101
|
Adams PL, Stahley MR, Gill ML, Kosek AB, Wang J, Strobel SA. Crystal structure of a group I intron splicing intermediate. RNA (NEW YORK, N.Y.) 2004; 10:1867-87. [PMID: 15547134 PMCID: PMC1370676 DOI: 10.1261/rna.7140504] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Accepted: 10/04/2004] [Indexed: 05/21/2023]
Abstract
A recently reported crystal structure of an intact bacterial group I self-splicing intron in complex with both its exons provided the first molecular view into the mechanism of RNA splicing. This intron structure, which was trapped in the state prior to the exon ligation reaction, also reveals the architecture of a complex RNA fold. The majority of the intron is contained within three internally stacked, but sequence discontinuous, helical domains. Here the tertiary hydrogen bonding and stacking interactions between the domains, and the single-stranded joiner segments that bridge between them, are fully described. Features of the structure include: (1) A pseudoknot belt that circumscribes the molecule at its longitudinal midpoint; (2) two tetraloop-tetraloop receptor motifs at the peripheral edges of the structure; (3) an extensive minor groove triplex between the paired and joiner segments, P6-J6/6a and P3-J3/4, which provides the major interaction interface between the intron's two primary domains (P4-P6 and P3-P9.0); (4) a six-nucleotide J8/7 single stranded element that adopts a mu-shaped structure and twists through the active site, making critical contacts to all three helical domains; and (5) an extensive base stacking architecture that realizes 90% of all possible stacking interactions. The intron structure was validated by hydroxyl radical footprinting, where strong correlation was observed between experimental and predicted solvent accessibility. Models of the pre-first and pre-second steps of intron splicing are proposed with full-sized tRNA exons. They suggest that the tRNA undergoes substantial angular motion relative to the intron between the two steps of splicing.
Collapse
Affiliation(s)
- Peter L Adams
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Ave., New Haven, CT 06520-8114, USA
| | | | | | | | | | | |
Collapse
|
102
|
Yoshioka W, Ikawa Y, Jaeger L, Shiraishi H, Inoue T. Generation of a catalytic module on a self-folding RNA. RNA (NEW YORK, N.Y.) 2004; 10:1900-6. [PMID: 15525711 PMCID: PMC1370678 DOI: 10.1261/rna.7170304] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 09/27/2004] [Indexed: 05/18/2023]
Abstract
It is theoretically possible to obtain a catalytic site of an artificial ribozyme from a random sequence consisting of a limited numbers of nucleotides. However, this strategy has been inadequately explored. Here, we report an in vitro selection technique that exploits modular construction of a structurally constrained RNA to acquire a catalytic site for RNA ligation from a short random sequence. To practice the selection, a sequence of 30 nucleotides was located close to the putative reaction site in a derivative of a naturally occurring self-folding RNA whose crystal structure is known. RNAs whose activity depended on the starting three-dimensional structure were selected with 3'-5' ligation specificity, indicating that the strategy can be used to acquire a variety of catalytic sites and other functional RNA modules.
Collapse
Affiliation(s)
- Wataru Yoshioka
- Graduate School of Biostudies, Kyoto University, 606-8502 Japan
| | | | | | | | | |
Collapse
|
103
|
Chase E, Golden BL. Crystallization and preliminary diffraction analysis of a group I ribozyme from bacteriophage Twort. Acta Crystallogr Sect F Struct Biol Cryst Commun 2004; 61:71-4. [PMID: 16508095 PMCID: PMC1952367 DOI: 10.1107/s1744309104028337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 11/03/2004] [Indexed: 11/10/2022]
Abstract
Group I introns are catalytic RNAs that are capable of performing a variety of phosphotransesterification reactions including self-splicing and RNA cleavage. The reactions are efficient, accurate and dependent only on the presence of guanosine-nucleotide substrate and sufficient magnesium ion to stabilize the structure of the RNA. To understand how the group I intron active-site facilitates catalysis, crystals of a 242-nucleotide ribozyme bound to a four-nucleotide product RNA have been produced that diffract to 3.6 A resolution. The space group of these crystals is I2(1)2(1)2(1) and the unit-cell parameters are a = 94.6, b = 141.0, c = 210.9 A. A single heavy-atom derivative has been synthesized by covalent modification of the product RNA with iodine.
Collapse
Affiliation(s)
- Elaine Chase
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, IN 47907, USA
| | - Barbara L. Golden
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, IN 47907, USA
- Correspondence e-mail:
| |
Collapse
|
104
|
Hougland JL, Deb SK, Maric D, Piccirilli JA. An Atomic Mutation Cycle for Exploring RNA's 2‘-Hydroxyl Group. J Am Chem Soc 2004; 126:13578-9. [PMID: 15493890 DOI: 10.1021/ja0469129] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The 2'-hydroxyl group fulfills numerous structural and functional roles in RNA, including those of hydrogen bond donor and acceptor. While loss of function upon 2'-deoxynucleotide substitution establishes the importance of specific 2'-hydroxyl groups within RNA, this approach provides no information about how these hydroxyl groups impart their functional contribution. We use an atomic mutation cycle to evaluate the functional importance of the 2'-hydroxyl group's hydrogen atom. Using the Tetrahymena ribozyme reaction, we challenge the cycle to expose the catalytic contribution of the cleavage site 2'-hydroxyl group and its associated hydrogen bond network. The results establish the viability of this cycle as an approach to reveal 2'-hydroxyl groups that donate functionally significant hydrogen bonds.
Collapse
Affiliation(s)
- James L Hougland
- Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
105
|
Koculi E, Lee NK, Thirumalai D, Woodson SA. Folding of the Tetrahymena ribozyme by polyamines: importance of counterion valence and size. J Mol Biol 2004; 341:27-36. [PMID: 15312760 DOI: 10.1016/j.jmb.2004.06.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 05/28/2004] [Accepted: 06/02/2004] [Indexed: 11/21/2022]
Abstract
Polyamines are abundant metabolites that directly influence gene expression. Although the role of polyamines in DNA condensation is well known, their role in RNA folding is less understood. Non-denaturing gel electrophoresis was used to monitor the equilibrium folding transitions of the Tetrahymena ribozyme in the presence of polyamines. All of the polyamines tested induce near-native structures that readily convert to the native conformation in Mg(2+). The stability of the folded structure increases with the charge of the polyamine and decreases with the size of the polyamine. When the counterion excluded volume becomes large, the transition to the native state does not go to completion even under favorable folding conditions. Brownian dynamics simulations of a model polyelectrolyte suggest that the kinetics of counterion-mediated collapse and the dimensions of the collapsed RNA chains depend on the structure of the counterion. The results are consistent with delocalized condensation of polyamines around the RNA. However, the effective charge of the counterions is lowered by their excluded volume. The stability of the folded RNA is enhanced when the spacing between amino groups matches the distance between adjacent phosphate groups. These results show how changes in intracellular polyamine concentrations could alter RNA folding pathways.
Collapse
Affiliation(s)
- Eda Koculi
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
106
|
The contribution of metal ions to the structural stability of the large ribosomal subunit. RNA 2004; 10:1366-79. [PMID: 15317974 PMCID: PMC1370624 DOI: 10.1261/rna.7390804] [Citation(s) in RCA: 238] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Accepted: 06/21/2004] [Indexed: 05/20/2023]
Abstract
Both monovalent cations and magnesium ions are well known to be essential for the folding and stability of large RNA molecules that form complex and compact structures. In the atomic structure of the large ribosomal subunit from Haloarcula marismortui, we have identified 116 magnesium ions and 88 monovalent cations bound principally to rRNA. Although the rRNA structures to which these metal ions bind are highly idiosyncratic, a few common principles have emerged from the identities of the specific functional groups that coordinate them. The nonbridging oxygen of a phosphate group is the most common inner shell ligand of Mg++, and Mg++ ions having one or two such inner shell ligands are very common. Nonbridging phosphate oxygens and the heteroatoms of nucleotide bases are common outer shell ligands for Mg++ ions. Monovalent cations usually interact with nucleotide bases and protein groups, although some interactions with nonbridging phosphate oxygens are found. The most common monovalent cation binding site is the major groove side of G-U wobble pairs. Both divalent and monovalent cations stabilize the tertiary structure of 23S rRNA by mediating interactions between its structural domains. Bound metal ions are particularly abundant in the region surrounding the peptidyl transferase center, where stabilizing cationic tails of ribosomal proteins are notably absent. This may point to the importance of metal ions for the stabilization of specific RNA structures in the evolutionary period prior to the appearance of proteins, and hence many of these metal ion binding sites may be conserved across all phylogenetic kingdoms.
Collapse
|
107
|
Sanchez ER, Caudle MT. Evidence for ditopic coordination of phosphate diesters to [Mg(15-crown-5)]2+. Implications for magnesium biocoordination chemistry. J Biol Inorg Chem 2004; 9:724-32. [PMID: 15241659 DOI: 10.1007/s00775-004-0568-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 05/27/2004] [Indexed: 10/26/2022]
Abstract
The interaction of a series of phosphate diesters and triesters (1=diphenyl phosphate,2=dimethyl phosphate,3=bis(2-ethylhexyl) phosphate,4=trimethyl phosphate,5=methyldiphenyl phosphate,6=triphenyl phosphate) with [Mg(15-crown-5)](2+) (15-crown-5=1,4,7,10,13-pentaoxocyclopentadecane) was studied as a simplified model for the interaction of aqueous Mg(2+) ion with phosphate-containing biomolecules such as RNA. Using electrospray mass spectrometry, we confirm the formation of 1:1 adducts in the gas phase. Proton and (31)P NMR titration data were used to construct binding isotherms, and a 1:1 binding equilibrium was fit to the isotherms at room temperature to estimate the binding affinities. The binding affinity data are consistent with ditopic coordination of neutral dialkyl phosphate ligands to the [Mg(15-crown-5)](2+) unit. This involves inner-sphere coordination to the Mg(2+) via an oxygen atom, which is complemented by a weak hydrogen-bonding interaction with the crown ether ligand. Ditopic interaction is consistent with low-temperature NMR spectra showing four different configurations for1 coordinated to [Mg(15-crown-5)](2+), which are interpreted in terms of hindered rotation around the Mg-O(phos) bond. Thermochemical analysis of the binding affinity data suggests that the second-shell interaction contributes only about 1 kcal/mol to the binding free energy, so additional factors, such as steric constraints, must be operative to give a preferred phosphate orientation in this system. However, the experimental data do suggest that second-shell interactions contribute as much as 40% of the total binding energy, consistent with the pronounced ability of aqueous Mg(2+) to form salt-bridges linking secondary and tertiary elements of RNA structure.
Collapse
Affiliation(s)
- Elizabeth R Sanchez
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA
| | | |
Collapse
|
108
|
Wang G, Gaffney BL, Jones RA. Differential Binding of Mg2+, Zn2+, and Cd2+at Two Sites in a Hammerhead Ribozyme Motif, Determined by15N NMR. J Am Chem Soc 2004; 126:8908-9. [PMID: 15264817 DOI: 10.1021/ja049804v] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A decamer duplex model of Domain II of the hammerhead ribozyme was synthesized with [8-13C-1,7,NH2-15N3]-guanosine at the known metal binding site, G10.1 and, for comparison, [2-13C-1,7,NH2-15N3]-guanosine at G16.2. The 15N NMR chemical shifts of the labeled N7s monitored during addition of Mg2+, Cd2+, and Zn2+ showed the same preference for binding at G10.1 over G16.2 for each metal. These results demonstrate that 15N labeling can be used to evaluate the binding of different metals, including Mg2+, to a given nitrogen, as well as to compare the binding potential of different sites.
Collapse
Affiliation(s)
- Gang Wang
- Department of Chemistry and Chemical Biology, 610 Taylor Road, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
109
|
Kieft JS, Batey RT. A general method for rapid and nondenaturing purification of RNAs. RNA (NEW YORK, N.Y.) 2004; 10:988-95. [PMID: 15146082 PMCID: PMC1370590 DOI: 10.1261/rna.7040604] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Accepted: 02/18/2004] [Indexed: 05/19/2023]
Abstract
A key bottleneck in RNA structural studies is preparing milligram quantities of RNA, and current techniques have changed little in over a decade. To address this, we have developed an affinity tag-based purification method of RNA oligonucleotides. The tag is attached to the 3'-end of almost any desired RNA sequence, allowing for the rapid and specific removal of the RNA of interest directly from in vitro transcription reactions using an affinity column to which a specific RNA-binding protein has been attached. Following a wash, the RNA of interest is eluted by the addition of imidazole to the column, activating a mutant HdeltaV ribozyme incorporated into the tag. The affinity column can then be rapidly regenerated using conditions that release the protein-RNA tag interaction without denaturing the protein. To demonstrate that this method rapidly generates high-quality RNA, we have transcribed, purified, and generated diffraction-quality crystals of a mutant form of the Tetrahymena thermophila P4-P6 domain in a 48-h time period.
Collapse
Affiliation(s)
- Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | |
Collapse
|
110
|
Petrov AS, Pack GR, Lamm G. Calculations of Magnesium−Nucleic Acid Site Binding in Solution. J Phys Chem B 2004. [DOI: 10.1021/jp037517s] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Anton S. Petrov
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292
| | - George R. Pack
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292
| | - Gene Lamm
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292
| |
Collapse
|
111
|
Silverman SK. Practical and general synthesis of 5'-adenylated RNA (5'-AppRNA). RNA (NEW YORK, N.Y.) 2004; 10:731-46. [PMID: 15037782 PMCID: PMC1370563 DOI: 10.1261/rna.5247704] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Accepted: 01/12/2004] [Indexed: 05/22/2023]
Abstract
A simple strategy is reported for 5'-adenylation of nearly any RNA sequence of indefinite length. The 5'-adenylated product (5'-AppRNA) is an activated RNA that is structurally similar to 5'-triphosphorylated RNA, which is usually prepared by in vitro transcription using T7 RNA polymerase. In the new 5'-adenylation strategy, the RNA substrate is first 5'-monophosphorylated either by T4 polynucleotide kinase, by in vitro transcription in the presence of excess GMP, or by appropriate derivatization during solid-phase synthesis. The RNA is then 5'-adenylated using ATP and T4 RNA ligase, in an interrupted version of the natural adenylation-ligation mechanism by which T4 RNA ligase joins two RNA substrates. Here, the final ligation step of the mechanism is inhibited with complementary DNA blocking oligonucleotide(s) that permit adenylation to occur with good yield. The 5'-AppRNA products of this approach should be valuable as activated RNAs for in vitro selection experiments as an alternative to 5'-triphosphorylated RNAs, among other likely applications. The 5'-terminal nucleotide of an RNA substrate to be adenylated using the new method is not restricted to guanosine, in contrast to 5'-triphosphorylated RNA prepared by in vitro transcription. Therefore, using the new approach, essentially any RNA obtained from solid-phase synthesis or other means can be activated by 5'-adenylation in a practical manner.
Collapse
Affiliation(s)
- Scott K Silverman
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
112
|
Correll CC, Beneken J, Plantinga MJ, Lubbers M, Chan YL. The common and the distinctive features of the bulged-G motif based on a 1.04 A resolution RNA structure. Nucleic Acids Res 2003; 31:6806-18. [PMID: 14627814 PMCID: PMC290275 DOI: 10.1093/nar/gkg908] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Revised: 10/15/2003] [Accepted: 10/15/2003] [Indexed: 11/13/2022] Open
Abstract
Bulged-G motifs are ubiquitous internal RNA loops that provide specific recognition sites for proteins and RNAs. To establish the common and distinctive features of the motif we determined the structures of three variants and compared them with related structures. The variants are 27-nt mimics of the sarcin/ricin loop (SRL) from Escherichia coli 23S ribosomal RNA that is an essential part of the binding site for elongation factors (EFs). The wild-type SRL has now been determined at 1.04 A resolution, supplementing data obtained before at 1.11 A and allowing the first calculation of coordinate error for an RNA motif. The other two structures, having a viable (C2658U*G2663A) or a lethal mutation (C2658G*G2663C), were determined at 1.75 and 2.25 A resolution, respectively. Comparisons reveal that bulged-G motifs have a common hydration and geometry, with flexible junctions at flanking structural elements. Six conserved nucleotides preserve the fold of the motif; the remaining seven to nine vary in sequence and alter contacts in both grooves. Differences between accessible functional groups of the lethal mutation and those of the viable mutation and wild-type SRL may account for the impaired elongation factor binding to ribosomes with the C2658G*G2663C mutation and may underlie the lethal phenotype.
Collapse
MESH Headings
- Animals
- Base Sequence
- Crystallization
- Crystallography, X-Ray
- Escherichia coli/genetics
- Genes, Essential/genetics
- Genes, Lethal/genetics
- Models, Molecular
- Mutation/genetics
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- Rats
Collapse
Affiliation(s)
- Carl C Correll
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
113
|
Subirana JA, Soler-Lopez M. Cations as hydrogen bond donors: a view of electrostatic interactions in DNA. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2003; 32:27-45. [PMID: 12598364 DOI: 10.1146/annurev.biophys.32.110601.141726] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cations are bound to nucleic acids in a solvated state. High-resolution X-ray diffraction studies of oligonucleotides provide a detailed view of Mg2+, and occasionally other ions bound to DNA. In a survey of several such structures, certain general observations emerge. First, cations bind preferentially to the guanine base in the major groove or to phosphate group oxygen atoms. Second, cations interact with DNA most frequently via water molecules in their primary solvation shell, direct ion-DNA contacts being only rarely observed. Thus, the solvated ions should be viewed as hydrogen bond donors in addition to point charges. Finally, ion interaction sites are readily exchangeable: The same site may be occupied by any ion, including spermine, as well as by a water molecule.
Collapse
Affiliation(s)
- Juan A Subirana
- Departament d'Enginyeria Quimica, Universitat Politecnica de Catalunya, Barcelona, Spain.
| | | |
Collapse
|
114
|
Persson T, Cuzic S, Hartmann RK. Catalysis by RNase P RNA: unique features and unprecedented active site plasticity. J Biol Chem 2003; 278:43394-401. [PMID: 12904300 DOI: 10.1074/jbc.m305939200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metal ions are essential cofactors for precursor tRNA (ptRNA) processing by bacterial RNase P. The ribose 2'-OH at nucleotide (nt) -1 of ptRNAs is known to contribute to positioning of catalytic Me2+. To investigate the catalytic process, we used ptRNAs with single 2'-deoxy (2'-H), 2'-amino (2'-N), or 2'-fluoro (2'-F) modifications at the cleavage site (nt -1). 2' modifications had small (2.4-7.7-fold) effects on ptRNA binding to E. coli RNase P RNA in the ground state, decreasing substrate affinity in the order 2'-OH > 2'-F > 2'-N > 2'-H. Effects on the rate of the chemical step (about 10-fold for 2'-F, almost 150-fold for 2'-H and 2'-N) were much stronger, and, except for the 2'-N modification, resembled strikingly those observed in the Tetrahymena ribozyme-catalyzed reaction at corresponding position. Mn2+ rescued cleavage of the 2'-N but also the 2'-H-modified ptRNA, arguing against a direct metal ion coordination at this location. Miscleavage between nt -1 and -2 was observed for the 2'-N-ptRNA at low pH (further influenced by the base identities at nt -1 and +73), suggesting repulsion of a catalytic metal ion due to protonation of the amino group. Effects caused by the 2'-N modification at nt -1 of the substrate allowed us to substantiate a mechanistic difference in phosphodiester hydrolysis catalyzed by Escherichia coli RNase P RNA and the Tetrahymena ribozyme: a metal ion binds next to the 2' substituent at nt -1 in the reaction catalyzed by RNase P RNA, but not at the corresponding location in the Tetrahymena ribozyme reaction.
Collapse
Affiliation(s)
- Tina Persson
- Universität zu Lübeck, Institut für Biochemie, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | | | | |
Collapse
|
115
|
Schwans JP, Cortez CN, Olvera JM, Piccirilli JA. 2'-mercaptonucleotide interference reveals regions of close packing within folded RNA molecules. J Am Chem Soc 2003; 125:10012-8. [PMID: 12914464 DOI: 10.1021/ja035175y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 2'-hydroxyl group makes essential contributions to RNA structure and function. As an approach to assess the ability of a mercapto group to serve as a functional analogue for the 2'-hydroxyl group, we synthesized 2'-mercaptonucleotides for use in nucleotide analogue interference mapping. To correlate the observed interference effects with tertiary structure, we used the independently folding DeltaC209 P4-P6 domain from the Tetrahymena group I intron. We generated populations of DeltaC209 P4-P6 molecules containing 2'-mercaptonucleotides located randomly throughout the domain and separated the folded molecules from the unfolded molecules by nondenaturing gel electrophoresis. Iodine-induced cleavage of the RNA molecules revealed the sites at which 2'-mercaptonucleotides interfere with folding. These interferences cluster in the most densely packed regions of the tertiary structure, occurring only at sites that lack the space and flexibility to accommodate a sulfur atom. Interference mapping with 2'-mercaptonucleotides therefore provides a method by which to identify structurally rigid and densely packed regions within folded RNA molecules.
Collapse
Affiliation(s)
- Jason P Schwans
- Howard Hughes Medical Institute, Department of Biochemistry, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
116
|
Banatao DR, Altman RB, Klein TE. Microenvironment analysis and identification of magnesium binding sites in RNA. Nucleic Acids Res 2003; 31:4450-60. [PMID: 12888505 PMCID: PMC169872 DOI: 10.1093/nar/gkg471] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Interactions with magnesium (Mg2+) ions are essential for RNA folding and function. The locations and function of bound Mg2+ ions are difficult to characterize both experimentally and computationally. In particular, the P456 domain of the Tetrahymena thermophila group I intron, and a 58 nt 23s rRNA from Escherichia coli have been important systems for studying the role of Mg2+ binding in RNA, but characteristics of all the binding sites remain unclear. We therefore investigated the Mg2+ binding capabilities of these RNA systems using a computational approach to identify and further characterize their Mg2+ binding sites. The approach is based on the FEATURE algorithm, reported previously for microenvironment analysis of protein functional sites. We have determined novel physicochemical descriptions of site-bound and diffusely bound Mg2+ ions in RNA that are useful for prediction. Electrostatic calculations using the Non-Linear Poisson Boltzmann (NLPB) equation provided further evidence for the locations of site-bound ions. We confirmed the locations of experimentally determined sites and further differentiated between classes of ion binding. We also identified potentially important, high scoring sites in the group I intron that are not currently annotated as Mg2+ binding sites. We note their potential function and believe they deserve experimental follow-up.
Collapse
Affiliation(s)
- D Rey Banatao
- Department of Genetics and Stanford Medical Informatics, 251 Campus Drive, Stanford University, CA 94305, USA
| | | | | |
Collapse
|
117
|
Yang H, Jossinet F, Leontis N, Chen L, Westbrook J, Berman H, Westhof E. Tools for the automatic identification and classification of RNA base pairs. Nucleic Acids Res 2003; 31:3450-60. [PMID: 12824344 PMCID: PMC168936 DOI: 10.1093/nar/gkg529] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Three programs have been developed to aid in the classification and visualization of RNA structure. BPViewer provides a web interface for displaying three-dimensional (3D) coordinates of individual base pairs or base pair collections. A web server, RNAview, automatically identifies and classifies the types of base pairs that are formed in nucleic acid structures by various combinations of the three edges, Watson-Crick, Hoogsteen and the Sugar edge. RNAView produces two-dimensional (2D) diagrams of secondary and tertiary structure in either Postscript, VRML or RNAML formats. The application RNAMLview can be used to rearrange various parts of the RNAView 2D diagram to generate a standard representation (like the cloverleaf structure of tRNAs) or any layout desired by the user. A 2D diagram can be rapidly reformatted using RNAMLview since all the parts of RNA (like helices and single strands) are dynamically linked while moving the selected parts. With the base pair annotation and the 2D graphic display, RNA motifs are rapidly identified and classified. A survey has been carried out for 41 unique structures selected from the NDB database. The statistics for the occurrence of each edge and of each of the 12 bp families are given for the combinations of the four bases: A, G, U and C. The program also allows for visualization of the base pair interactions by using a symbolic convention previously proposed for base pairs. The web servers for BPViewer and RNAview are available at http://ndbserver.rutgers.edu/services/. The application RNAMLview can also be downloaded from this site. The 2D diagrams produced by RNAview are available for RNA structures in the Nucleic Acid Database (NDB) at http://ndbserver.rutgers.edu/atlas/.
Collapse
Affiliation(s)
- Huanwang Yang
- Department of Chemistry and Chemical Biology, Rutgers University, NJ 08854-8087, USA
| | | | | | | | | | | | | |
Collapse
|
118
|
Auffinger P, Bielecki L, Westhof E. The Mg2+ binding sites of the 5S rRNA loop E motif as investigated by molecular dynamics simulations. CHEMISTRY & BIOLOGY 2003; 10:551-61. [PMID: 12837388 DOI: 10.1016/s1074-5521(03)00121-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Molecular dynamics simulations have been used to investigate the binding of Mg(2+) ions to the deep groove of the eubacterial 5S rRNA loop E. The simulations suggest that long-lived and specific water-mediated interactions established between the hydrated ions and the RNA atoms lining up the binding sites contribute to the stabilization of this motif. The Mg(2+) binding specificity is modulated by two factors: (i) a required electrostatic complementarity and (ii) a structural correspondence between the hydrated ion and its binding pocket that can be estimated by its degree of dehydration and the resulting number and lifetime of the intervening water-mediated contacts. Two distinct binding modes for pentahydrated Mg(2+) ions that result in a significant freezing of the tumbling motions of the ions are described, and mechanistic details related to the stabilization of nucleic acids by divalent ions are provided.
Collapse
Affiliation(s)
- Pascal Auffinger
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Modélisations et Simulations des Acides Nucléiques, UPR 9002, 15 rue René Descartes, 67084 Cedex, Strasbourg, France.
| | | | | |
Collapse
|
119
|
Abstract
Divalent metal ions are required for splicing of group I introns, but their role in maintaining the structure of the active site is still under investigation. Ribonuclease and hydroxyl radical footprinting of a small group I intron from Azoarcus pre-tRNA(Ile) showed that tertiary interactions between helical domains are stable in a variety of cations. Only Mg(2+), however, induced a conformational change in the intron core that correlates with self-splicing activity. Three metal ion binding sites in the catalytic core were identified by Tb(III)-dependent cleavage. Two of these are near bound substrates in a three-dimensional model of the ribozyme. A third metal ion site is near an A minor motif in P3. In the pre-tRNA, Tb(3+) cleavage was redirected to the 5' and 3' splice sites, consistent with metal-dependent activation of splice site phosphodiesters. The results show that many counterions induce global folding, but organization of the group I active site is specifically linked to Mg(2+) binding at a few sites.
Collapse
Affiliation(s)
- Prashanth Rangan
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218-4118, USA
| | | |
Collapse
|
120
|
Ennifar E, Walter P, Dumas P. A crystallographic study of the binding of 13 metal ions to two related RNA duplexes. Nucleic Acids Res 2003; 31:2671-82. [PMID: 12736317 PMCID: PMC156032 DOI: 10.1093/nar/gkg350] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Metal ions, and magnesium in particular, are known to be involved in RNA folding by stabilizing secondary and tertiary structures, and, as cofactors, in RNA enzymatic activity. We have conducted a systematic crystallographic analysis of cation binding to the duplex form of the HIV-1 RNA dimerization initiation site for the subtype-A and -B natural sequences. Eleven ions (K+, Pb2+, Mn2+, Ba2+, Ca2+, Cd2+, Sr2+, Zn2+, Co2+, Au3+ and Pt4+) and two hexammines [Co (NH3)6]3+ and [Ru (NH3)6]3+ were found to bind to the DIS duplex structure. Although the two sequences are very similar, strong differences were found in their cation binding properties. Divalent cations bind almost exclusively, as Mg2+, at 'Hoogsteen' sites of guanine residues, with a cation-dependent affinity for each site. Notably, a given cation can have very different affinities for a priori equivalent sites within the same molecule. Surprisingly, none of the two hexammines used were able to efficiently replace hexahydrated magnesium. Instead, [Co (NH3)4]3+ was seen bound by inner-sphere coordination to the RNA. This raises some questions about the practical use of [Co (NH3)6]3+ as a [Mg (H2O)6]2+ mimetic. Also very unexpected was the binding of the small Au3+ cation exactly between the Watson-Crick sites of a G-C base pair after an obligatory deprotonation of N1 of the guanine base. This extensive study of metal ion binding using X-ray crystallography significantly enriches our knowledge on the binding of middleweight or heavy metal ions to RNA, particularly compared with magnesium.
Collapse
Affiliation(s)
- Eric Ennifar
- Institut de Biologie Moléculaire et Cellulaire, CNRS-UPR 9002, 15 rue René Descartes, 67084 Strasbourg cedex, France
| | | | | |
Collapse
|
121
|
Puerta-Fernández E, Romero-López C, Barroso-delJesus A, Berzal-Herranz A. Ribozymes: recent advances in the development of RNA tools. FEMS Microbiol Rev 2003; 27:75-97. [PMID: 12697343 DOI: 10.1016/s0168-6445(03)00020-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The discovery 20 years ago that some RNA molecules, called ribozymes, are able to catalyze chemical reactions was a breakthrough in biology. Over the last two decades numerous natural RNA motifs endowed with catalytic activity have been described. They all fit within a few well-defined types that respond to a specific RNA structure. The prototype catalytic domain of each one has been engineered to generate trans-acting ribozymes that catalyze the site-specific cleavage of other RNA molecules. On the 20th anniversary of ribozyme discovery we briefly summarize the main features of the different natural catalytic RNAs. We also describe progress towards developing strategies to ensure an efficient ribozyme-based technology, dedicating special attention to the ones aimed to achieve a new generation of therapeutic agents.
Collapse
Affiliation(s)
- Elena Puerta-Fernández
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Ventanilla 11, 18001 Granada, Spain
| | | | | | | |
Collapse
|
122
|
Onoa B, Dumont S, Liphardt J, Smith SB, Tinoco I, Bustamante C. Identifying kinetic barriers to mechanical unfolding of the T. thermophila ribozyme. Science 2003; 299:1892-5. [PMID: 12649482 PMCID: PMC1503549 DOI: 10.1126/science.1081338] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mechanical unfolding trajectories for single molecules of the Tetrahymena thermophila ribozyme display eight intermediates corresponding to discrete kinetic barriers that oppose mechanical unfolding with lifetimes of seconds and rupture forces between 10 and 30 piconewtons. Barriers are magnesium dependent and correspond to known intra- and interdomain interactions. Several barrier structures are "brittle," breakage requiring high forces but small (1 to 3 nanometers) deformations. Barrier crossing is stochastic, leading to variable unfolding paths. The response of complex RNA structures to locally applied mechanical forces may be analogous to the responses of RNA during translation, messenger RNA export from the nucleus, and viral replication.
Collapse
Affiliation(s)
- Bibiana Onoa
- Department of Physics and Department of Molecular and Cell Biology and Howard Hughes Medical Institute
| | | | - Jan Liphardt
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Steven B. Smith
- Department of Physics and Department of Molecular and Cell Biology and Howard Hughes Medical Institute
| | - Ignacio Tinoco
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Carlos Bustamante
- Department of Physics and Department of Molecular and Cell Biology and Howard Hughes Medical Institute
- Biophysics Graduate Group
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
123
|
Correll CC, Swinger K. Common and distinctive features of GNRA tetraloops based on a GUAA tetraloop structure at 1.4 A resolution. RNA (NEW YORK, N.Y.) 2003; 9:355-63. [PMID: 12592009 PMCID: PMC1370402 DOI: 10.1261/rna.2147803] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2002] [Accepted: 11/12/2002] [Indexed: 05/18/2023]
Abstract
GNRA tetraloops (N is A, C, G, or U; R is A or G) are basic building blocks of RNA structure that often interact with proteins or other RNA structural elements. Understanding sequence-dependent structural variation among different GNRA tetraloops is an important step toward elucidating the molecular basis of specific GNRA tetraloop recognition by proteins and RNAs. Details of the geometry and hydration of this motif have been based on high-resolution crystallographic structures of the GRRA subset of tetraloops; less is known about the GYRA subset (Y is C or U). We report here the structure of a GUAA tetraloop determined to 1.4 A resolution to better define these details and any distinctive features of GYRA tetraloops. The tetraloop is part of a 27-nt structure that mimics the universal sarcin/ricin loop from Escherichia coli 23S ribosomal RNA in which a GUAA tetraloop replaces the conserved GAGA tetraloop. The adenosines of the GUAA tetraloop form an intermolecular contact that is a commonplace RNA tertiary interaction called an A-minor motif. This is the first structure to reveal in great detail the geometry and hydration of a GUAA tetraloop and an A-minor motif. Comparison of tetraloop structures shows a common backbone geometry for each of the eight possible tetraloop sequences and suggests a common hydration. After backbone atom superposition, equivalent bases from different tetraloops unexpectedly depart from coplanarity by as much as 48 degrees. This variation displaces the functional groups of tetraloops implicated in protein and RNA binding, providing a recognition feature.
Collapse
MESH Headings
- Crystallography, X-Ray
- Models, Molecular
- Mutation
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
Collapse
Affiliation(s)
- Carl C Correll
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
124
|
Summers JS, Shimko J, Freedman FL, Badger CT, Sturgess M. Displacement of Mn2+ from RNA by K+, Mg2+, neomycin B, and an arginine-rich peptide: indirect detection of nucleic acid/ligand interactions using phosphorus relaxation enhancement. J Am Chem Soc 2002; 124:14934-9. [PMID: 12475335 DOI: 10.1021/ja027829t] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have developed a novel method to study the interactions of nucleic acids with cationic species. The method, called phosphorus relaxation enhancement (PhoRE), uses (1)H-detected (31)P NMR of exogenous probe ions to monitor changes in the equilibrium between free Mn(2+) and Mn(2+) bound to the RNA. To demonstrate the technique, we describe the interactions of four RNA molecules with metal ions (K(+) and Mg(2+)), a small molecule drug (neomycin b), and a cationic peptide (RSG1.2). In each case, cationic ligand binding caused Mn(2+) to be displaced from the RNA. Free Mn(2+) was determined from its effect on the T(2) NMR relaxation rate of either phosphite (HPO(3)(2-)) or methyl phosphite (MeOPH, CH(3)OP(H)O(2-)). Using this method, the effects of [RNA] as low as 1 microM could be measured in 20 min of accumulation using a low field (200 MHz) instrument without pulsed field gradients. Cation association behavior was sequence and [RNA] dependent. At low [K(+)], Mn(2+) association with each of the RNAs decreased with increasing [K(+)] until approximately 40 mM, where saturation was reached. While saturating K(+) displaced all the bound Mn(2+) from a 31-nucleotide poly-uridine (U(31)), Mn(2+) remained bound to each of three hairpin-forming sequences (A-site, RRE1, and RRE2), even at 150 mM K(+). Bound Mn(2+) was displaced from each of the hairpins by Mg(2+), allowing determination of Mg(2+) dissociation constants (K(d,Mg)) ranging from 50 to 500 microM, depending on the RNA sequence and [K(+)]. Both neomycin b and RSG1.2 displaced Mn(2+) upon binding the hairpins. At [RNA] approximately 3 microM, RRE1 bound a single equivalent of RSG1.2, whereas neither RRE2 nor A-site bound the peptide. These behaviors were confirmed by fluorescence polarization using TAMRA-labeled peptide. At 2.7 microM RNA, the A-site hairpin bound a single neomycin b molecule. The selectivity of RSG1.2 binding was greatly diminished at higher [RNA]. Similarly, each hairpin bound multiple equivalents of neomycin at the higher [RNA]. These results demonstrate the utility of the PhoRE method for characterizing metal binding behaviors of nucleic acids and for studying RNA/ligand interactions.
Collapse
Affiliation(s)
- Jack S Summers
- Message Pharmaceuticals, Inc., 30 Spring Mill Road, Malvern, PA 19355, USA.
| | | | | | | | | |
Collapse
|
125
|
Lemieux S, Major F. RNA canonical and non-canonical base pairing types: a recognition method and complete repertoire. Nucleic Acids Res 2002; 30:4250-63. [PMID: 12364604 PMCID: PMC140540 DOI: 10.1093/nar/gkf540] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The problem of systematic and objective identification of canonical and non-canonical base pairs in RNA three-dimensional (3D) structures was studied. A probabilistic approach was applied, and an algorithm and its implementation in a computer program that detects and analyzes all the base pairs contained in RNA 3D structures were developed. The algorithm objectively distinguishes among canonical and non-canonical base pairing types formed by three, two and one hydrogen bonds (H-bonds), as well as those containing bifurcated and C-H.X...H-bonds. The nodes of a bipartite graph are used to encode the donor and acceptor atoms of a 3D structure. The capacities of the edges correspond to probabilities computed from the geometry of the donor and acceptor groups to form H-bonds. The maximum flow from donors to acceptors directly identifies base pairs and their types. A complete repertoire of base pairing types was built from the detected H-bonds of all X-ray crystal structures of a resolution of 3.0 A or better, including the large and small ribosomal subunits. The base pairing types are labeled using an extension of the nomenclature recently introduced by Leontis and Westhof. The probabilistic method was implemented in MC-Annotate, an RNA structure analysis computer program used to determine the base pairing parameters of the 3D modeling system MC-Sym.
Collapse
Affiliation(s)
- Sébastien Lemieux
- Département d'Informatique et de Recherche Opérationnelle, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | | |
Collapse
|
126
|
Battle DJ, Doudna JA. Specificity of RNA-RNA helix recognition. Proc Natl Acad Sci U S A 2002; 99:11676-81. [PMID: 12189204 PMCID: PMC129328 DOI: 10.1073/pnas.182221799] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2002] [Indexed: 11/18/2022] Open
Abstract
Functional RNAs often form compact structures characterized by closely packed helices. Crystallographic analysis of several large RNAs revealed a prevalent interaction in which unpaired adenosine residues dock into the minor groove of a receptor helix. This A-minor motif, potentially the most important element responsible for global RNA architecture, has also been suggested to contribute to the fidelity of protein synthesis by discriminating against near-cognate tRNAs on the ribosome. The specificity of A-minor interactions is fundamental to RNA tertiary structure formation, as well as to their proposed role in translational accuracy. To investigate A-minor motif specificity, we analyzed mutations in an A-minor interaction within the Tetrahymena group I self-splicing intron. Thermodynamic and x-ray crystallographic results show that the A-minor interaction strongly prefers canonical base pairs over base mismatches in the receptor helix, enabling RNA interhelical packing through specific recognition of Watson-Crick minor groove geometry.
Collapse
Affiliation(s)
- Daniel J Battle
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
127
|
Abstract
Although RNA is generally thought to be a passive genetic blueprint, some RNA molecules, called ribozymes, have intrinsic enzyme-like activity--they can catalyse chemical reactions in the complete absence of protein cofactors. In addition to the well-known small ribozymes that cleave phosphodiester bonds, we now know that RNA catalysts probably effect a number of key cellular reactions. This versatility has lent credence to the idea that RNA molecules may have been central to the early stages of life on Earth.
Collapse
Affiliation(s)
- Jennifer A Doudna
- Department of Molecular and Cell Biology, and Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
128
|
Abstract
Understanding the catalytic mechanisms of RNA enzymes remains an important and intriguing challenge - one that has grown in importance since the recent demonstration that the ribosome is a ribozyme. At first, it seemed that all RNA enzymes compensate for the limited chemical versatility of ribonucleotide functional groups by recruiting obligatory metal ion cofactors to carry out catalytic chemistry. Mechanistic studies of the large self-splicing and pre-tRNA-processing ribozymes continue to support this idea, yielding increasingly detailed views of RNA active sites as scaffolds for positioning catalytic metal ions. Re-evaluation of the methodologies used to distinguish catalytic and structural roles for metal ions, however, has challenged this notion in the case of the small self-cleaving RNAs. Recent studies of the small ribozymes blur the distinction between catalytic and structural roles for metal ions, and suggest that RNA nucleobases have a previously unrecognized capacity for mediating catalytic chemistry.
Collapse
Affiliation(s)
- Martha J Fedor
- Department of Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, MB35, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
129
|
Ikawa Y, Fukada K, Watanabe SI, Shiraishi H, Inoue T. Design, construction, and analysis of a novel class of self-folding RNA. Structure 2002; 10:527-34. [PMID: 11937057 DOI: 10.1016/s0969-2126(02)00739-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA can play multiple biological roles through use of its three-dimensional (3-D) structures. Recent advances in RNA structural biology have revealed that complex RNA 3D structures are assemblages of double-stranded helices with a variety of tertiary structural motifs. By employing RNA tertiary structural motifs together with the helices, we designed a novel class of self-folding RNA. In RNA composed of three helices (P1, P2, and P3), P1 interacts with P3 via a tetraloop-receptor interaction and P2 forms consecutive base-triples. Two designed RNAs of this class were prepared and their folding properties indicate that they form defined tertiary structures as designed. These RNAs may be used as modular units for constructing artificial ribozymes or nanometer-scale materials.
Collapse
Affiliation(s)
- Yoshiya Ikawa
- Graduate School of Biostudies, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
130
|
Affiliation(s)
- Anton S. Petrov
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292
| | - Gene Lamm
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292
| | - George R. Pack
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292
| |
Collapse
|