753-7. [PMID: 14973490 DOI: 10.1038/nature02351] [Citation(s) in RCA: 279] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Accepted: 01/19/2004] [Indexed: 11/09/2022]
Abstract
The specification of both the germ line and abdomen in Drosophila depends on the localization of oskar messenger RNA to the posterior of the oocyte. This localization requires several trans-acting factors, including Barentsz and the Mago-Y14 heterodimer, which assemble with oskar mRNA into ribonucleoprotein particles (RNPs) and localize with it at the posterior pole. Although Barentsz localization in the germ line depends on Mago-Y14, no direct interaction between these proteins has been detected. Here, we demonstrate that the translation initiation factor eIF4AIII interacts with Barentsz and is a component of the oskar messenger RNP localization complex. Moreover, eIF4AIII interacts with Mago-Y14 and thus provides a molecular link between Barentsz and the heterodimer. The mammalian Mago (also known as Magoh)-Y14 heterodimer is a component of the exon junction complex. The exon junction complex is deposited on spliced mRNAs and functions in nonsense-mediated mRNA decay (NMD), a surveillance mechanism that degrades mRNAs with premature translation-termination codons. We show that both Barentsz and eIF4AIII are essential for NMD in human cells. Thus, we have identified eIF4AIII and Barentsz as components of a conserved protein complex that is essential for mRNA localization in flies and NMD in mammals.
Collapse
Affiliation(s)
- Isabel M Palacios
- Wellcome Trust/Cancer Research UK Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | | | | | | |
Collapse
|
104
|
Bono F, Ebert J, Unterholzner L, Güttler T, Izaurralde E, Conti E. Molecular insights into the interaction of PYM with the Mago-Y14 core of the exon junction complex. EMBO Rep 2004; 5:304-10. [PMID: 14968132 PMCID: PMC1299003 DOI: 10.1038/sj.embor.7400091] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Revised: 12/12/2003] [Accepted: 12/15/2003] [Indexed: 11/09/2022] Open
Abstract
The exon junction complex (EJC) is deposited on mRNAs as a consequence of splicing and influences postsplicing mRNA metabolism. The Mago-Y14 heterodimer is a core component of the EJC. Recently, the protein PYM has been identified as an interacting partner of Mago-Y14. Here we show that PYM is a cytoplasmic RNA-binding protein that is excluded from the nucleus by Crm1. PYM interacts directly with Mago-Y14 by means of its N-terminal domain. The crystal structure of the Drosophila ternary complex at 1.9 A resolution reveals that PYM binds Mago and Y14 simultaneously, capping their heterodimerization interface at conserved surface residues. Formation of this ternary complex is also observed with the human proteins. Mago residues involved in the interaction with PYM have been implicated in nonsense-mediated mRNA decay (NMD). Consistently, human PYM is active in NMD tethering assays. Together, these data suggest a role for PYM in NMD.
Collapse
Affiliation(s)
- Fulvia Bono
- European Molecular Biology Laboratory, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Judith Ebert
- European Molecular Biology Laboratory, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Leonie Unterholzner
- European Molecular Biology Laboratory, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Thomas Güttler
- European Molecular Biology Laboratory, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Elisa Izaurralde
- European Molecular Biology Laboratory, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Elena Conti
- European Molecular Biology Laboratory, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
- Tel: +49 6221 387 536; Fax: +49 6221 387 306; E-mail:
| |
Collapse
|
105
|
Li C, Lin RI, Lai MC, Ouyang P, Tarn WY. Nuclear Pnn/DRS protein binds to spliced mRNPs and participates in mRNA processing and export via interaction with RNPS1. Mol Cell Biol 2003; 23:7363-76. [PMID: 14517304 PMCID: PMC230327 DOI: 10.1128/mcb.23.20.7363-7376.2003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pnn/DRS protein is associated with desmosomes and colocalizes with splicing factors in nuclear speckled domains. The potential interaction of Pnn with RNPS1, a pre-mRNA splicing factor and a component of the exon-exon junction complex, prompted us to examine whether Pnn is involved in nuclear mRNA processing. By immunoprecipitation, we found that Pnn associates preferentially with mRNAs produced by splicing in vitro. Oligonucleotide-directed RNase H digestion revealed that Pnn binds to the spliced mRNAs at a position immediately upstream of the splice junction and that 5' splice site utilization determines the location of Pnn in alternatively spliced mRNAs. Immunoprecipitation further showed that Pnn binds to mRNAs produced from a transiently expressed reporter in vivo. Although associated with mRNPs, Pnn is a nuclear-restricted protein as revealed by the heterokaryon assay. Overexpression of an amino-terminal fragment of Pnn that directly interacts with RNPS1 leads to blockage of pre-mRNA splicing. However, although suppression of Pnn expression shows no significant effect on splicing, it leads to some extent to nuclear accumulation of bulk poly(A)(+) RNA. Therefore, Pnn may participate, via its interaction with RNPS1, in mRNA metabolism in the nucleus, including mRNA splicing and export.
Collapse
Affiliation(s)
- Chin Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
106
|
Roth S. The origin of dorsoventral polarity in Drosophila. Philos Trans R Soc Lond B Biol Sci 2003; 358:1317-29; discussion 1329. [PMID: 14511478 PMCID: PMC1693232 DOI: 10.1098/rstb.2003.1325] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In Drosophila dorsoventral (DV) polarity arises during oogenesis when the oocyte nucleus moves from a central posterior to an asymmetrical anterior position. Nuclear movement is a symmetry-breaking step and establishes orthogonality between the anteroposterior and the DV axes. The asymmetrically anchored nucleus defines a cortical region within the oocyte which accumulates high levels of gurken messenger RNA (mRNA) and protein. Gurken is an ovarian-specific member of the transforming growth factor-alpha (TGF-alpha) family of secreted ligands. Secreted Gurken forms a concentration gradient that results in a dorsal-to-ventral gradient of EGF receptor activation in the follicle cells surrounding the oocyte. This leads to concentration-dependent activation or repression of target genes of the EGF pathway in the follicular epithelium. One outcome of this process is the restriction of pipe expression to a ventral domain that comprises 40% of the egg circumference. Pipe presumably modifies extracellular matrix components that are secreted by the follicle cells and are present at the ventral side of embryo after egg deposition. Here, they activate a proteolytic cascade that generates a gradient of the diffusible ligand, Spätzle. Spätzle activates the Toll receptor at the surface of the embryo that stimulates the nuclear uptake of the transcription factor Dorsal. This leads to a nuclear concentration gradient of Dorsal that specifies the cell types along the DV axis of the embryo.
Collapse
Affiliation(s)
- Siegfried Roth
- Institut für Entwicklungsbiologie, Universität Köln, Gyrhofstrasse 17, 50923 Köln, Germany.
| |
Collapse
|
107
|
Doerflinger H, Benton R, Shulman JM, St Johnston D. The role of PAR-1 in regulating the polarised microtubule cytoskeleton in the Drosophila follicular epithelium. Development 2003; 130:3965-75. [PMID: 12874119 DOI: 10.1242/dev.00616] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The PAR-1 kinase plays a conserved role in cell polarity in C. elegans, Drosophila and mammals. We have investigated the role of PAR-1 in epithelial polarity by generating null mutant clones in the Drosophila follicular epithelium. Large clones show defects in apicobasal membrane polarity, but small clones induced later in development usually have a normal membrane polarity. However, all cells that lack PAR-1 accumulate spectrin and F-actin laterally, and show a strong increase in the density of microtubules. This is consistent with the observation that the mammalian PAR-1 homologues, the MARKs, dramatically reduce the number of microtubules, when overexpressed in tissue culture cells. The MARKs have been proposed to destabilize microtubules by inhibiting the stabilizing activity of the Tau family of microtubule-associated proteins. This is not the case in Drosophila, however, as null mutations in the single tau family member in the genome have no effect on the microtubule organisation in the follicle cells. Furthermore, PAR-1 activity stabilises microtubules, as microtubules in mutant cells depolymerise much more rapidly after cold or colcemid treatments. Loss of PAR-1 also disrupts the basal localisation of the microtubule plus ends, which are mislocalised to the centre of mutant cells. Thus, Drosophila PAR-1 regulates the density, stability and apicobasal organisation of microtubules. Although the direct targets of PAR-1 are unknown, we suggest that it functions by regulating the plus ends, possibly by capping them at the basal cortex.
Collapse
Affiliation(s)
- Hélène Doerflinger
- The Wellcome Trust/Cancer Research UK Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | | | | | | |
Collapse
|
108
|
Martin SG, Leclerc V, Smith-Litière K, St Johnston D. The identification of novel genes required for Drosophila anteroposterior axis formation in a germline clone screen using GFP-Staufen. Development 2003; 130:4201-15. [PMID: 12874138 DOI: 10.1242/dev.00630] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The anteroposterior axis of Drosophila is defined during oogenesis, when the polarisation of the oocyte microtubule cytoskeleton directs the localisation of bicoid and oskar mRNAs to the anterior and posterior poles, respectively. Although maternal-effect lethal and female-sterile screens have identified many mutants that disrupt these processes, these screens could not recover mutations in essential genes. Here we describe a genetic screen in germline clones for mutants that disrupt the localisation of GFP-Staufen in living oocytes, which overcomes this limitation. As Staufen localises to the posterior with oskar mRNA and to the anterior with bicoid mRNA, it acts as a marker for both poles of the oocyte, allowing the identification of mutants that affect the localisation of either mRNA, as well as mutants that disrupt oocyte polarity. Using this approach, we have identified 23 novel complementation groups on chromosome 3R that disrupt anteroposterior axis formation. Analyses of new alleles of spn-E and orb show that both SPN-E and ORB proteins are required to organise the microtubule cytoskeleton at stage 9, and to prevent premature cytoplasmic streaming. Furthermore, yps mutants partially suppress the premature cytoplasmic streaming of orb mutants. As orb, yps and spn-E encode RNA-binding proteins, they may regulate the translation of unidentified RNAs necessary for the polarisation of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Sophie G Martin
- The Wellcome Trust/Cancer Research UK Institute and the Department of Genetics, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QR, UK
| | | | | | | |
Collapse
|
109
|
Barentsz, a new component of the Staufen-containing ribonucleoprotein particles in mammalian cells, interacts with Staufen in an RNA-dependent manner. J Neurosci 2003. [PMID: 12843282 DOI: 10.1523/jneurosci.23-13-05778.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Staufen1, the mammalian homolog of Drosophila Staufen, assembles into ribonucleoprotein particles (RNPs), which are thought to transport and localize RNA into dendrites of mature hippocampal neurons. We therefore investigated whether additional components of the RNA localization complex besides Staufen are conserved. One candidate is the mammalian homolog of Drosophila Barentsz (Btz), which is essential for the localization of oskar mRNA to the posterior pole of the Drosophila oocyte and is a component of the oskar RNA localization complex along with Staufen. In this study, we report the characterization of mammalian Btz, which behaves like a nucleocytoplasmic shuttling protein. When expressed in the Drosophila egg chamber, mammalian Btz is still able to interact with Drosophila Staufen and reach the posterior pole in the wild-type oocyte, but does not rescue the btz mutant phenotype. Most interestingly, we show by immunoprecipitation assays that Btz interacts with mammalian Staufen in an RNA-dependent manner through a conserved domain, which encompasses the region of homology to the Drosophila Btz protein and contains a novel conserved motif. One candidate for an RNA that mediates this interaction is the dendritically localized brain cytoplasmic 1 transcript. In addition, Btz and Staufen1 colocalize within particles in the cell body and, to a more variable extent, in dendrites of mature hippocampal neurons. Together, our data suggest that the mRNA transport machinery is conserved during evolution, and that mammalian Btz is an additional component of the dendritic RNPs in hippocampal neurons.
Collapse
|
110
|
Abstract
The polarisation of the embryonic anteroposterior (AP) axis requires the establishment of positional cues with spatial information, and often involves complex intercellular communications, cell adhesion and cell movement. Recent work on several fronts has begun to shed light on how the initial asymmetries are established and maintained. In this review, I discuss the polarisation of the AP axis during Drosophila oogenesis, focusing on the function of the Notch signalling pathway and its relationship to the activation of the epidermal growth factor receptor. I make special reference to some aspects of Notch activity regulation during oogenesis that appear to depart from the canonical pathway. Finally, I hypothesise on possible similarities between these activities of Notch signalling during Drosophila oogenesis and vertebrate somitogenesis.
Collapse
Affiliation(s)
- Hernán López-Schier
- Howard Hughes Medical Institute, The Rockefeller University (Box 314) 1230 York Ave., New York, NY 10021, USA.
| |
Collapse
|
111
|
Fribourg S, Gatfield D, Izaurralde E, Conti E. A novel mode of RBD-protein recognition in the Y14-Mago complex. Nat Struct Mol Biol 2003; 10:433-9. [PMID: 12730685 DOI: 10.1038/nsb926] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2003] [Accepted: 04/14/2003] [Indexed: 11/08/2022]
Abstract
Y14 and Mago are conserved eukaryotic proteins that associate with spliced mRNAs in the nucleus and remain associated at exon junctions during and after nuclear export. In the cytoplasm, Y14 is involved in mRNA quality control via the nonsense-mediated mRNA decay (NMD) pathway and, together with Mago, is involved in localization of osk (oskar) mRNA. We have determined the crystal structure of the complex between Drosophila melanogaster Y14 and Mago at a resolution of 2.5 A. The structure reveals an atypical mode of protein-protein recognition mediated by an RNA-binding domain (RBD). Instead of binding RNA, the RBD of Y14 engages its RNP1 and RNP2 motifs to bind Mago. Using structure-guided mutagenesis, we show that Mago is also a component of the NMD pathway, and that its association with Y14 is essential for function. Heterodimerization creates a single structural platform that interacts with the NMD machinery via phylogenetically conserved residues.
Collapse
Affiliation(s)
- Sébastien Fribourg
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
112
|
Abstract
BACKGROUND Splicing of pre-mRNA in eukaryotes imprints the resulting mRNA with a specific multiprotein complex, the exon-exon junction complex (EJC), at the sites of intron removal. The proteins of the EJC, Y14, Magoh, Aly/REF, RNPS1, Srm160, and Upf3, play critical roles in postsplicing processing, including nuclear export and cytoplasmic localization of the mRNA, and the nonsense-mediated mRNA decay (NMD) surveillance process. Y14 and Magoh are of particular interest because they remain associated with the mRNA in the same position after its export to the cytoplasm and require translation of the mRNA for removal. This tenacious, persistent, splicing-dependent, yet RNA sequence-independent, association suggests an important signaling function and must require distinct structural features for these proteins. RESULTS We describe the high-resolution structure and biochemical properties of the highly conserved human Y14 and Magoh proteins. Magoh has an unusual structure comprised of an extremely flat, six-stranded anti-parallel beta sheet packed against two helices. Surprisingly, Magoh binds with high affinity to the RNP motif RNA binding domain (RBD) of Y14 and completely masks its RNA binding surface. CONCLUSIONS The structure and properties of the Y14-Magoh complex suggest how the pre-mRNA splicing machinery might control the formation of a stable EJC-mRNA complex at splice junctions.
Collapse
Affiliation(s)
- Chi-Kong Lau
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA
| | | | | | | |
Collapse
|
113
|
Abstract
Pre-mRNA splicing is essential for generating mature mRNA and is also important for subsequent mRNA export and quality control. The splicing history is imprinted on spliced mRNA through the deposition of a splicing-dependent multiprotein complex, the exon junction complex (EJC), at approximately 20 nucleotides upstream of exon-exon junctions. The EJC is a dynamic structure containing proteins functioning in the nuclear export and nonsense-mediated decay of spliced mRNAs. Mago nashi (Mago) and Y14 are core components of the EJC, and they form a stable heterodimer that strongly associates with spliced mRNA. Here we report a 1.85 A-resolution structure of the Drosophila Mago-Y14 complex. Surprisingly, the structure shows that the canonical RNA-binding surface of the Y14 RNA recognition motif (RRM) is involved in extensive protein-protein interactions with Mago. This unexpected finding provides important insights for understanding the molecular mechanisms of EJC assembly and RRM-mediated protein-protein interactions.
Collapse
Affiliation(s)
- Hang Shi
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, New York 11724, USA
| | | |
Collapse
|
114
|
Abstract
Although it has been known since the late 1970s that intron-containing and intronless versions of otherwise identical genes can exhibit dramatically different expression profiles, the underlying molecular mechanisms have only lately come to light. This review summarizes recent progress in our understanding of how introns and the act of their removal by the spliceosome can influence and enhance almost every step of mRNA metabolism. A rudimentary understanding of these effects can prove invaluable to researchers interested in optimizing transgene expression in eukaryotic systems.
Collapse
Affiliation(s)
- Hervé Le Hir
- Howard Hughes Medical Institute, Department of Biochemistry, MS009 Brandeis University, Waltham, MA 02454, USA
| | | | | |
Collapse
|
115
|
MacDougall N, Clark A, MacDougall E, Davis I. Drosophila gurken (TGFalpha) mRNA localizes as particles that move within the oocyte in two dynein-dependent steps. Dev Cell 2003; 4:307-19. [PMID: 12636913 DOI: 10.1016/s1534-5807(03)00058-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In Drosophila oocytes, gurken mRNA localization orientates the TGF-alpha signal to establish the anteroposterior and dorsoventral axes. We have elucidated the path and mechanism of gurken mRNA localization by time-lapse cinematography of injected fluorescent transcripts in living oocytes. gurken RNA assembles into particles that move in two distinct steps, both requiring microtubules and cytoplasmic Dynein. gurken particles first move toward the anterior and then turn and move dorsally toward the oocyte nucleus. We present evidence suggesting that the two steps of gurken RNA transport occur on distinct arrays of microtubules. Such distinct microtubule networks could provide a general mechanism for one motor to transport different cargos to distinct subcellular destinations.
Collapse
Affiliation(s)
- Nina MacDougall
- Wellcome Trust Centre for Cell Biology, ICMB, King's Buildings, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, Scotland, United Kingdom
| | | | | | | |
Collapse
|
116
|
Jankovics F, Sinka R, Lukácsovich T, Erdélyi M. MOESIN crosslinks actin and cell membrane in Drosophila oocytes and is required for OSKAR anchoring. Curr Biol 2002; 12:2060-5. [PMID: 12477397 DOI: 10.1016/s0960-9822(02)01256-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In Drosophila, development of the embryonic germ cells depends on posterior transport and site-specific translation of oskar (osk) mRNA and on interdependent anchoring of the osk mRNA and protein within the posterior subcortical region of the oocyte. Transport of the osk mRNA is mediated by microtubules, while anchoring of the osk gene products at the posterior pole of the oocyte is suggested to be microfilament dependent. To date, only a single actin binding protein (TropomyosinII) has been identified with a putative role in osk mRNA and protein anchoring. This communication demonstrates that mutations in the Drosophila moesin (Dmoe) gene that encodes another actin binding protein result in delocalization of osk mRNA and protein from the posterior subcortical region and, as a consequence, in failure of embryonic germ cell development. In Dmoe mutant oocytes, the subcortical actin network is detached from the cell membrane, while the polarized microtubule cytoskeleton is unaffected. In line with the earlier observations, colocalization of ectopic actin and OSK protein in Dmoe mutants suggests that the actin cytoskeleton anchors OSK protein to the subcortical cytoplasmic area of the Drosophila oocyte.
Collapse
Affiliation(s)
- Ferenc Jankovics
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, PO Box 521, H-6726 Szeged, Hungary
| | | | | | | |
Collapse
|
117
|
Duncan JE, Warrior R. The cytoplasmic dynein and kinesin motors have interdependent roles in patterning the Drosophila oocyte. Curr Biol 2002; 12:1982-91. [PMID: 12477386 DOI: 10.1016/s0960-9822(02)01303-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Motor proteins of the minus end-directed cytoplasmic dynein and plus end-directed kinesin families provide the principal means for microtubule-based transport in eukaryotic cells. Despite their opposing polarity, these two classes of motors may cooperate in vivo. In Drosophila circumstantial evidence suggests that dynein acts in the localization of determinants and signaling factors during oogenesis. However, the pleiotropic requirement for dynein throughout development has made it difficult to establish its specific role. RESULTS We analyzed dynein function in the oocyte by disrupting motor activity through temporally restricted expression of the dynactin subunit, dynamitin. Our results indicate that dynein is required for several processes that impact patterning; such processes include localization of bicoid (bcd) and gurken (grk) mRNAs and anchoring of the oocyte nucleus to the cell cortex. Surprisingly, dynein function is sensitive to reduction in kinesin levels, and germ line clones lacking kinesin show defects in dorsal follicle cell fate, grk mRNA localization, and nuclear attachment that are similar to those resulting from the loss of dynein. Significantly, dynein and dynactin localization is perturbed in these animals. Conversely, kinesin localization also depends on dynein activity. CONCLUSIONS We demonstrate that dynein is required for nuclear anchoring and localization of cellular determinants during oogenesis. Strikingly, mutations in the kinesin motor also disrupt these processes and perturb dynein and dynactin localization. These results indicate that the activity of the two motors is interdependent and suggest a model in which kinesin affects patterning indirectly through its role in the localization and recycling of dynein.
Collapse
Affiliation(s)
- Jason E Duncan
- Program in Molecular Biology, University of Southern California, Los Angeles, CA 90089, USA
| | | |
Collapse
|
118
|
Abstract
Intracellular mRNA localization is a common mechanism of post-transcriptional regulation of gene expression. In a wide range of organisms, mRNA localization coupled with translational regulation target the proteins to their site of function. Here, we describe recent exciting evidence that some mRNAs are transported as particles along the cytoskeleton by the molecular motors dynein, kinesin or myosin. We discuss the key questions of how localized mRNAs might be linked to motors and what determines their cytoplasmic destinations.
Collapse
Affiliation(s)
- Hildegard Tekotte
- Wellcome Trust Centre for Cell Biology, ICMB, King's Buildings, The University of Edinburgh, Mayfield Road, EH9 3JR, Edinburgh, UK
| | | |
Collapse
|
119
|
Palacios IM, St Johnston D. Kinesin light chain-independent function of the Kinesin heavy chain in cytoplasmic streaming and posterior localisation in the Drosophila oocyte. Development 2002; 129:5473-85. [PMID: 12403717 DOI: 10.1242/dev.00119] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microtubules and the Kinesin heavy chain, the force-generating component of the plus end-directed microtubule motor Kinesin I are required for the localisation of oskar mRNA to the posterior pole of the Drosophila oocyte, an essential step in the determination of the anteroposterior axis. We show that the Kinesin heavy chain is also required for the posterior localisation of Dynein, and for all cytoplasmic movements within the oocyte. Furthermore, the KHC localises transiently to the posterior pole in an oskar mRNA-independent manner. Surprisingly, cytoplasmic streaming still occurs in kinesin light chain null mutants, and both oskar mRNA and Dynein localise to the posterior pole. Thus, the Kinesin heavy chain can function independently of the light chain in the oocyte, indicating that it associates with its cargoes by a novel mechanism.
Collapse
Affiliation(s)
- Isabel M Palacios
- Wellcome Trust/Cancer Research UK Institute and Department of Genetics, University of Cambridge, Tennis Court Road, UK
| | | |
Collapse
|
120
|
Benton R, Palacios IM, St Johnston D. Drosophila 14-3-3/PAR-5 is an essential mediator of PAR-1 function in axis formation. Dev Cell 2002; 3:659-71. [PMID: 12431373 DOI: 10.1016/s1534-5807(02)00320-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PAR-1 kinases are required to determine the anterior-posterior (A-P) axis in C. elegans and Drosophila, but little is known about their molecular function. We identified 14-3-3 proteins as Drosophila PAR-1 interactors and show that PAR-1 binds a domain of 14-3-3 distinct from the phosphoserine binding pocket. PAR-1 kinases phosphorylate proteins to generate 14-3-3 binding sites and may therefore directly deliver 14-3-3 to these targets. 14-3-3 mutants display identical phenotypes to par-1 mutants in oocyte determination and the polarization of the A-P axis. Together, these results indicate that PAR-1's function is mediated by the binding of 14-3-3 to its substrates. The C. elegans 14-3-3 protein, PAR-5, is also required for A-P polarization, suggesting that this is a conserved mechanism by which PAR-1 establishes cellular asymmetries.
Collapse
Affiliation(s)
- Richard Benton
- The Wellcome Trust/Cancer Research UK Institute and Department of Genetics, University of Cambridge, CB2 1QR, Cambridge, United Kingdom
| | | | | |
Collapse
|
121
|
Herzig A, Lehner CF, Heidmann S. Proteolytic cleavage of the THR subunit during anaphase limits Drosophila separase function. Genes Dev 2002; 16:2443-54. [PMID: 12231632 PMCID: PMC187444 DOI: 10.1101/gad.242202] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sister-chromatid separation in mitosis requires proteolytic cleavage of a cohesin subunit. Separase, the corresponding protease, is activated at the metaphase-to-anaphase transition. Activation involves proteolysis of an inhibitory subunit, securin, following ubiquitination mediated by the anaphase-promoting complex/cyclosome. In Drosophila, the securin PIM associates not only with separase (SSE), but also with an additional protein, THR. Here we show that THR is cleaved after the metaphase-to-anaphase transition. THR cleavage only occurs in functional SSE complexes and in a region that matches the separase cleavage-site consensus. Mutations in this region abolish mitotic THR cleavage. These results indicate that THR is cleaved by SSE. Expression of noncleavable THR variants results in cold-sensitive maternal-effect lethality. This lethality can be suppressed by a reduction of catalytically active SSE levels, indicating that THR cleavage inactivates SSE complexes. THR cleavage is particularly important during the process of cellularization, which follows completion of the last syncytial mitosis of early embryogenesis, suggesting that Drosophila separase has other targets in addition to cohesin subunits.
Collapse
Affiliation(s)
- Alf Herzig
- Department of Genetics, University of Bayreuth, 95440 Bayreuth, Germany
| | | | | |
Collapse
|
122
|
Cha BJ, Serbus LR, Koppetsch BS, Theurkauf WE. Kinesin I-dependent cortical exclusion restricts pole plasm to the oocyte posterior. Nat Cell Biol 2002; 4:592-8. [PMID: 12134163 DOI: 10.1038/ncb832] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microtubules and the plus-end-directed microtubule motor Kinesin I are required for the selective accumulation of oskar mRNA at the posterior cortex of the Drosophila melanogaster oocyte, which is essential to posterior patterning and pole plasm assembly. We present evidence that microtubule minus ends associate with the entire cortex, and that Kinesin and microtubules are not required for oskar mRNA association with the posterior pole, but prevent ectopic localization of this transcript and the pole plasm proteins Oskar and Vasa to other cortical regions. Cortical binding of oskar mRNA seems to be dependent on the actin cytoskeleton. We conclude that most of the actin-rich oocyte cortex can support pole plasm assembly, and propose that Kinesin restricts pole plasm formation to the posterior by moving oskar mRNA away from microtubule-rich lateral and anterior cortical regions.
Collapse
Affiliation(s)
- Byeong-Jik Cha
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
123
|
Vanzo NF, Ephrussi A. Oskar anchoring restricts pole plasm formation to the posterior of the Drosophila oocyte. Development 2002; 129:3705-14. [PMID: 12117819 DOI: 10.1242/dev.129.15.3705] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Localization of the maternal determinant Oskar at the posterior pole of Drosophila melanogaster oocyte provides the positional information for pole plasm formation. Spatial control of Oskar expression is achieved through the tight coupling of mRNA localization to translational control, such that only posterior-localized oskar mRNA is translated, producing the two Oskar isoforms Long Osk and Short Osk. We present evidence that this coupling is not sufficient to restrict Oskar to the posterior pole of the oocyte. We show that Long Osk anchors both oskar mRNA and Short Osk, the isoform active in pole plasm assembly, at the posterior pole. In the absence of anchoring by Long Osk, Short Osk disperses into the bulk cytoplasm during late oogenesis, impairing pole cell formation in the embryo. In addition, the pool of untethered Short Osk causes anteroposterior patterning defects, owing to the dispersion of pole plasm and its abdomen-inducing activity throughout the oocyte. We show that the N-terminal extension of Long Osk is necessary but not sufficient for posterior anchoring, arguing for multiple docking elements in Oskar. This study reveals cortical anchoring of the posterior determinant Oskar as a crucial step in pole plasm assembly and restriction, required for proper development of Drosophila melanogaster.
Collapse
Affiliation(s)
- Nathalie F Vanzo
- Developmental Biology Programme, European Molecular Biology Laboratory, Meyerhofstrasse 1 - 69117 Heidelberg, Germany
| | | |
Collapse
|
124
|
Raff JW, Jeffers K, Huang JY. The roles of Fzy/Cdc20 and Fzr/Cdh1 in regulating the destruction of cyclin B in space and time. J Cell Biol 2002; 157:1139-49. [PMID: 12082076 PMCID: PMC2173543 DOI: 10.1083/jcb.200203035] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In Drosophila cells cyclin B is normally degraded in two phases: (a) destruction of the spindle-associated cyclin B initiates at centrosomes and spreads to the spindle equator; and (b) any remaining cytoplasmic cyclin B is degraded slightly later in mitosis. We show that the APC/C regulators Fizzy (Fzy)/Cdc20 and Fzy-related (Fzr)/Cdh1 bind to microtubules in vitro and associate with spindles in vivo. Fzy/Cdc20 is concentrated at kinetochores and centrosomes early in mitosis, whereas Fzr/Cdh1 is concentrated at centrosomes throughout the cell cycle. In syncytial embryos, only Fzy/Cdc20 is present, and only the spindle-associated cyclin B is degraded at the end of mitosis. A destruction box-mutated form of cyclin B (cyclin B triple-point mutant [CBTPM]-GFP) that cannot be targeted for destruction by Fzy/Cdc20, is no longer degraded on spindles in syncytial embryos. However, CBTPM-GFP can be targeted for destruction by Fzr/Cdh1. In cellularized embryos, which normally express Fzr/Cdh1, CBTPM-GFP is degraded throughout the cell but with slowed kinetics. These findings suggest that Fzy/Cdc20 is responsible for catalyzing the first phase of cyclin B destruction that occurs on the mitotic spindle, whereas Fzr/Cdh1 is responsible for catalyzing the second phase of cyclin B destruction that occurs throughout the cell. These observations have important implications for the mechanisms of the spindle checkpoint.
Collapse
Affiliation(s)
- Jordan W Raff
- Department of Genetics, Wellcome/Cancer Research UK Institute, Cambridge CB2 1QR, UK.
| | | | | |
Collapse
|
125
|
Abstract
The success of Drosophila melanogaster as a model organism is largely due to the power of forward genetic screens to identify the genes that are involved in a biological process. Traditional screens, such as the Nobel-prize-winning screen for embryonic-patterning mutants, can only identify the earliest phenotype of a mutation. This review describes the ingenious approaches that have been devised to circumvent this problem: modifier screens, for example, have been invaluable for elucidating signal-transduction pathways, whereas clonal screens now make it possible to screen for almost any phenotype in any cell at any stage of development.
Collapse
Affiliation(s)
- Daniel St Johnston
- Wellcome/CRC Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| |
Collapse
|
126
|
Dreyfuss G, Kim VN, Kataoka N. Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol 2002; 3:195-205. [PMID: 11994740 DOI: 10.1038/nrm760] [Citation(s) in RCA: 1115] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
From sites of transcription in the nucleus to the outreaches of the cytoplasm, messenger RNAs are associated with RNA-binding proteins. These proteins influence pre-mRNA processing as well as the transport, localization, translation and stability of mRNAs. Recent discoveries have shown that one group of these proteins marks exon exon junctions and has a role in mRNA export. These proteins communicate crucial information to the translation machinery for the surveillance of nonsense mutations and for mRNA localization and translation.
Collapse
Affiliation(s)
- Gideon Dreyfuss
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA.
| | | | | |
Collapse
|
127
|
Abstract
An unexpected link has been discovered between pre-mRNA splicing in the nucleus and mRNA localisation in the cytoplasm. The new findings suggest that recruitment of the Mago Nashi and Y14 proteins upon splicing of oskar mRNA is an essential step in the localisation of the RNA to the posterior pole of the Drosophila oocyte.
Collapse
Affiliation(s)
- Isabel M Palacios
- Wellcome/CRC Institute, Department of Genetics, University of Cambridge, Tennis Court Road, CB2 1QR, Cambridge, UK.
| |
Collapse
|
128
|
Palacios IM, St Johnston D. Getting the message across: the intracellular localization of mRNAs in higher eukaryotes. Annu Rev Cell Dev Biol 2002; 17:569-614. [PMID: 11687499 DOI: 10.1146/annurev.cellbio.17.1.569] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The intracellular localization of mRNA, a common mechanism for targeting proteins to specific regions of the cell, probably occurs in most if not all polarized cell types. Many of the best characterized localized mRNAs are found in oocytes and early embryos, where they function as localized determinants that control axis formation and the development of the germline. However, mRNA localization has also been shown to play an important role in somatic cells, such as neurons, where it may be involved in learning and memory. mRNAs can be localized by a variety of mechanisms including local protection from degradation, diffusion to a localized anchor, and active transport, and we consider the evidence for each of these processes, before discussing the cis-acting elements that direct the localization of specific mRNAs and the trans-acting factors that bind them.
Collapse
Affiliation(s)
- I M Palacios
- Wellcome/CRC Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR United Kingdom.
| | | |
Collapse
|
129
|
Abstract
Translational control is a prevalent means of gene regulation during Drosophila oogenesis and embryogenesis. Multiple maternal mRNAs are localized within the oocyte, and this localization is often coupled to their translational regulation. Subsequently, translational control allows maternally deposited mRNAs to direct the early stages of embryonic development. In this review we outline some general mechanisms of translational regulation and mRNA localization that have been uncovered in various model systems. Then we focus on the posttranscriptional regulation of four maternal transcripts in Drosophila that are localized during oogenesis and are critical for embryonic patterning: bicoid (bcd), nanos (nos), oskar (osk), and gurken (grk). Cis- and trans-acting factors required for the localization and translational control of these mRNAs are discussed along with potential mechanisms for their regulation.
Collapse
Affiliation(s)
- O Johnstone
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal, Québec, H3A 1B1 Canada.
| | | |
Collapse
|
130
|
Sardet C, Prodon F, Dumollard R, Chang P, Chênevert J. Structure and function of the egg cortex from oogenesis through fertilization. Dev Biol 2002; 241:1-23. [PMID: 11784091 DOI: 10.1006/dbio.2001.0474] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Christian Sardet
- BioMarCell, UMR 7009 Biologie du Developpement, Villefranche sur Mer, 06230, France.
| | | | | | | | | |
Collapse
|
131
|
Le Hir H, Gatfield D, Braun IC, Forler D, Izaurralde E. The protein Mago provides a link between splicing and mRNA localization. EMBO Rep 2001; 2:1119-24. [PMID: 11743026 PMCID: PMC1084163 DOI: 10.1093/embo-reports/kve245] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The proteins Mago and Y14 are evolutionarily conserved binding partners. Y14 is a component of the exon-exon junction complex (EJC), deposited by the spliceosome upstream of messenger RNA (mRNA) exon-exon junctions. The EJC is implicated in post-splicing events such as mRNA nuclear export and nonsense-mediated mRNA decay. Drosophila Mago is essential for the localization of oskar mRNA to the posterior pole of the oocyte, but the functional role of Mago in other species is unknown. We show that Mago is a bona fide component of the EJC. Like Y14, Mago escorts spliced mRNAs to the cytoplasm, providing a direct functional link between splicing and the downstream process of mRNA localization. Mago/Y14 heterodimers are essential in cultured Drosophila cells. Taken together, these results suggest that, in addition to its specialized function in mRNA localization, Mago plays an essential role in other steps of mRNA metabolism.
Collapse
Affiliation(s)
- H Le Hir
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | | | | | | | | |
Collapse
|
132
|
Affiliation(s)
- D St Johnston
- Wellcome/CRC Institute and The Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
133
|
Kataoka N, Diem MD, Kim V, Yong J, Dreyfuss G. Magoh, a human homolog of Drosophila mago nashi protein, is a component of the splicing-dependent exon-exon junction complex. EMBO J 2001; 20:6424-33. [PMID: 11707413 PMCID: PMC125744 DOI: 10.1093/emboj/20.22.6424] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The RNA-binding protein Y14 binds preferentially to mRNAs produced by splicing and is a component of a multiprotein complex that assembles approximately 20 nucleotides upstream of exon-exon junctions. This complex probably has important functions in post-splicing events including nuclear export and nonsense-mediated decay of mRNA. We show that Y14 binds to two previously reported components, Aly/REF and RNPS1, and to the mRNA export factor TAP. Moreover, we identified magoh, a human homolog of the Drosophila mago nashi gene product, as a novel component of the complex. Magoh binds avidly and directly to Y14 and TAP, but not to other known components of the complex, and is found in Y14-containing mRNPs in vivo. Importantly, magoh also binds to mRNAs produced by splicing upstream (approximately 20 nucleotides) of exon- exon junctions and its binding to mRNA persists after export. These experiments thus reveal specific protein-protein interactions among the proteins of the splicing-dependent mRNP complex and suggest an important role for the highly evolutionarily conserved magoh protein in this complex.
Collapse
Affiliation(s)
| | | | - V.Narry Kim
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6148, USA
Present address: Institute for Molecular Biology and Genetics, School of Biological Science, Seoul National University, Seoul, Korea Corresponding author e-mail:
| | | | - Gideon Dreyfuss
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6148, USA
Present address: Institute for Molecular Biology and Genetics, School of Biological Science, Seoul National University, Seoul, Korea Corresponding author e-mail:
| |
Collapse
|
134
|
Mohr SE, Dillon ST, Boswell RE. The RNA-binding protein Tsunagi interacts with Mago Nashi to establish polarity and localize oskar mRNA during Drosophila oogenesis. Genes Dev 2001; 15:2886-99. [PMID: 11691839 PMCID: PMC312802 DOI: 10.1101/gad.927001] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2001] [Accepted: 09/12/2001] [Indexed: 11/24/2022]
Abstract
In Drosophila melanogaster, formation of the axes and the primordial germ cells is regulated by interactions between the germ line-derived oocyte and the surrounding somatic follicle cells. This reciprocal signaling results in the asymmetric localization of mRNAs and proteins critical for these oogenic processes. Mago Nashi protein interprets the posterior follicle cell-to-oocyte signal to establish the major axes and to determine the fate of the primordial germ cells. Using the yeast two-hybrid system we have identified an RNA-binding protein, Tsunagi, that interacts with Mago Nashi protein. The proteins coimmunoprecipitate and colocalize, indicating that they form a complex in vivo. Immunolocalization reveals that Tsunagi protein is localized within the posterior oocyte cytoplasm during stages 1-5 and 8-9, and that this localization is dependent on wild-type mago nashi function. When tsunagi function is removed from the germ line, egg chambers develop in which the oocyte nucleus fails to migrate, oskar mRNA is not localized within the posterior pole, and dorsal-ventral pattern abnormalities are observed. These results show that a Mago Nashi-Tsunagi protein complex is required for interpreting the posterior follicle cell-to-oocyte signal to define the major body axes and to localize components necessary for determination of the primordial germ cells.
Collapse
Affiliation(s)
- S E Mohr
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | | | |
Collapse
|
135
|
Hachet O, Ephrussi A. Drosophila Y14 shuttles to the posterior of the oocyte and is required for oskar mRNA transport. Curr Biol 2001; 11:1666-74. [PMID: 11696323 DOI: 10.1016/s0960-9822(01)00508-5] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND mRNA localization is a powerful and widely employed mechanism for generating cell asymmetry. In Drosophila, localization of mRNAs in the oocyte determines the axes of the future embryo. oskar mRNA localization at the posterior pole is essential and sufficient for the specification of the germline and the abdomen. Its posterior transport along the microtubules is mediated by Kinesin I and several proteins, such as Mago-nashi, which, together with oskar mRNA, form a posterior localization complex. It was recently shown that human Y14, a nuclear protein that associates with mRNAs upon splicing and shuttles to the cytoplasm, interacts with MAGOH, the human homolog of Mago-nashi. RESULTS Here, we show that Drosophila Y14 interacts with Mago-nashi in vivo. Immunohistochemistry reveals that Y14 is predominantly nuclear and colocalizes with oskar mRNA at the posterior pole. We show that, in y14 mutant oocytes, oskar mRNA localization to the posterior pole is specifically affected, while the cytoskeleton appears to be intact. CONCLUSIONS Our findings indicate that Y14 is part of the oskar mRNA localization complex and that the nuclear shuttling protein Y14 has a specific and direct role in oskar mRNA cytoplasmic localization.
Collapse
Affiliation(s)
- O Hachet
- Developmental Biology Programme, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
136
|
Wagner C, Palacios I, Jaeger L, St Johnston D, Ehresmann B, Ehresmann C, Brunel C. Dimerization of the 3'UTR of bicoid mRNA involves a two-step mechanism. J Mol Biol 2001; 313:511-24. [PMID: 11676536 DOI: 10.1006/jmbi.2001.5057] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proper localization of bicoid (bcd) mRNA requires cis-acting signals within its 3' untranslated region (UTR) and trans-acting factors such as Staufen. Dimerization of bcd mRNA through intermolecular base-pairing between two complementary loops of domain III of the 3'UTR was proposed to be important for particle formation in the embryo. The participation in the dimerization process of each domain building the 3'UTR was evaluated by thermodynamic and kinetic analysis of various mutated and truncated RNAs. Although sequence complementarity between the two loops of domain III is required for initiating mRNA dimerization, the initial reversible loop-loop complex is converted rapidly into an almost irreversible complex. This conversion involves parts of RNA outside of domain III that promote initial recognition, and dimerization can be inhibited by sense or antisense oligonucleotides only before conversion has proceeded. Injection of the different bcd RNA variants into living Drosophila embryos shows that all elements that inhibit RNA dimerization in vitro prevent formation of localized particles containing Staufen. Particle formation appeared to be dependent on both mRNA dimerization and other element(s) in domains IV and V. Domain III of bcd mRNA could be substituted by heterologous dimerization motifs of different geometry. The resulting dimers were converted into stable forms, independently of the dimerization module used. Moreover, these chimeric RNAs were competent in forming localized particles and recruiting Staufen. The finding that the dimerization domain of bcd mRNA is interchangeable suggests that dimerization by itself, and not the precise geometry of the intermolecular interactions, is essential for the localization process. This suggests that the stabilizing interactions that are formed during the second step of the dimerization process might represent crucial elements for Staufen recognition and localization.
Collapse
Affiliation(s)
- C Wagner
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue Descartes 67084, Strasbourg Cedex, France
| | | | | | | | | | | | | |
Collapse
|
137
|
Guichet A, Peri F, Roth S. Stable anterior anchoring of the oocyte nucleus is required to establish dorsoventral polarity of the Drosophila egg. Dev Biol 2001; 237:93-106. [PMID: 11518508 DOI: 10.1006/dbio.2001.0354] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In Drosophila, dorsoventral polarity is established by the asymmetric positioning of the oocyte nucleus. In egg chambers mutant for cap 'n' collar, the oocyte nucleus migrates correctly from a posterior to an anterior-dorsal position where it remains during stage 9 of oogenesis. However, at the end of stage 9, the nucleus leaves its anterior position and migrates towards the posterior pole. The mislocalisation of the nucleus is accompanied by changes in the microtubule network and a failure to maintain bicoid and oskar mRNAs at the anterior and posterior poles, respectively. gurken mRNA associates with the oocyte nucleus in cap 'n' collar mutants and initially the local secretion of Gurken protein activates the Drosophila EGF receptor in the overlying dorsal follicle cells. However, despite the presence of spatially correct Grk signalling during stage 9, eggs laid by cap 'n' collar females lack dorsoventral polarity. cap 'n' collar mutants, therefore, allow for the study of the influence of Grk signal duration on DV patterning in the follicular epithelium.
Collapse
Affiliation(s)
- A Guichet
- Universität zu Köln, Institut für Entwicklungsbiologie, Gyrhofstrasse 17, Cologne, 50923, Germany
| | | | | |
Collapse
|
138
|
van Eeden FJ, Palacios IM, Petronczki M, Weston MJ, St Johnston D. Barentsz is essential for the posterior localization of oskar mRNA and colocalizes with it to the posterior pole. J Cell Biol 2001; 154:511-23. [PMID: 11481346 PMCID: PMC2196428 DOI: 10.1083/jcb.200105056] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The localization of Oskar at the posterior pole of the Drosophila oocyte induces the assembly of the pole plasm and therefore defines where the abdomen and germ cells form in the embryo. This localization is achieved by the targeting of oskar mRNA to the posterior and the localized activation of its translation. oskar mRNA seems likely to be actively transported along microtubules, since its localization requires both an intact microtubule cytoskeleton and the plus end-directed motor kinesin I, but nothing is known about how the RNA is coupled to the motor. Here, we describe barentsz, a novel gene required for the localization of oskar mRNA. In contrast to all other mutations that disrupt this process, barentsz-null mutants completely block the posterior localization of oskar mRNA without affecting bicoid and gurken mRNA localization, the organization of the microtubules, or subsequent steps in pole plasm assembly. Surprisingly, most mutant embryos still form an abdomen, indicating that oskar mRNA localization is partially redundant with the translational control. Barentsz protein colocalizes to the posterior with oskar mRNA, and this localization is oskar mRNA dependent. Thus, Barentsz is essential for the posterior localization of oskar mRNA and behaves as a specific component of the oskar RNA transport complex.
Collapse
Affiliation(s)
- F J van Eeden
- Wellcome/CRC Institute, and the Department of Genetics, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | | | | | | | | |
Collapse
|
139
|
Mingot JM, Kostka S, Kraft R, Hartmann E, Görlich D. Importin 13: a novel mediator of nuclear import and export. EMBO J 2001; 20:3685-94. [PMID: 11447110 PMCID: PMC125545 DOI: 10.1093/emboj/20.14.3685] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Importin beta-related receptors mediate translocation through nuclear pore complexes. Co-operation with the RanGTPase system allows them to bind and subsequently release their substrates on opposite sides of the nuclear envelope, which in turn ensures a directed nucleocytoplasmic transport. Here we identify a novel family member from higher eukaryotes that functions primarily, but not exclusively, in import. It accounts for nuclear accumulation of the SUMO-1/sentrin-conjugating enzyme hUBC9 and mediates import of the RBM8 (Y14) protein, and is therefore referred to as importin 13 (Imp13). Unexpectedly, Imp13 also shows export activity towards the translation initiation factor eIF1A and is thus a case where a single importin beta-like receptor transports different substrates in opposite directions. However, Imp13 operates differently from typical exportins in that the binding of eIF1A to Imp13 is only regulated indirectly by RanGTP, and the cytoplasmic release of eIF1A from Imp13 is triggered by the loading of import substrates onto Imp13.
Collapse
Affiliation(s)
| | - Susanne Kostka
- ZMBH, INF 282, D-69120 Heidelberg,
MDC, Robert-Rössle-Strasse 10, D-13122 Berlin Buch and Universität Göttingen Abteilung Biochemie II, Goßlerstraße 12d, D-37073 Göttingen, Germany Corresponding author e-mail:
| | - Regine Kraft
- ZMBH, INF 282, D-69120 Heidelberg,
MDC, Robert-Rössle-Strasse 10, D-13122 Berlin Buch and Universität Göttingen Abteilung Biochemie II, Goßlerstraße 12d, D-37073 Göttingen, Germany Corresponding author e-mail:
| | - Enno Hartmann
- ZMBH, INF 282, D-69120 Heidelberg,
MDC, Robert-Rössle-Strasse 10, D-13122 Berlin Buch and Universität Göttingen Abteilung Biochemie II, Goßlerstraße 12d, D-37073 Göttingen, Germany Corresponding author e-mail:
| | - Dirk Görlich
- ZMBH, INF 282, D-69120 Heidelberg,
MDC, Robert-Rössle-Strasse 10, D-13122 Berlin Buch and Universität Göttingen Abteilung Biochemie II, Goßlerstraße 12d, D-37073 Göttingen, Germany Corresponding author e-mail:
| |
Collapse
|
140
|
Jankovics F, Sinka R, Erdélyi M. An interaction type of genetic screen reveals a role of the Rab11 gene in oskar mRNA localization in the developing Drosophila melanogaster oocyte. Genetics 2001; 158:1177-88. [PMID: 11454766 PMCID: PMC1461719 DOI: 10.1093/genetics/158.3.1177] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abdomen and germ cell development of Drosophila melanogaster embryo requires proper localization of oskar mRNA to the posterior pole of the developing oocyte. oskar mRNA localization depends on complex cell biological events like cell-cell communication, dynamic rearrangement of the microtubule network, and function of the actin cytoskeleton of the oocyte. To investigate the cellular mechanisms involved, we developed a novel interaction type of genetic screen by which we isolated 14 dominant enhancers of a sensitized genetic background composed of mutations in oskar and in TropomyosinII, an actin binding protein. Here we describe the detailed analysis of two allelic modifiers that identify Drosophila Rab11, a gene encoding small monomeric GTPase. We demonstrate that mutation of the Rab11 gene, involved in various vesicle transport processes, results in ectopic localization of oskar mRNA, whereas localization of gurken and bicoid mRNAs and signaling between the oocyte and the somatic follicle cells are unaffected. We show that the ectopic oskar mRNA localization in the Rab11 mutants is a consequence of an abnormally polarized oocyte microtubule cytoskeleton. Our results indicate that the internal membranous structures play an important role in the microtubule organization in the Drosophila oocyte and, thus, in oskar RNA localization.
Collapse
Affiliation(s)
- F Jankovics
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, H-6701 POB 521 Szeged, Hungary
| | | | | |
Collapse
|
141
|
Swidzinski JA, Zaplachinski ST, Chuong SD, Wong JF, Muench DG. Molecular characterization and expression analysis of a highly conserved rice mago nashil homolog. Genome 2001; 44:394-400. [PMID: 11444698 DOI: 10.1139/g01-025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mago Nashi, a protein initially shown to be essential in the development of the Drosophila oocyte, is highly conserved among species and shows no homology to any other known cellular proteins. Here we report the nucleotide sequence of a cDNA and a partial gene that encode rice Mago Nashi protein homologs. In addition, we present the tissue-specific expression pattern of mago nashi at the level of RNA and protein. The rice Mago Nashi protein shares at least 73% amino acid identity with all known animal homologs. Genomic DNA gel blot analysis indicates that two copies of the mago nashi gene exist in the rice genome, one of which has identical intron positions to those found in an Arabidopsis homolog. mago nashi is expressed in root, leaf and developing seed tissue as determined by RNA and protein gel blot analysis. Evidence from Drosophila, Caenorhabditis elegans and human studies of Mago Nashi suggests that a major function of this protein is its involvement in RNA localization. The highly conserved amino acid sequence of all Mago Nashi protein homologs across kingdoms suggests that the plant version of this protein may similarly be involved in RNA localization.
Collapse
Affiliation(s)
- J A Swidzinski
- Department of Biological Sciences, University of Calgary, AB, Canada
| | | | | | | | | |
Collapse
|
142
|
Abstract
The Drosophila melanogaster germ plasm has become the paradigm for understanding both the assembly of a specific cytoplasmic localization during oogenesis and its function. The posterior ooplasm is necessary and sufficient for the induction of germ cells. For its assembly, localization of gurken mRNA and its translation at the posterior pole of early oogenic stages is essential for establishing the posterior pole of the oocyte. Subsequently, oskar mRNA becomes localized to the posterior pole where its translation leads to the assembly of a functional germ plasm. Many gene products are required for producing the posterior polar plasm, but only oskar, tudor, valois, germcell-less and some noncoding RNAs are required for germ cell formation. A key feature of germ cell formation is the precocious segregation of germ cells, which isolates the primordial germ cells from mRNA turnover, new transcription, and continued cell division. nanos is critical for maintaining the transcription quiescent state and it is required to prevent transcription of Sex-lethal in pole cells. In spite of the large body of information about the formation and function of the Drosophila germ plasm, we still do not know what specifically is required to cause the pole cells to be germ cells. A series of unanswered problems is discussed in this chapter.
Collapse
Affiliation(s)
- A P Mahowald
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Illinois 60637, USA
| |
Collapse
|
143
|
Cooperstock RL, Lipshitz HD. RNA localization and translational regulation during axis specification in the Drosophila oocyte. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 203:541-66. [PMID: 11131526 DOI: 10.1016/s0074-7696(01)03016-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The major axes of the oocyte-antero-posterior and dorso-ventral-are established over a one-day period during mid-oogenesis in Drosophila. The same molecule, GURKEN (GRK), functions to initiate signaling between the oocyte and the surrounding, somatically derived follicle cells. This results first in specification of the antero-posterior axis and, later, the dorso-ventral axis of the oocyte and surrounding follicle cells. Central to specification of both axes is a combination of cytoplasmic localization and translational regulation of the grk RNA. Here we discuss the mechanisms by which the grk RNA is localized within the oocyte and the role of translational regulation in spatially restricting the production of GRK protein. We then discuss the generality of these mechanisms during oogenesis by focusing on a second transcript, oskar, whose function is also regulated through a combination of transcript localization and translational control.
Collapse
Affiliation(s)
- R L Cooperstock
- Program in Developmental Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
144
|
MacDougall N, Lad Y, Wilkie GS, Francis-Lang H, Sullivan W, Davis I. Merlin, the Drosophila homologue of neurofibromatosis-2, is specifically required in posterior follicle cells for axis formation in the oocyte. Development 2001; 128:665-73. [PMID: 11171392 DOI: 10.1242/dev.128.5.665] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Drosophila, the formation of the embryonic axes is initiated by Gurken, a transforming growth factor alpha signal from the oocyte to the posterior follicle cells, and an unknown polarising signal back to the oocyte. We report that Drosophila Merlin is specifically required only within the posterior follicle cells to initiate axis formation. Merlin mutants show defects in nuclear migration and mRNA localisation in the oocyte. Merlin is not required to specify posterior follicle cell identity in response to the Gurken signal from the oocyte, but is required for the unknown polarising signal back to the oocyte. Merlin is also required non-autonomously, only in follicle cells that have received the Gurken signal, to maintain cell polarity and limit proliferation, but is not required in embryos and larvae. These results are consistent with the fact that human Merlin is encoded by the gene for the tumour suppressor neurofibromatosis-2 and is a member of the Ezrin-Radixin-Moesin family of proteins that link actin to transmembrane proteins. We propose that Merlin acts in response to the Gurken signal by apically targeting the signal that initiates axis specification in the oocyte.
Collapse
Affiliation(s)
- N MacDougall
- Wellcome Centre for Cell Biology, ICMB, King's Buildings, University of Edinburgh, Edinburgh EH9 3JR, UK
| | | | | | | | | | | |
Collapse
|
145
|
Abstract
The generation of distinct cell fates can require movement of specific molecules or organelles to particular locations within the cell. These subcellular movements are often the jobs of motor proteins. Seemingly disparate developmental processes--determination of right and left in vertebrates, setting up the axes of polarity in insect embryos, mating-type switching in yeast, and coordinated organelle movements in Drosophila--converge in their dependence on motor proteins. The extent of possible regulatory complexity is only beginning to emerge.
Collapse
Affiliation(s)
- J A Fischer
- The University of Texas at Austin, Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, Moffett Molecular Biology Building, 2500 Speedway, Austin, Texas 78712, USA.
| |
Collapse
|
146
|
Abstract
Transcript localization and translational regulation are two post-transcriptional mechanisms for the spatial and temporal regulation of protein production. During the past year, two transcript localization mechanisms have been elaborated in some detail. Where localization involves directional transport on cytoskeletal tracks, links between the transcripts and the cytoskeletal molecular motors have been elaborated. In the case of localization by generalized transcript degradation combined with localized protection, trans-acting pathways and cis-acting elements for degradation and protection have been identified. A third transcript localization mechanism, vectorial transport out of the nucleus into a particular cytoplasmic domain, was initially thought to localize pair-rule transcripts in Drosophila. However, these have now been shown to be localized by directional transport in the cytoplasm. Transcript localization and translational regulation can be intimately linked in that, for certain messenger RNAs, only the localized fraction of transcripts is translated whereas unlocalized transcripts are translationally repressed. Cis-acting sequences and trans-acting factors that function in translational repression have been identified along with factors involved in relief of translational repression at the site of localization.
Collapse
Affiliation(s)
- H D Lipshitz
- Program in Developmental Biology, Research Institute, The Hospital for Sick Children, 555 University Avenue, Ontario M5G 1X8, Toronto, Canada.
| | | |
Collapse
|
147
|
Paré C, Suter B. Subcellular localization of Bic-D::GFP is linked to an asymmetric oocyte nucleus. J Cell Sci 2000; 113 ( Pt 12):2119-27. [PMID: 10825285 DOI: 10.1242/jcs.113.12.2119] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bicaudal-D (Bic-D) is essential for the establishment of oocyte fate and subsequently for polarity formation within the developing Drosophila oocyte. To find out where in the germ cells Bic-D performs its various functions we made transgenic flies expressing a chimeric Bic-D::GFP fusion protein. Once Bic-D::GFP preferentially accumulates in the oocyte, it shows an initial anterior localization in germarial region 2. In the subsequent egg chamber stages 1–6 Bic-D::GFP preferentially accumulates between the oocyte nucleus and the posterior cortex in a focus that is consistently aligned with a crater-like indentation in the oocyte nucleus. After stage 6 Bic-D::GFP fluorescent signal is predominantly found between the oocyte nucleus and the dorso-anterior cortex. During the different phases several genes have been found to be required for the establishment of the new Bic-D::GFP distribution patterns. Dynein heavy chain (Dhc), spindle (spn) genes and maelstrom (mael) are required for the re-localization of the Bic-D::GFP focus from its anterior to its posterior oocyte position. Genes predicted to encode proteins that interact with RNA (egalitarian and orb) are required for the normal subcellular distribution of Bic-D::GFP in the germarium, and another potential RNA binding protein, spn-E, is required for proper transport of Bic-D::GFP from the nurse cells to the oocyte in later oogenesis stages. The results indicate that Bic-D requires the activity of mRNA binding proteins and a negative-end directed microtubule motor to localize to the appropriate cellular domains. Asymmetric subcellular accumulation of Bic-D and the polarization of the oocyte nucleus may reflect the function of this localization machinery in vectorial mRNA localization and in tethering of the oocyte nucleus. The subcellular polarity defined by the Bic-D focus and the nuclear polarity marks some of the first steps in antero-posterior and subsequently in dorso-ventral polarity formation.
Collapse
Affiliation(s)
- C Paré
- McGill University, Department of Biology, Montréal, Québec, Canada, H3A 1B1
| | | |
Collapse
|
148
|
Shulman JM, Benton R, St Johnston D. The Drosophila homolog of C. elegans PAR-1 organizes the oocyte cytoskeleton and directs oskar mRNA localization to the posterior pole. Cell 2000; 101:377-88. [PMID: 10830165 DOI: 10.1016/s0092-8674(00)80848-x] [Citation(s) in RCA: 221] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In C. elegans, the PAR-1 kinase is localized to the posterior of the zygote and is required for anterior-posterior axis formation. Here, we report that a Drosophila PAR-1 homolog localizes to the posterior of the oocyte with oskar mRNA. Furthermore, par-1 mutants show a novel polarity phenotype in which bicoid mRNA accumulates normally at the anterior, but oskar mRNA is redirected to the center of the oocyte, resulting in embryonic patterning defects. These phenotypes arise from a disorganization of the oocyte microtubule cytoskeleton, consistent with reports that mammalian PAR-1 homologs regulate microtubule dynamics. Thus, Drosophila PAR-1 may remodel the oocyte microtubule network to define the posterior as the site for oskar localization. These results identify a molecular parallel between anterior-posterior polarization in Drosophila and C. elegans.
Collapse
Affiliation(s)
- J M Shulman
- Wellcome/CRC Institute and Department of Genetics, University of Cambridge, United Kingdom
| | | | | |
Collapse
|
149
|
Micklem DR, Adams J, Grünert S, St Johnston D. Distinct roles of two conserved Staufen domains in oskar mRNA localization and translation. EMBO J 2000; 19:1366-77. [PMID: 10716936 PMCID: PMC305677 DOI: 10.1093/emboj/19.6.1366] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Drosophila Staufen protein is required for the localization of oskar mRNA to the posterior of the oocyte, the anterior anchoring of bicoid mRNA and the basal localization of prospero mRNA in dividing neuroblasts. The only regions of Staufen that have been conserved throughout animal evolution are five double-stranded (ds)RNA-binding domains (dsRBDs) and a short region within an insertion that splits dsRBD2 into two halves. dsRBDs 1, 3 and 4 bind dsRNA in vitro, but dsRBDs 2 and 5 do not, although dsRBD2 does bind dsRNA when the insertion is removed. Full-length Staufen protein lacking this insertion is able to associate with oskar mRNA and activate its translation, but fails to localize the RNA to the posterior. In contrast, Staufen lacking dsRBD5 localizes oskar mRNA normally, but does not activate its translation. Thus, dsRBD2 is required for the microtubule-dependent localization of osk mRNA, and dsRBD5 for the derepression of oskar mRNA translation, once localized. Since dsRBD5 has been shown to direct the actin-dependent localization of prospero mRNA, distinct domains of Staufen mediate microtubule- and actin-based mRNA transport.
Collapse
Affiliation(s)
- D R Micklem
- Wellcome/CRC Institute, Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | | | | | | |
Collapse
|
150
|
Ramos A, Grünert S, Adams J, Micklem DR, Proctor MR, Freund S, Bycroft M, St Johnston D, Varani G. RNA recognition by a Staufen double-stranded RNA-binding domain. EMBO J 2000; 19:997-1009. [PMID: 10698941 PMCID: PMC305639 DOI: 10.1093/emboj/19.5.997] [Citation(s) in RCA: 283] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/1999] [Revised: 12/21/1999] [Accepted: 01/12/2000] [Indexed: 11/14/2022] Open
Abstract
The double-stranded RNA-binding domain (dsRBD) is a common RNA-binding motif found in many proteins involved in RNA maturation and localization. To determine how this domain recognizes RNA, we have studied the third dsRBD from Drosophila Staufen. The domain binds optimally to RNA stem-loops containing 12 uninterrupted base pairs, and we have identified the amino acids required for this interaction. By mutating these residues in a staufen transgene, we show that the RNA-binding activity of dsRBD3 is required in vivo for Staufen-dependent localization of bicoid and oskar mRNAs. Using high-resolution NMR, we have determined the structure of the complex between dsRBD3 and an RNA stem-loop. The dsRBD recognizes the shape of A-form dsRNA through interactions between conserved residues within loop 2 and the minor groove, and between loop 4 and the phosphodiester backbone across the adjacent major groove. In addition, helix alpha1 interacts with the single-stranded loop that caps the RNA helix. Interactions between helix alpha1 and single-stranded RNA may be important determinants of the specificity of dsRBD proteins.
Collapse
Affiliation(s)
- A Ramos
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH
| | | | | | | | | | | | | | | | | |
Collapse
|