101
|
Rostas A, Einholz C, Illarionov B, Heidinger L, Said TA, Bauss A, Fischer M, Bacher A, Weber S, Schleicher E. Long-Lived Hydrated FMN Radicals: EPR Characterization and Implications for Catalytic Variability in Flavoproteins. J Am Chem Soc 2018; 140:16521-16527. [PMID: 30412389 DOI: 10.1021/jacs.8b07544] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Until now, FMN/FAD radicals could not be stabilized in aqueous solution or other protic solvents because of rapid and efficient dismutation reactions. In this contribution, a novel system for stabilizing flavin radicals in aqueous solution is reported. Subsequent to trapping FMN in an agarose matrix, light-generated FMN radicals could be produced that were stable for days even under aerobic conditions, and their concentrations were high enough for extensive EPR characterization. All large hyperfine couplings could be extracted by using a combination of continuous-wave EPR and low-temperature ENDOR spectroscopy. To map differences in the electronic structure of flavin radicals, two exemplary proton hyperfine couplings were compared with published values from various neutral and anionic flavoprotein radicals: C(6)H and C(8α)H 3. It turned out that FMN•- in an aqueous environment shows the largest hyperfine couplings, whereas for FMNH• under similar conditions, hyperfine couplings are at the lower end and the values of both vary by up to 30%. This finding demonstrates that protein-cofactor interactions in neutral and anionic flavoprotein radicals can alter their electron spin density in different directions. With this aqueous system that allows the characterization of flavin radicals without protein interactions and that can be extended by using selective isotope labeling, a powerful tool is now at hand to quantify interactions in flavin radicals that modulate the reactivity in different flavoproteins.
Collapse
Affiliation(s)
- Arpad Rostas
- Institut für Physikalische Chemie , Albert-Ludwigs-Universität Freiburg , Albertstr. 21 , 79104 Freiburg , Germany
| | - Christopher Einholz
- Institut für Physikalische Chemie , Albert-Ludwigs-Universität Freiburg , Albertstr. 21 , 79104 Freiburg , Germany
| | - Boris Illarionov
- Hamburg School of Food Science , Institut für Lebensmittelchemie, Universität Hamburg , Grindelallee 117 , 20146 Hamburg , Germany
| | - Lorenz Heidinger
- Institut für Physikalische Chemie , Albert-Ludwigs-Universität Freiburg , Albertstr. 21 , 79104 Freiburg , Germany
| | - Tarek Al Said
- Institut für Physikalische Chemie , Albert-Ludwigs-Universität Freiburg , Albertstr. 21 , 79104 Freiburg , Germany
| | - Anna Bauss
- Institut für Physikalische Chemie , Albert-Ludwigs-Universität Freiburg , Albertstr. 21 , 79104 Freiburg , Germany
| | - Markus Fischer
- Hamburg School of Food Science , Institut für Lebensmittelchemie, Universität Hamburg , Grindelallee 117 , 20146 Hamburg , Germany
| | - Adelbert Bacher
- Department of Chemistry , Technical University of Munich , Lichtenbergstr. 4 , 85747 Garching , Germany
| | - Stefan Weber
- Institut für Physikalische Chemie , Albert-Ludwigs-Universität Freiburg , Albertstr. 21 , 79104 Freiburg , Germany
| | - Erik Schleicher
- Institut für Physikalische Chemie , Albert-Ludwigs-Universität Freiburg , Albertstr. 21 , 79104 Freiburg , Germany
| |
Collapse
|
102
|
Kar RK, Borin VA, Ding Y, Matysik J, Schapiro I. Spectroscopic Properties of Lumiflavin: A Quantum Chemical Study. Photochem Photobiol 2018; 95:662-674. [DOI: 10.1111/php.13023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/05/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Rajiv Kumar Kar
- Fritz Haber Center for Molecular Dynamics Research Institute of Chemistry Hebrew University of Jerusalem Jerusalem Israel
| | - Veniamin A. Borin
- Fritz Haber Center for Molecular Dynamics Research Institute of Chemistry Hebrew University of Jerusalem Jerusalem Israel
| | - Yonghong Ding
- Institute of Analytical Chemistry University of Leipzig Leipzig Germany
| | - Jörg Matysik
- Institute of Analytical Chemistry University of Leipzig Leipzig Germany
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research Institute of Chemistry Hebrew University of Jerusalem Jerusalem Israel
| |
Collapse
|
103
|
Nguyen QT, Romero E, Dijkman WP, de Vasconcellos SP, Binda C, Mattevi A, Fraaije MW. Structure-Based Engineering of Phanerochaete chrysosporium Alcohol Oxidase for Enhanced Oxidative Power toward Glycerol. Biochemistry 2018; 57:6209-6218. [PMID: 30272958 PMCID: PMC6210165 DOI: 10.1021/acs.biochem.8b00918] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Glycerol
is a major byproduct of biodiesel production, and enzymes
that oxidize this compound have been long sought after. The recently
described alcohol oxidase from the white-rot basidiomycete Phanerochaete chrysosporium (PcAOX) was reported to feature
very mild activity on glycerol. Here, we describe the comprehensive
structural and biochemical characterization of this enzyme. PcAOX
was expressed in Escherichia coli in high yields
and displayed high thermostability. Steady-state kinetics revealed
that PcAOX is highly active toward methanol, ethanol, and 1-propanol
(kcat = 18, 19, and 11 s–1, respectively), but showed very limited activity toward glycerol
(kobs = 0.2 s–1 at 2
M substrate). The crystal structure of the homo-octameric PcAOX was
determined at a resolution of 2.6 Å. The catalytic center is
a remarkable solvent-inaccessible cavity located at the re side of the flavin cofactor. Its small size explains the observed
preference for methanol and ethanol as best substrates. These findings
led us to design several cavity-enlarging mutants with significantly
improved activity toward glycerol. Among them, the F101S variant had
a high kcat value of 3 s–1, retaining a high degree of thermostability. The crystal structure
of F101S PcAOX was solved, confirming the site of mutation and the
larger substrate-binding pocket. Our data demonstrate that PcAOX is
a very promising enzyme for glycerol biotransformation.
Collapse
Affiliation(s)
- Quoc-Thai Nguyen
- Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands.,Scuola Universitaria Superiore IUSS Pavia , Piazza della Vittoria 15 , 27100 Pavia , Italy.,Faculty of Pharmacy , University of Medicine and Pharmacy at Ho Chi Minh City , 41 Dinh Tien Hoang Street, Ben Nghe Ward, District 1 , Ho Chi Minh City , Vietnam
| | - Elvira Romero
- Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Willem P Dijkman
- Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Suzan Pantaroto de Vasconcellos
- Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands.,Department of Biological Science , Federal University of São Paulo (UNIFESP) , Diadema , SP 09913-030 , Brazil
| | - Claudia Binda
- Department of Biology and Biotechnology , University of Pavia , Via Ferrata 1 , 27100 Pavia , Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology , University of Pavia , Via Ferrata 1 , 27100 Pavia , Italy
| | - Marco W Fraaije
- Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| |
Collapse
|
104
|
Robbins JM, Geng J, Barry BA, Gadda G, Bommarius AS. Photoirradiation Generates an Ultrastable 8-Formyl FAD Semiquinone Radical with Unusual Properties in Formate Oxidase. Biochemistry 2018; 57:5818-5826. [PMID: 30226367 DOI: 10.1021/acs.biochem.8b00571] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Formate oxidase (FOX) was previously shown to contain a noncovalently bound 8-formyl FAD (8-fFAD) cofactor. However, both the absorption spectra and the kinetic parameters previously reported for FOX are inconsistent with more recent reports. The ultraviolet-visible (UV-vis) absorption spectrum reported in early studies closely resembles the spectra observed for protein-bound 8-formyl flavin semiquinone species, thus suggesting FOX may be photosensitive. Therefore, the properties of dark and light-exposed FOX were investigated using steady-state kinetics and site-directed mutagenesis analysis along with inductively coupled plasma optical emission spectroscopy, UV-vis absorption spectroscopy, circular dichroism spectroscopy, liquid chromatography and mass spectrometry, and electron paramagnetic resonance (EPR) spectroscopy. Surprisingly, these experimental results demonstrate that FOX is deactivated in the presence of light through generation of an oxygen stable, anionic (red) 8-fFAD semiquinone radical capable of persisting either in an aerobic environment for multiple weeks or in the presence of a strong reducing agent like sodium dithionite. Herein, we study the photoinduced formation of the 8-fFAD semiquinone radical in FOX and report the first EPR spectrum of this radical species. The stability of the 8-fFAD semiquinone radical suggests FOX to be a model enzyme for probing the structural and mechanistic features involved in stabilizing flavin semiquinone radicals. It is likely that the photoinduced formation of a stable 8-fFAD semiquinone radical is a defining characteristic of 8-formyl flavin-dependent enzymes. Additionally, a better understanding of the radical stabilization process may yield a FOX enzyme with more robust activity and broader industrial usefulness.
Collapse
Affiliation(s)
- John M Robbins
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332-0100 , United States.,Engineered Biosystems Building (EBB) , Georgia Institute of Technology , Atlanta , Georgia 30332-2000 , United States
| | - Jiafeng Geng
- School of Chemistry and Biochemistry, Parker H. Petit Institute of Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332-0363 , United States
| | - Bridgette A Barry
- School of Chemistry and Biochemistry, Parker H. Petit Institute of Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332-0363 , United States
| | - Giovanni Gadda
- Department of Chemistry , Georgia State University , Atlanta , Georgia 30302-3965 , United States.,Center for Diagnostics and Therapeutics , Georgia State University , Atlanta , Georgia 30302-3965 , United States.,Center for Biotechnology and Drug Design , Georgia State University , Atlanta , Georgia 30302-3965 , United States.,Department of Biology , Georgia State University , Atlanta , Georgia 30302-3965 , United States
| | - Andreas S Bommarius
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332-0100 , United States.,Engineered Biosystems Building (EBB) , Georgia Institute of Technology , Atlanta , Georgia 30332-2000 , United States.,School of Chemistry and Biochemistry, Parker H. Petit Institute of Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332-0363 , United States
| |
Collapse
|
105
|
Lynch JH, Sa N, Saeheng S, Raffaelli N, Roje S. Characterization of a non-nudix pyrophosphatase points to interplay between flavin and NAD(H) homeostasis in Saccharomyces cerevisiae. PLoS One 2018; 13:e0198787. [PMID: 29902190 PMCID: PMC6002036 DOI: 10.1371/journal.pone.0198787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/28/2018] [Indexed: 12/11/2022] Open
Abstract
The flavin cofactors FMN and FAD are required for a wide variety of biological processes, however, little is known about their metabolism. Here, we report the cloning and biochemical characterization of the Saccharomyces cerevisiae pyrophosphatase Fpy1p. Genetic and functional studies suggest that Fpy1p may play a key role in flavin metabolism and is the first-reported non-Nudix superfamily enzyme to display FAD pyrophosphatase activity. Characterization of mutant yeast strains found that deletion of fpy1 counteracts the adverse effects that are caused by deletion of flx1, a known mitochondrial FAD transporter. We show that Fpy1p is capable of hydrolyzing FAD, NAD(H), and ADP-ribose. The enzymatic activity of Fpy1p is dependent upon the presence of K+ and divalent metal cations, with similar kinetic parameters to those that have been reported for Nudix FAD pyrophosphatases. In addition, we report that the deletion of fpy1 intensifies the FMN-dependence of null mutants of the riboflavin kinase Fmn1p, demonstrate that fpy1 mutation abolishes the decreased fitness resulting from the deletion of the flx1 ORF, and offer a possible mechanism for the genetic interplay between fpy1, flx1 and fmn1.
Collapse
Affiliation(s)
- Joseph H. Lynch
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States of America
| | - Na Sa
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States of America
| | - Sompop Saeheng
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States of America
| | - Nadia Raffaelli
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Sanja Roje
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States of America
| |
Collapse
|
106
|
Chen BS, Médici R, van der Helm MP, van Zwet Y, Gjonaj L, van der Geest R, Otten LG, Hanefeld U. Rhodococcus strains as source for ene-reductase activity. Appl Microbiol Biotechnol 2018; 102:5545-5556. [PMID: 29705954 PMCID: PMC5999131 DOI: 10.1007/s00253-018-8984-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/28/2018] [Accepted: 04/02/2018] [Indexed: 11/30/2022]
Abstract
Rhodococcus strains are ubiquitous in nature and known to metabolise a wide variety of compounds. At the same time, asymmetric reduction of C=C bonds is important in the production of high-valued chiral building blocks. In order to evaluate if Rhodococci can be used for this task, we have probed several Rhodococcus rhodochrous and R. erythropolis strains for ene-reductase activity. A series of substrates including activated ketones, an aldehyde, an imide and nitro-compound were screened using whole cells of seven Rhodococcus strains. This revealed that whole cells of all Rhodococcus strains showed apparent (S)-selectivity towards ketoisophorone, while most other organisms show (R)-selectivity for this compound. Three putative ene-reductases from R. rhodochrous ATCC 17895 were heterologously expressed in Escherichia coli. One protein was purified and its biocatalytic and biochemical properties were characterised, showing typical (enantioselective) properties for class 3 ene-reductases of the old yellow enzyme family.
Collapse
Affiliation(s)
- Bi-Shuang Chen
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.,School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Rosario Médici
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Michelle P van der Helm
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Ymke van Zwet
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Lorina Gjonaj
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.,Department of Chemical Immunology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Roelien van der Geest
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Linda G Otten
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Ulf Hanefeld
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
107
|
Toplak M, Wiedemann G, Ulićević J, Daniel B, Hoernstein SNW, Kothe J, Niederhauser J, Reski R, Winkler A, Macheroux P. The single berberine bridge enzyme homolog of Physcomitrella patens is a cellobiose oxidase. FEBS J 2018; 285:1923-1943. [PMID: 29633551 PMCID: PMC6001459 DOI: 10.1111/febs.14458] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/17/2018] [Accepted: 03/29/2018] [Indexed: 11/28/2022]
Abstract
The berberine bridge enzyme from the California poppy Eschscholzia californica (EcBBE) catalyzes the oxidative cyclization of (S)‐reticuline to (S)‐scoulerine, that is, the formation of the berberine bridge in the biosynthesis of benzylisoquinoline alkaloids. Interestingly, a large number of BBE‐like genes have been identified in plants that lack alkaloid biosynthesis. This finding raised the question of the primordial role of BBE in the plant kingdom, which prompted us to investigate the closest relative of EcBBE in Physcomitrella patens (PpBBE1), the most basal plant harboring a BBE‐like gene. Here, we report the biochemical, structural, and in vivo characterization of PpBBE1. Our studies revealed that PpBBE1 is structurally and biochemically very similar to EcBBE. In contrast to EcBBE, we found that PpBBE1 catalyzes the oxidation of the disaccharide cellobiose to the corresponding lactone, that is, PpBBE1 is a cellobiose oxidase. The enzymatic reaction mechanism was characterized by a structure‐guided mutagenesis approach that enabled us to assign a catalytic role to amino acid residues in the active site of PpBBE1. In vivo experiments revealed the highest level of PpBBE1 expression in chloronema, the earliest stage of the plant's life cycle, where carbon metabolism is strongly upregulated. It was also shown that the enzyme is secreted to the extracellular space, where it may be involved in later steps of cellulose degradation, thereby allowing the moss to make use of cellulose for energy production. Overall, our results suggest that the primordial role of BBE‐like enzymes in plants revolved around primary metabolic reactions in carbohydrate utilization. Database Structural data are available in the PDB under the accession numbers 6EO4 and 6EO5.
Collapse
Affiliation(s)
- Marina Toplak
- Institute of Biochemistry, Graz University of Technology, Austria
| | - Gertrud Wiedemann
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Germany
| | - Jelena Ulićević
- Institute of Biochemistry, Graz University of Technology, Austria
| | - Bastian Daniel
- Institute of Biochemistry, Graz University of Technology, Austria
| | | | - Jennifer Kothe
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Germany
| | | | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Austria
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Austria
| |
Collapse
|
108
|
Robbins JM, Bommarius AS, Gadda G. Mechanistic studies of formate oxidase from Aspergillus oryzae : A novel member of the glucose-Methanol-choline oxidoreductase enzyme superfamily that oxidizes carbon acids. Arch Biochem Biophys 2018; 643:24-31. [DOI: 10.1016/j.abb.2018.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/18/2018] [Accepted: 02/13/2018] [Indexed: 10/18/2022]
|
109
|
|
110
|
Hazra AB, Ballou DP, Taga ME. Unique Biochemical and Sequence Features Enable BluB To Destroy Flavin and Distinguish BluB from the Flavin Monooxygenase Superfamily. Biochemistry 2018; 57:1748-1757. [PMID: 29457884 DOI: 10.1021/acs.biochem.7b01193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vitamin B12 (cobalamin) is an essential micronutrient for humans that is synthesized by only a subset of bacteria and archaea. The aerobic biosynthesis of 5,6-dimethylbenzimidazole, the lower axial ligand of cobalamin, is catalyzed by the "flavin destructase" enzyme BluB, which fragments reduced flavin mononucleotide following its reaction with oxygen to yield this ligand. BluB is similar in sequence and structure to members of the flavin oxidoreductase superfamily, yet the flavin destruction process has remained elusive. Using stopped-flow spectrophotometry, we find that the flavin destructase reaction of BluB from Sinorhizobium meliloti is initiated with canonical flavin-O2 chemistry. A C4a-peroxyflavin intermediate is rapidly formed in BluB upon reaction with O2, and has properties similar to those of flavin-dependent hydroxylases. Analysis of reaction mixtures containing flavin analogues indicates that both formation of the C4a-peroxyflavin and the subsequent destruction of the flavin to form 5,6-dimethylbenzimidazole are influenced by the electronic properties of the flavin isoalloxazine ring. The flavin destruction phase of the reaction, which results from the decay of the C4a-peroxyflavin intermediate, occurs more efficiently at pH >7.5. Furthermore, the BluB mutants D32N and S167G are specifically impaired in the flavin destruction phase of the reaction; nevertheless, both form the C4a-peroxyflavin nearly quantitatively. Coupled with a phylogenetic analysis of BluB and related flavin-dependent enzymes, these results demonstrate that the BluB flavin destructase family can be identified by the presence of active site residues D32 and S167.
Collapse
Affiliation(s)
- Amrita B Hazra
- Department of Plant & Microbial Biology , University of California, Berkeley , Berkeley , California 94720 , United States.,Department of Chemistry , Indian Institute of Science Education and Research Pune , Pune - 411008 , India
| | - David P Ballou
- Department of Biological Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michiko E Taga
- Department of Plant & Microbial Biology , University of California, Berkeley , Berkeley , California 94720 , United States
| |
Collapse
|
111
|
In silico and in vitro studies of the reduction of unsaturated α,β bonds of trans-2-hexenedioic acid and 6-amino-trans-2-hexenoic acid - Important steps towards biobased production of adipic acid. PLoS One 2018; 13:e0193503. [PMID: 29474495 PMCID: PMC5825115 DOI: 10.1371/journal.pone.0193503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/12/2018] [Indexed: 01/31/2023] Open
Abstract
The biobased production of adipic acid, a precursor in the production of nylon, is of great interest in order to replace the current petrochemical production route. Glucose-rich lignocellulosic raw materials have high potential to replace the petrochemical raw material. A number of metabolic pathways have been proposed for the microbial conversion of glucose to adipic acid, but achieved yields and titers remain to be improved before industrial applications are feasible. One proposed pathway starts with lysine, an essential metabolite industrially produced from glucose by microorganisms. However, the drawback of this pathway is that several reactions are involved where there is no known efficient enzyme. By changing the order of the enzymatic reactions, we were able to identify an alternative pathway with one unknown enzyme less compared to the original pathway. One of the reactions lacking known enzymes is the reduction of the unsaturated α,β bond of 6-amino-trans-2-hexenoic acid and trans-2-hexenedioic acid. To identify the necessary enzymes, we selected N-ethylmaleimide reductase from Escherichia coli and Old Yellow Enzyme 1 from Saccharomyces pastorianus. Despite successful in silico docking studies, where both target substrates could fit in the enzyme pockets, and hydrogen bonds with catalytic residues of both enzymes were predicted, no in vitro activity was observed. We hypothesize that the lack of activity is due to a difference in electron withdrawing potential between the naturally reduced aldehyde and the carboxylate groups of our target substrates. Suggestions for protein engineering to induce the reactions are discussed, as well as the advantages and disadvantages of the two metabolic pathways from lysine. We have highlighted bottlenecks associated with the lysine pathways, and proposed ways of addressing them.
Collapse
|
112
|
Janardhan A, Kathera C, Darsi A, Ali W, He L, Yang Y, Luo L, Guo Z. Prominent role of histone lysine demethylases in cancer epigenetics and therapy. Oncotarget 2018; 9:34429-34448. [PMID: 30344952 PMCID: PMC6188137 DOI: 10.18632/oncotarget.24319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 12/04/2017] [Indexed: 12/14/2022] Open
Abstract
Protein methylation has an important role in the regulation of chromatin, gene expression and regulation. The protein methyl transferases are genetically altered in various human cancers. The enzymes that remove histone methylation have led to increased awareness of protein interactions as potential drug targets. Specifically, Lysine Specific Demethylases (LSD) removes methylated histone H3 lysine 4 (H3K4) and H3 lysine 9 (H3K9) through formaldehyde-generating oxidation. It has been reported that LSD1 and its downstream targets are involved in tumor-cell growth and metastasis. Functional studies of LSD1 indicate that it regulates activation and inhibition of gene transcription in the nucleus. Here we made a discussion about the summary of histone lysine demethylase and their functions in various human cancers.
Collapse
Affiliation(s)
- Avilala Janardhan
- The No. 7 People's Hospital of Changzhou, Changzhou, China.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chandrasekhar Kathera
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Amrutha Darsi
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wajid Ali
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yanhua Yang
- The No. 7 People's Hospital of Changzhou, Changzhou, China
| | - Libo Luo
- The No. 7 People's Hospital of Changzhou, Changzhou, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
113
|
Romero E, Gómez Castellanos JR, Gadda G, Fraaije MW, Mattevi A. Same Substrate, Many Reactions: Oxygen Activation in Flavoenzymes. Chem Rev 2018; 118:1742-1769. [DOI: 10.1021/acs.chemrev.7b00650] [Citation(s) in RCA: 285] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Elvira Romero
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - J. Rubén Gómez Castellanos
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Giovanni Gadda
- Departments of Chemistry and Biology, Center for Diagnostics and Therapeutics, and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
114
|
Powell, III RW, Buteler MP, Lenka S, Crotti M, Santangelo S, Burg MJ, Bruner S, Brenna E, Roitberg AE, Stewart JD. Investigating Saccharomyces cerevisiae alkene reductase OYE 3 by substrate profiling, X-ray crystallography and computational methods. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00440d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Saccharomyces cerevisiae OYE 3 and OYE 1 share 80% sequence identity, but sometimes differ in stereoselectivities.
Collapse
Affiliation(s)
| | - M. Pilar Buteler
- Department of Chemistry
- 126 Sisler Hall
- University of Florida
- Gainesville
- USA
| | - Sunidhi Lenka
- Department of Chemistry
- 126 Sisler Hall
- University of Florida
- Gainesville
- USA
| | - Michele Crotti
- Dipartimento di Chimica
- Materiali ed Ingegneria Chimica “Giulio Natta” Politecnico di Milano
- Milano
- Italy
| | - Sara Santangelo
- Dipartimento di Chimica
- Materiali ed Ingegneria Chimica “Giulio Natta” Politecnico di Milano
- Milano
- Italy
| | - Matthew J. Burg
- Department of Chemistry
- 126 Sisler Hall
- University of Florida
- Gainesville
- USA
| | - Steven Bruner
- Department of Chemistry
- 126 Sisler Hall
- University of Florida
- Gainesville
- USA
| | - Elisabetta Brenna
- Dipartimento di Chimica
- Materiali ed Ingegneria Chimica “Giulio Natta” Politecnico di Milano
- Milano
- Italy
| | - Adrian E. Roitberg
- Department of Chemistry
- 126 Sisler Hall
- University of Florida
- Gainesville
- USA
| | - Jon D. Stewart
- Department of Chemistry
- 126 Sisler Hall
- University of Florida
- Gainesville
- USA
| |
Collapse
|
115
|
Akiva E, Copp JN, Tokuriki N, Babbitt PC. Evolutionary and molecular foundations of multiple contemporary functions of the nitroreductase superfamily. Proc Natl Acad Sci U S A 2017; 114:E9549-E9558. [PMID: 29078300 PMCID: PMC5692541 DOI: 10.1073/pnas.1706849114] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Insight regarding how diverse enzymatic functions and reactions have evolved from ancestral scaffolds is fundamental to understanding chemical and evolutionary biology, and for the exploitation of enzymes for biotechnology. We undertook an extensive computational analysis using a unique and comprehensive combination of tools that include large-scale phylogenetic reconstruction to determine the sequence, structural, and functional relationships of the functionally diverse flavin mononucleotide-dependent nitroreductase (NTR) superfamily (>24,000 sequences from all domains of life, 54 structures, and >10 enzymatic functions). Our results suggest an evolutionary model in which contemporary subgroups of the superfamily have diverged in a radial manner from a minimal flavin-binding scaffold. We identified the structural design principle for this divergence: Insertions at key positions in the minimal scaffold that, combined with the fixation of key residues, have led to functional specialization. These results will aid future efforts to delineate the emergence of functional diversity in enzyme superfamilies, provide clues for functional inference for superfamily members of unknown function, and facilitate rational redesign of the NTR scaffold.
Collapse
Affiliation(s)
- Eyal Akiva
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
| | - Janine N Copp
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4;
| | - Patricia C Babbitt
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158;
- California Institute for Quantitative Biosciences, University of California, San Francisco, CA 94158
| |
Collapse
|
116
|
Expansion of the active site of the azoreductase from Shewanella oneidensis MR-1. J Mol Graph Model 2017; 78:213-220. [DOI: 10.1016/j.jmgm.2017.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 11/19/2022]
|
117
|
Kopka B, Magerl K, Savitsky A, Davari MD, Röllen K, Bocola M, Dick B, Schwaneberg U, Jaeger KE, Krauss U. Electron transfer pathways in a light, oxygen, voltage (LOV) protein devoid of the photoactive cysteine. Sci Rep 2017; 7:13346. [PMID: 29042655 PMCID: PMC5645311 DOI: 10.1038/s41598-017-13420-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/21/2017] [Indexed: 11/17/2022] Open
Abstract
Blue-light absorption by the flavin chromophore in light, oxygen, voltage (LOV) photoreceptors triggers photochemical reactions that lead to the formation of a flavin-cysteine adduct. While it has long been assumed that adduct formation is essential for signaling, it was recently shown that LOV photoreceptor variants devoid of the photoactive cysteine can elicit a functional response and that flavin photoreduction to the neutral semiquinone radical is sufficient for signal transduction. Currently, the mechanistic basis of the underlying electron- (eT) and proton-transfer (pT) reactions is not well understood. We here reengineered pT into the naturally not photoreducible iLOV protein, a fluorescent reporter protein derived from the Arabidopsis thaliana phototropin-2 LOV2 domain. A single amino-acid substitution (Q489D) enabled efficient photoreduction, suggesting that an eT pathway is naturally present in the protein. By using a combination of site-directed mutagenesis, steady-state UV/Vis, transient absorption and electron paramagnetic resonance spectroscopy, we investigate the underlying eT and pT reactions. Our study provides strong evidence that several Tyr and Trp residues, highly conserved in all LOV proteins, constitute the eT pathway for flavin photoreduction, suggesting that the propensity for photoreduction is evolutionary imprinted in all LOV domains, while efficient pT is needed to stabilize the neutral semiquinone radical.
Collapse
Affiliation(s)
- Benita Kopka
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52426, Jülich, Germany
| | - Kathrin Magerl
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93053, Regensburg, Germany
| | - Anton Savitsky
- Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany
| | - Mehdi D Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Katrin Röllen
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52426, Jülich, Germany
| | - Marco Bocola
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Bernhard Dick
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93053, Regensburg, Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany.,DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056, Aachen, Germany
| | - Karl-Erich Jaeger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52426, Jülich, Germany.,IBG-1: Biotechnologie, Forschungszentrum Jülich, 52426, Jülich, Germany
| | - Ulrich Krauss
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52426, Jülich, Germany.
| |
Collapse
|
118
|
Flavin-catalyzed redox tailoring reactions in natural product biosynthesis. Arch Biochem Biophys 2017; 632:20-27. [DOI: 10.1016/j.abb.2017.06.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 11/21/2022]
|
119
|
Ewing TA, Fraaije MW, Mattevi A, van Berkel WJ. The VAO/PCMH flavoprotein family. Arch Biochem Biophys 2017; 632:104-117. [DOI: 10.1016/j.abb.2017.06.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/26/2017] [Accepted: 06/29/2017] [Indexed: 01/15/2023]
|
120
|
Zhang M, Wang L, Zhong D. Photolyase: Dynamics and electron-transfer mechanisms of DNA repair. Arch Biochem Biophys 2017; 632:158-174. [PMID: 28802828 DOI: 10.1016/j.abb.2017.08.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 11/16/2022]
Abstract
Photolyase, a flavoenzyme containing flavin adenine dinucleotide (FAD) molecule as a catalytic cofactor, repairs UV-induced DNA damage of cyclobutane pyrimidine dimer (CPD) and pyrimidine-pyrimidone (6-4) photoproduct using blue light. The FAD cofactor, conserved in the whole protein superfamily of photolyase/cryptochromes, adopts a unique folded configuration at the active site that plays a critical functional role in DNA repair. Here, we review our comprehensive characterization of the dynamics of flavin cofactor and its repair photocycles by different classes of photolyases on the most fundamental level. Using femtosecond spectroscopy and molecular biology, significant advances have recently been made to map out the entire dynamical evolution and determine actual timescales of all the catalytic processes in photolyases. The repair of CPD reveals seven electron-transfer (ET) reactions among ten elementary steps by a cyclic ET radical mechanism through bifurcating ET pathways, a direct tunneling route mediated by the intervening adenine and a two-step hopping path bridged by the intermediate adenine from the cofactor to damaged DNA, through the conserved folded flavin at the active site. The unified, bifurcated ET mechanism elucidates the molecular origin of various repair quantum yields of different photolyases from three life kingdoms. For 6-4 photoproduct repair, a similar cyclic ET mechanism operates and a new cyclic proton transfer with a conserved histidine residue at the active site of (6-4) photolyases is revealed.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Lijuan Wang
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Dongping Zhong
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
121
|
Sun Z, Su Q, Rokita SE. The distribution and mechanism of iodotyrosine deiodinase defied expectations. Arch Biochem Biophys 2017; 632:77-87. [PMID: 28774660 DOI: 10.1016/j.abb.2017.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/24/2017] [Accepted: 07/30/2017] [Indexed: 12/19/2022]
Abstract
Iodotyrosine deiodinase (IYD) is unusual for its reliance on flavin to promote reductive dehalogenation under aerobic conditions. As implied by the name, this enzyme was first discovered to catalyze iodide elimination from iodotyrosine for recycling iodide during synthesis of tetra- and triiodothyronine collectively known as thyroid hormone. However, IYD likely supports many more functions and has been shown to debrominate and dechlorinate bromo- and chlorotyrosines. A specificity for halotyrosines versus halophenols is well preserved from humans to bacteria. In all examples to date, the substrate zwitterion establishes polar contacts with both the protein and the isoalloxazine ring of flavin. Mechanistic data suggest dehalogenation is catalyzed by sequential one electron transfer steps from reduced flavin to substrate despite the initial expectations for a single two electron transfer mechanism. A purported flavin semiquinone intermediate is stabilized by hydrogen bonding between its N5 position and the side chain of a Thr. Mutation of this residue to Ala suppresses dehalogenation and enhances a nitroreductase activity that is reminiscent of other enzymes within the same structural superfamily.
Collapse
Affiliation(s)
- Zuodong Sun
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Qi Su
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Steven E Rokita
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
| |
Collapse
|
122
|
Werther T, Wahlefeld S, Salewski J, Kuhlmann U, Zebger I, Hildebrandt P, Dobbek H. Redox-dependent substrate-cofactor interactions in the Michaelis-complex of a flavin-dependent oxidoreductase. Nat Commun 2017. [PMCID: PMC5519977 DOI: 10.1038/ncomms16084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
How an enzyme activates its substrate for turnover is fundamental for catalysis but incompletely understood on a structural level. With redox enzymes one typically analyses structures of enzyme–substrate complexes in the unreactive oxidation state of the cofactor, assuming that the interaction between enzyme and substrate is independent of the cofactors oxidation state. Here, we investigate the Michaelis complex of the flavoenzyme xenobiotic reductase A with the reactive reduced cofactor bound to its substrates by X-ray crystallography and resonance Raman spectroscopy and compare it to the non-reactive oxidized Michaelis complex mimics. We find that substrates bind in different orientations to the oxidized and reduced flavin, in both cases flattening its structure. But only authentic Michaelis complexes display an unexpected rich vibrational band pattern uncovering a strong donor–acceptor complex between reduced flavin and substrate. This interaction likely activates the catalytic ground state of the reduced flavin, accelerating the reaction within a compressed cofactor–substrate complex. Due to their transient nature, enzyme-substrate complexes are difficult to characterize structurally. Here, the authors capture the reactive reduced form of xenobiotic reductase A bound to its substrate and show that the oxidation state of the flavin cofactor affects the interaction of the substrate with the enzyme.
Collapse
|
123
|
Sobrado P, Tanner JJ. Multiple functionalities of reduced flavin in the non-redox reaction catalyzed by UDP-galactopyranose mutase. Arch Biochem Biophys 2017; 632:59-65. [PMID: 28652025 DOI: 10.1016/j.abb.2017.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 12/29/2022]
Abstract
Flavin cofactors are widely used by enzymes to catalyze a broad range of chemical reactions. Traditionally, flavins in enzymes are regarded as redox centers, which enable enzymes to catalyze the oxidation or reduction of substrates. However, a new class of flavoenzyme has emerged over the past quarter century in which the flavin functions as a catalytic center in a non-redox reaction. Here we introduce the unifying concept of flavin hot spots to understand and categorize the mechanisms and reactivities of both traditional and noncanonical flavoenzymes. The major hot spots of reactivity include the N5, C4a, and C4O atoms of the isoalloxazine, and the 2' hydroxyl of the ribityl chain. The role of hot spots in traditional flavoenzymes, such as monooxygenases, is briefly reviewed. A more detailed description of flavin hot spots in noncanonical flavoenzymes is provided, with a focus on UDP-galactopyranose mutase, where the N5 functions as a nucleophile that attacks the anomeric carbon atom of the substrate. Recent results from mechanistic enzymology, kinetic crystallography, and computational chemistry provide a complete picture of the chemical mechanism of UDP-galactopyranose mutase.
Collapse
Affiliation(s)
- Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA.
| | - John J Tanner
- Departments of Biochemistry and Chemistry, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
124
|
Site-directed mutagenesis under the direction of in silico protein docking modeling reveals the active site residues of 3-ketosteroid-Δ1-dehydrogenase from Mycobacterium neoaurum. World J Microbiol Biotechnol 2017. [DOI: 10.1007/s11274-017-2310-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
125
|
Piano V, Palfey BA, Mattevi A. Flavins as Covalent Catalysts: New Mechanisms Emerge. Trends Biochem Sci 2017; 42:457-469. [DOI: 10.1016/j.tibs.2017.02.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/06/2017] [Accepted: 02/14/2017] [Indexed: 10/20/2022]
|
126
|
Pitsawong W, Haynes CA, Koder RL, Rodgers DW, Miller AF. Mechanism-Informed Refinement Reveals Altered Substrate-Binding Mode for Catalytically Competent Nitroreductase. Structure 2017; 25:978-987.e4. [PMID: 28578873 DOI: 10.1016/j.str.2017.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 04/02/2017] [Accepted: 05/05/2017] [Indexed: 01/25/2023]
Abstract
Nitroreductase (NR) from Enterobacter cloacae reduces diverse nitroaromatics including herbicides, explosives, and prodrugs, and holds promise for bioremediation, prodrug activation, and enzyme-assisted synthesis. We solved crystal structures of NR complexes with bound substrate or analog for each of its two half-reactions. We complemented these with kinetic isotope effect (KIE) measurements elucidating H-transfer steps essential to each half-reaction. KIEs indicate hydride transfer from NADH to the flavin consistent with our structure of NR with the NADH analog nicotinic acid adenine dinucleotide (NAAD). The KIE on reduction of p-nitrobenzoic acid (p-NBA) also indicates hydride transfer, and requires revision of prior computational mechanisms. Our mechanistic information provided a structural restraint for the orientation of bound substrate, placing the nitro group closer to the flavin N5 in the pocket that binds the amide of NADH. KIEs show that solvent provides a proton, enabling accommodation of different nitro group placements, consistent with the broad repertoire of NR.
Collapse
Affiliation(s)
- Warintra Pitsawong
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506-0055, USA
| | - Chad A Haynes
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, 741 South Limestone Street, Lexington, KY 40536-0509, USA
| | - Ronald L Koder
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506-0055, USA
| | - David W Rodgers
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, 741 South Limestone Street, Lexington, KY 40536-0509, USA.
| | - Anne-Frances Miller
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506-0055, USA; Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, 741 South Limestone Street, Lexington, KY 40536-0509, USA.
| |
Collapse
|
127
|
The superfamily keeps growing: Identification in trypanosomatids of RibJ, the first riboflavin transporter family in protists. PLoS Negl Trop Dis 2017; 11:e0005513. [PMID: 28406895 PMCID: PMC5404878 DOI: 10.1371/journal.pntd.0005513] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/25/2017] [Accepted: 03/21/2017] [Indexed: 01/07/2023] Open
Abstract
Background Trypanosomatid parasites represent a major health issue affecting hundreds of million people worldwide, with clinical treatments that are partially effective and/or very toxic. They are responsible for serious human and plant diseases including Trypanosoma cruzi (Chagas disease), Trypanosoma brucei (Sleeping sickness), Leishmania spp. (Leishmaniasis), and Phytomonas spp. (phytoparasites). Both, animals and trypanosomatids lack the biosynthetic riboflavin (vitamin B2) pathway, the vital precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) cofactors. While metazoans obtain riboflavin from the diet through RFVT/SLC52 transporters, the riboflavin transport mechanisms in trypanosomatids still remain unknown. Methodology/Principal findings Here, we show that riboflavin is imported with high affinity in Trypanosoma cruzi, Trypanosoma brucei, Leishmania (Leishmania) mexicana, Crithidia fasciculata and Phytomonas Jma using radiolabeled riboflavin transport assays. The vitamin is incorporated through a saturable carrier-mediated process. Effective competitive uptake occurs with riboflavin analogs roseoflavin, lumiflavin and lumichrome, and co-factor derivatives FMN and FAD. Moreover, important biological processes evaluated in T. cruzi (i.e. proliferation, metacyclogenesis and amastigote replication) are dependent on riboflavin availability. In addition, the riboflavin competitive analogs were found to interfere with parasite physiology on riboflavin-dependent processes. By means of bioinformatics analyses we identified a novel family of riboflavin transporters (RibJ) in trypanosomatids. Two RibJ members, TcRibJ and TbRibJ from T. cruzi and T. brucei respectively, were functionally characterized using homologous and/or heterologous expression systems. Conclusions/Significance The RibJ family represents the first riboflavin transporters found in protists and the third eukaryotic family known to date. The essentiality of riboflavin for trypanosomatids, and the structural/biochemical differences that RFVT/SLC52 and RibJ present, make the riboflavin transporter -and its downstream metabolism- a potential trypanocidal drug target. In this work, we show that riboflavin plays a key role in the trypanosomatid life cycles and describe a novel family of riboflavin transporters (RibJ) with uptake function. Despite the vital importance of riboflavin for all living cells, RibJ are the first transporters described in protists. We functionally characterized the T. cruzi and T. brucei RibJ members and the effect of riboflavin analogs on parasite physiology. The structural and biochemical differences presented between human transporters and RibJ members make riboflavin transport and downstream metabolism, attractive and potential trypanosomatid targets.
Collapse
|
128
|
Ingavat N, Kavran JM, Sun Z, Rokita SE. Active Site Binding Is Not Sufficient for Reductive Deiodination by Iodotyrosine Deiodinase. Biochemistry 2017; 56:1130-1139. [PMID: 28157283 PMCID: PMC5330855 DOI: 10.1021/acs.biochem.6b01308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The minimal requirements for substrate recognition and turnover by iodotyrosine deiodinase were examined to learn the basis for its catalytic specificity. This enzyme is crucial for iodide homeostasis and the generation of thyroid hormone in chordates. 2-Iodophenol binds only very weakly to the human enzyme and is dehalogenated with a kcat/Km that is more than 4 orders of magnitude lower than that for iodotyrosine. This discrimination likely protects against a futile cycle of iodinating and deiodinating precursors of thyroid hormone biosynthesis. Surprisingly, a very similar catalytic selectivity was expressed by a bacterial homologue from Haliscomenobacter hydrossis. In this example, discrimination was not based on affinity since 4-cyano-2-iodophenol bound to the bacterial deiodinase with a Kd lower than that of iodotyrosine and yet was not detectably deiodinated. Other phenols including 2-iodophenol were deiodinated but only very inefficiently. Crystal structures of the bacterial enzyme with and without bound iodotyrosine are nearly superimposable and quite similar to the corresponding structures of the human enzyme. Likewise, the bacterial enzyme is activated for single electron transfer after binding to the substrate analogue fluorotyrosine as previously observed with the human enzyme. A cocrystal structure of bacterial deiodinase and 2-iodophenol indicates that this ligand stacks on the active site flavin mononucleotide (FMN) in a orientation analogous to that of bound iodotyrosine. However, 2-iodophenol association is not sufficient to activate the FMN chemistry required for catalysis, and thus the bacterial enzyme appears to share a similar specificity for halotyrosines even though their physiological roles are likely very different from those in humans.
Collapse
Affiliation(s)
- Nattha Ingavat
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218 United States
| | - Jennifer M. Kavran
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street Baltimore, Maryland 21205 United States,Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, 925 North Wolfe Street Baltimore, Maryland, 21205 United States
| | - Zuodong Sun
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218 United States
| | - Steven E. Rokita
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218 United States,Corresponding Author:
| |
Collapse
|
129
|
van Beek HL, Romero E, Fraaije MW. Engineering Cyclohexanone Monooxygenase for the Production of Methyl Propanoate. ACS Chem Biol 2017; 12:291-299. [PMID: 27935281 DOI: 10.1021/acschembio.6b00965] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A previous study showed that cyclohexanone monooxygenase from Acinetobacter calcoaceticus (AcCHMO) catalyzes the Baeyer-Villiger oxidation of 2-butanone, yielding ethyl acetate and methyl propanoate as products. Methyl propanoate is of industrial interest as a precursor of acrylic plastic. Here, various residues near the substrate and NADP+ binding sites in AcCHMO were subjected to saturation mutagenesis to enhance both the activity on 2-butanone and the regioselectivity toward methyl propanoate. The resulting libraries were screened using whole cell biotransformations, and headspace gas chromatography-mass spectrometry was used to identify improved AcCHMO variants. This revealed that the I491A AcCHMO mutant exhibits a significant improvement over the wild type enzyme in the desired regioselectivity using 2-butanone as a substrate (40% vs 26% methyl propanoate, respectively). Another interesting mutant is the T56S AcCHMO mutant, which exhibits a higher conversion yield (92%) and kcat (0.5 s-1) than wild type AcCHMO (52% and 0.3 s-1, respectively). Interestingly, the uncoupling rate for the T56S AcCHMO mutant is also significantly lower than that for the wild type enzyme. The T56S/I491A double mutant combined the beneficial effects of both mutations leading to higher conversion and improved regioselectivity. This study shows that even for a relatively small aliphatic substrate (2-butanone), catalytic efficiency and regioselectivity can be tuned by structure-inspired enzyme engineering.
Collapse
Affiliation(s)
- Hugo L. van Beek
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Elvira Romero
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| |
Collapse
|
130
|
Konjik V, Brünle S, Demmer U, Vanselow A, Sandhoff R, Ermler U, Mack M. Die Kristallstruktur von RosB: Einblicke in den Reaktionsmechanismus des ersten Mitglieds einer flavodoxinähnlichen Enzymfamilie. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Valentino Konjik
- Hochschule Mannheim; Paul-Wittsack-Straße 10 68163 Mannheim Deutschland
| | - Steffen Brünle
- Max-Planck-Institut für Biophysik; Max-von-Laue-Straße 3 60438 Frankfurt am Main Deutschland
| | - Ulrike Demmer
- Max-Planck-Institut für Biophysik; Max-von-Laue-Straße 3 60438 Frankfurt am Main Deutschland
| | - Amanda Vanselow
- Hochschule Mannheim; Paul-Wittsack-Straße 10 68163 Mannheim Deutschland
| | - Roger Sandhoff
- Deutsches Krebsforschungszentrum (DKFZ); Im Neuenheimer Feld 280 69120 Heidelberg Deutschland
| | - Ulrich Ermler
- Max-Planck-Institut für Biophysik; Max-von-Laue-Straße 3 60438 Frankfurt am Main Deutschland
| | - Matthias Mack
- Hochschule Mannheim; Paul-Wittsack-Straße 10 68163 Mannheim Deutschland
| |
Collapse
|
131
|
An extended N-H bond, driven by a conserved second-order interaction, orients the flavin N5 orbital in cholesterol oxidase. Sci Rep 2017; 7:40517. [PMID: 28098177 PMCID: PMC5241826 DOI: 10.1038/srep40517] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/06/2016] [Indexed: 02/06/2023] Open
Abstract
The protein microenvironment surrounding the flavin cofactor in flavoenzymes is key to the efficiency and diversity of reactions catalysed by this class of enzymes. X-ray diffraction structures of oxidoreductase flavoenzymes have revealed recurrent features which facilitate catalysis, such as a hydrogen bond between a main chain nitrogen atom and the flavin redox center (N5). A neutron diffraction study of cholesterol oxidase has revealed an unusual elongated main chain nitrogen to hydrogen bond distance positioning the hydrogen atom towards the flavin N5 reactive center. Investigation of the structural features which could cause such an unusual occurrence revealed a positively charged lysine side chain, conserved in other flavin mediated oxidoreductases, in a second shell away from the FAD cofactor acting to polarize the peptide bond through interaction with the carbonyl oxygen atom. Double-hybrid density functional theory calculations confirm that this electrostatic arrangement affects the N-H bond length in the region of the flavin reactive center. We propose a novel second-order partial-charge interaction network which enables the correct orientation of the hydride receiving orbital of N5. The implications of these observations for flavin mediated redox chemistry are discussed.
Collapse
|
132
|
Marshall SA, Fisher K, Ní Cheallaigh A, White MD, Payne KAP, Parker DA, Rigby SEJ, Leys D. Oxidative Maturation and Structural Characterization of Prenylated FMN Binding by UbiD, a Decarboxylase Involved in Bacterial Ubiquinone Biosynthesis. J Biol Chem 2017; 292:4623-4637. [PMID: 28057757 DOI: 10.1074/jbc.m116.762732] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/20/2016] [Indexed: 11/06/2022] Open
Abstract
The activity of the reversible decarboxylase enzyme Fdc1 is dependent on prenylated FMN (prFMN), a recently discovered cofactor. The oxidized prFMN supports a 1,3-dipolar cycloaddition mechanism that underpins reversible decarboxylation. Fdc1 is a distinct member of the UbiD family of enzymes, with the canonical UbiD catalyzing the (de)carboxylation of para-hydroxybenzoic acid-type substrates. Here we show that the Escherichia coli UbiD enzyme, which is implicated in ubiquinone biosynthesis, cannot be isolated in an active holoenzyme form despite the fact active holoFdc1 is readily obtained. Formation of holoUbiD requires reconstitution in vitro of the apoUbiD with reduced prFMN. Furthermore, although the Fdc1 apoenzyme can be readily reconstituted and activated, in vitro oxidation to the mature prFMN cofactor stalls at formation of a radical prFMN species in holoUbiD. Further oxidative maturation in vitro occurs only at alkaline pH, suggesting a proton-coupled electron transfer precedes formation of the fully oxidized prFMN. Crystal structures of holoUbiD reveal a relatively open active site potentially occluded from solvent through domain motion. The presence of a prFMN sulfite-adduct in one of the UbiD crystal structures confirms oxidative maturation does occur at ambient pH on a slow time scale. Activity could not be detected for a range of putative para-hydroxybenzoic acid substrates tested. However, the lack of an obvious hydrophobic binding pocket for the octaprenyl tail of the proposed ubiquinone precursor substrate does suggest UbiD might act on a non-prenylated precursor. Our data reveals an unexpected variation occurs in domain mobility, prFMN binding, and maturation by the UbiD enzyme family.
Collapse
Affiliation(s)
- Stephen A Marshall
- From the Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street Manchester, M1 7DN, United Kingdom and
| | - Karl Fisher
- From the Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street Manchester, M1 7DN, United Kingdom and
| | - Aisling Ní Cheallaigh
- From the Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street Manchester, M1 7DN, United Kingdom and
| | - Mark D White
- From the Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street Manchester, M1 7DN, United Kingdom and
| | - Karl A P Payne
- From the Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street Manchester, M1 7DN, United Kingdom and
| | - D A Parker
- Innovation/Biodomain, Shell International Exploration and Production, Westhollow Technology Center, Houston, Texas 77082-3101
| | - Stephen E J Rigby
- From the Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street Manchester, M1 7DN, United Kingdom and
| | - David Leys
- From the Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street Manchester, M1 7DN, United Kingdom and
| |
Collapse
|
133
|
Galbán J, Sanz-Vicente I, Navarro J, de Marcos S. The intrinsic fluorescence of FAD and its application in analytical chemistry: a review. Methods Appl Fluoresc 2016; 4:042005. [DOI: 10.1088/2050-6120/4/4/042005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
134
|
Konjik V, Brünle S, Demmer U, Vanselow A, Sandhoff R, Ermler U, Mack M. The Crystal Structure of RosB: Insights into the Reaction Mechanism of the First Member of a Family of Flavodoxin-like Enzymes. Angew Chem Int Ed Engl 2016; 56:1146-1151. [DOI: 10.1002/anie.201610292] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Valentino Konjik
- Mannheim University of Applied Sciences; Paul-Wittsack-Strasse 10 68163 Mannheim Germany
| | - Steffen Brünle
- Max-Planck-Institute for Biophysics; Max-von-Laue-Strasse 3 60438 Frankfurt am Main Germany
| | - Ulrike Demmer
- Max-Planck-Institute for Biophysics; Max-von-Laue-Strasse 3 60438 Frankfurt am Main Germany
| | - Amanda Vanselow
- Mannheim University of Applied Sciences; Paul-Wittsack-Strasse 10 68163 Mannheim Germany
| | - Roger Sandhoff
- German Cancer Research Center (DKFZ); Im Neuenheimer Feld 280 69120 Heidelberg Germany
| | - Ulrich Ermler
- Max-Planck-Institute for Biophysics; Max-von-Laue-Strasse 3 60438 Frankfurt am Main Germany
| | - Matthias Mack
- Mannheim University of Applied Sciences; Paul-Wittsack-Strasse 10 68163 Mannheim Germany
| |
Collapse
|
135
|
Juarez Del Valle M, Laiño JE, Savoy de Giori G, LeBlanc JG. Factors stimulating riboflavin produced by Lactobacillus plantarum CRL 725 grown in a semi-defined medium. J Basic Microbiol 2016; 57:245-252. [PMID: 27966212 DOI: 10.1002/jobm.201600573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/19/2016] [Indexed: 11/07/2022]
Abstract
Riboflavin (vitamin B2 ) is one of the B-group water-soluble vitamins and is essential for energy metabolism of the cell. The aim of this study was to determine factors that affect riboflavin production by Lactobacillus (L.) plantarum CRL 725 grown in a semi defined medium and evaluate the expression of its rib genes. The factors found to enhance riboflavin production in this medium were incubation at 30 °C, and the addition of specific medium constituents, such as casamino acids (10 g L-1 ), guanosine (0.04 g L-1 ), and sucrose as carbon source (20 g L-1 ). In these conditions, higher riboflavin concentrations were directly associated with significant increases in the expression of ribA, ribB, and ribC genes. The culture conditions defined in this work and its application to a roseoflavin resistant mutant of L. plantarum allowed for a sixfold increase in riboflavin concentrations in our semi-defined medium which were also significantly higher than those obtained previously using the same strain to ferment soymilk. These conditions should thus be evaluated to increase vitamin production in fermented foods.
Collapse
Affiliation(s)
| | | | - Graciela Savoy de Giori
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
- Cátedra de Microbiología Superior, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
| |
Collapse
|
136
|
Leys D, Scrutton NS. Sweating the assets of flavin cofactors: new insight of chemical versatility from knowledge of structure and mechanism. Curr Opin Struct Biol 2016; 41:19-26. [DOI: 10.1016/j.sbi.2016.05.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
|
137
|
Mohamed AE, Condic-Jurkic K, Ahmed FH, Yuan P, O'Mara ML, Jackson CJ, Coote ML. Hydrophobic Shielding Drives Catalysis of Hydride Transfer in a Family of F 420H 2-Dependent Enzymes. Biochemistry 2016; 55:6908-6918. [PMID: 27951661 DOI: 10.1021/acs.biochem.6b00683] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A family of flavin/deazaflavin-dependent oxidoreductases (FDORs) from mycobacteria has been recently characterized and found to play a variety of catalytic roles, including the activation of prodrugs such as the candidate anti-tuberculosis drug pretomanid (PA-824). However, our understanding of the catalytic mechanism used by these enzymes is relatively limited. To address this, we have used a combination of quantum mechanics and molecular dynamics calculations to study the catalytic mechanism of the activation of pretomanid by the deazaflavin-dependent nitroreductase (Ddn) from Mycobacterium tuberculosis. The preferred pathway involves an initial hydride transfer step from the deprotonated cofactor (i.e., F420H-), with subsequent protonation, before a series of spontaneous intramolecular reactions to form the final reactive nitrogen species. The most likely proton source is a hydroxonium ion within the solvent accessible active site. Intriguingly, catalysis of the rate-determining hydride transfer step is aided by three tyrosine residues that form a hydrophobic barrier around the active site that, upon reaction, is then disrupted to allow increased water accessibility to facilitate the subsequent proton transfer step. The catalytic mechanism we propose is consistent with previous experimental observations of the Ddn enzyme and will inform the design of improved prodrugs in the future.
Collapse
Affiliation(s)
- A Elaaf Mohamed
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Karmen Condic-Jurkic
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - F Hafna Ahmed
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Peng Yuan
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Megan L O'Mara
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Michelle L Coote
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| |
Collapse
|
138
|
Ansari MA, Mandal A, Paretzki A, Beyer K, Kaim W, Lahiri GK. Isomeric Diruthenium Complexes of a Heterocyclic and Quinonoid Bridging Ligand: Valence and Spin Alternatives for the Metal/Ligand/Metal Arrangement. Inorg Chem 2016; 55:12357-12365. [DOI: 10.1021/acs.inorgchem.6b02245] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mohd. Asif Ansari
- Department
of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Abhishek Mandal
- Department
of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Alexa Paretzki
- Institut für
Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring
55, Stuttgart D-70550, Germany
| | - Katharina Beyer
- Institut für
Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring
55, Stuttgart D-70550, Germany
| | - Wolfgang Kaim
- Institut für
Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring
55, Stuttgart D-70550, Germany
| | - Goutam Kumar Lahiri
- Department
of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
139
|
Ferrari AR, Rozeboom HJ, Dobruchowska JM, van Leeuwen SS, Vugts ASC, Koetsier MJ, Visser J, Fraaije MW. Discovery of a Xylooligosaccharide Oxidase from Myceliophthora thermophila C1. J Biol Chem 2016; 291:23709-23718. [PMID: 27629413 PMCID: PMC5095424 DOI: 10.1074/jbc.m116.741173] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/12/2016] [Indexed: 11/06/2022] Open
Abstract
By inspection of the predicted proteome of the fungus Myceliophthora thermophila C1 for vanillyl-alcohol oxidase (VAO)-type flavoprotein oxidases, a putative oligosaccharide oxidase was identified. By homologous expression and subsequent purification, the respective protein could be obtained. The protein was found to contain a bicovalently bound FAD cofactor. By screening a large number of carbohydrates, several mono- and oligosaccharides could be identified as substrates. The enzyme exhibits a strong substrate preference toward xylooligosaccharides; hence it is named xylooligosaccharide oxidase (XylO). Chemical analyses of the product formed upon oxidation of xylobiose revealed that the oxidation occurs at C1, yielding xylobionate as product. By elucidation of several XylO crystal structures (in complex with a substrate mimic, xylose, and xylobiose), the residues that tune the unique substrate specificity and regioselectivity could be identified. The discovery of this novel oligosaccharide oxidase reveals that the VAO-type flavoprotein family harbors oxidases tuned for specific oligosaccharides. The unique substrate profile of XylO hints at a role in the degradation of xylan-derived oligosaccharides by the fungus M. thermophila C1.
Collapse
Affiliation(s)
| | | | - Justyna M Dobruchowska
- Microbial Physiology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen
| | - Sander S van Leeuwen
- Microbial Physiology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen
| | | | | | - Jaap Visser
- the Fungal Genetics and Technology Consultancy, 6700 AJ Wageningen, The Netherlands
| | | |
Collapse
|
140
|
Uptake and Metabolism of Antibiotics Roseoflavin and 8-Demethyl-8-Aminoriboflavin in Riboflavin-Auxotrophic Listeria monocytogenes. J Bacteriol 2016; 198:3233-3243. [PMID: 27672192 DOI: 10.1128/jb.00388-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/14/2016] [Indexed: 01/12/2023] Open
Abstract
The riboflavin analogs roseoflavin (RoF) and 8-demethyl-8-aminoriboflavin (AF) are produced by the bacteria Streptomyces davawensis and Streptomyces cinnabarinus Riboflavin analogs have the potential to be used as broad-spectrum antibiotics, and we therefore studied the metabolism of riboflavin (vitamin B2), RoF, and AF in the human pathogen Listeria monocytogenes, a bacterium which is a riboflavin auxotroph. We show that the L. monocytogenes protein Lmo1945 is responsible for the uptake of riboflavin, RoF, and AF. Following import, these flavins are phosphorylated/adenylylated by the bifunctional flavokinase/flavin adenine dinucleotide (FAD) synthetase Lmo1329 and adenylylated by the unique FAD synthetase Lmo0728, the first monofunctional FAD synthetase to be described in bacteria. Lmo1329 generates the cofactors flavin mononucleotide (FMN) and FAD, whereas Lmo0728 produces FAD only. The combined activities of Lmo1329 and Lmo0728 are responsible for the intracellular formation of the toxic cofactor analogs roseoflavin mononucleotide (RoFMN), roseoflavin adenine dinucleotide (RoFAD), 8-demethyl-8-aminoriboflavin mononucleotide (AFMN), and 8-demethyl-8-aminoriboflavin adenine dinucleotide (AFAD). In vivo reporter gene assays and in vitro transcription/translation experiments show that the L. monocytogenes FMN riboswitch Rli96, which controls expression of the riboflavin transport gene lmo1945, is negatively affected by riboflavin/FMN and RoF/RoFMN but not by AF/AFMN. Treatment of L. monocytogenes with RoF or AF leads to drastically reduced FMN/FAD levels. We suggest that the reduced flavin cofactor levels in combination with concomitant synthesis of inactive cofactor analogs (RoFMN, RoFAD, AFMN, and AFAD) explain why RoF and AF contribute to antibiotic activity in L. monocytogenes IMPORTANCE: The riboflavin analogs roseoflavin (RoF) and 8-demethyl-8-aminoriboflavin (AF) are small molecules which are produced by Streptomyces davawensis and Streptomyces cinnabarinus RoF and AF were reported to have antibacterial activity, and we studied how these compounds are metabolized by the human bacterial pathogen Listeria monocytogenes We found that the L. monocytogenes protein Lmo1945 mediates uptake of AF and RoF and that the combined activities of the enzymes Lmo1329 and Lmo0728 are responsible for the conversion of AF and RoF to toxic cofactor analogs. Comparative studies with RoF and AF (a weaker antibiotic) suggest that the reduction in FMN/FAD levels and the formation of inactive FMN/FAD analogs explain to a large extent the antibiotic activity of AF and RoF.
Collapse
|
141
|
Wang B, Wen X, Xi Z. Molecular Simulations Bring New Insights into Protoporphyrinogen IX Oxidase/Protoporphyrinogen IX Interaction Modes. Mol Inform 2016; 35:476-482. [DOI: 10.1002/minf.201600008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 06/27/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Baifan Wang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, Nankai University; Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300071 P. R. China
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, Nankai University; Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300071 P. R. China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, Nankai University; Collaborative Innovation Center of Chemical Science and Engineering; Tianjin 300071 P. R. China
| |
Collapse
|
142
|
Li J, Wang S, Li M, Xu H, Li D, Yin C, Zhao J, Li F. Decreased risk of developing cancer in subjects carrying SLC52A3 rs13042395 polymorphism: proof from a meta-analysis. Biomark Med 2016; 10:1105-1118. [PMID: 27600099 DOI: 10.2217/bmm-2016-0158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM This study aimed to conduct a meta-analysis to explore the association between SLC52A3 rs13042395 polymorphism and cancer risk. MATERIALS & METHODS A comprehensive literature search was performed to confirm the relationship evaluated using STATA 12.0 software. RESULTS Overall, SLC52A3 rs13042395 C>T polymorphism was associated with cancer risk in two genetic models (TT vs CC: odds ratio: 0.86; 95% CI: 0.80-0.93; p < 0.001, TT vs CC + CT: odds ratio: 0.88; 95% CI: 0.82-0.95; p = 0.001). Significant associations were found between SLC52A3 rs13042395 polymorphism and decreased cancer risk among esophageal cancer, Asians, female, normal BMI and old age groups. No significant associations were observed in alcohol and smoking groups. CONCLUSION SLC52A3 rs13042395 C>T polymorphism might be a potential biomarker for cancer susceptibility.
Collapse
Affiliation(s)
- Jun Li
- Department of Pathology, Shihezi University School of Medicine & The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Shilong Wang
- Department of Neurosurgery, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Man Li
- Department of Pathology, Shihezi University School of Medicine & The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Hui Xu
- Department of Neurosurgery, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Dandan Li
- Department of Pathology, Shihezi University School of Medicine & The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Can Yin
- Department of Pathology, Shihezi University School of Medicine & The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Jin Zhao
- Department of Pathology, Shihezi University School of Medicine & The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Feng Li
- Department of Pathology, Shihezi University School of Medicine & The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China.,Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100000, China
| |
Collapse
|
143
|
Structure of a Berberine Bridge Enzyme-Like Enzyme with an Active Site Specific to the Plant Family Brassicaceae. PLoS One 2016; 11:e0156892. [PMID: 27276217 PMCID: PMC4898691 DOI: 10.1371/journal.pone.0156892] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/21/2016] [Indexed: 01/15/2023] Open
Abstract
Berberine bridge enzyme-like (BBE-like) proteins form a multigene family (pfam 08031), which is present in plants, fungi and bacteria. They adopt the vanillyl alcohol-oxidase fold and predominantly show bi-covalent tethering of the FAD cofactor to a cysteine and histidine residue, respectively. The Arabidopsis thaliana genome was recently shown to contain genes coding for 28 BBE-like proteins, while featuring four distinct active site compositions. We determined the structure of a member of the AtBBE-like protein family (termed AtBBE-like 28), which has an active site composition that has not been structurally and biochemically characterized thus far. The most salient and distinguishing features of the active site found in AtBBE-like 28 are a mono-covalent linkage of a histidine to the 8α-position of the flavin-isoalloxazine ring and the lack of a second covalent linkage to the 6-position, owing to the replacement of a cysteine with a histidine. In addition, the structure reveals the interaction of a glutamic acid (Glu426) with an aspartic acid (Asp369) at the active site, which appear to share a proton. This arrangement leads to the delocalization of a negative charge at the active site that may be exploited for catalysis. The structure also indicates a shift of the position of the isoalloxazine ring in comparison to other members of the BBE-like family. The dioxygen surrogate chloride was found near the C(4a) position of the isoalloxazine ring in the oxygen pocket, pointing to a rapid reoxidation of reduced enzyme by dioxygen. A T-DNA insertional mutant line for AtBBE-like 28 results in a phenotype, that is characterized by reduced biomass and lower salt stress tolerance. Multiple sequence analysis showed that the active site composition found in AtBBE-like 28 is only present in the Brassicaceae, suggesting that it plays a specific role in the metabolism of this plant family.
Collapse
|
144
|
The Potential Role of Flavins and Retbindin in Retinal Function and Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:643-8. [PMID: 26427470 DOI: 10.1007/978-3-319-17121-0_85] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Flavins are highly concentrated in the retina; likely because they are involved as cofactors in energy metabolism and photoreceptors have an extremely high metabolic rate. How this concentration is established is currently unknown, but photoreceptor specific proteins may exist that shuttle flavins to flavoproteins, which may also function in retinal neuron specific processes. It has been suggested due to sequence homology to folate receptors that retbindin could be binding flavins in the retina. Here we present a brief overview of flavins in the retina and initial findings that suggest retbindin may be located in the photoreceptor layer where flavin acquisition from the RPE would occur.
Collapse
|
145
|
Koch C, Neumann P, Valerius O, Feussner I, Ficner R. Crystal Structure of Alcohol Oxidase from Pichia pastoris. PLoS One 2016; 11:e0149846. [PMID: 26905908 PMCID: PMC4764120 DOI: 10.1371/journal.pone.0149846] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/05/2016] [Indexed: 11/18/2022] Open
Abstract
FAD-dependent alcohol oxidases (AOX) are key enzymes of methylotrophic organisms that can utilize lower primary alcohols as sole source of carbon and energy. Here we report the crystal structure analysis of the methanol oxidase AOX1 from Pichia pastoris. The crystallographic phase problem was solved by means of Molecular Replacement in combination with initial structure rebuilding using Rosetta model completion and relaxation against an averaged electron density map. The subunit arrangement of the homo-octameric AOX1 differs from that of octameric vanillyl alcohol oxidase and other dimeric or tetrameric alcohol oxidases, due to the insertion of two large protruding loop regions and an additional C-terminal extension in AOX1. In comparison to other alcohol oxidases, the active site cavity of AOX1 is significantly reduced in size, which could explain the observed preference for methanol as substrate. All AOX1 subunits of the structure reported here harbor a modified flavin adenine dinucleotide, which contains an arabityl chain instead of a ribityl chain attached to the isoalloxazine ring.
Collapse
Affiliation(s)
- Christian Koch
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, Georg-August-University Goettingen, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
- Georg-August-University Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, Institute of Microbiology und Genetics, Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
- Georg-August-University Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
- * E-mail:
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute for Microbiology und Genetics, Georg-August-University, Griesebachstr. 8, 37077, Goettingen, Germany
- Georg-August-University Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, Georg-August-University Goettingen, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
- Georg-August-University Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute of Microbiology und Genetics, Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
- Georg-August-University Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| |
Collapse
|
146
|
Hossain GS, Shin HD, Li J, Wang M, Du G, Liu L, Chen J. Integrating error-prone PCR and DNA shuffling as an effective molecular evolution strategy for the production of α-ketoglutaric acid byl-amino acid deaminase. RSC Adv 2016. [DOI: 10.1039/c6ra02940j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
l-Amino acid deaminases (LAADs; EC 1.4.3.2) belong to a family of amino acid dehydrogenases that catalyze the formation of α-keto acids froml-amino acids.
Collapse
Affiliation(s)
- Gazi Sakir Hossain
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
| | - Hyun-dong Shin
- School of Chemical and Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Miao Wang
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| |
Collapse
|
147
|
Hirst J, Roessler MM. Energy conversion, redox catalysis and generation of reactive oxygen species by respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:872-83. [PMID: 26721206 PMCID: PMC4893023 DOI: 10.1016/j.bbabio.2015.12.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/30/2022]
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is critical for respiration in mammalian mitochondria. It oxidizes NADH produced by the Krebs' tricarboxylic acid cycle and β-oxidation of fatty acids, reduces ubiquinone, and transports protons to contribute to the proton-motive force across the inner membrane. Complex I is also a significant contributor to cellular oxidative stress. In complex I, NADH oxidation by a flavin mononucleotide, followed by intramolecular electron transfer along a chain of iron–sulfur clusters, delivers electrons and energy to bound ubiquinone. Either at cluster N2 (the terminal cluster in the chain) or upon the binding/reduction/dissociation of ubiquinone/ubiquinol, energy from the redox process is captured to initiate long-range energy transfer through the complex and drive proton translocation. This review focuses on current knowledge of how the redox reaction and proton transfer are coupled, with particular emphasis on the formation and role of semiquinone intermediates in both energy transduction and reactive oxygen species production. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt. Current knowledge of the redox reactions catalyzed by complex I is reviewed. Possible quinone reduction pathways are presented. The presence and number of semiquinone intermediates are deliberated. The involvement of cluster N2/semiquinones in coupled proton transfer is discussed. Evidence for reactive oxygen species production by semiquinones is examined.
Collapse
Affiliation(s)
- Judy Hirst
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom.
| | - Maxie M Roessler
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom.
| |
Collapse
|
148
|
Mukherjee A, Rokita SE. Single Amino Acid Switch between a Flavin-Dependent Dehalogenase and Nitroreductase. J Am Chem Soc 2015; 137:15342-5. [PMID: 26616824 PMCID: PMC4684082 DOI: 10.1021/jacs.5b07540] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A single
mutation within a flavoprotein is capable of switching
the catalytic activity of a dehalogenase into a nitroreductase.
This change in function correlates with a destabilization of the one-electron-reduced
flavin semiquinone that is differentially expressed in the nitro-FMN
reductase superfamily during redox cycling. The diversity of
function within such a superfamily therefore has the potential
to arise from rapid evolution, and its members should provide a convenient
basis for developing new catalysts with an altered specificity of
choice.
Collapse
Affiliation(s)
- Arnab Mukherjee
- Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Steven E Rokita
- Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States
| |
Collapse
|
149
|
A dual control mechanism synchronizes riboflavin and sulphur metabolism in Bacillus subtilis. Proc Natl Acad Sci U S A 2015; 112:14054-9. [PMID: 26494285 DOI: 10.1073/pnas.1515024112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Flavin mononucleotide (FMN) riboswitches are genetic elements, which in many bacteria control genes responsible for biosynthesis and/or transport of riboflavin (rib genes). Cytoplasmic riboflavin is rapidly and almost completely converted to FMN by flavokinases. When cytoplasmic levels of FMN are sufficient ("high levels"), FMN binding to FMN riboswitches leads to a reduction of rib gene expression. We report here that the protein RibR counteracts the FMN-induced "turn-off" activities of both FMN riboswitches in Bacillus subtilis, allowing rib gene expression even in the presence of high levels of FMN. The reason for this secondary metabolic control by RibR is to couple sulfur metabolism with riboflavin metabolism.
Collapse
|
150
|
Yao P, Lin Y, Wu G, Lu Y, Zhan T, Kumar A, Zhang L, Liu Z. Improvement of glycine oxidase by DNA shuffling, and site-saturation mutagenesis of F247 residue. Int J Biol Macromol 2015; 79:965-70. [PMID: 26025077 DOI: 10.1016/j.ijbiomac.2015.05.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/17/2015] [Accepted: 05/19/2015] [Indexed: 01/17/2023]
Abstract
Glyphosate is a broad spectrum herbicide widely used throughout the world, and it could be degraded by glycine oxidase (GO) through CN bond cleavage. For a better understanding of the structure-function relationship and improving the activity of B3S1 (GO from Bacillus cereus), DNA shuffling was performed. A mutant B4S7 (The Km, Vmax, kcat and kcat/Km values on glyphosate were 0.1 mM, 0.002401 mM min(-1), 3.62 min(-1) and 36.2 mM(-1) min(-1), respectively. The four parameters on glycine were 50.34 mM, 0.001983 mM min(-1), 2.18 min(-1) and 0.04 mM(-1) min(-1), respectively) was obtained from 10,000 clones, which presented a 3.9-fold increase of the specificity constant (the kcat/Km ratio between glyphosate and glycine) compared with B3S1. Especially, the Km value of B4S7 to glyphosate was much less than those of the reported GO. Structure modeling and molecular docking indicated that the novel mutation point F247S was close to the active site of the enzyme. To identify the role of the site, the remaining 19 amino acids were introduced into the site by site-saturation mutagenesis. The result showed that compared with B3S1, the specificity constant of mutant F247S and F247R increased 0.64-fold and 1.04-fold, respectively. While the specificity constant of mutant F247E decreased 2.01-fold. Therefore, the site 247 plays a crucial role in regulating the substrate specificity. This study provides new information on the structure-function relationship of glycine oxidase and the development of glyphosate-tolerant crops.
Collapse
Affiliation(s)
- Pei Yao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongjun Lin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Gaobing Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yulin Lu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Zhan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ashok Kumar
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lili Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Crops, College of Life Science, Tarim University, Alar 843300, China.
| | - Ziduo Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|