101
|
Han Z, Simpson JT, Fivash MJ, Fisher R, Mori T. Identification and characterization of peptides that bind to cyanovirin-N, a potent human immunodeficiency virus-inactivating protein. Peptides 2004; 25:551-61. [PMID: 15165709 DOI: 10.1016/j.peptides.2004.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Accepted: 02/25/2004] [Indexed: 11/23/2022]
Abstract
Cyanovirin-N (CV-N) exerts a potent human immunodeficiency virus (HIV)-inactivating activity against diverse strains of HIV by binding to the viral surface envelope glycoprotein gp120 and blocking its essential interactions with cellular receptors. Based on previous thermodynamic analyses, it has been speculated that discrete protein-protein interactions might play an important ancillary role in the CV-N/gp120 binding event, in addition to the interactions of CV-N with specific oligosaccharides present on gp120. Here, we report the identification and characterization of CV-N-binding peptides, which were isolated by screening of M13 phage-displayed peptide libraries. After performing three rounds of biopanning of the libraries against biotinylated CV-N, a CV-N-binding motif, X3CX6(W/F)(Y/F)CX2(Y/F), was evident. A vector was designed to express CV-N-binding peptides as a fusion with thioredoxin (Trx) containing a penta-His affinity tag. The CV-N-binding peptides fused with His-tagged Trx inhibited binding of the corresponding peptide-bearing phages to CV-N, confirming that the peptides possessed CV-N-binding activity. Optical biosensor binding studies showed that the one of the CV-N-binding peptide, TN10-1, bound to CV-N with a KD value of 1.9 microM. The results of alanine scanning mutagenesis of the peptide showed that aromatic residues at positions 11, 12, and 16, as well as the conformational structure of the peptide secured by a disulfide bond, were important for the binding interactions. A series of competitive binding assays confirmed that gp120 inhibited CV-N binding of the corresponding peptide-bearing phages, and suggested that TN10-1 peptides were mimicking the protein component of gp120 rather than mimicking specific oligosaccharides present on gp120.
Collapse
Affiliation(s)
- Zhaozhong Han
- Molecular Targets Development Program, Center for Cancer Research, National Cancer Institute, NCI-Frederick, Frederick, MD 21702-1201, USA
| | | | | | | | | |
Collapse
|
102
|
Siebert HC, Jiménez-Barbero J, André S, Kaltner H, Gabius HJ. Describing topology of bound ligand by transferred nuclear Overhauser effect spectroscopy and molecular modeling. Methods Enzymol 2003; 362:417-34. [PMID: 12968380 DOI: 10.1016/s0076-6879(03)01029-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Hans-Christian Siebert
- Institute of Physiological Chemistry, Ludwig-Maximilians University, Veterinarstrasse 13, Munich D-80539, Germany
| | | | | | | | | |
Collapse
|
103
|
O'Keefe BR, Smee DF, Turpin JA, Saucedo CJ, Gustafson KR, Mori T, Blakeslee D, Buckheit R, Boyd MR. Potent anti-influenza activity of cyanovirin-N and interactions with viral hemagglutinin. Antimicrob Agents Chemother 2003; 47:2518-25. [PMID: 12878514 PMCID: PMC166092 DOI: 10.1128/aac.47.8.2518-2525.2003] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The novel antiviral protein cyanovirin-N (CV-N) was initially discovered based on its potent activity against the human immunodeficiency virus (HIV). Subsequent studies identified the HIV envelope glycoproteins gp120 and gp41 as molecular targets of CV-N. More recently, mechanistic studies have shown that certain high-mannose oligosaccharides (oligomannose-8 and oligomannose-9) found on the HIV envelope glycoproteins comprise the specific sites to which CV-N binds. Such selective, carbohydrate-dependent interactions may account, at least in part, for the unusual and unexpected spectrum of antiviral activity of CV-N described herein. We screened CV-N against a broad range of respiratory and enteric viruses, as well as flaviviruses and herpesviruses. CV-N was inactive against rhinoviruses, human parainfluenza virus, respiratory syncytial virus, and enteric viruses but was moderately active against some herpesvirus and hepatitis virus (bovine viral diarrhea virus) strains (50% effective concentration [EC(50)] = approximately 1 micro g/ml) while inactive against others. Remarkably, however, CV-N and related homologs showed highly potent antiviral activity against almost all strains of influenza A and B virus, including clinical isolates and a neuraminidase inhibitor-resistant strain (EC(50) = 0.004 to 0.04 micro g/ml). When influenza virus particles were pretreated with CV-N, viral titers were lowered significantly (>1,000-fold). Further studies identified influenza virus hemagglutinin as a target for CV-N, showed that antiviral activity and hemagglutinin binding were correlated, and indicated that CV-N's interactions with hemagglutinin involved oligosaccharides. These results further reveal new potential avenues for antiviral therapeutics and prophylaxis targeting specific oligosaccharide-comprised sites on certain enveloped viruses, including HIV, influenza virus, and possibly others.
Collapse
Affiliation(s)
- Barry R O'Keefe
- Molecular Targets Development Program, Center for Cancer Research, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Barrientos LG, Louis JM, Ratner DM, Seeberger PH, Gronenborn AM. Solution structure of a circular-permuted variant of the potent HIV-inactivating protein cyanovirin-N: structural basis for protein stability and oligosaccharide interaction. J Mol Biol 2003; 325:211-23. [PMID: 12473463 DOI: 10.1016/s0022-2836(02)01205-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The high-resolution solution structure of a monomeric circular permuted (cp) variant of the potent HIV-inactivating protein cyanovirin-N (CV-N) was determined by NMR. Comparison with the wild-type (wt) structure revealed that the observed loss in stability of cpCV-N compared to the wt protein is due to less favorable packing of several residues at the pseudo twofold axis that are responsible for holding the two halves of the molecule together. In particular, the N and C-terminal amino acid residues exhibit conformational flexibility, resulting in fewer and less favorable contacts between them. The important hydrophobic and hydrogen-bonding network between residues W49, D89, H90, Y100 and E101 that was observed in wt CV-N is no longer present. For instance, Y100 and E101 are flexible and the tryptophan side-chain is in a different conformation compared to the wt protein. The stability loss amounts to approximately 2kcal/mol and the mobility of the protein is evident by fast amide proton exchange throughout the chain. Mutation of the single proline residue to glycine (P52G) did not substantially affect the stability of the protein, in contrast to the finding for wtCV-N. The binding of high-mannose type oligosaccharides to cpCV-N was also investigated. Similar to wtCV-N, two carbohydrate-binding sites were identified on the protein and the Man alpha1-->2Man linked moieties on the sugar were delineated as binding epitopes. Unlike in wtCV-N, the binding sites on cpCV-N are structurally similar and exhibit comparable binding affinities for the respective sugars. On the basis of the studies presented here and previous results on high-mannose binding to wtCV-N, we discuss a model for the interaction between gp120 and CV-N.
Collapse
Affiliation(s)
- Laura G Barrientos
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases/NIH, Building 5, Room 130, Bethesda, MD 20892-0520, USA
| | | | | | | | | |
Collapse
|
105
|
Chapter 18. Recent advances in the chemotherapy of HIV. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2003. [DOI: 10.1016/s0065-7743(03)38019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
106
|
Bewley CA, Kiyonaka S, Hamachi I. Site-specific discrimination by cyanovirin-N for alpha-linked trisaccharides comprising the three arms of Man(8) and Man(9). J Mol Biol 2002; 322:881-9. [PMID: 12270721 DOI: 10.1016/s0022-2836(02)00842-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyanovirin-N (CVN) is a novel cyanobacterial protein that selectively binds with nanomolar affinities the mammalian oligosaccharides Man(8) and Man(9). Consequently, CVN potently blocks HIV entry through highly avid carbohydrate-mediated interactions with the HIV-envelope glycoprotein gp120, and is under preclinical investigation as an anti-HIV microbicide. CVN contains two non-overlapping carbohydrate-binding sites that bind the disaccharide Manalpha(1-2)Manalpha (which represents the terminal disaccharide of all three arms of Man(9)) with low to sub-micromolar affinities. The solution structure of a 1:2 CVN:Manalpha(1-2)Manalpha complex revealed that CVN recognizes the stacked conformation of Manalpha(1-2)Manalpha through a deep hydrophilic-binding pocket on one side of the protein (site 2) and a semi-circular cleft on the other (site 1). With the prominent exception of the C1 hydroxyl group of the reducing mannopyranose ring, the bound disaccharide is positioned so that each hydroxyl group is involved in a direct or water-mediated hydrogen bond to the polar or charged side-chains comprising the binding pocket. Thus, to determine whether the next-most reducing mannopyranose ring will augment CVN affinity and selectivity, we have characterized by NMR and ITC the binding of CVN to three synthetic trisaccharides representing the full-length D1, D2 and D3 arms of mammalian oligomannosides. Our findings demonstrate that site 1 is able to discriminate between the three related trisaccharides methyl Manalpha(1-2)Manalpha(1-2)Man, methyl Manalpha(1-2)Manalpha(1-3)Man and methyl Manalpha(1-2)Manalpha(1-6)Man with remarkable selectivity, and binds these trisaccharides with K(A) values ranging from 8.1x10(3)M(-1) to 6.6x10(6)M(-1). Site 2 is less selective in that it binds all three trisaccharides with similar K(A) values ranging from 1.7 to 3.7(+/-0.3)x10(5)M(-1), but overall binds these trimannosides with higher affinities than site 1. The diversity of pathogenic organisms that display alpha(1-2)-linked mannosides on their cell surfaces suggests a broad defensive role for CVN in its cyanobacterial source.
Collapse
Affiliation(s)
- Carole A Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0820, USA.
| | | | | |
Collapse
|
107
|
Hong PWP, Flummerfelt KB, de Parseval A, Gurney K, Elder JH, Lee B. Human immunodeficiency virus envelope (gp120) binding to DC-SIGN and primary dendritic cells is carbohydrate dependent but does not involve 2G12 or cyanovirin binding sites: implications for structural analyses of gp120-DC-SIGN binding. J Virol 2002; 76:12855-65. [PMID: 12438611 PMCID: PMC136699 DOI: 10.1128/jvi.76.24.12855-12865.2002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The calcium-dependent lectin, DC-SIGN, binds to human immunodeficiency virus (HIV) (and simian immunodeficiency virus) gp120 and mediates the binding and transfer of HIV from monocyte-derived dendritic cells (MDDCs) to permissive T cells. However, it has been recently reported that DC-SIGN binding to HIV gp120 may be carbohydrate independent. Here, we formally demonstrate that gp120 binding to DC-SIGN and MDDCs is largely if not wholly carbohydrate dependent. Endo-beta-N-glucosaminidase H (EndoH) treatment of gp120-Fc under conditions that maintained wild-type CD4 binding-and the full complement of complex glycans-significantly decreased (>90%) binding to DC-SIGN expressing cell lines, as well as to MDDCs. Any residual binding of EndoH-treated gp120-Fc to DC-SIGN was completely competed off with mannan. Mutational analysis indicated that no single glycosylation site affected the ability of gp120-Fc to bind DC-SIGN. To further guide our efforts in mapping the DC-SIGN binding sites on gp120, we used two well-characterized HIV inhibitory agents (2G12 monoclonal antibody and cyanovirin) that bind to high-mannose sugars on gp120. We showed that 2G12 and DC-SIGN bound to nonoverlapping sites in gp120 because (i) 2G12 did not block soluble gp120 or virion binding to DC-SIGN, (ii) 2G12 bound to gp120-Fc that was prebound to cell surface DC-SIGN, and (iii) gp120-Fc mutants that lack glycosylation sites involved in 2G12's epitope were also fully capable of binding DC-SIGN. These data were substantiated by the inability of cyanovirin to block gp120-Fc binding to DC-SIGN. Cyanovirin has been shown to effectively compete for 2G12 binding to gp120. Indeed, high concentrations of cyanovirin dramatically enhanced gp120-Fc binding to cell surfaces in the presence or absence of DC-SIGN. We provide evidence that this enhancement may be due to cyanovirin's ability to bridge gp120 to mannosylated cell surface proteins. These results have implications for antiviral therapeutics and for ongoing efforts to finely map the glycan structures on gp120 responsible for DC-SIGN binding.
Collapse
Affiliation(s)
- Patrick W-P Hong
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles School of Medicine, 609 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
108
|
Barrientos LG, Gronenborn AM. The domain-swapped dimer of cyanovirin-N contains two sets of oligosaccharide binding sites in solution. Biochem Biophys Res Commun 2002; 298:598-602. [PMID: 12408994 DOI: 10.1016/s0006-291x(02)02489-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The binding of high-mannose oligosaccharides to the domain-swapped dimeric form of the potent HIV-inactivating protein cyanovirin-N (CV-N) was investigated in solution by NMR, complementing recent structural studies by X-ray crystallography on similar complexes [J. Biol. Chem. 277 (2002) 34336]. The crystal structures of CV-N dimer complexed with Man-9 and hexamannoside revealed two carbohydrate binding sites on opposite ends of the molecule. No binding was observed at site 1, previously identified on the solution monomer of CV-N [Structure 9 (2001) 931; Shenoy et al., Chem. Biol. 9 (2002) 1109]. Here, we report the presence of four sugar binding sites on the CV-N dimer in solution, identified by chemical shift mapping with hexamannoside and nonamannoside, synthetic substructures of Man-9. Our results demonstrate that in solution the domain-swapped CV-N dimer, like the CV-N monomer, contains two types of sites that are available for carbohydrate binding, suggesting that the occlusion of the primary sites in the crystal is due to specific features of the solid state.
Collapse
Affiliation(s)
- Laura G Barrientos
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases/NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
109
|
Shenoy SR, Barrientos LG, Ratner DM, O'Keefe BR, Seeberger PH, Gronenborn AM, Boyd MR. Multisite and multivalent binding between cyanovirin-N and branched oligomannosides: calorimetric and NMR characterization. CHEMISTRY & BIOLOGY 2002; 9:1109-18. [PMID: 12401495 DOI: 10.1016/s1074-5521(02)00237-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Binding of the protein cyanovirin-N to oligomannose-8 and oligomannose-9 of gp120 is crucially involved in its potent virucidal activity against the human immunodeficiency virus (HIV). The interaction between cyanovirin-N and these oligosaccharides has not been thoroughly characterized due to aggregation of the oligosaccharide-protein complexes. Here, cyanovirin-N's interaction with a nonamannoside, a structural analog of oligomannose-9, has been studied by nuclear magnetic resonance and isothermal titration calorimetry. The nonamannoside interacts with cyanovirin-N in a multivalent fashion, resulting in tight complexes with an average 1:1 stoichiometry. Like the nonamannoside, an alpha1-->2-linked trimannoside substructure interacts with cyanovirin-N at two distinct protein subsites. The chitobiose and internal core trimannoside substructures of oligomannose-9 are not recognized by cyanovirin-N, and binding of the core hexamannoside occurs at only one of the sites on the protein. This is the first detailed analysis of a biologically relevant interaction between cyanovirin-N and high-mannose oligosaccharides of HIV-1 gp120.
Collapse
Affiliation(s)
- Shilpa R Shenoy
- Molecular Targets Discovery Program, NCI Center for Cancer Research, National Cancer Institute, NCI-Frederick, Frederick, MD 21702, USA
| | | | | | | | | | | | | |
Collapse
|
110
|
Botos I, O'Keefe BR, Shenoy SR, Cartner LK, Ratner DM, Seeberger PH, Boyd MR, Wlodawer A. Structures of the complexes of a potent anti-HIV protein cyanovirin-N and high mannose oligosaccharides. J Biol Chem 2002; 277:34336-42. [PMID: 12110688 DOI: 10.1074/jbc.m205909200] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The development of anti-human immunodeficiency virus (HIV) microbicides for either topical or ex vivo use is of considerable interest, mainly due to the difficulties in creating a vaccine that would be active against multiple clades of HIV. Cyanovirin-N (CV-N), an 11-kDa protein from the cyanobacterium (blue-green algae) Nostoc ellipsosporum with potent virucidal activity, was identified in the search for such antiviral agents. The binding of CV-N to the heavily glycosylated HIV envelope protein gp120 is carbohydrate-dependent. Since previous CV-N-dimannose structures could not fully explain CV-N-oligomannose binding, we determined the crystal structures of recombinant CV-N complexed to Man-9 and a synthetic hexamannoside, at 2.5- and 2.4-A resolution, respectively. CV-N is a three-dimensional domain-swapped dimer in the crystal structures with two primary sites near the hinge region and two secondary sites on the opposite ends of the dimer. The binding interface is constituted of three stacked alpha1-->2-linked mannose rings for Man-9 and two stacked mannose rings for hexamannoside with the rest of the saccharide molecules pointing to the solution. These structures show unequivocally the binding geometry of high mannose sugars to CV-N, permitting a better understanding of carbohydrate binding to this potential new lead for the design of drugs against AIDS.
Collapse
Affiliation(s)
- Istvan Botos
- Macromolecular Crystallography Laboratory, National Cancer Institute/National Institutes of Health, MCL Building 536, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Scanlan CN, Pantophlet R, Wormald MR, Ollmann Saphire E, Stanfield R, Wilson IA, Katinger H, Dwek RA, Rudd PM, Burton DR. The broadly neutralizing anti-human immunodeficiency virus type 1 antibody 2G12 recognizes a cluster of alpha1-->2 mannose residues on the outer face of gp120. J Virol 2002; 76:7306-21. [PMID: 12072529 PMCID: PMC136327 DOI: 10.1128/jvi.76.14.7306-7321.2002] [Citation(s) in RCA: 563] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
2G12 is a broadly neutralizing human monoclonal antibody against human immunodeficiency virus type-1 (HIV-1) that has previously been shown to bind to a carbohydrate-dependent epitope on gp120. Here, site-directed mutagenesis and carbohydrate analysis were used to define further the 2G12 epitope. Extensive alanine scanning mutagenesis showed that elimination of the N-linked carbohydrate attachment sequences associated with residues N295, N332, N339, N386, and N392 by N-->A substitution produced significant decreases in 2G12 binding affinity to gp120(JR-CSF). Further mutagenesis suggested that the glycans at N339 and N386 were not critical for 2G12 binding to gp120(JR-CSF). Comparison of the sequences of isolates neutralized by 2G12 was also consistent with a lesser role for glycans attached at these positions. The mutagenesis studies provided no convincing evidence for the involvement of gp120 amino acid side chains in 2G12 binding. Antibody binding was inhibited when gp120 was treated with Aspergillus saitoi mannosidase, Jack Bean mannosidase, or endoglycosidase H, indicating that Man(alpha)1-->2Man-linked sugars of oligomannose glycans on gp120 are required for 2G12 binding. Consistent with this finding, the binding of 2G12 to gp120 could be inhibited by monomeric mannose but not by galactose, glucose, or N-acetylglucosamine. The inability of 2G12 to bind to gp120 produced in the presence of the glucose analogue N-butyl-deoxynojirimycin similarly implicated Man(alpha)1-->2Man-linked sugars in 2G12 binding. Competition experiments between 2G12 and the lectin cyanovirin for binding to gp120 showed that 2G12 only interacts with a subset of available Man(alpha)1-->2Man-linked sugars. Consideration of all the data, together with inspection of a molecular model of gp120, suggests that the most likely epitope for 2G12 is formed from mannose residues contributed by the glycans attached to N295 and N332, with the other glycans playing an indirect role in maintaining epitope conformation.
Collapse
Affiliation(s)
- Christopher N Scanlan
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Sanders RW, Venturi M, Schiffner L, Kalyanaraman R, Katinger H, Lloyd KO, Kwong PD, Moore JP. The mannose-dependent epitope for neutralizing antibody 2G12 on human immunodeficiency virus type 1 glycoprotein gp120. J Virol 2002; 76:7293-305. [PMID: 12072528 PMCID: PMC136300 DOI: 10.1128/jvi.76.14.7293-7305.2002] [Citation(s) in RCA: 455] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have analyzed the unique epitope for the broadly neutralizing human monoclonal antibody (MAb) 2G12 on the gp120 surface glycoprotein of human immunodeficiency virus type 1 (HIV-1). Sequence analysis, focusing on the conservation of relevant residues across multiple HIV-1 isolates, refined the epitope that was defined previously by substitutional mutagenesis (A. Trkola, M. Purtscher, T. Muster, C. Ballaun, A. Buchacher, N. Sullivan, K. Srinivasan, J. Sodroski, J. P. Moore, and H. Katinger, J. Virol. 70:1100-1108, 1996). In a biochemical study, we digested recombinant gp120 with various glycosidase enzymes of known specificities and showed that the 2G12 epitope is lost when gp120 is treated with mannosidases. Computational analyses were used to position the epitope in the context of the virion-associated envelope glycoprotein complex, to determine the variability of the surrounding surface, and to calculate the surface accessibility of possible glycan- and polypeptide-epitope components. Together, these analyses suggest that the 2G12 epitope is centered on the high-mannose and/or hybrid glycans of residues 295, 332, and 392, with peripheral glycans from 386 and 448 on either flank. The epitope is mannose dependent and composed primarily of carbohydrate, with probably no direct involvement of the gp120 polypeptide surface. It resides on a face orthogonal to the CD4 binding face, on a surface proximal to, but distinct from, that implicated in coreceptor binding. Its conservation amidst an otherwise highly variable gp120 surface suggests a functional role for the 2G12 binding site, perhaps related to the mannose-dependent attachment of HIV-1 to DC-SIGN or related lectins that facilitate virus entry into susceptible target cells.
Collapse
Affiliation(s)
- Rogier W Sanders
- Dept. of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Chang LC, Bewley CA. Potent inhibition of HIV-1 fusion by cyanovirin-N requires only a single high affinity carbohydrate binding site: characterization of low affinity carbohydrate binding site knockout mutants. J Mol Biol 2002; 318:1-8. [PMID: 12054763 DOI: 10.1016/s0022-2836(02)00045-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cyanovirin-N (CVN) is a novel cyanobacterial protein that potently inhibits viral entry by human immunodeficiency viruses (HIV) via high affinity carbohydrate-mediated binding to the surface envelope glycoprotein gp120. Bearing C(2) pseudo-symmetry, CVN contains two carbohydrate binding sites of differing affinities located at opposite ends of the protein. CVN selectively binds with nanomolar affinity the mammalian high mannose oligosaccharides oligomannose-8 D1D3 and oligomannose-9, which also govern binding to gp120. At nanomolar concentrations CVN binds these oligosaccharides only through its high affinity site, while at micromolar to millimolar concentrations the oligosaccharides are bound through both sites leading to divalent protein-carbohydrate interactions. Similarly, two modes of binding to gp120 can be envisioned where CVN either binds gp120 solely through the high affinity site, or binds divalently using both carbohydrate binding sites. To determine the role of the low affinity site in binding to gp120, we sought to design a variant of CVN that lacks the low affinity carbohydrate binding site but retains a fully functional high affinity site. Thus, we constructed a series of CVN mutants possessing cumulative mutations in the low affinity site only, and characterized by NMR the overall structure and carbohydrate binding ability of each of these mutants. We demonstrate that carbohydrate binding by the low affinity site is completely absent in two mutants bearing three or four mutations (namely, m3-CVN=Lys3Asn, Glu23Ile, Asn93Ala; and m4-CVN=Lys3Asn, Thr7Ala, Glu23Ile, Asn93Ala), while the high affinity site binds the high affinity ligand Manalpha(1-2)Manalpha with a K(d) value equal to that measured for CVN. Using an HIV-1 cell fusion assay, we show that all of the mutants inhibit HIV-1 fusion with nearly identical IC50 values as wild-type CVN. We interpret these results as indicating that the low affinity carbohydrate binding site of CVN is not necessary for high affinity binding to gp120, and HIV-1 fusion can therefore be blocked by monovalent protein-carbohydrate interactions.
Collapse
Affiliation(s)
- Leng Chee Chang
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0820, USA
| | | |
Collapse
|
114
|
Han Z, Xiong C, Mori T, Boyd MR. Discovery of a stable dimeric mutant of cyanovirin-N (CV-N) from a T7 phage-displayed CV-N mutant library. Biochem Biophys Res Commun 2002; 292:1036-43. [PMID: 11944919 DOI: 10.1006/bbrc.2002.6741] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutant proteins with altered properties can be useful probes for investigating structure, ligand binding sites, mechanisms of action, and physicochemical attributes of the corresponding wild-type proteins of interest. In this report, we illuminate properties of mutants of the potent HIV-inactivating protein, cyanovirin-N (CV-N), selected by construction of a mutant library by error-prone polymerase chain reaction and affinity-based screening using T7 phage display technology. After three rounds of biopanning, two phage-displayed, one-point mutants of CV-N, Ser52Pro and Ala77Thr, were isolated. After the elucidation of biological activities of the mutants displayed on phage as well as the Escherichia coli-expressed, purified mutant proteins, we subsequently subjected the mutants to analyses by native PAGE and size-exclusion chromatography. We found that the Ser52Pro mutant not only was active against HIV but also existed exclusively as a dimer in solution. This was in marked contrast to the wild-type CV-N, which exists in solution predominantly as the monomer. The Ser52Pro mutant provides a novel model for further investigations of the folding mechanism as well as structure-activity requirements for CV-N's antiviral properties.
Collapse
Affiliation(s)
- Zhaozhong Han
- Molecular Targets Drug Discovery Program, NCI-Frederick, Frederick, Maryland 21702-1201, USA
| | | | | | | |
Collapse
|
115
|
Kelley BS, Chang LC, Bewley CA. Engineering an obligate domain-swapped dimer of cyanovirin-N with enhanced anti-HIV activity. J Am Chem Soc 2002; 124:3210-1. [PMID: 11916396 DOI: 10.1021/ja025537m] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The anti-HIV cyanobacterial protein cyanovirin-N can undergo domain swapping to form an intertwined dimer. The dimeric form is stable at low pH and millimolar concentrations. By deleting an amino acid from the hinge linker about which domain swapping occurs, we have constructed an obligate domain-swapped dimer of cyanovirin-N that represents a new tetravalent carbohydrate binding protein that is stable over a large range of pH values. This obligate dimer displays enhanced anti-HIV activity relative to the wild-type cyanovirin-N monomer with an observed 3.5-fold decrease in IC(50) (9nM for the dimer vs 32 nM for the monomer) for inhibition of HIV-1 envelope-mediated cell fusion and, when expressed in Escherichia coli, can be rapidly obtained in >98% purity in a single chromatographic step.
Collapse
Affiliation(s)
- Brendan S Kelley
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD 20892-0820, USA
| | | | | |
Collapse
|