101
|
Ku HY, Lin H. PIWI proteins and their interactors in piRNA biogenesis, germline development and gene expression. Natl Sci Rev 2014; 1:205-218. [PMID: 25512877 DOI: 10.1093/nsr/nwu014] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are a complex class of small non-coding RNAs that are mostly 24-32 nucleotides in length and composed of at least hundreds of thousands of species that specifically interact with the PIWI protein subfamily of the ARGONAUTE family. Recent studies revealed that PIWI proteins interact with a number of proteins, especially the TUDOR-domain-containing proteins, to regulate piRNA biogenesis and regulatory function. Current research also provides evidence that PIWI proteins and piRNAs are not only crucial for transposon silencing in the germline, but also mediate novel mechanisms of epigenetic programming, DNA rearrangements, mRNA turnover, and translational control both in the germline and in the soma. These new discoveries begin to reveal an exciting new dimension of gene regulation in the cell.
Collapse
Affiliation(s)
- Hsueh-Yen Ku
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
102
|
Bubb KJ, Trinder SL, Baliga RS, Patel J, Clapp LH, MacAllister RJ, Hobbs AJ. Inhibition of phosphodiesterase 2 augments cGMP and cAMP signaling to ameliorate pulmonary hypertension. Circulation 2014; 130:496-507. [PMID: 24899690 DOI: 10.1161/circulationaha.114.009751] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a life-threatening disorder characterized by increased pulmonary artery pressure, remodeling of the pulmonary vasculature, and right ventricular failure. Loss of endothelium-derived nitric oxide (NO) and prostacyclin contributes to PH pathogenesis, and current therapies are targeted to restore these pathways. Phosphodiesterases (PDEs) are a family of enzymes that break down cGMP and cAMP, which underpin the bioactivity of NO and prostacyclin. PDE5 inhibitors (eg, sildenafil) are licensed for PH, but a role for PDE2 in lung physiology and disease has yet to be established. Herein, we investigated whether PDE2 inhibition modulates pulmonary cyclic nucleotide signaling and ameliorates experimental PH. METHODS AND RESULTS The selective PDE2 inhibitor BAY 60-7550 augmented atrial natriuretic peptide- and treprostinil-evoked pulmonary vascular relaxation in isolated arteries from chronically hypoxic rats. BAY 60-7550 prevented the onset of both hypoxia- and bleomycin-induced PH and produced a significantly greater reduction in disease severity when given in combination with a neutral endopeptidase inhibitor (enhances endogenous natriuretic peptides), trepostinil, inorganic nitrate (NO donor), or a PDE5 inhibitor. Proliferation of pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension was reduced by BAY 60-7550, an effect further enhanced in the presence of atrial natriuretic peptide, NO, and treprostinil. CONCLUSIONS PDE2 inhibition elicits pulmonary dilation, prevents pulmonary vascular remodeling, and reduces the right ventricular hypertrophy characteristic of PH. This favorable pharmacodynamic profile is dependent on natriuretic peptide bioactivity and is additive with prostacyclin analogues, PDE5 inhibitor, and NO. PDE2 inhibition represents a viable, orally active therapy for PH.
Collapse
Affiliation(s)
- Kristen J Bubb
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (K.J.B., S.L.T., R.S.B., A.J.H.); and Centre for Clinical Pharmacology, University College London (J.P., L.H.C., R.J.M.), London, United Kingdom
| | - Sarah L Trinder
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (K.J.B., S.L.T., R.S.B., A.J.H.); and Centre for Clinical Pharmacology, University College London (J.P., L.H.C., R.J.M.), London, United Kingdom
| | - Reshma S Baliga
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (K.J.B., S.L.T., R.S.B., A.J.H.); and Centre for Clinical Pharmacology, University College London (J.P., L.H.C., R.J.M.), London, United Kingdom
| | - Jigisha Patel
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (K.J.B., S.L.T., R.S.B., A.J.H.); and Centre for Clinical Pharmacology, University College London (J.P., L.H.C., R.J.M.), London, United Kingdom
| | - Lucie H Clapp
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (K.J.B., S.L.T., R.S.B., A.J.H.); and Centre for Clinical Pharmacology, University College London (J.P., L.H.C., R.J.M.), London, United Kingdom
| | - Raymond J MacAllister
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (K.J.B., S.L.T., R.S.B., A.J.H.); and Centre for Clinical Pharmacology, University College London (J.P., L.H.C., R.J.M.), London, United Kingdom
| | - Adrian J Hobbs
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (K.J.B., S.L.T., R.S.B., A.J.H.); and Centre for Clinical Pharmacology, University College London (J.P., L.H.C., R.J.M.), London, United Kingdom.
| |
Collapse
|
103
|
Tan H, West JA, Ramsay JP, Monson RE, Griffin JL, Toth IK, Salmond GPC. Comprehensive overexpression analysis of cyclic-di-GMP signalling proteins in the phytopathogen Pectobacterium atrosepticum reveals diverse effects on motility and virulence phenotypes. MICROBIOLOGY-SGM 2014; 160:1427-1439. [PMID: 24760967 DOI: 10.1099/mic.0.076828-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) is a ubiquitous bacterial signalling molecule produced by diguanylate cyclases of the GGDEF-domain family. Elevated c-di-GMP levels or increased GGDEF protein expression is frequently associated with the onset of sessility and biofilm formation in numerous bacterial species. Conversely, phosphodiesterase-dependent diminution of c-di-GMP levels by EAL- and HD-GYP-domain proteins is often accompanied by increased motility and virulence. In this study, we individually overexpressed 23 predicted GGDEF, EAL or HD-GYP-domain proteins encoded by the phytopathogen Pectobacterium atrosepticum strain SCRI1043. MS-based detection of c-di-GMP and 5'-phosphoguanylyl-(3'-5')-guanosine in these strains revealed that overexpression of most genes promoted modest 1-10-fold changes in cellular levels of c-di-GMP, with the exception of the GGDEF-domain proteins ECA0659 and ECA3374, which induced 1290- and 7660-fold increases, respectively. Overexpression of most EAL domain proteins increased motility, while overexpression of most GGDEF domain proteins reduced motility and increased poly-β-1,6-N-acetyl-glucosamine-dependent flocculation. In contrast to domain-based predictions, overexpression of the EAL protein ECA3549 or the HD-GYP protein ECA3548 increased c-di-GMP concentrations and reduced motility. Most overexpression constructs altered the levels of secreted cellulases, pectinases and proteases, confirming c-di-GMP regulation of virulence in Pe. atrosepticum. However, there was no apparent correlation between virulence-factor induction and the domain class expressed or cellular c-di-GMP levels, suggesting that regulation was in response to specific effectors within the network, rather than total c-di-GMP concentration. Finally, we demonstrated that the cellular localization patterns vary considerably for GGDEF/EAL/HD-GYP proteins, indicating it is a likely factor restricting specific interactions within the c-di-GMP network.
Collapse
Affiliation(s)
- H Tan
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - J A West
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - J P Ramsay
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - R E Monson
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - J L Griffin
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - I K Toth
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - G P C Salmond
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
104
|
Foureau E, Clastre M, Obando Montoya EJ, Besseau S, Oudin A, Glévarec G, Simkin AJ, Crèche J, Atehortùa L, Giglioli-Guivarc’h N, Courdavault V, Papon N. Subcellular localization of the histidine kinase receptors Sln1p, Nik1p and Chk1p in the yeast CTG clade species Candida guilliermondii. Fungal Genet Biol 2014; 65:25-36. [DOI: 10.1016/j.fgb.2014.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/23/2014] [Accepted: 01/25/2014] [Indexed: 12/29/2022]
|
105
|
Shahri W, Tahir I. Flower senescence: some molecular aspects. PLANTA 2014; 239:277-97. [PMID: 24178586 DOI: 10.1007/s00425-013-1984-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 10/14/2013] [Indexed: 05/08/2023]
|
106
|
Niemann V, Koch-Singenstreu M, Neu A, Nilkens S, Götz F, Unden G, Stehle T. The NreA protein functions as a nitrate receptor in the staphylococcal nitrate regulation system. J Mol Biol 2013; 426:1539-53. [PMID: 24389349 DOI: 10.1016/j.jmb.2013.12.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/19/2013] [Accepted: 12/23/2013] [Indexed: 02/04/2023]
Abstract
Staphylococci are able to use nitrate as an alternative electron acceptor during anaerobic respiration. The regulation of energy metabolism is dependent on the presence of oxygen and nitrate. Under anaerobic conditions, staphylococci employ the nitrate regulatory element (Nre) for transcriptional activation of genes involved in reduction and transport of nitrate and nitrite. Of the three proteins that constitute the Nre system, NreB has been characterized as an oxygen sensor kinase and NreC has been characterized as its cognate response regulator. Here, we present structural and functional data that establish NreA as a new type of nitrate receptor. The structure of NreA with bound nitrate was solved at 2.35Å resolution, revealing a GAF domain fold. Isothermal titration calorimetry experiments showed that NreA binds nitrate with low micromolar affinity (KD=22μM). Two crystal forms for NreA were obtained, with either bound nitrate or iodide. While the binding site is hydrophobic, two helix dipoles and polar interactions contribute to specific binding of the ions. The expression of nitrate reductase (NarGHI) was examined using a narG-lip (lipase) reporter gene assay in vivo. Expression was regulated by the presence of NreA and nitrate. Structure-guided mutations of NreA reduced its nitrate binding affinity and also affected the gene expression, thus providing support for the function of NreA as a nitrate receptor.
Collapse
Affiliation(s)
- Volker Niemann
- Interfaculty Institute of Biochemistry, Universität Tübingen, Hoppe-Seyler-Strasse 4, D-72076 Tübingen, Germany
| | - Mareike Koch-Singenstreu
- Institute for Microbiology and Wine Research, Universität Mainz, Johann-Joachim-Becherweg 15, D-55128 Mainz, Germany
| | - Ancilla Neu
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany
| | - Stephanie Nilkens
- Institute for Microbiology and Wine Research, Universität Mainz, Johann-Joachim-Becherweg 15, D-55128 Mainz, Germany
| | - Friedrich Götz
- Interfaculty Institute of Microbiology and Infection Medicine, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | - Gottfried Unden
- Institute for Microbiology and Wine Research, Universität Mainz, Johann-Joachim-Becherweg 15, D-55128 Mainz, Germany.
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, Universität Tübingen, Hoppe-Seyler-Strasse 4, D-72076 Tübingen, Germany; Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
107
|
Kotajima T, Shiraiwa Y, Suzuki I. Functional analysis of the N-terminal region of an essential histidine kinase, Hik2, in the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Lett 2013; 351:88-94. [PMID: 24283389 DOI: 10.1111/1574-6968.12346] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 11/23/2013] [Indexed: 01/26/2023] Open
Abstract
Histidine kinases are sensory proteins involved in the perception of environmental changes. Here, we characterized one of three essential histidine kinases, Hik2, in the cyanobacterium Synechocystis sp. PCC 6803 by constructing a fused sensor, Hik2n-Hik7c, which has the signal input domain of Hik2 and the kinase domain of the phosphate-deficiency sensor Hik7. The coding region of the hik7 gene was replaced with the fused sensor to evaluate the signalling activity in vivo as the activity of alkaline phosphatase (AP), which is regulated by Hik7. Cells expressing Hik2n-Hik7c had weak AP activities under standard growth conditions. Saline stress by NaCl induced AP activity in a dose-dependent manner. Analysis of the effects of several salt compounds on induction of AP activity indicated that Hik2n-Hik7c responded to Cl- concentration. Amino acid substitution in the signal input domain of Hik2 resulted in loss of this responsiveness. These results suggest that the signal input domain of Hik2 responds to environmental Cl- concentration in Synechocystis.
Collapse
Affiliation(s)
- Tomonori Kotajima
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan; CREST, JST, Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
108
|
Nilkens S, Koch-Singenstreu M, Niemann V, Götz F, Stehle T, Unden G. Nitrate/oxygen co-sensing by an NreA/NreB sensor complex of Staphylococcus carnosus. Mol Microbiol 2013; 91:381-93. [PMID: 24261791 DOI: 10.1111/mmi.12464] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2013] [Indexed: 11/28/2022]
Abstract
In Staphylococci maximal induction of nitrate reductase (narGHJI genes) requires anaerobic conditions, the presence of nitrate, and the NreABC regulatory system. Aerobic regulation is effected by the NreB/NreC two-component system. The role of the nitrate receptor NreA in nitrate induction and its relation to aerobic regulation was analysed in Staphylococcus carnosus. Nitrate induction of a narG-lip reporter gene required presence of NreB/NreC. When nreA was deleted, nitrate was no longer required for maximal induction, suggesting that NreA is a nitrate regulated inhibitor of NreB/NreC. In vitro, NreA and mutant NreA(Y95A) decreased NreB phosphorylation in part or completely, which was due to the inhibition of the autophosphorylating activity rather than an increase of phosphatase activity. Inhibition of phosphorylation was relieved completely when the nitrate-bound NreA was used instead of the nitrate-free form. In the bacterial two-hybrid BACTH system and HPINE interaction assays, NreA interacted with NreB, but not with NreC, and the interaction was diminished by nitrate. In summary, NreA interacts with NreB and controls its phosphorylation level in a nitrate dependent manner. In this way nitrate and NreA modulate the function of the oxygen sensor NreB, resulting in nitrate/oxygen co-sensing by an NreA/NreB sensor unit as part of the NreABC-system.
Collapse
Affiliation(s)
- Stephanie Nilkens
- Institute for Microbiology and Wine Research, Johannes Gutenberg University of Mainz, Germany
| | | | | | | | | | | |
Collapse
|
109
|
van Heeswijk WC, Westerhoff HV, Boogerd FC. Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiol Mol Biol Rev 2013; 77:628-95. [PMID: 24296575 PMCID: PMC3973380 DOI: 10.1128/mmbr.00025-13] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We present a comprehensive overview of the hierarchical network of intracellular processes revolving around central nitrogen metabolism in Escherichia coli. The hierarchy intertwines transport, metabolism, signaling leading to posttranslational modification, and transcription. The protein components of the network include an ammonium transporter (AmtB), a glutamine transporter (GlnHPQ), two ammonium assimilation pathways (glutamine synthetase [GS]-glutamate synthase [glutamine 2-oxoglutarate amidotransferase {GOGAT}] and glutamate dehydrogenase [GDH]), the two bifunctional enzymes adenylyl transferase/adenylyl-removing enzyme (ATase) and uridylyl transferase/uridylyl-removing enzyme (UTase), the two trimeric signal transduction proteins (GlnB and GlnK), the two-component regulatory system composed of the histidine protein kinase nitrogen regulator II (NRII) and the response nitrogen regulator I (NRI), three global transcriptional regulators called nitrogen assimilation control (Nac) protein, leucine-responsive regulatory protein (Lrp), and cyclic AMP (cAMP) receptor protein (Crp), the glutaminases, and the nitrogen-phosphotransferase system. First, the structural and molecular knowledge on these proteins is reviewed. Thereafter, the activities of the components as they engage together in transport, metabolism, signal transduction, and transcription and their regulation are discussed. Next, old and new molecular data and physiological data are put into a common perspective on integral cellular functioning, especially with the aim of resolving counterintuitive or paradoxical processes featured in nitrogen assimilation. Finally, we articulate what still remains to be discovered and what general lessons can be learned from the vast amounts of data that are available now.
Collapse
|
110
|
Abstract
Laboratory-adapted strains of Thermus spp. have been shown to require oxygen for growth, including the model strains T. thermophilus HB27 and HB8. In contrast, many isolates of this species that have not been intensively grown under laboratory conditions keep the capability to grow anaerobically with one or more electron acceptors. The use of nitrogen oxides, especially nitrate, as electron acceptors is one of the most widespread capabilities among these facultative strains. In this process, nitrate is reduced to nitrite by a reductase (Nar) that also functions as electron transporter toward nitrite and nitric oxide reductases when nitrate is scarce, effectively replacing respiratory complex III. In many T. thermophilus denitrificant strains, most electrons for Nar are provided by a new class of NADH dehydrogenase (Nrc). The ability to reduce nitrite to NO and subsequently to N2O by the corresponding Nir and Nor reductases is also strain specific. The genes encoding the capabilities for nitrate (nar) and nitrite (nir and nor) respiration are easily transferred between T. thermophilus strains by natural competence or by a conjugation-like process and may be easily lost upon continuous growth under aerobic conditions. The reason for this instability is apparently related to the fact that these metabolic capabilities are encoded in gene cluster islands, which are delimited by insertion sequences and integrated within highly variable regions of easily transferable extrachromosomal elements. Together with the chromosomal genes, these plasmid-associated genetic islands constitute the extended pangenome of T. thermophilus that provides this species with an enhanced capability to adapt to changing environments.
Collapse
|
111
|
Zhang C, Wei ZH, Ye BC. Quantitative monitoring of 2-oxoglutarate in Escherichia coli cells by a fluorescence resonance energy transfer-based biosensor. Appl Microbiol Biotechnol 2013; 97:8307-16. [PMID: 23893310 DOI: 10.1007/s00253-013-5121-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/07/2013] [Accepted: 07/10/2013] [Indexed: 11/25/2022]
Abstract
2-Oxoglutarate (2OG) is a metabolite from the highly conserved Krebs cycle and not only plays a critical role in metabolism but also acts as a signaling molecule in a variety of organisms. Environmental inorganic nitrogen is reduced to ammonium by microorganisms, whose metabolic pathways involve the conversion of 2OG to glutamate and glutamine. Tracking of 2OG in real time would be useful for studies on cell metabolism and signal transduction. Here, we developed a genetically encoded 2OG biosensor based on fluorescent resonance energy transfer by inserting the functional 2OG-binding domain GAF of the NifA protein between the fluorescence resonance energy transfer (FRET) pair YFP/CFP. The dynamic range of the sensors is 100 μM to 10 mM, which appeared identical to the physiological range observed in E. coli. We optimized the peptide lengths of the binding domain to obtain a sensor with a maximal ratio change of 0.95 upon 2OG binding and demonstrated the feasibility of this sensor for the visualization of metabolites both in vitro and in vivo.
Collapse
Affiliation(s)
- Chang Zhang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | | | | |
Collapse
|
112
|
Molecular dynamics simulations of isoleucine-release pathway in GAF domain of N-CodY from Bacillus Subtilis. J Mol Graph Model 2013; 44:232-40. [PMID: 23911932 DOI: 10.1016/j.jmgm.2013.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 06/29/2013] [Accepted: 07/01/2013] [Indexed: 11/22/2022]
Abstract
The GAF domain located in the N-terminal motifs of CodY (N-CodY) is responsible for increasing the affinity of CodY to its target sites on DNA by its interaction with the branched chain amino acids (BCAAs) involving isoleucine, leucine and valine. The study of the interaction of GAF domain with isoleucine gains much attention in recent years, but the mechanism of isoleucine release still remains unclear. In this paper, a conventional molecular dynamics (MD) and force probe molecular dynamics (FPMD) simulations have been performed with the aim to understand how the isoleucine ligand escapes from the GAF domain of N-CodY from Bacillus subtilis. The MD results reveal that the ligand release is a gradual process, which is accompanied by the movement of the loop between β3 and β4. During the periods of ligand escaping from the bottom to the top of binding pocket, isoleucine forms hydrogen bonds one after another with series of residues, such as ARG61, THR96, PHE98, VAL100, GLU101 and ASN102, under the mediation of hydrophobic contacts. The FPMD results show that the easiest way to pull ligand out of the cavity is along x direction (i.e. the direction is opposite to MET62).
Collapse
|
113
|
Inactivation of cyclic Di-GMP binding protein TDE0214 affects the motility, biofilm formation, and virulence of Treponema denticola. J Bacteriol 2013; 195:3897-905. [PMID: 23794624 DOI: 10.1128/jb.00610-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
As a ubiquitous second messenger, cyclic dimeric GMP (c-di-GMP) has been studied in numerous bacteria. The oral spirochete Treponema denticola, a periodontal pathogen associated with human periodontitis, has a complex c-di-GMP signaling network. However, its function remains unexplored. In this report, a PilZ-like c-di-GMP binding protein (TDE0214) was studied to investigate the role of c-di-GMP in the spirochete. TDE0214 harbors a PilZ domain with two signature motifs: RXXXR and DXSXXG. Biochemical studies showed that TDE0214 binds c-di-GMP in a specific manner, with a dissociation constant (Kd) value of 1.73 μM, which is in the low range compared to those of other reported c-di-GMP binding proteins. To reveal the role of c-di-GMP in T. denticola, a TDE0214 deletion mutant (TdΔ214) was constructed and analyzed in detail. First, swim plate and single-cell tracking analyses showed that TdΔ214 had abnormal swimming behaviors: the mutant was less motile and reversed more frequently than the wild type. Second, we found that biofilm formation of TdΔ214 was substantially repressed (∼6.0-fold reduction). Finally, in vivo studies using a mouse skin abscess model revealed that the invasiveness and ability to induce skin abscesses and host humoral immune responses were significantly attenuated in TdΔ214, indicative of the impact that TDE0214 has on the virulence of T. denticola. Collectively, the results reported here indicate that TDE0214 plays important roles in motility, biofilm formation, and virulence of the spirochete. This report also paves a way to further unveil the roles of the c-di-GMP signaling network in the biology and pathogenicity of T. denticola.
Collapse
|
114
|
The role of bacterial enhancer binding proteins as specialized activators of σ54-dependent transcription. Microbiol Mol Biol Rev 2013; 76:497-529. [PMID: 22933558 DOI: 10.1128/mmbr.00006-12] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial enhancer binding proteins (bEBPs) are transcriptional activators that assemble as hexameric rings in their active forms and utilize ATP hydrolysis to remodel the conformation of RNA polymerase containing the alternative sigma factor σ(54). We present a comprehensive and detailed summary of recent advances in our understanding of how these specialized molecular machines function. The review is structured by introducing each of the three domains in turn: the central catalytic domain, the N-terminal regulatory domain, and the C-terminal DNA binding domain. The role of the central catalytic domain is presented with particular reference to (i) oligomerization, (ii) ATP hydrolysis, and (iii) the key GAFTGA motif that contacts σ(54) for remodeling. Each of these functions forms a potential target of the signal-sensing N-terminal regulatory domain, which can act either positively or negatively to control the activation of σ(54)-dependent transcription. Finally, we focus on the DNA binding function of the C-terminal domain and the enhancer sites to which it binds. Particular attention is paid to the importance of σ(54) to the bacterial cell and its unique role in regulating transcription.
Collapse
|
115
|
Batchelor JD, Lee PS, Wang AC, Doucleff M, Wemmer DE. Structural mechanism of GAF-regulated σ(54) activators from Aquifex aeolicus. J Mol Biol 2013; 425:156-70. [PMID: 23123379 PMCID: PMC3544215 DOI: 10.1016/j.jmb.2012.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/26/2012] [Accepted: 10/26/2012] [Indexed: 11/22/2022]
Abstract
The σ subunits of bacterial RNA polymerase occur in many variant forms and confer promoter specificity to the holopolymerase. Members of the σ(54) family of σ subunits require the action of a 'transcriptional activator' protein to open the promoter and initiate transcription. The activator proteins undergo regulated assembly from inactive dimers to hexamers that are active ATPases. These contact σ(54) directly and, through ATP hydrolysis, drive a conformational change that enables promoter opening. σ(54) activators use several different kinds of regulatory domains to respond to a wide variety of intracellular signals. One common regulatory module, the GAF domain, is used by σ(54) activators to sense small-molecule ligands. The structural basis for GAF domain regulation in σ(54) activators has not previously been reported. Here, we present crystal structures of GAF regulatory domains for Aquifex aeolicus σ(54) activators NifA-like homolog (Nlh)2 and Nlh1 in three functional states-an 'open', ATPase-inactive state; a 'closed', ATPase-inactive state; and a 'closed', ligand-bound, ATPase-active state. We also present small-angle X-ray scattering data for Nlh2-linked GAF-ATPase domains in the inactive state. These GAF domain dimers regulate σ(54) activator proteins by holding the ATPase domains in an inactive dimer conformation. Ligand binding of Nlh1 dramatically remodels the GAF domain dimer interface, disrupting the contacts with the ATPase domains. This mechanism has strong parallels to the response to phosphorylation in some two-component regulated σ(54) activators. We describe a structural mechanism of GAF-mediated enzyme regulation that appears to be conserved among humans, plants, and bacteria.
Collapse
Affiliation(s)
- Joseph D. Batchelor
- Graduate Group in Biophysics and Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720
| | - Peter S. Lee
- Graduate Group in Biophysics and Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720
| | - Andrew C. Wang
- Graduate Group in Biophysics and Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720
| | - Michaeleen Doucleff
- Graduate Group in Biophysics and Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720
| | - David E. Wemmer
- Graduate Group in Biophysics and Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720
| |
Collapse
|
116
|
Aono S. The Dos family of globin-related sensors using PAS domains to accommodate haem acting as the active site for sensing external signals. Adv Microb Physiol 2013; 63:273-327. [PMID: 24054799 DOI: 10.1016/b978-0-12-407693-8.00007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Sensor proteins play crucial roles in maintaining homeostasis of cells by sensing changes in extra- and intracellular chemical and physical conditions to trigger biological responses. It has recently become clear that gas molecules function as signalling molecules in these biological regulatory systems responsible for transcription, chemotaxis, synthesis/hydrolysis of nucleotide second messengers, and other complex physiological processes. Haem-containing sensor proteins are widely used to sense gas molecules because haem can bind gas molecules reversibly. Ligand binding to the haem in the sensor proteins triggers conformational changes around the haem, which results in their functional regulation. Spectroscopic and crystallographic studies are essential to understand how these sensor proteins function in these biological regulatory systems. In this chapter, I discuss structural and functional relationships of haem-containing PAS and PAS-related families of the sensor proteins.
Collapse
|
117
|
Unden G, Nilkens S, Singenstreu M. Bacterial sensor kinases using Fe-S cluster binding PAS or GAF domains for O2 sensing. Dalton Trans 2012; 42:3082-7. [PMID: 23138661 DOI: 10.1039/c2dt32089d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
[4Fe-4S](2+) clusters are used by very diverse types of bacterial sensors for response to oxygen, including DNA-binding proteins of the CRP/FNR family and sensor kinases like NreB. In NreB the cluster is bound by an input domain of the PAS type. The [4Fe-4S](2+) cluster of NreB responds to O(2) by degradation to a [2Fe-2S](2+) cluster which is labile and decomposes. NreB constitutes together with AirS the NreB/AirS family of bacterial sensor kinases that contain PAS or GAF domains for binding of [4Fe-4S](2+) or [2Fe-2S](2+) clusters and oxygen sensing. The NreB/AirS family is related to the FixL sensor kinases that use hemeB binding PAS domains for oxygen sensing.
Collapse
Affiliation(s)
- Gottfried Unden
- Institute for Microbiology and Wine Research, University of Mainz, Mainz, Germany.
| | | | | |
Collapse
|
118
|
Yang Y, Huang XZ, Wang L, Risoul V, Zhang CC, Chen WL. Phenotypic variation caused by variation in the relative copy number of pDU1-based plasmids expressing the GAF domain of Pkn41 or Pkn42 in Anabaena sp. PCC 7120. Res Microbiol 2012; 164:127-35. [PMID: 23142489 DOI: 10.1016/j.resmic.2012.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/08/2012] [Indexed: 11/17/2022]
Abstract
The cyanobacterium Anabaena (Nostoc) sp. PCC 7120 is a model for cyanobacterial cell differentiation studies. pDU1, an endogenous plasmid in Nostoc sp. PCC 7524, is used as the only cyanobacterial replicon for Anabaena (Nostoc) studies. However, the relative copy numbers of pDU1-based plasmids in Anabaena (Nostoc) sp. PCC 7120 are not well studied. We found that the relative plasmid copy number of one such vector, pRL25T, varied widely, especially when the vector carried a recombinant insert, under different conditions, ranging from 0.53 to 1812 per chromosome in different recombinant strains tested, either in independent clones of the same strain or in the same clone under different growth conditions. The phenotypes caused by pRL25T-driven expression of green fluorescent protein or the GAF domain of Pkn41 or Pkn42 varied depending on the independent clones analyzed. This phenotypic variation correlated with the relative plasmid copy number present in cells.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China.
| | | | | | | | | | | |
Collapse
|
119
|
Abstract
SIGNIFICANCE In bacteria, transcriptional responses to reactive oxygen and nitrogen species (ROS and RNS, respectively) are typically coordinated by regulatory proteins that employ metal centers or reactive thiols to detect the presence of those species. This review is focused on the structure, function and mechanism of three regulatory proteins (Fur, PerR, and NorR) that contain non-heme iron and regulate the transcription of target genes in response to ROS and/or RNS. The targets for regulation include genes encoding detoxification activities, and genes encoding proteins involved in the repair of the damage caused by ROS and RNS. RECENT ADVANCES Three-dimensional structures of several Fur proteins and of PerR are revealing important details of the metal binding sites of these proteins, showing a surprising degree of structural diversity in the Fur family. CRITICAL ISSUES Discussion of the interaction of Fur with ROS and RNS will illustrate the difficulty that sometimes exists in distinguishing between true physiological responses and adventitious reactions of a regulatory protein with a reactive ligand. FUTURE DIRECTIONS Consideration of these three sensor proteins illuminates some of the key questions that remain unanswered, for example, the nature of the biochemical determinants that dictate the sensitivity and specificity of the interaction of the sensor proteins with their cognate signals.
Collapse
Affiliation(s)
- Stephen Spiro
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas 75080, USA.
| | | |
Collapse
|
120
|
Shi F, Li N, Liu S, Qin S. Sequence analysis of the Microcystis aeruginosa FACHB-912 phytochrome gene supports positive selection in cyanobacteria. CHINESE SCIENCE BULLETIN-CHINESE 2012. [DOI: 10.1007/s11434-012-5238-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
121
|
Li Z, Nair SK. Quorum sensing: how bacteria can coordinate activity and synchronize their response to external signals? Protein Sci 2012; 21:1403-17. [PMID: 22825856 DOI: 10.1002/pro.2132] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/18/2012] [Accepted: 07/18/2012] [Indexed: 01/14/2023]
Abstract
Quorum sensing is used by a large variety of bacteria to regulate gene expression in a cell-density-dependent manner. Bacteria can synchronize population behavior using small molecules called autoinducers that are produced by cognate synthases and recognized by specific receptors. Quorum sensing plays critical roles in regulating diverse cellular functions in bacteria, including bioluminescence, virulence gene expression, biofilm formation, and antibiotic resistance. The best-studied autoinducers are acyl homoserine lactone (AHL) molecules, which are the primary quorum sensing signals used by Gram-negative bacteria. In this review we focus on the AHL-dependent quorum sensing system and highlight recent progress on structural and mechanistic studies of AHL synthases and the corresponding receptors. Crystal structures of LuxI-type AHL synthases provide insights into acyl-substrate specificity, but the current knowledge is still greatly limited. Structural studies of AHL receptors have facilitated a more thorough understanding of signal perception and established the molecular framework for the development of quorum sensing inhibitors.
Collapse
Affiliation(s)
- Zhi Li
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
122
|
The DPY-30 domain and its flanking sequence mediate the assembly and modulation of flagellar radial spoke complexes. Mol Cell Biol 2012; 32:4012-24. [PMID: 22851692 DOI: 10.1128/mcb.06602-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RIIa is known as the dimerization and docking (D/D) domain of the cyclic AMP (cAMP)-dependent protein kinase. However, numerous molecules, including radial spoke protein 2 (RSP2) in Chlamydomonas flagella, also contain an RIIa or a similar DPY-30 domain. To elucidate new roles of D/D domain-containing proteins, we investigated a panel of RSP2 mutants. An RSP2 mutant had paralyzed flagella defective in RSP2 and multiple subunits near the spokehead. New transgenic strains lacking only the DPY-30 domain in RSP2 were also paralyzed. In contrast, motility was restored in strains that lacked only RSP2's calmodulin-binding C-terminal region. These cells swam normally in dim light but could not maintain typical swimming trajectories under bright illumination. In both deletion transgenic strains, the subunits near the spokehead were restored, but their firm attachment to the spokestalk required the DPY-30 domain. We postulate that the DPY-30-helix dimer is a conserved two-prong linker, required for normal motility, organizing duplicated subunits in the radial spoke stalk and formation of a symmetrical spokehead. Further, the dispensable calmodulin-binding region appears to fine-tune the spokehead for regulation of "steering" motility in the green algae. Thus, in general, D/D domains may function to localize molecular modules for both the assembly and modulation of macromolecular complexes.
Collapse
|
123
|
Li Z, Chen JH, Hao Y, Nair SK. Structures of the PelD cyclic diguanylate effector involved in pellicle formation in Pseudomonas aeruginosa PAO1. J Biol Chem 2012; 287:30191-204. [PMID: 22810222 DOI: 10.1074/jbc.m112.378273] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) plays a vital role in the global regulation in bacteria. Here, we describe structural and biochemical characterization of a novel c-di-GMP effector PelD that is critical to the formation of pellicles by Pseudomonas aeruginosa. We present high-resolution structures of a cytosolic fragment of PelD in apo form and its complex with c-di-GMP. The structure contains a bi-domain architecture composed of a GAF domain (commonly found in cyclic nucleotide receptors) and a GGDEF domain (found in c-di-GMP synthesizing enzymes), with the latter binding to one molecule of c-di-GMP. The GGDEF domain has a degenerate active site but a conserved allosteric site (I-site), which we show binds c-di-GMP with a K(d) of 0.5 μm. We identified a series of residues that are crucial for c-di-GMP binding, and confirmed the roles of these residues through biochemical characterization of site-specific variants. The structures of PelD represent a novel class of c-di-GMP effector and expand the knowledge of scaffolds that mediate c-di-GMP recognition.
Collapse
Affiliation(s)
- Zhi Li
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
124
|
Ramesh A, DebRoy S, Goodson JR, Fox KA, Faz H, Garsin DA, Winkler WC. The mechanism for RNA recognition by ANTAR regulators of gene expression. PLoS Genet 2012; 8:e1002666. [PMID: 22685413 PMCID: PMC3369931 DOI: 10.1371/journal.pgen.1002666] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/07/2012] [Indexed: 12/16/2022] Open
Abstract
ANTAR proteins are widespread bacterial regulatory proteins that have RNA–binding output domains and utilize antitermination to control gene expression at the post-initiation level. An ANTAR protein, EutV, regulates the ethanolamine-utilization genes (eut) in Enterococcus faecalis. Using this system, we present genetic and biochemical evidence of a general mechanism of antitermination used by ANTARs, including details of the antiterminator structure. The novel antiterminator structure consists of two small hairpins with highly conserved terminal loop residues, both features being essential for successful antitermination. The ANTAR protein dimerizes and associates with its substrate RNA in response to signal-induced phosphorylation. Furthermore, bioinformatic searches using this conserved antiterminator motif identified many new ANTAR target RNAs in phylogenetically diverse bacterial species, some comprising complex regulons. Despite the unrelatedness of the species in which they are found, the majority of the ANTAR–associated genes are thematically related to nitrogen management. These data suggest that the central tenets for gene regulation by ANTAR antitermination occur widely in nature to specifically control nitrogen metabolism. In bacteria, two-component regulatory systems comprise the primary mechanisms for how microorganisms respond to changes in their environment. These signal transduction systems rely upon phosphotransfer between two conserved proteins, a histidine kinase and a response regulator, to propagate the signal and affect cellular biology. Phosphorylation of the response regulator has been shown in many systems to control DNA–binding activity, protein–protein interactions, or enzymatic activity. However, in this study, we discover a general RNA substrate for a large family of putative RNA–binding response regulator proteins called ANTAR proteins. By identifying the general architecture of this RNA recognition element, our bioinformatic searches were then able to discover many more examples of these RNA motifs in bacteria. Indeed, our data together revealed that the regulatory relationship between ANTAR proteins and the RNA motif identified in this study is widespread among phylogenetically diverse bacteria for control of numerous nitrogen metabolism genes.
Collapse
Affiliation(s)
- Arati Ramesh
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Sruti DebRoy
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Jonathan R. Goodson
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, Maryland, United States of America
| | - Kristina A. Fox
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Herbey Faz
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Danielle A. Garsin
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail: (WCW); (DAG)
| | - Wade C. Winkler
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, Maryland, United States of America
- * E-mail: (WCW); (DAG)
| |
Collapse
|
125
|
Zhang XJ, Gao XZ, Yao W, Cote RH. Functional mapping of interacting regions of the photoreceptor phosphodiesterase (PDE6) γ-subunit with PDE6 catalytic dimer, transducin, and regulator of G-protein signaling9-1 (RGS9-1). J Biol Chem 2012; 287:26312-20. [PMID: 22665478 DOI: 10.1074/jbc.m112.377333] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cGMP phosphodiesterase (PDE6) involved in visual transduction in photoreceptor cells contains two inhibitory γ-subunits (Pγ) which bind to the catalytic core (Pαβ) to inhibit catalysis and stimulate cGMP binding to the GAF domains of Pαβ. During visual excitation, interaction of activated transducin with Pγ relieves inhibition. Pγ also participates in a complex with RGS9-1 and other proteins to accelerate the GTPase activity of activated transducin. We studied the structural determinants for these important functions of Pγ. First, we identified two important sites in the middle region of Pγ (amino acids 27-38 and 52-54) that significantly stabilize the overall binding affinity of Pγ with Pαβ. The ability of Pγ to stimulate noncatalytic cGMP binding to the GAF domains of PDE6 has been localized to amino acids 27-30 of Pγ. Transducin activation of PDE6 catalysis critically depends on the presence of Ile54 in the glycine-rich region of Pγ in order to relieve inhibition of catalysis. The central glycine-rich region of Pγ is also required for transducin to increase cGMP exchange at the GAF domains. Finally, Thr-65 and/or Val-66 of Pγ are critical residues for Pγ to stimulate GTPase activity of transducin in a complex with RGS9-1. We propose that the glycine-rich region of Pγ is a primary docking site for PDE6-interacting proteins involved in the activation/inactivation pathways of visual transduction. This functional mapping of Pγ with its binding partners demonstrates the remarkable versatility of this multifunctional protein and its central role in regulating the activation and lifetime of visual transduction.
Collapse
Affiliation(s)
- Xiu-Jun Zhang
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824, USA
| | | | | | | |
Collapse
|
126
|
Hopp CS, Bowyer PW, Baker DA. The role of cGMP signalling in regulating life cycle progression of Plasmodium. Microbes Infect 2012; 14:831-7. [PMID: 22613210 PMCID: PMC3484397 DOI: 10.1016/j.micinf.2012.04.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/13/2012] [Accepted: 04/17/2012] [Indexed: 11/25/2022]
Abstract
The 3′-5′-cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) is the main mediator of cGMP signalling in the malaria parasite. This article reviews the role of PKG in Plasmodium falciparum during gametogenesis and blood stage schizont rupture, as well as the role of the Plasmodium berghei orthologue in ookinete differentiation and motility, and liver stage schizont development. The current views on potential effector proteins downstream of PKG and the mechanisms that may regulate cyclic nucleotide levels are presented.
Collapse
Affiliation(s)
- Christine S Hopp
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | | | | |
Collapse
|
127
|
The phosphodiesterase DipA (PA5017) is essential for Pseudomonas aeruginosa biofilm dispersion. J Bacteriol 2012; 194:2904-15. [PMID: 22493016 DOI: 10.1128/jb.05346-11] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although little is known regarding the mechanism of biofilm dispersion, it is becoming clear that this process coincides with alteration of cyclic di-GMP (c-di-GMP) levels. Here, we demonstrate that dispersion by Pseudomonas aeruginosa in response to sudden changes in nutrient concentrations resulted in increased phosphodiesterase activity and reduction of c-di-GMP levels compared to biofilm and planktonic cells. By screening mutants inactivated in genes encoding EAL domains for nutrient-induced dispersion, we identified in addition to the previously reported ΔrbdA mutant a second mutant, the ΔdipA strain (PA5017 [dispersion-induced phosphodiesterase A]), to be dispersion deficient in response to glutamate, nitric oxide, ammonium chloride, and mercury chloride. Using biochemical and in vivo studies, we show that DipA associates with the membrane and exhibits phosphodiesterase activity but no detectable diguanylate cyclase activity. Consistent with these data, a ΔdipA mutant exhibited reduced swarming motility, increased initial attachment, and polysaccharide production but only somewhat increased biofilm formation and c-di-GMP levels. DipA harbors an N-terminal GAF (cGMP-specific phosphodiesterases, adenylyl cyclases, and FhlA) domain and two EAL motifs within or near the C-terminal EAL domain. Mutational analyses of the two EAL motifs of DipA suggest that both are important for the observed phosphodiesterase activity and dispersion, while the GAF domain modulated DipA function both in vivo and in vitro without being required for phosphodiesterase activity. Dispersion was found to require protein synthesis and resulted in increased dipA expression and reduction of c-di-GMP levels. We propose a role of DipA in enabling dispersion in P. aeruginosa biofilms.
Collapse
|
128
|
Song L, Sudhakar P, Wang W, Conrads G, Brock A, Sun J, Wagner-Döbler I, Zeng AP. A genome-wide study of two-component signal transduction systems in eight newly sequenced mutans streptococci strains. BMC Genomics 2012; 13:128. [PMID: 22475007 PMCID: PMC3353171 DOI: 10.1186/1471-2164-13-128] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 04/04/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mutans streptococci are a group of gram-positive bacteria including the primary cariogenic dental pathogen Streptococcus mutans and closely related species. Two component systems (TCSs) composed of a signal sensing histidine kinase (HK) and a response regulator (RR) play key roles in pathogenicity, but have not been comparatively studied for these oral bacterial pathogens. RESULTS HKs and RRs of 8 newly sequenced mutans streptococci strains, including S. sobrinus DSM20742, S. ratti DSM20564 and six S. mutans strains, were identified and compared to the TCSs of S. mutans UA159 and NN2025, two previously genome sequenced S. mutans strains. Ortholog analysis revealed 18 TCS clusters (HK-RR pairs), 2 orphan HKs and 2 orphan RRs, of which 8 TCS clusters were common to all 10 strains, 6 were absent in one or more strains, and the other 4 were exclusive to individual strains. Further classification of the predicted HKs and RRs revealed interesting aspects of their putative functions. While TCS complements were comparable within the six S. mutans strains, S. sobrinus DSM20742 lacked TCSs possibly involved in acid tolerance and fructan catabolism, and S. ratti DSM20564 possessed 3 unique TCSs but lacked the quorum-sensing related TCS (ComDE). Selected computational predictions were verified by PCR experiments. CONCLUSIONS Differences in the TCS repertoires of mutans streptococci strains, especially those of S. sobrinus and S. ratti in comparison to S. mutans, imply differences in their response mechanisms for survival in the dynamic oral environment. This genomic level study of TCSs should help in understanding the pathogenicity of these mutans streptococci strains.
Collapse
Affiliation(s)
- Lifu Song
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Enomoto G, Hirose Y, Narikawa R, Ikeuchi M. Thiol-Based Photocycle of the Blue and Teal Light-Sensing Cyanobacteriochrome Tlr1999. Biochemistry 2012; 51:3050-8. [DOI: 10.1021/bi300020u] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Gen Enomoto
- Department of Life Sciences
(Biology), Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| | - Yuu Hirose
- Electronics-Inspired Interdisciplinary
Research Institute (EIIRIS), Toyohashi University of Technology, Toyohashi, Aichi 441-8581, Japan
| | - Rei Narikawa
- Department of Life Sciences
(Biology), Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Japan Science and Technology Agency
(JST), PRESTO, 4-1-8 Honcho Kawaguchi,
Saitama 332-0012 Japan
| | - Masahiko Ikeuchi
- Department of Life Sciences
(Biology), Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
130
|
Petters T, Zhang X, Nesper J, Treuner-Lange A, Gomez-Santos N, Hoppert M, Jenal U, Søgaard-Andersen L. The orphan histidine protein kinase SgmT is a c-di-GMP receptor and regulates composition of the extracellular matrix together with the orphan DNA binding response regulator DigR in Myxococcus xanthus. Mol Microbiol 2012; 84:147-65. [PMID: 22394314 PMCID: PMC3509222 DOI: 10.1111/j.1365-2958.2012.08015.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In Myxococcus xanthus the extracellular matrix is essential for type IV pili-dependent motility and starvation-induced fruiting body formation. Proteins of two-component systems including the orphan DNA binding response regulator DigR are essential in regulating the composition of the extracellular matrix. We identify the orphan hybrid histidine kinase SgmT as the partner kinase of DigR. In addition to kinase and receiver domains, SgmT consists of an N-terminal GAF domain and a C-terminal GGDEF domain. The GAF domain is the primary sensor domain. The GGDEF domain binds the second messenger bis-(3′-5′)-cyclic-dimeric-GMP (c-di-GMP) and functions as a c-di-GMP receptor to spatially sequester SgmT. We identify the DigR binding site in the promoter of the fibA gene, which encodes an abundant extracellular matrix metalloprotease. Whole-genome expression profiling experiments in combination with the identified DigR binding site allowed the identification of the DigR regulon and suggests that SgmT/DigR regulates the expression of genes for secreted proteins and enzymes involved in secondary metabolite synthesis. We suggest that SgmT/DigR regulates extracellular matrix composition and that SgmT activity is regulated by two sensor domains with ligand binding to the GAF domain resulting in SgmT activation and c-di-GMP binding to the GGDEF domain resulting in spatial sequestration of SgmT.
Collapse
Affiliation(s)
- Tobias Petters
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043 Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
131
|
López FE, de las Mercedes Pescaretti M, Morero R, Delgado MA. Salmonella Typhimurium general virulence factors: A battle of David against Goliath? Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
132
|
Ueki T, Leang C, Inoue K, Lovley DR. Identification of multicomponent histidine-aspartate phosphorelay system controlling flagellar and motility gene expression in Geobacter species. J Biol Chem 2012; 287:10958-66. [PMID: 22362768 DOI: 10.1074/jbc.m112.345041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Geobacter species play an important role in the natural biogeochemical cycles of aquatic sediments and subsurface environments as well as in subsurface bioremediation by oxidizing organic compounds with the reduction of insoluble Fe(III) oxides. Flagellum-based motility is considered to be critical for Geobacter species to locate fresh sources of Fe(III) oxides. Functional and comparative genomic approaches, coupled with genetic and biochemical methods, identified key regulators for flagellar gene expression in Geobacter species. A master transcriptional regulator, designated FgrM, is a member of the enhancer-binding protein family. The fgrM gene in the most studied strain of Geobacter species, Geobacter sulfurreducens strain DL-1, is truncated by a transposase gene, preventing flagellar biosynthesis. Integrating a functional FgrM homolog restored flagellar biosynthesis and motility in G. sulfurreducens DL-1 and enhanced the ability to reduce insoluble Fe(III) oxide. Interrupting the fgrM gene in G. sulfurreducens strain KN400, which is motile, removed the capacity for flagellar production and inhibited Fe(III) oxide reduction. FgrM, which is also a response regulator of the two-component His-Asp phosphorelay system, was phosphorylated by histidine kinase GHK4, which was essential for flagellar production and motility. GHK4, which is a hybrid kinase with a receiver domain at the N terminus, was phosphorylated by another histidine kinase, GHK3. Therefore, the multicomponent His-Asp phosphorelay system appears to control flagellar gene expression in Geobacter species.
Collapse
Affiliation(s)
- Toshiyuki Ueki
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | | | | | |
Collapse
|
133
|
Marmont LS, Whitney JC, Robinson H, Colvin KM, Parsek MR, Howell PL. Expression, purification, crystallization and preliminary X-ray analysis of Pseudomonas aeruginosa PelD. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:181-4. [PMID: 22297994 PMCID: PMC3274398 DOI: 10.1107/s1744309111052109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/02/2011] [Indexed: 05/31/2023]
Abstract
The production of the PEL polysaccharide in Pseudomonas aeruginosa requires the binding of bis-(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP) to the cytoplasmic GGDEF domain of the inner membrane protein PelD. Here, the overexpression, purification and crystallization of a soluble construct of PelD that encompasses the GGDEF domain and a predicted GAF domain is reported. Diffraction-quality crystals were grown using the hanging-drop vapour-diffusion method. The crystals grew as flat plates, with unit-cell parameters a = 88.3, b = 114.0, c = 61.9 Å, α = β = γ = 90.0°. The PelD crystals exhibited the symmetry of space group P2(1)2(1)2 and diffracted to a minimum d-spacing of 2.2 Å. On the basis of the Matthews coefficient (V(M) = 2.29 Å(3) Da(-1)), it was estimated that two molecules are present in the asymmetric unit.
Collapse
Affiliation(s)
- Lindsey S. Marmont
- Program in Molecular Structure and Function, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - John C. Whitney
- Program in Molecular Structure and Function, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Howard Robinson
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Kelly M. Colvin
- Department of Microbiology, University of Washington, Seattle, WA 98195-7735, USA
| | - Matthew R. Parsek
- Department of Microbiology, University of Washington, Seattle, WA 98195-7735, USA
| | - P. Lynne Howell
- Program in Molecular Structure and Function, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
134
|
Abstract
There are two primary modes of platelet inhibition: blockade of membrane receptors or neutralization of intracellular pathways. Both means of inhibition have proven benefits in the prevention and resolution of atherothrombotic events. With regard to intracellular inhibition, phosphodiesterases (PDEs) are fundamental for platelet function. Platelets possess several PDEs (PDE2, PDE3 and PDE5) that catalyze the hydrolysis of cyclic adenosine 3'-5'-monophosphate (cAMP) and cyclic guanosine 3'-5'-monophosphate (cGMP), thereby limiting the levels of intracellular nucleotides. PDE inhibitors, such as cilostazol and dipyridamole, dampen platelet function by increasing cAMP and cGMP levels. This review focuses on the roles of PDE inhibitors in modulating platelet function, with particular attention paid to drugs that have anti-platelet clinical indications.
Collapse
|
135
|
Zelman AK, Dawe A, Gehring C, Berkowitz GA. Evolutionary and structural perspectives of plant cyclic nucleotide-gated cation channels. FRONTIERS IN PLANT SCIENCE 2012; 3:95. [PMID: 22661976 PMCID: PMC3362136 DOI: 10.3389/fpls.2012.00095] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 04/24/2012] [Indexed: 05/19/2023]
Abstract
Ligand-gated cation channels are a frequent component of signaling cascades in eukaryotes. Eukaryotes contain numerous diverse gene families encoding ion channels, some of which are shared and some of which are unique to particular kingdoms. Among the many different types are cyclic nucleotide-gated channels (CNGCs). CNGCs are cation channels with varying degrees of ion conduction selectivity. They are implicated in numerous signaling pathways and permit diffusion of divalent and monovalent cations, including Ca(2+) and K(+). CNGCs are present in both plant and animal cells, typically in the plasma membrane; recent studies have also documented their presence in prokaryotes. All eukaryote CNGC polypeptides have a cyclic nucleotide-binding domain and a calmodulin binding domain as well as a six transmembrane/one pore tertiary structure. This review summarizes existing knowledge about the functional domains present in these cation-conducting channels, and considers the evidence indicating that plant and animal CNGCs evolved separately. Additionally, an amino acid motif that is only found in the phosphate binding cassette and hinge regions of plant CNGCs, and is present in all experimentally confirmed CNGCs but no other channels was identified. This CNGC-specific amino acid motif provides an additional diagnostic tool to identify plant CNGCs, and can increase confidence in the annotation of open reading frames in newly sequenced genomes as putative CNGCs. Conversely, the absence of the motif in some plant sequences currently identified as probable CNGCs may suggest that they are misannotated or protein fragments.
Collapse
Affiliation(s)
- Alice K. Zelman
- Agricultural Biotechnology Laboratory, Department of Plant Science, University of ConnecticutStorrs, CT, USA
| | - Adam Dawe
- Computational Bioscience Research Center, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Christoph Gehring
- Division of Chemistry, Life Science and Engineering, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Gerald A. Berkowitz
- Agricultural Biotechnology Laboratory, Department of Plant Science, University of ConnecticutStorrs, CT, USA
- *Correspondence: Gerald A. Berkowitz, Agricultural Biotechnology Laboratory, Department of Plant Science, University of Connecticut, 1390 Storrs Road, Storrs, CT 06269-4163, USA. e-mail:
| |
Collapse
|
136
|
Jäger R, Russwurm C, Schwede F, Genieser HG, Koesling D, Russwurm M. Activation of PDE10 and PDE11 phosphodiesterases. J Biol Chem 2011; 287:1210-9. [PMID: 22105073 DOI: 10.1074/jbc.m111.263806] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The most recently identified cyclic nucleotide phosphodiesterases, PDE10 and PDE11, contain a tandem of so-called GAF domains in their N-terminal regulatory regions. In PDE2 and PDE5, the GAF domains mediate cGMP stimulation; however, their function in PDE10 and PDE11 remains controversial. Although the GAF domains of PDE10 mediate cAMP-induced stimulation of chimeric adenylyl cyclases, cAMP binding did not stimulate the PDE10 holoenzyme. Comparable data about cGMP and the PDE11 GAF domains exist. Here, we identified synthetic ligands for the GAF domains of PDE10 and PDE11 to reduce interference of the GAF ligand with the catalytic reaction of PDE. With these ligands, GAF-mediated stimulation of the PDE10 and PDE11 holoenzymes is demonstrated for the first time. Furthermore, PDE10 is shown to be activated by cAMP, which paradoxically results in potent competitive inhibition of cGMP turnover by cAMP. PDE11, albeit susceptible to GAF-dependent stimulation, is not activated by the native cyclic nucleotides cAMP and cGMP. In summary, PDE11 can be stimulated by GAF domain ligands, but its native ligand remains to be identified, and PDE10 is the only PDE activated by cAMP.
Collapse
Affiliation(s)
- Ronald Jäger
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
137
|
Mao D, Tao J, Li C, Luo C, Zheng L, He C. Light signalling mediated by Per-ARNT-Sim domain-containing proteins in Xanthomonas campestris pv. campestris. FEMS Microbiol Lett 2011; 326:31-9. [DOI: 10.1111/j.1574-6968.2011.02426.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Daqing Mao
- School of Life Sciences; Tsinghua University; Beijing; China
| | | | | | - Chao Luo
- School of Life Sciences; Tsinghua University; Beijing; China
| | - Linlin Zheng
- School of Life Sciences; Tsinghua University; Beijing; China
| | | |
Collapse
|
138
|
Identification of the regulator gene responsible for the acetone-responsive expression of the binuclear iron monooxygenase gene cluster in mycobacteria. J Bacteriol 2011; 193:5817-23. [PMID: 21856847 DOI: 10.1128/jb.05525-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mimABCD gene cluster encodes the binuclear iron monooxygenase that oxidizes propane and phenol in Mycobacterium smegmatis strain MC2 155 and Mycobacterium goodii strain 12523. Interestingly, expression of the mimABCD gene cluster is induced by acetone. In this study, we investigated the regulator gene responsible for this acetone-responsive expression. In the genome sequence of M. smegmatis strain MC2 155, the mimABCD gene cluster is preceded by a gene designated mimR, which is divergently transcribed. Sequence analysis revealed that MimR exhibits amino acid similarity with the NtrC family of transcriptional activators, including AcxR and AcoR, which are involved in acetone and acetoin metabolism, respectively. Unexpectedly, many homologs of the mimR gene were also found in the sequenced genomes of actinomycetes. A plasmid carrying a transcriptional fusion of the intergenic region between the mimR and mimA genes with a promoterless green fluorescent protein (GFP) gene was constructed and introduced into M. smegmatis strain MC2 155. Using a GFP reporter system, we confirmed by deletion and complementation analyses that the mimR gene product is the positive regulator of the mimABCD gene cluster expression that is responsive to acetone. M. goodii strain 12523 also utilized the same regulatory system as M. smegmatis strain MC2 155. Although transcriptional activators of the NtrC family generally control transcription using the σ(54) factor, a gene encoding the σ(54) factor was absent from the genome sequence of M. smegmatis strain MC2 155. These results suggest the presence of a novel regulatory system in actinomycetes, including mycobacteria.
Collapse
|
139
|
CCZ1, MON1 and YPT7 genes are involved in pexophagy, the Cvt pathway and non-specific macroautophagy in the methylotrophic yeast Pichia pastoris. Cell Biol Int 2011; 35:311-9. [PMID: 21155714 DOI: 10.1042/cbi20100547] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Orthologues of Saccharomyces cerevisiae CCZ1, MON1 and YPT7 genes in the methylotrophic yeast, Pichia pastoris, have been identified. These genes encode proteins, which act as a complex, being involved in degradation of oleate-induced peroxisomes, Cvt (cytoplasm to vacuole targeting) pathway and non-specific macroautophagy in S. cerevisiae. CCZ1, MON1 and YPT7 gene orthologues are essential for multiple delivery pathways in P. pastoris. Strains with deletion of either of these genes displayed complete deficiency in pexophagy, non-specific macroautophagy and the biosynthetic Cvt pathway. The data suggest that CCZ1, MON1 and YPT7 genes are involved in degradation of both small oleate-induced and large methanol-induced peroxisomes. The data suggest conservative functions of CCZ1, MON1 and YPT7 genes among yeast species.
Collapse
|
140
|
Transcriptional regulators of multiple genes involved in carbon metabolism in Corynebacterium glutamicum. J Biotechnol 2011; 154:114-25. [DOI: 10.1016/j.jbiotec.2011.01.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/07/2011] [Accepted: 01/18/2011] [Indexed: 11/21/2022]
|
141
|
Psakis G, Mailliet J, Lang C, Teufel L, Essen LO, Hughes J. Signaling Kinetics of Cyanobacterial Phytochrome Cph1, a Light Regulated Histidine Kinase. Biochemistry 2011; 50:6178-88. [DOI: 10.1021/bi200612d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Georgios Psakis
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstrasse 3, D35390 Giessen, Germany
| | - Jo Mailliet
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstrasse 3, D35390 Giessen, Germany
| | - Christina Lang
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstrasse 3, D35390 Giessen, Germany
| | - Lotte Teufel
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstrasse 3, D35390 Giessen, Germany
| | - Lars-Oliver Essen
- Department of Chemistry, Philipps University, D35032 Marburg, Germany
| | - Jon Hughes
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstrasse 3, D35390 Giessen, Germany
| |
Collapse
|
142
|
Camsund D, Lindblad P, Jaramillo A. Genetically engineered light sensors for control of bacterial gene expression. Biotechnol J 2011; 6:826-36. [PMID: 21648094 DOI: 10.1002/biot.201100091] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 04/11/2011] [Accepted: 04/18/2011] [Indexed: 12/28/2022]
Abstract
Light of different wavelengths can serve as a transient, noninvasive means of regulating gene expression for biotechnological purposes. Implementation of advanced gene regulatory circuits will require orthogonal transcriptional systems that can be simultaneously controlled and that can produce several different control states. Fully genetically encoded light sensors take advantage of the favorable characteristics of light, do not need the supplementation of any chemical inducers or co-factors, and have been demonstrated to control gene expression in Escherichia coli. Herein, we review engineered light-sensor systems with potential for in vivo regulation of gene expression in bacteria, and highlight different means of extending the range of available light input and transcriptional output signals. Furthermore, we discuss advances in multiplexing different light sensors for achieving multichromatic control of gene expression and indicate developments that could facilitate the construction of efficient systems for light-regulated, multistate control of gene expression.
Collapse
Affiliation(s)
- Daniel Camsund
- Department of Photochemistry and Molecular Science, Uppsala University, Ångström Laboratories, Uppsala, Sweden
| | | | | |
Collapse
|
143
|
Abstract
Phytochromes are environmental sensors, historically thought of as red/far-red photoreceptors in plants. Their photoperception occurs through a covalently linked tetrapyrrole chromophore, which undergoes a light-dependent conformational change propagated through the protein to a variable output domain. The phytochrome composition is modular, typically consisting of a PAS-GAF-PHY architecture for the N-terminal photosensory core. A collection of three-dimensional structures has uncovered key features, including an unusual figure-of-eight knot, an extension reaching from the PHY domain to the chromophore-binding GAF domain, and a centrally located, long α-helix hypothesized to be crucial for intramolecular signaling. Continuing identification of phytochromes in microbial systems has expanded the assigned sensory abilities of this family out of the red and into the yellow, green, blue, and violet portions of the spectrum. Furthermore, phytochromes acting not as photoreceptors but as redox sensors have been recognized. In addition, architectures other than PAS-GAF-PHY are known, thus revealing phytochromes to be a varied group of sensory receptors evolved to utilize their modular design to perceive a signal and respond accordingly. This review focuses on the structures of bacterial phytochromes and implications for signal transmission. We also discuss the small but growing set of bacterial phytochromes for which a physiological function has been ascertained.
Collapse
Affiliation(s)
- Michele E Auldridge
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
144
|
Yokota K, Hayashi M. Function and evolution of nodulation genes in legumes. Cell Mol Life Sci 2011; 68:1341-51. [PMID: 21380559 PMCID: PMC11114672 DOI: 10.1007/s00018-011-0651-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 10/18/2022]
Abstract
Root nodule (RN) symbiosis has a unique feature in which symbiotic bacteria fix atmospheric nitrogen. The symbiosis is established with a limited species of land plants, including legumes. How RN symbiosis evolved is still a mystery, but recent findings on legumes genes that are necessary for RN symbiosis may give us a clue.
Collapse
Affiliation(s)
- Keisuke Yokota
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, Japan.
| | | |
Collapse
|
145
|
Russwurm M, Schlicker C, Weyand M, Koesling D, Steegborn C. Crystal structure of the GAF-B domain from human phosphodiesterase 5. Proteins 2011; 79:1682-7. [PMID: 21425347 DOI: 10.1002/prot.22989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 01/03/2011] [Accepted: 01/04/2011] [Indexed: 02/05/2023]
Affiliation(s)
- Michael Russwurm
- Department of Pharmacology and Toxicology, Ruhr-University Bochum, Germany
| | | | | | | | | |
Collapse
|
146
|
Cho MH, Yoo Y, Bhoo SH, Lee SW. Purification and characterization of a recombinant bacteriophytochrome of Xanthomonas oryzae pathovar oryzae. Protein J 2011; 30:124-31. [PMID: 21318274 DOI: 10.1007/s10930-011-9312-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Phytochrome-like proteins have been recently identified in prokaryotes but their features and functions are not clear. We cloned a gene encoding the phytochrome-like protein (XoBphP) in a pathogenic bacteria, Xanthomonas oryzae pv. oryzae (Xoo) and investigated characteristics of the protein using a recombinant XoBphP. The N-terminal region of XoBphP containing the PAS/GAF/PHY domains is highly similar to most bacteriophytochromes, but Cys4, corresponding to Cys24 of DrBphP, isn't involved in chromophore attachment. Recombinant XoBphP could bind a bilin molecule and a differential spectrum from Pr/Pfr shows that XoBphP has similar characteristics of known bacteriophytochromes with shifted absorption maxima of 683 and 757 nm for the Pr and Pfr forms. Unlike other bacteriophytochromes, XoBphP has no histidine kinase domain at C-terminus. The domain was predicted from amino-acid 279 to 342 with less significance than the required threshold. This result suggests that XoBphP probably has different signal transduction mechanisms for its intracellular function.
Collapse
Affiliation(s)
- Man-Ho Cho
- Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | | | | | | |
Collapse
|
147
|
Seidl MF, Van den Ackerveken G, Govers F, Snel B. A domain-centric analysis of oomycete plant pathogen genomes reveals unique protein organization. PLANT PHYSIOLOGY 2011; 155:628-644. [PMID: 21119047 PMCID: PMC3032455 DOI: 10.1104/pp.110.167841] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 11/24/2010] [Indexed: 05/29/2023]
Abstract
Oomycetes comprise a diverse group of organisms that morphologically resemble fungi but belong to the stramenopile lineage within the supergroup of chromalveolates. Recent studies have shown that plant pathogenic oomycetes have expanded gene families that are possibly linked to their pathogenic lifestyle. We analyzed the protein domain organization of 67 eukaryotic species including four oomycete and five fungal plant pathogens. We detected 246 expanded domains in fungal and oomycete plant pathogens. The analysis of genes differentially expressed during infection revealed a significant enrichment of genes encoding expanded domains as well as signal peptides linking a substantial part of these genes to pathogenicity. Overrepresentation and clustering of domain abundance profiles revealed domains that might have important roles in host-pathogen interactions but, as yet, have not been linked to pathogenicity. The number of distinct domain combinations (bigrams) in oomycetes was significantly higher than in fungi. We identified 773 oomycete-specific bigrams, with the majority composed of domains common to eukaryotes. The analyses enabled us to link domain content to biological processes such as host-pathogen interaction, nutrient uptake, or suppression and elicitation of plant immune responses. Taken together, this study represents a comprehensive overview of the domain repertoire of fungal and oomycete plant pathogens and points to novel features like domain expansion and species-specific bigram types that could, at least partially, explain why oomycetes are such remarkable plant pathogens.
Collapse
Affiliation(s)
- Michael F Seidl
- Theoretical Biology and Bioinformatics , Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
148
|
Abstract
Compared with the impressive progress in understanding signal transduction pathways and mechanisms in mammalian systems, advances in protozoan signalling processes, including cyclic nucleotide metabolism, have been very slow. This is in large part connected to the fact that the components of these pathways are very different in the protozoan parasites, as confirmed by the recently completed genome. For instance, kinetoplastids have no equivalents to the mammalian Class I adenylyl cyclases (ACs) in their genomes nor any of the subunits of the associated G-proteins. The cyclases in kinetoplastid parasites contain a single transmembrane domain, a conserved intracellular catalytic domain and a highly variable extracellular domain - consistent with the expression of multiple receptor-activated cyclases - but no receptor ligands, agonists or antagonists have been identified. Apicomplexan AC and guanylyl cyclase (GC) are even more unusual, potentially being bifunctional, harbouring either a putative ion channel (AC) or a P-type ATPase-like domain (GC) alongside the catalytic region. Phosphodiesterases (PDEs) and cyclic-nucleotide-activated protein kinases are essentially conserved in protozoa, although mostly insensitive to inhibitors of the mammalian proteins. Some of the PDEs have now been validated as promising drug targets. In the following manuscript, we will summarize the existing literature on cAMP and cGMP in protozoa: cyclases, PDEs and cyclic-nucleotide-dependent kinases.
Collapse
Affiliation(s)
- Matthew K Gould
- Biomedical Research Centre, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
149
|
Delaye L, González-Domenech CM, Garcillán-Barcia MP, Peretó J, de la Cruz F, Moya A. Blueprint for a minimal photoautotrophic cell: conserved and variable genes in Synechococcus elongatus PCC 7942. BMC Genomics 2011; 12:25. [PMID: 21226929 PMCID: PMC3025956 DOI: 10.1186/1471-2164-12-25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 01/12/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Simpler biological systems should be easier to understand and to engineer towards pre-defined goals. One way to achieve biological simplicity is through genome minimization. Here we looked for genomic islands in the fresh water cyanobacteria Synechococcus elongatus PCC 7942 (genome size 2.7 Mb) that could be used as targets for deletion. We also looked for conserved genes that might be essential for cell survival. RESULTS By using a combination of methods we identified 170 xenologs, 136 ORFans and 1401 core genes in the genome of S. elongatus PCC 7942. These represent 6.5%, 5.2% and 53.6% of the annotated genes respectively. We considered that genes in genomic islands could be found if they showed a combination of: a) unusual G+C content; b) unusual phylogenetic similarity; and/or c) a small number of the highly iterated palindrome 1 (HIP1) motif plus an unusual codon usage. The origin of the largest genomic island by horizontal gene transfer (HGT) could be corroborated by lack of coverage among metagenomic sequences from a fresh water microbialite. Evidence is also presented that xenologous genes tend to cluster in operons. Interestingly, most genes coding for proteins with a diguanylate cyclase domain are predicted to be xenologs, suggesting a role for horizontal gene transfer in the evolution of Synechococcus sensory systems. CONCLUSIONS Our estimates of genomic islands in PCC 7942 are larger than those predicted by other published methods like SIGI-HMM. Our results set a guide to non-essential genes in S. elongatus PCC 7942 indicating a path towards the engineering of a model photoautotrophic bacterial cell.
Collapse
Affiliation(s)
- Luis Delaye
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Valencia, Spain
- Departamento de Ingeniería Genética CINVESTAV-Irapuato, Km. 9.6 Libramiento Norte, Carretera Irapuato-León, 36821 Irapuato, Guanajuato, México
| | - Carmen M González-Domenech
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Valencia, Spain
- Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - María P Garcillán-Barcia
- Departamento de Biología Molecular e Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-IDICAN, Santander, Spain
| | - Juli Peretó
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Valencia, Spain
- Departament de Bioquimica i Biologia Molecular, Universitat de València, València, Spain
| | - Fernando de la Cruz
- Departamento de Biología Molecular e Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-IDICAN, Santander, Spain
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Valencia, Spain
- Departament de Genètica, Universitat de València, València, Spain
| |
Collapse
|
150
|
Schultz JE, Dunkern T, Gawlitta-Gorka E, Sorg G. The GAF-tandem domain of phosphodiesterase 5 as a potential drug target. Handb Exp Pharmacol 2011:151-66. [PMID: 21695639 DOI: 10.1007/978-3-642-17969-3_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Classic PDE5 inhibitors interact with and block the catalytic site of PDE5. They have been clinically validated for treatment of erectile dysfunction as well as reduction of pulmonary arterial pressure, improvement of exercise capacity, quality of life, and arterial oxygenation in patients with secondary pulmonary hypertension. Minor side effects are visual disturbances, headache, migraine, back pain, and interaction with nitrates (hypotension). Some of those side effects presumably can be ameliorated by improving selectivity and pharmacokinetics; other side effects probably are target related due to inhibition of basic physiological processes. Target related side effects may be bypassed by using PDE5 inhibitors with a different mode of action: PDE5, like PDE2, PDE6, PDE10, and PDE11, is a multidomain protein with an N-terminal tandem GAF domain, which in case of PDE5, is allosterically activated by cGMP. Potential inhibitors acting at the PDE5 GAF domain would be expected to inhibit only pathophysiologically upregulated PDE5 activity, whereas basal activity of PDE5 would remain unaffected.Here, we summarize a high-throughput screening campaign to identify inhibitors of the regulatory GAF domain of human PDE5. To target the regulatory domain independently from the catalytic site, we used a chimeric reporter enzyme: The hPDE5 GAF-tandem domain functionally replaced the GAF domain in the cyanobacterial adenylyl cyclase CyaB1. We identified inhibitors that target the GAF domain and also inhibitors that target the bacterial cyclase.Compounds binding to the PDE5 GAF domain were reanalysed with native human PDE5 to demonstrate inhibition using capillary electrophoresis. This identified 16 compounds that act on the GAF domain of PDE5. Two compounds fulfilled the initial requirement to inhibit, exclusively, activated PDE5, but not basal PDE5 activity.
Collapse
Affiliation(s)
- Joachim E Schultz
- Pharmazeutisches Institut der Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| | | | | | | |
Collapse
|