101
|
Hedayati M, Zarif Yeganeh M, Sheikholeslami S, Afsari F. Diversity of mutations in the RET proto-oncogene and its oncogenic mechanism in medullary thyroid cancer. Crit Rev Clin Lab Sci 2016; 53:217-27. [PMID: 26678667 DOI: 10.3109/10408363.2015.1129529] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Thyroid cancer is the most common endocrine malignancy and accounts for nearly 1% of all of human cancer. Thyroid cancer has four main histological types: papillary, follicular, medullary, and anaplastic. Papillary, follicular, and anaplastic thyroid carcinomas are derived from follicular thyroid cells, whereas medullary thyroid carcinoma (MTC) originates from the neural crest parafollicular cells or C-cells of the thyroid gland. MTC represents a neuroendocrine tumor and differs considerably from differentiated thyroid carcinoma. MTC is one of the aggressive types of thyroid cancer, which represents 3-10% of all thyroid cancers. It occurs in hereditary (25%) and sporadic (75%) forms. The hereditary form of MTC has an autosomal dominant mode of inheritance. According to the present classification, hereditary MTC is classified as a multiple endocrine neoplasi type 2 A & B (MEN2A & MEN2B) and familial MTC (FMTC). The RET proto-oncogene is located on chromosome 10q11.21. It is composed of 21 exons and encodes a transmembrane receptor tyrosine kinase. RET regulates a complex network of signal transduction pathways during development, survival, proliferation, differentiation, and migration of the enteric nervous system progenitor cells. Gain of function mutations in RET have been well demonstrated in MTC development. Variants of MTC result from different RET mutations, and they have a good genotype-phenotype correlation. Various MTC related mutations have been reported in different exons of the RET gene. We proposed that RET genetic mutations may be different in distinct populations. Therefore, the aim of this study was to find a geographical pattern of RET mutations in different populations.
Collapse
Affiliation(s)
- Mehdi Hedayati
- a Cellular and Molecular Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Marjan Zarif Yeganeh
- a Cellular and Molecular Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Sara Sheikholeslami
- a Cellular and Molecular Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Farinaz Afsari
- a Cellular and Molecular Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
102
|
Quintela T, Marcelino H, Deery MJ, Feret R, Howard J, Lilley KS, Albuquerque T, Gonçalves I, Duarte AC, Santos CRA. Sex-Related Differences in Rat Choroid Plexus and Cerebrospinal Fluid: A cDNA Microarray and Proteomic Analysis. J Neuroendocrinol 2016; 28. [PMID: 26606900 DOI: 10.1111/jne.12340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 11/13/2015] [Accepted: 11/19/2015] [Indexed: 01/09/2023]
Abstract
The choroid plexus (CP) epithelium is a unique structure in the brain that forms an interface between the peripheral blood and the cerebrospinal fluid (CSF), which is mostly produced by the CP itself. Because the CP transcriptome is regulated by the sex hormone background, the present study compared gene/protein expression profiles in the CP and CSF from male and female rats aiming to better understand sex-related differences in CP functions and brain physiology. We used data previously obtained by cDNA microarrays to compare the CP transcriptome between male and female rats, and complemented these data with the proteomic analysis of the CSF of castrated and sham-operated males and females. Microarray analysis showed that 17 128 and 17 002 genes are expressed in the male and female CP, which allowed the functional annotation of 141 and 134 pathways, respectively. Among the most expressed genes, canonical pathways associated with mitochondrial dysfunctions and oxidative phosphorylation were the most prominent, whereas the most relevant molecular and cellular functions annotated were protein synthesis, cellular growth and proliferation, cell death and survival, molecular transport, and protein trafficking. No significant differences were found between males and females regarding these pathways. Seminal functions of the CP differentially regulated between sexes were circadian rhythm signalling, as well as several canonical pathways related to stem cell differentiation, metabolism and the barrier function of the CP. The proteomic analysis identified five down-regulated proteins in the CSF samples from male rats compared to females and seven proteins exhibiting marked variation in the CSF of gonadectomised males compared to sham animals, whereas no differences were found between sham and ovariectomised females. These data clearly show sex-related differences in CP gene expression and CSF protein composition that may impact upon neurological diseases.
Collapse
Affiliation(s)
- T Quintela
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - H Marcelino
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - M J Deery
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - R Feret
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - J Howard
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - K S Lilley
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - T Albuquerque
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - I Gonçalves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - A C Duarte
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - C R A Santos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
103
|
Wang E, Karedan T, Perez CA. New insights in the treatment of radioiodine refractory differentiated thyroid carcinomas: to lenvatinib and beyond. Anticancer Drugs 2015; 26:689-97. [PMID: 25974026 DOI: 10.1097/cad.0000000000000247] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During the past two decades, several key somatic mutations associated with development and progression of differentiated thyroid cancer (DTC) have been revealed. Historically, the treatment for advanced DTC is challenging after patients become refractory to radioactive iodine. The response to doxorubicin, the only chemotherapy agent approved by the US Food and Drug Administration, is disappointing either as monotherapy or combination therapy. Because of the lack of effective systemic treatment coupled with increased understanding of molecular and cellular pathogenesis, multiple kinase inhibitors (MKIs) as an alternative therapy for the treatment of advanced DTC has generated much interest, enthusiasm, and, most excitingly, promising results. After the encouraging results of these agents in earlier trials, the Food and Drug Administration approved sorafenib for the treatment of locally recurrent, progressive, or metastatic DTC refractory to radioactive iodine treatment based on the results of a multicenter DECISION trial. Sorafenib therefore became the first MKI approved for this indication in more than 20 years. However, even more impressive responses and progression-free survival benefits were seen in the phase III SELECT trial with lenvatinib, giving even higher hopes for the future management of what was considered just a decade ago an orphan disease. Given the role of MKIs, a new era in the treatment of advanced DTC has begun. We review the key therapeutic targets, oncogenic pathways, and promising clinical results of these agents in refractory disease, as well as their roles after failure of first line kinase inhibitors.
Collapse
Affiliation(s)
- Emilie Wang
- aFlorida State University College of Medicine Tallahassee, Florida bJames Graham Brown Cancer Center, Department of Medicine, Division of Medical Oncology and Hematology, University of Louisville, Louisville, Kentucky, USA
| | | | | |
Collapse
|
104
|
Kramer ER, Liss B. GDNF-Ret signaling in midbrain dopaminergic neurons and its implication for Parkinson disease. FEBS Lett 2015; 589:3760-72. [DOI: 10.1016/j.febslet.2015.11.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/29/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022]
|
105
|
Meir M, Flemming S, Burkard N, Bergauer L, Metzger M, Germer CT, Schlegel N. Glial cell line-derived neurotrophic factor promotes barrier maturation and wound healing in intestinal epithelial cells in vitro. Am J Physiol Gastrointest Liver Physiol 2015; 309:G613-G624. [PMID: 26294673 DOI: 10.1152/ajpgi.00357.2014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 07/20/2015] [Indexed: 01/31/2023]
Abstract
Recent data suggest that neurotrophic factors from the enteric nervous system are involved in intestinal epithelial barrier regulation. In this context the glial cell line-derived neurotrophic factor (GDNF) was shown to affect gut barrier properties in vivo directly or indirectly by largely undefined processes in a model of inflammatory bowel disease (IBD). We further investigated the potential role and mechanisms of GDNF in the regulation of intestinal barrier functions. Immunostaining of human gut specimen showed positive GDNF staining in enteric neuronal plexus and in enterocytes. In Western blots of the intestinal epithelial cell lines Caco2 and HT29B6, significant amounts of GDNF were detected, suggesting that enterocytes represent an additional source of GDNF. Application of recombinant GDNF on Caco2 and HT29B6 cells for 24 h resulted in significant epithelial barrier stabilization in monolayers with immature barrier functions. Wound-healing assays showed a significantly faster closure of the wounded areas after GDNF application. GDNF augmented cAMP levels and led to significant inactivation of p38 MAPK in immature cells. Activation of p38 MAPK signaling by SB-202190 mimicked GDNF-induced barrier maturation, whereas the p38 MAPK activator anisomycin blocked GDNF-induced effects. Increasing cAMP levels had adverse effects on barrier maturation, as revealed by permeability measurements. However, increased cAMP augmented the proliferation rate in Caco2 cells, and GDNF-induced proliferation of epithelial cells was abrogated by the PKA inhibitor H89. Our data show that enterocytes represent an additional source of GDNF synthesis. GDNF contributes to wound healing in a cAMP/PKA-dependent manner and promotes barrier maturation in immature enterocytes cells by inactivation of p38 MAPK signaling.
Collapse
Affiliation(s)
- Michael Meir
- Department of Surgery I, University of Wuerzburg, Oberduerrbacherstrasse 6, Wuerzburg, Germany; and
| | - Sven Flemming
- Department of Surgery I, University of Wuerzburg, Oberduerrbacherstrasse 6, Wuerzburg, Germany; and
| | - Natalie Burkard
- Department of Surgery I, University of Wuerzburg, Oberduerrbacherstrasse 6, Wuerzburg, Germany; and
| | - Lisa Bergauer
- Department of Surgery I, University of Wuerzburg, Oberduerrbacherstrasse 6, Wuerzburg, Germany; and
| | - Marco Metzger
- Department for Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Roentgenring 11, Wuerzburg, Germany
| | - Christoph-Thomas Germer
- Department of Surgery I, University of Wuerzburg, Oberduerrbacherstrasse 6, Wuerzburg, Germany; and
| | - Nicolas Schlegel
- Department of Surgery I, University of Wuerzburg, Oberduerrbacherstrasse 6, Wuerzburg, Germany; and
| |
Collapse
|
106
|
Campochiaro PA, Hafiz G, Mir TA, Scott AW, Sophie R, Shah SM, Ying HS, Lu L, Chen C, Campbell JP, Kherani S, Zimmer-Galler I, Wenick A, Han I, Paulus Y, Sodhi A, Wang G, Qian J. Pro-Permeability Factors After Dexamethasone Implant in Retinal Vein Occlusion; the Ozurdex for Retinal Vein Occlusion (ORVO) Study. Am J Ophthalmol 2015; 160:313-321.e19. [PMID: 25908486 PMCID: PMC6600806 DOI: 10.1016/j.ajo.2015.04.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 01/14/2023]
Abstract
PURPOSE To correlate aqueous vasoactive protein changes with macular edema after dexamethasone implant in retinal vein occlusion (RVO). DESIGN Prospective, interventional case series. METHODS Twenty-three central RVO (CRVO) and 17 branch RVO (BRVO) subjects with edema despite prior anti-vascular endothelial growth factor (VEGF) treatment had aqueous taps at baseline and 4 and 16 weeks after dexamethasone implant. Best-corrected visual acuity (BCVA) and center subfield thickness were measured every 4 weeks. Aqueous vasoactive protein levels were measured by protein array or enzyme-linked immunosorbent assay. RESULTS Thirty-two vasoactive proteins were detected in aqueous in untreated eyes with macular edema due to RVO. Reduction in excess foveal thickness after dexamethasone implant correlated with reduction in persephin and pentraxin 3 (Pearson correlation coefficients = 0.682 and 0.638, P = .014 and P = .003). Other protein changes differed among RVO patients as edema decreased, but ≥50% of patients showed reductions in hepatocyte growth factor, endocrine gland VEGF, insulin-like growth factor binding proteins, or endostatin by ≥30%. Enzyme-linked immunosorbent assay in 18 eyes (12 CRVO, 6 BRVO) showed baseline levels of hepatocyte growth factor and VEGF of 168.2 ± 20.1 pg/mL and 78.7 ± 10.0 pg/mL, and each was reduced in 12 eyes after dexamethasone implant. CONCLUSIONS Dexamethasone implants reduce several pro-permeability proteins providing a multitargeted approach in RVO. No single protein in addition to VEGF can be implicated as a contributor in all patients. Candidates for contribution to chronic edema in subgroups of patients that deserve further study include persephin, hepatocyte growth factor, and endocrine gland VEGF.
Collapse
|
107
|
Jahn SW, Kashofer K, Halbwedl I, Winter G, El-Shabrawi-Caelen L, Mentzel T, Hoefler G, Liegl-Atzwanger B. Mutational dichotomy in desmoplastic malignant melanoma corroborated by multigene panel analysis. Mod Pathol 2015; 28:895-903. [PMID: 25769001 DOI: 10.1038/modpathol.2015.39] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 12/29/2014] [Accepted: 12/29/2014] [Indexed: 12/17/2022]
Abstract
Desmoplastic malignant melanoma is a distinct melanoma entity histologically subtyped into mixed and pure forms due to significantly reduced lymph node metastases in the pure form. Recent reports investigating common actionable driver mutations have demonstrated a lack of BRAF, NRAS, and KIT mutation in pure desmoplastic melanoma. In search for alternative driver mutations next generation amplicon sequencing for hotspot mutations in 50 genes cardinal to tumorigenesis was performed and in addition the RET G691S polymorphism was investigated. Data from 21 desmoplastic melanomas (12 pure and 9 mixed) were retrieved. Pure desmoplastic melanomas were either devoid of mutations (50%) or displayed mutations in tumor suppressor genes (TP53, CDKN2A, and SMAD4) singularly or in combination with the exception of a PIK3CA double-mutation lacking established biological relevance. Mixed desmoplastic melanomas on the contrary were frequently mutated (89%), and 67% exhibited activating mutations similar to common-type cutaneous malignant melanomas (BRAF, NRAS, FGFR2, and ERBB2). Separate analysis of morphologically heterogeneous tumor areas in four mixed desmoplastic malignant melanomas displayed no difference in mutation status and RET G691 status. GNAQ and GNA11, two oncogenes in BRAF and NRAS wild-type uveal melanomas, were not mutated in our cohort. The RET G691S polymorphism was found in 25% of pure and 38% of mixed desmoplastic melanomas. Apart from RET G691S our findings demonstrate absence of activating driver mutations in pure desmoplastic melanoma beyond previously investigated oncogenes (BRAF, NRAS, and KIT). The findings underline the therapeutic dichotomy of mixed versus pure desmoplastic melanoma with regard to activating mutations primarily of the mitogen-activated protein kinase pathway.
Collapse
Affiliation(s)
- Stephan W Jahn
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Karl Kashofer
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Iris Halbwedl
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Gerlinde Winter
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | | | - Gerald Hoefler
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | | |
Collapse
|
108
|
Yeganeh MZ, Sheikholeslami S, Hedayati M. RET Proto Oncogene Mutation Detection and Medullary Thyroid Carcinoma Prevention. Asian Pac J Cancer Prev 2015; 16:2107-17. [DOI: 10.7314/apjcp.2015.16.6.2107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
109
|
Bos M, Gardizi M, Schildhaus HU, Buettner R, Wolf J. Activated RET and ROS: two new driver mutations in lung adenocarcinoma. Transl Lung Cancer Res 2015; 2:112-21. [PMID: 25806222 DOI: 10.3978/j.issn.2218-6751.2013.03.08] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 03/12/2013] [Indexed: 12/24/2022]
Abstract
Rearrangements of ROS1 and RET have been recently described as new driver mutations in lung adenocarcinoma with a frequency of about 1% each. RET and ROS1 rearrangements both represent unique molecular subsets of lung adenocarcinoma with virtually no overlap with other known driver mutations described so far in lung adenocarcinoma. Specific clinicopathologic characteristics have been described and several multitargeted receptor kinase inhibitors have shown in vitro activity against NSCLC cells harbouring these genetic alterations. In addition, the MET/ALK/ROS inhibitor crizotinib has already shown impressive clinical activity in patients with advanced ROS1-positive lung cancer. Currently, several early proof of concept clinical trials are testing various kinase inhibitors in both molecular subsets of lung adenocarcinoma patients. Most probably, personalized treatment of these genetically defined new subsets of lung adenocarcinoma will be implemented in routine clinical care of lung cancer patients in the near future.
Collapse
Affiliation(s)
- Marc Bos
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany ; ; Center for Integrated Oncology Cologne/Bonn, Germany
| | - Masyar Gardizi
- Center for Integrated Oncology Cologne/Bonn, Germany ; ; Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Hans-Ulrich Schildhaus
- Center for Integrated Oncology Cologne/Bonn, Germany ; ; Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Reinhard Buettner
- Center for Integrated Oncology Cologne/Bonn, Germany ; ; Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Juergen Wolf
- Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany ; ; Center for Integrated Oncology Cologne/Bonn, Germany
| |
Collapse
|
110
|
Boyer RB, Sexton KW, Rodriguez-Feo CL, Nookala R, Pollins AC, Cardwell NL, Tisdale KY, Nanney LB, Shack RB, Thayer WP. Adjuvant neurotrophic factors in peripheral nerve repair with chondroitin sulfate proteoglycan-reduced acellular nerve allografts. J Surg Res 2015; 193:969-77. [PMID: 25438961 PMCID: PMC4268386 DOI: 10.1016/j.jss.2014.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 08/22/2014] [Accepted: 09/18/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Acellular nerve allografts are now standard tools in peripheral nerve repair because of decreased donor site morbidity and operative time savings. Preparation of nerve allografts involves several steps of decellularization and modification of extracellular matrix to remove chondroitin sulfate proteoglycans (CSPGs), which have been shown to inhibit neurite outgrowth through a poorly understood mechanism involving RhoA and extracellular matrix-integrin interactions. Chondroitinase ABC (ChABC) is an enzyme that degrades CSPG molecules and has been shown to promote neurite outgrowth after injury of the central and peripheral nervous systems. Variable results after ChABC treatment make it difficult to predict the effects of this drug in human nerve allografts, especially in the presence of native extracellular signaling molecules. Several studies have shown cross-talk between neurotrophic factor and CSPG signaling pathways, but their interaction remains poorly understood. In this study, we examined the adjuvant effects of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) on neurite outgrowth postinjury in CSPG-reduced substrates and acellular nerve allografts. MATERIALS AND METHODS E12 chicken DRG explants were cultured in medium containing ChABC, ChABC + NGF, ChABC + GDNF, or control media. Explants were imaged at 3 d and neurite outgrowths measured. The rat sciatic nerve injury model involved a 1-cm sciatic nerve gap that was microsurgically repaired with ChABC-pretreated acellular nerve allografts. Before implantation, nerve allografts were incubated in NGF, GDNF, or sterile water. Nerve histology was evaluated at 5 d and 8 wk postinjury. RESULTS The addition of GDNF in vitro produced significant increase in sensory neurite length at 3 d compared with ChABC alone (P < 0.01), whereas NGF was not significantly different from control. In vivo adjuvant NGF produced increases in total myelinated axon count (P < 0.005) and motor axon count (P < 0.01), whereas significantly reducing IB4+ nociceptor axon count (P < 0.01). There were no significant differences produced by in vivo adjuvant GDNF. CONCLUSIONS This study provides initial evidence that CSPG-reduced nerve grafts may disinhibit the prosurvival effects of NGF in vivo, promoting motor axon outgrowth and reducing regeneration of specific nociceptive neurons. Our results support further investigation of adjuvant NGF therapy in CSPG-reduced acellular nerve grafts.
Collapse
Affiliation(s)
- Richard B Boyer
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee; Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Kevin W Sexton
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Ratnam Nookala
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alonda C Pollins
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nancy L Cardwell
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Keonna Y Tisdale
- Vanderbilt Center for Science Outreach, Vanderbilt University, Nashville, Tennessee
| | - Lillian B Nanney
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - R Bruce Shack
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Wesley P Thayer
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee; Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
111
|
Ha MJ, Baladandayuthapani V, Do KA. Prognostic gene signature identification using causal structure learning: applications in kidney cancer. Cancer Inform 2015; 14:23-35. [PMID: 25861215 PMCID: PMC4362630 DOI: 10.4137/cin.s14873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/21/2014] [Accepted: 07/21/2014] [Indexed: 12/21/2022] Open
Abstract
Identification of molecular-based signatures is one of the critical steps toward finding therapeutic targets in cancer. In this paper, we propose methods to discover prognostic gene signatures under a causal structure learning framework across the whole genome. The causal structures are represented by directed acyclic graphs (DAGs), wherein we construct gene-specific network modules that constitute a gene and its corresponding regulators. The modules are then subsequently used to correlate with survival times, thus, allowing for a network-oriented approach to gene selection to adjust for potential confounders, as opposed to univariate (gene-by-gene) approaches. Our methods are motivated by and applied to a clear cell renal cell carcinoma (ccRCC) study from The Cancer Genome Atlas (TCGA) where we find several prognostic genes associated with cancer progression - some of which are novel while others confirm existing findings.
Collapse
Affiliation(s)
- Min Jin Ha
- Department of Biostatistics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Kim-Anh Do
- Department of Biostatistics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
112
|
Attia L, Schneider J, Yelin R, Schultheiss TM. Collective cell migration of the nephric duct requires FGF signaling. Dev Dyn 2014; 244:157-67. [PMID: 25516335 DOI: 10.1002/dvdy.24241] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND During the course of development, the vertebrate nephric duct (ND) extends and migrates from the place of its initial formation, adjacent to the anterior somites, until it inserts into the bladder or cloaca in the posterior region of the embryo. The molecular mechanisms that guide ND migration are poorly understood. RESULTS A novel Gata3-enhancer-Gfp-based chick embryo live imaging system was developed that permits documentation of ND migration at the individual cell level for the first time. FGF Receptors and FGF response genes are expressed in the ND, and FGF ligands are expressed in surrounding tissues. FGF receptor inhibition blocked nephric duct migration. Individual inhibitors of the Erk, p38, or Jnk pathways did not affect duct migration, but inhibition of all three pathways together did inhibit migration of the duct. A localized source of FGF8 placed adjacent to the nephric duct did not affect the duct migration path. CONCLUSIONS FGF signaling acts as a "motor" that is required for duct migration, but other signals are needed to determine the directionality of the duct migration pathway. Developmental Dynamics 244:157-167, 2015. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lital Attia
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | |
Collapse
|
113
|
Sui C, Xu F, Shen W, Geng L, Xie F, Dai B, Lu J, Zhang M, Yang J. Overexpression of miR-218 inhibits hepatocellular carcinoma cell growth through RET. Tumour Biol 2014; 36:1511-8. [DOI: 10.1007/s13277-014-2679-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 09/24/2014] [Indexed: 01/04/2023] Open
|
114
|
Kopan R, Chen S, Little M. Nephron progenitor cells: shifting the balance of self-renewal and differentiation. Curr Top Dev Biol 2014; 107:293-331. [PMID: 24439811 DOI: 10.1016/b978-0-12-416022-4.00011-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Within the developing mammalian kidney, several populations of progenitors form the discrete cellular components of the final organ. Fate mapping experiments revealed the cap mesenchyme (CM) to be the progenitor population for all nephron epithelial cells, whereas the neighboring stromal mesenchyme gives rise to mesangial, pericytic, renin-producing and interstitial cells. The collecting ducts are derived from a population of progenitors at the ureteric bud (UB) tip and a proportion of the endothelium is also derived from a dedicated mesenchymal progenitor. The stroma, CM, and UB interact to create spatially defined niches at the periphery of the developing organ. While the UB tip population persist, the CM represents a transient progenitor population that is exhausted to set the final organ size. The timing of CM exhaustion, and hence the final organ structure, is sensitive to disruptions such as premature birth. Here we will discuss our current understanding of the molecular processes allowing these populations to balance cell survival, self-renewal, support of branching, and maintain capacity to commit to differentiation.
Collapse
Affiliation(s)
- Raphael Kopan
- Department of Developmental Biology, Washington University, St. Louis, Missouri, USA; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA.
| | - Shuang Chen
- Department of Developmental Biology, Washington University, St. Louis, Missouri, USA
| | - Melissa Little
- Department of Developmental Biology, Washington University, St. Louis, Missouri, USA; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
115
|
Uversky VN. Wrecked regulation of intrinsically disordered proteins in diseases: pathogenicity of deregulated regulators. Front Mol Biosci 2014; 1:6. [PMID: 25988147 PMCID: PMC4428494 DOI: 10.3389/fmolb.2014.00006] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/06/2014] [Indexed: 12/14/2022] Open
Abstract
Biologically active proteins without stable tertiary structure are common in all known proteomes. Functions of these intrinsically disordered proteins (IDPs) are typically related to regulation, signaling, and control. Cellular levels of these important regulators are tightly regulated by a variety mechanisms ranging from firmly controlled expression to precisely targeted degradation. Functions of IDPs are controlled by binding to specific partners, alternative splicing, and posttranslational modifications among other means. In the norm, right amounts of precisely activated IDPs have to be present in right time at right places. Wrecked regulation brings havoc to the ordered world of disordered proteins, leading to protein misfolding, misidentification, and missignaling that give rise to numerous human diseases, such as cancer, cardiovascular disease, neurodegenerative diseases, and diabetes. Among factors inducing pathogenic transformations of IDPs are various cellular mechanisms, such as chromosomal translocations, damaged splicing, altered expression, frustrated posttranslational modifications, aberrant proteolytic degradation, and defective trafficking. This review presents some of the aspects of deregulated regulation of IDPs leading to human diseases.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida Tampa, FL, USA ; Biology Department, Faculty of Science, King Abdulaziz University Jeddah, Saudi Arabia ; Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
116
|
Zhu Y, Voruganti VS, Lin J, Matsuguchi T, Blackburn E, Best LG, Lee ET, MacCluer JW, Cole SA, Zhao J. QTL mapping of leukocyte telomere length in American Indians: the Strong Heart Family Study. Aging (Albany NY) 2014; 5:704-16. [PMID: 24036517 PMCID: PMC3808702 DOI: 10.18632/aging.100600] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Telomeres play a central role in cellular senescence and are associated with a variety of age-related disorders such as dementia, Alzheimer's disease and atherosclerosis. Telomere length varies greatly among individuals of the same age, and is heritable. Here we performed a genome-wide linkage scan to identify quantitative trait loci (QTL) influencing leukocyte telomere length (LTL) measured by quantitative PCR in 3,665 American Indians (aged 14-93 years) from 94 large, multi-generational families. All participants were recruited by the Strong Heart Family Study (SHFS), a prospective study to identify genetic factors for cardiovascular disease and its risk factors in American Indians residing in Oklahoma, Arizona and Dakota. LTL heritability was estimated to be between 51% and 62%, suggesting a strong genetic predisposition to interindividual variation of LTL in this population. Significant QTLs were localized to chromosome 13 (Logarithm of odds score (LOD)=3.9) at 13q12.11, to 18q22.2 (LOD=3.2) and to 3p14.1 (LOD=3.0) for Oklahoma. This is the first study to identify susceptibility loci influencing leukocyte telomere variation in American Indians, a minority group suffering from a disproportionately high rate of type 2 diabetes and other age-related disorders.
Collapse
Affiliation(s)
- Yun Zhu
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Yarandi SS, Srinivasan S. Diabetic gastrointestinal motility disorders and the role of enteric nervous system: current status and future directions. Neurogastroenterol Motil 2014; 26:611-24. [PMID: 24661628 PMCID: PMC4104990 DOI: 10.1111/nmo.12330] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 02/18/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Gastrointestinal manifestations of diabetes are common and a source of significant discomfort and disability. Diabetes affects almost every part of gastrointestinal tract from the esophagus to the rectum and causes a variety of symptoms including heartburn, nausea, vomiting, abdominal pain, diarrhea and constipation. Understanding the underlying mechanisms of diabetic gastroenteropathy is important to guide development of therapies for this common problem. Over recent years, the data regarding the pathophysiology of diabetic gastroenteropathy is expanding. In addition to autonomic neuropathy causing gastrointestinal disturbances the role of enteric nervous system is becoming more evident. PURPOSE In this review, we summarize the reported alterations in enteric nervous system including enteric neurons, interstitial cells of Cajal and neurotransmission in diabetic animal models and patients. We also review the possible underlying mechanisms of these alterations, with focus on oxidative stress, growth factors and diabetes induced changes in gastrointestinal smooth muscle. Finally, we will discuss recent advances and potential areas for future research related to diabetes and the ENS such as gut microbiota, micro-RNAs and changes in the microvasculature and endothelial dysfunction.
Collapse
Affiliation(s)
- S. S. Yarandi
- Division of Digestive Diseases; Emory University; Atlanta GA
- Atlanta VA Medical Center; Decatur Georgia USA
| | - S. Srinivasan
- Division of Digestive Diseases; Emory University; Atlanta GA
- Atlanta VA Medical Center; Decatur Georgia USA
| |
Collapse
|
118
|
Sustained delivery of VEGF maintains innervation and promotes reperfusion in ischemic skeletal muscles via NGF/GDNF signaling. Mol Ther 2014; 22:1243-1253. [PMID: 24769910 DOI: 10.1038/mt.2014.76] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/17/2014] [Indexed: 12/14/2022] Open
Abstract
Tissue reinnervation following trauma, disease, or transplantation often presents a significant challenge. Here, we show that the delivery of vascular endothelial growth factor (VEGF) from alginate hydrogels ameliorates loss of skeletal muscle innervation after ischemic injury by promoting both maintenance and regrowth of damaged axons in mice. Nerve growth factor (NGF) and glial-derived neurotrophic factor (GDNF) mediated VEGF-induced axonal regeneration, and the expression of both is induced by VEGF presentation. Using both in vitro and in vivo modeling approaches, we demonstrate that the activity of NGF and GDNF regulates VEGF-driven angiogenesis, controlling endothelial cell sprouting and blood vessel maturation. Altogether, these studies produce evidence of new mechanisms of VEGF action, further broaden the understanding of the roles of NGF and GDNF in angiogenesis and axonal regeneration, and suggest approaches to improve axonal and ischemic tissue repair therapies.
Collapse
|
119
|
Sarin S, Boivin F, Li A, Lim J, Svajger B, Rosenblum ND, Bridgewater D. β-Catenin overexpression in the metanephric mesenchyme leads to renal dysplasia genesis via cell-autonomous and non-cell-autonomous mechanisms. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1395-410. [PMID: 24637293 DOI: 10.1016/j.ajpath.2014.01.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 12/17/2013] [Accepted: 01/07/2014] [Indexed: 12/29/2022]
Abstract
Renal dysplasia, a developmental disorder characterized by defective ureteric branching morphogenesis and nephrogenesis, ranks as one of the major causes of renal failure among the pediatric population. Herein, we demonstrate that the levels of activated β-catenin are elevated in the nuclei of ureteric, stromal, and mesenchymal cells within dysplastic human kidney tissue. By using a conditional mouse model of mesenchymal β-catenin overexpression, we identify two novel signaling pathways mediated by β-catenin in the development of renal dysplasia. First, the overexpression of β-catenin within the metanephric mesenchyme leads to ectopic and disorganized branching morphogenesis caused by β-catenin directly binding Tcf/lef consensus binding sites in the Gdnf promoter and up-regulating Gdnf transcription. Second, β-catenin overexpression in the metanephric mesenchyme leads to elevated levels of transcriptionally active β-catenin in the ureteric epithelium. Interestingly, this increase of β-catenin-mediated transcription results from a novel Ret/β-catenin signaling pathway. Consistent with these findings, analysis of human dysplastic renal tissue demonstrates that undifferentiated mesenchymal cells expressing high levels of β-catenin also express increased GDNF. Furthermore, dysplastic ureteric tubules that were surrounded by high levels of GDNF also exhibited increased levels of activated β-catenin. Together, these data support a model in which the elevation of β-catenin in the metanephric mesenchyme results in cell-autonomous and non-cell-autonomous events that lead to the genesis of renal dysplasia.
Collapse
Affiliation(s)
- Sanjay Sarin
- Program in Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Felix Boivin
- Program in Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Aihua Li
- Program in Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Janice Lim
- Program in Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Bruno Svajger
- Program in Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Norman D Rosenblum
- Division of Nephrology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Darren Bridgewater
- Program in Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
120
|
Costantini F. Genetic controls and cellular behaviors in branching morphogenesis of the renal collecting system. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 1:693-713. [PMID: 22942910 DOI: 10.1002/wdev.52] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mammalian kidney, which at maturity contains thousands of nephrons joined to a highly branched collecting duct (CD) system, is an important model system for studying the development of a complex organ. Furthermore, congenital anomalies of the kidney and urinary tract, often resulting from defects in ureteric bud branching morphogenesis, are relatively common human birth defects. Kidney development is initiated by interactions between the nephric duct and the metanephric mesenchyme, leading to the outgrowth and repeated branching of the ureteric bud epithelium, which gives rise to the entire renal CD system. Meanwhile, signals from the ureteric bud induce the mesenchyme cells to form the nephron epithelia. This review focuses on development of the CD system, with emphasis on the mouse as an experimental system. The major topics covered include the origin and development of the nephric duct, formation of the ureteric bud, branching morphogenesis of the ureteric bud, and elongation of the CDs. The signals, receptors, transcription factors, and other regulatory molecules implicated in these processes are discussed. In addition, our current knowledge of cellular behaviors that are controlled by these genes and underlie development of the collecting system is reviewed.
Collapse
Affiliation(s)
- Frank Costantini
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
121
|
Day JS, O'Neill E, Cawley C, Aretz NK, Kilroy D, Gibney SM, Harkin A, Connor TJ. Noradrenaline acting on astrocytic β2-adrenoceptors induces neurite outgrowth in primary cortical neurons. Neuropharmacology 2014; 77:234-48. [DOI: 10.1016/j.neuropharm.2013.09.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 09/17/2013] [Accepted: 09/30/2013] [Indexed: 12/23/2022]
|
122
|
Hibi Y, Ohye T, Ogawa K, Shimizu Y, Shibata M, Kagawa C, Mizuno Y, Kurahashi H, Iwase K. A MEN2A family with two asymptomatic carriers affected by unilateral renal agenesis. Endocr J 2014; 61:19-23. [PMID: 24152999 DOI: 10.1507/endocrj.ej13-0335] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Accumulating evidences suggest RET gene's involvement in development of the kidney in mice and humans. Although it is well known that RET mutation causes multiple endocrine neoplasia type 2A (MEN2A), thus far only 3 individuals have been reported to have MEN2A and renal agenesis/dysgenesis. We report a MEN2A family with RET mutation in which two asymptomatic carriers presented with unilateral renal agenesis. A 48-year-old woman underwent total thyroidectomy with regional lymph node dissection in our department for medullary thyroid carcinoma. She had earlier surgical treatment for a left adrenal pheochromocytoma at the age of 45. In the screening for MEN type 2 for her three sons, a CT scan for adrenal pheochromocytoma incidentally found unilateral renal agenesis in two of the sons, one of whom had suffered from Hirschsprung's disease (HSCR). They had contralateral kidneys exhibiting compensatory hypertrophy and normal renal function. Genetic analysis detected C618R RET mutation in the proband and her 3 sons, and no other mutations were found in RET as well as glial cell line-derived neurotrophic factor (GDNF). Our data lend support to the hypothesis that constitutive active RET mutation in MEN type 2 might partially impair RET function and thereby cause loss of function phenotype such as renal agenesis or HSCR.
Collapse
Affiliation(s)
- Yatsuka Hibi
- Department of Endocrine Surgery, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Baba T, Sakamoto Y, Kasamatsu A, Minakawa Y, Yokota S, Higo M, Yokoe H, Ogawara K, Shiiba M, Tanzawa H, Uzawa K. Persephin: A potential key component in human oral cancer progression through the RET receptor tyrosine kinase-mitogen-activated protein kinase signaling pathway. Mol Carcinog 2013; 54:608-17. [DOI: 10.1002/mc.22127] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 12/01/2013] [Accepted: 12/02/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Takao Baba
- Department of Clinical Molecular Biology; Graduate School of Medicine; Chiba University; Chiba Japan
| | - Yosuke Sakamoto
- Department of Dentistry-Oral and Maxillofacial Surgery; Chiba University Hospital; Chiba Japan
| | - Atsushi Kasamatsu
- Department of Dentistry-Oral and Maxillofacial Surgery; Chiba University Hospital; Chiba Japan
| | - Yasuyuki Minakawa
- Department of Clinical Molecular Biology; Graduate School of Medicine; Chiba University; Chiba Japan
| | - Satoshi Yokota
- Department of Clinical Molecular Biology; Graduate School of Medicine; Chiba University; Chiba Japan
| | - Morihiro Higo
- Department of Dentistry-Oral and Maxillofacial Surgery; Chiba University Hospital; Chiba Japan
| | - Hidetaka Yokoe
- Department of Oral and Maxillofacial Surgery Research Institute; National Defense Medical College Hospital; Tokorozawa Japan
| | - Katsunori Ogawara
- Department of Dentistry-Oral and Maxillofacial Surgery; Chiba University Hospital; Chiba Japan
| | - Masashi Shiiba
- Department of Dentistry-Oral and Maxillofacial Surgery; Chiba University Hospital; Chiba Japan
| | - Hideki Tanzawa
- Department of Clinical Molecular Biology; Graduate School of Medicine; Chiba University; Chiba Japan
- Department of Dentistry-Oral and Maxillofacial Surgery; Chiba University Hospital; Chiba Japan
| | - Katsuhiro Uzawa
- Department of Clinical Molecular Biology; Graduate School of Medicine; Chiba University; Chiba Japan
- Department of Dentistry-Oral and Maxillofacial Surgery; Chiba University Hospital; Chiba Japan
| |
Collapse
|
124
|
Bossi D, Carlomagno F, Pallavicini I, Pruneri G, Trubia M, Raviele PR, Marinelli A, Anaganti S, Cox MC, Viale G, Santoro M, Di Fiore PP, Minucci S. Functional characterization of a novel FGFR1OP-RET rearrangement in hematopoietic malignancies. Mol Oncol 2013; 8:221-31. [PMID: 24315414 DOI: 10.1016/j.molonc.2013.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/29/2013] [Accepted: 11/11/2013] [Indexed: 01/08/2023] Open
Abstract
The RET (REarranged during Transfection) receptor tyrosine kinase is targeted by oncogenic rearrangements in thyroid and lung adenocarcinoma. Recently, a RET (exon 12) rearrangement with FGFR1OP [fibroblast growth factor receptor 1 (FGFR1) oncogene partner] (exon 12) was identified in one chronic myelomonocytic leukemia (CMML) patient. We report the molecular cloning and functional characterization of a novel FGFR1OP (exon 11)-RET (exon 11) gene fusion event (named FGFR1OP-RET), mediated by a reciprocal translocation t(6; 10)(q27; q11), in a patient affected by primary myelofibrosis (PMF) with secondary acute myeloid leukemia (AML). The FGFR1OP-RET fusion protein displayed constitutive tyrosine kinase and transforming activity in NIH3T3 fibroblasts, and induced IL3-independent growth and activation of PI3K/STAT signaling in hematopoietic Ba/F3 cells. FGFR1OP-RET supported cytokine-independent growth, protection from stress and enhanced self-renewal of primary murine hematopoietic progenitor and stem cells in vitro. In vivo, FGFR1OP-RET caused a spectrum of disease phenotypes, with >50% of mice showing a fatal myeloproliferative disorder (MPD). Other phenotypes were leukemia transplantable in secondary recipients, dramatic expansion of the mast cell lineage, and reduction of repopulating activity upon lethal irradiation. In conclusion, FGFR1OP-RET chimeric oncogenes are endowed with leukemogenic potential and associated to myeloid neoplasms (CMML and PMF/AML).
Collapse
MESH Headings
- Animals
- Chromosomes, Human, Pair 10/genetics
- Chromosomes, Human, Pair 10/metabolism
- Chromosomes, Human, Pair 6/genetics
- Chromosomes, Human, Pair 6/metabolism
- Hematologic Neoplasms/genetics
- Hematologic Neoplasms/metabolism
- Hematologic Neoplasms/pathology
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive
- Mice
- NIH 3T3 Cells
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-ret/genetics
- Proto-Oncogene Proteins c-ret/metabolism
- Translocation, Genetic
Collapse
Affiliation(s)
- Daniela Bossi
- Department of Experimental Oncology, IEO, European Institute of Oncology, Milan, Italy
| | - Francesca Carlomagno
- Department of Biology and Cellular and Molecular Pathology, University Federico II, Naples, Italy
| | - Isabella Pallavicini
- Department of Experimental Oncology, IEO, European Institute of Oncology, Milan, Italy
| | - Giancarlo Pruneri
- Department of Pathology and Laboratory Medicine, European Institute of Oncology, Milan, Italy
| | - Maurizio Trubia
- Department of Experimental Oncology, IEO, European Institute of Oncology, Milan, Italy
| | | | | | - Suresh Anaganti
- Department of Biology and Cellular and Molecular Pathology, University Federico II, Naples, Italy
| | - Maria Christina Cox
- Department of Hematology, A.O. Sant'Andrea, University La Sapienza, Rome, Italy
| | - Giuseppe Viale
- Department of Pathology and Laboratory Medicine, European Institute of Oncology, Milan, Italy
| | - Massimo Santoro
- Department of Biology and Cellular and Molecular Pathology, University Federico II, Naples, Italy.
| | - Pier Paolo Di Fiore
- Department of Experimental Oncology, IEO, European Institute of Oncology, Milan, Italy; Department of Scienze della Salute, University of Milan, Via di Rudinì 8, 20122 Milan, Italy; IFOM, FIRC Institute of Molecular Oncology, Milan, Italy.
| | - Saverio Minucci
- Department of Experimental Oncology, IEO, European Institute of Oncology, Milan, Italy; Department of Biosciences, University of Milan, Milan, Italy.
| |
Collapse
|
125
|
Mazumdar M, Adhikary A, Chakraborty S, Mukherjee S, Manna A, Saha S, Mohanty S, Dutta A, Bhattacharjee P, Ray P, Chattopadhyay S, Banerjee S, Chakraborty J, Ray AK, Sa G, Das T. Targeting RET to induce medullary thyroid cancer cell apoptosis: an antagonistic interplay between PI3K/Akt and p38MAPK/caspase-8 pathways. Apoptosis 2013; 18:589-604. [PMID: 23329180 DOI: 10.1007/s10495-013-0803-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mutations in REarranged during Transfection (RET) receptor tyrosine, followed by the oncogenic activation of RET kinase is responsible for the development of medullary thyroid carcinoma (MTC) that responds poorly to conventional chemotherapy. Targeting RET, therefore, might be useful in tailoring surveillance of MTC patients. Here we showed that theaflavins, the bioactive components of black tea, successfully induced apoptosis in human MTC cell line, TT, by inversely modulating two molecular pathways: (i) stalling PI3K/Akt/Bad pathway that resulted in mitochondrial transmembrane potential (MTP) loss, cytochrome-c release and activation of the executioner caspases-9 and -3, and (ii) upholding p38MAPK/caspase-8/caspase-3 pathway via inhibition of Ras/Raf/ERK. Over-expression of either constitutively active myristoylated-Akt-cDNA (Myr-Akt-cDNA) or dominant-negative-caspase-8-cDNA (Dn-caspase-8-cDNA) partially blocked theaflavin-induced apoptosis, while co-transfection of Myr-Akt-cDNA and Dn-caspase-8-cDNA completely eradicated the effect of theaflavins thereby negating the possibility of existence of other pathways. A search for the upstream signaling revealed that theaflavin-induced disruption of lipid raft caused interference in anchorage of RET in lipid raft that in turn stalled phosphorylation of Ras and PI3Kinase. In such anti-survival cellular micro-environment, pro-apoptotic signals were triggered to culminate into programmed death of MTC cell. These findings not only unveil a hitherto unexplained mechanism underlying theaflavin-induced MTC death, but also validate RET as a promising and potential target for MTC therapy.
Collapse
Affiliation(s)
- Minakshi Mazumdar
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Road, Scheme VII M, Kolkata, West Bengal, 700 054, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Artemin, a glial cell line-derived neurotrophic factor family member, induces TRPM8-dependent cold pain. J Neurosci 2013; 33:12543-52. [PMID: 23884957 DOI: 10.1523/jneurosci.5765-12.2013] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic pain associated with injury or disease can result from dysfunction of sensory afferents whereby the threshold for activation of pain-sensing neurons (nociceptors) is lowered. Neurotrophic factors control nociceptor development and survival, but also induce sensitization through activation of their cognate receptors, attributable, in part, to the modulation of ion channel function. Thermal pain is mediated by channels of the transient receptor potential (TRP) family, including the cold and menthol receptor TRPM8. Although it has been shown that TRPM8 is involved in cold hypersensitivity, the molecular mechanisms underlying this pain modality are unknown. Using microarray analyses to identify mouse genes enriched in TRPM8 neurons, we found that the glial cell line-derived neurotrophic factor (GDNF) family receptor GFRα3 is expressed in a subpopulation of TRPM8 sensory neurons that have the neurochemical profile of cold nociceptors. Moreover, we found that artemin, the specific GFRα3 ligand that evokes heat hyperalgesia, robustly sensitized cold responses in a TRPM8-dependent manner in mice. In contrast, GFRα1 and GFRα2 are not coexpressed with TRPM8 and their respective ligands GDNF and neurturin did not induce cold pain, whereas they did evoke heat hyperalgesia. Nerve growth factor induced mild cold sensitization, consistent with TrkA expression in TRPM8 neurons. However, bradykinin failed to alter cold sensitivity even though its receptor expresses in a subset of TRPM8 neurons. These results show for the first time that only select neurotrophic factors induce cold sensitization through TRPM8 in vivo, unlike the broad range of proalgesic agents capable of promoting heat hyperalgesia.
Collapse
|
127
|
Pozo K, Castro-Rivera E, Tan C, Plattner F, Schwach G, Siegl V, Meyer D, Guo A, Gundara J, Mettlach G, Richer E, Guevara JA, Ning L, Gupta A, Hao G, Tsai LH, Sun X, Antich P, Sidhu S, Robinson BG, Chen H, Nwariaku FE, Pfragner R, Richardson JA, Bibb JA. The role of Cdk5 in neuroendocrine thyroid cancer. Cancer Cell 2013; 24:499-511. [PMID: 24135281 PMCID: PMC3849320 DOI: 10.1016/j.ccr.2013.08.027] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 06/28/2013] [Accepted: 08/26/2013] [Indexed: 12/16/2022]
Abstract
Medullary thyroid carcinoma (MTC) is a neuroendocrine cancer that originates from calcitonin-secreting parafollicular cells, or C cells. We found that Cdk5 and its cofactors p35 and p25 are highly expressed in human MTC and that Cdk5 activity promotes MTC proliferation. A conditional MTC mouse model was generated and corroborated the role of aberrant Cdk5 activation in MTC. C cell-specific overexpression of p25 caused rapid C cell hyperplasia leading to lethal MTC, which was arrested by repressing p25 overexpression. A comparative phosphoproteomic screen between proliferating and arrested MTC identified the retinoblastoma protein (Rb) as a crucial Cdk5 downstream target. Prevention of Rb phosphorylation at Ser807/Ser811 attenuated MTC proliferation. These findings implicate Cdk5 signaling via Rb as critical to MTC tumorigenesis and progression.
Collapse
Affiliation(s)
- Karine Pozo
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Jochmanová I, Yang C, Zhuang Z, Pacak K. Hypoxia-inducible factor signaling in pheochromocytoma: turning the rudder in the right direction. J Natl Cancer Inst 2013; 105:1270-83. [PMID: 23940289 DOI: 10.1093/jnci/djt201] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Many solid tumors, including pheochromocytoma (PHEO) and paraganglioma (PGL), are characterized by a (pseudo)hypoxic signature. (Pseudo)hypoxia has been shown to promote both tumor progression and resistance to therapy. The major mediators of the transcriptional hypoxic response are hypoxia-inducible factors (HIFs). High levels of HIFs lead to transcription of hypoxia-responsive genes, which are involved in tumorigenesis. PHEOs and PGLs are catecholamine-producing tumors arising from sympathetic- or parasympathetic-derived chromaffin tissue. In recent years, substantial progress has been made in understanding the metabolic disturbances present in PHEO and PGL, especially because of the identification of some disease-susceptibility genes. To date, fifteen PHEO and PGL susceptibility genes have been identified. Based on the main transcription signatures of the mutated genes, PHEOs and PGLs have been divided into two clusters, pseudohypoxic cluster 1 and cluster 2, rich in kinase receptor signaling and protein translation pathways. Although these two clusters seem to show distinct signaling pathways, recent data suggest that both clusters are interconnected by HIF signaling as the important driver in their tumorigenesis, and mutations in most PHEO and PGL susceptibility genes seem to affect HIF-α regulation and its downstream signaling pathways. HIF signaling appears to play an important role in the development and growth of PHEOs and PGLs, which could suggest new therapeutic approaches for the treatment of these tumors.
Collapse
Affiliation(s)
- Ivana Jochmanová
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | | | | | | |
Collapse
|
129
|
Tee JB, Choi Y, Dnyanmote A, Decambre M, Ito C, Bush KT, Nigam SK. GDNF-independent ureteric budding: role of PI3K-independent activation of AKT and FOSB/JUN/AP-1 signaling. Biol Open 2013; 2:952-9. [PMID: 24143282 PMCID: PMC3773342 DOI: 10.1242/bio.20135595] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 06/20/2013] [Indexed: 01/19/2023] Open
Abstract
A significant fraction of mice deficient in either glial cell-derived neurotrophic factor (GDNF) or its co-receptors (Gfrα1, Ret), undergoes ureteric bud (UB) outgrowth leading to the formation of a rudimentary kidney. Previous studies using the isolated Wolffian duct (WD) culture indicate that activation of fibroblast growth factor (FGF) receptor signaling, together with suppression of BMP/Activin signaling, is critical for GDNF-independent WD budding (Maeshima et al., 2007). By expression analysis of embryonic kidney from Ret((-/-)) mice, we found the upregulation of several FGFs, including FGF7. To examine the intracellular pathways, we then analyzed GDNF-dependent and GDNF-independent budding in the isolated WD culture. In both conditions, Akt activation was found to be important; however, whereas this occurred through PI3-kinase in GDNF-dependent budding, in the case of GDNF-independent budding, Akt activation was apparently via a PI3-kinase independent mechanism. Jnk signaling and the AP-1 transcription factor complex were also implicated in GDNF-independent budding. FosB, a binding partner of c-Jun in the formation of AP-1, was the most highly upregulated gene in the ret knockout kidney (in which budding had still occurred), and we found that its siRNA-mediated knockdown in isolated WDs also blocked GDNF-independent budding. Taken together with the finding that inhibition of Jnk signaling does not block Akt activation/phosphorylation in GDNF-independent budding, the data support necessary roles for both FosB/Jun/AP-1 signaling and PI3-kinase-independent activation of Akt in GDNF-independent budding. A model is proposed for signaling events that involve Akt and JNK working to regulate GDNF-independent WD budding.
Collapse
Affiliation(s)
- James B Tee
- Department of Medicine, University of California , San Diego, La Jolla, CA 92093-0693 , USA ; Present address: Department of Pediatrics, University of Calgary and Alberta Children's Hospital, Calgary, AB T3B 6A8, Canada
| | | | | | | | | | | | | |
Collapse
|
130
|
Site-specific gene expression and localization of growth factor ligand receptors RET, GFRα1 and GFRα2 in human adult colon. Cell Tissue Res 2013; 354:371-80. [PMID: 23881409 DOI: 10.1007/s00441-013-1690-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/27/2013] [Indexed: 12/22/2022]
Abstract
Two of the glial-cell-line-derived neurotrophic factor (GDNF) family ligands (GFLs), namely GDNF and neurturin (NRTN), are essential neurotropic factors for enteric nerve cells. Signal transduction is mediated by a receptor complex composed of GDNF family receptor alpha 1 (GFRα1) for GDNF or GFRα2 for NRTN, together with the tyrosine kinase receptor RET (rearranged during transfection). As both factors and their receptors are crucial for enteric neuron survival, we assess the site-specific gene expression of these GFLs and their corresponding receptors in human adult colon. Full-thickness colonic specimens were obtained after partial colectomy for non-obstructing colorectal carcinoma. Samples were processed for immunohistochemistry and co-localization studies. Site-specific gene expression was determined by real-time quantitative polymerase chain reaction in enteric ganglia and in circular and longitudinal muscle harvested by microdissection. Protein expression of the receptors was mainly localized in the myenteric and submucosal plexus. Dual-label immunohistochemistry with PGP 9.5 as a pan-neuronal marker detected immunoreactivity of the receptors in neuronal somata and ganglionic neuropil. RET immunoreactivity co-localized with neuronal GFRα1 and GFRα2 signals. The dominant source of receptor mRNA expression was in myenteric ganglia, whereas both GFLs showed higher expression in smooth muscle layers. The distribution and expression pattern of GDNF and NRTN and their corresponding receptors in the human adult enteric nervous system indicate a role of both GFLs not only in development but also in the maintenance of neurons in adulthood. The data also provide a basis for the assessment of disturbed signaling components of the GDNF and NRTN system in enteric neuropathies underlying disorders of gastrointestinal motility.
Collapse
|
131
|
Zhou L, Too HP. GDNF family ligand dependent STAT3 activation is mediated by specific alternatively spliced isoforms of GFRα2 and RET. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2789-2802. [PMID: 23872421 DOI: 10.1016/j.bbamcr.2013.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/04/2013] [Accepted: 07/09/2013] [Indexed: 12/16/2022]
Abstract
Neurturin (NRTN), a member of the GDNF family of ligands (GFL), is currently investigated in a series of clinical trials for Parkinson's disease. NRTN signals through its cognate receptor GFRα2 and co-receptor RET to induce neurite outgrowth, but the underlying mechanism remains to be better understood. STAT3 was previously shown to be activated by oncogenic RET, independent of ligand and GFRα. In this study, we demonstrated that NRTN induced serine(727) but not tyrosine(705) phosphorylation of STAT3 in primary cortical neuron and neuronal cell lines. Remarkably, STAT3 phosphorylation was found to be mediated specifically by GFRα2c and RET9 isoforms. Furthermore, serine but not tyrosine dominant negative mutant of STAT3 impaired NRTN induced neurite outgrowth, indicative of the role of STAT3 as a downstream mediator of NRTN function. Similar to NGF, the NRTN induced P-Ser-STAT3 was localized to the mitochondria but not to the nucleus. Mitochondrial STAT3 was further found to be intimately involved in NRTN induced neurite outgrowth. Collectively, these findings demonstrated the hitherto unrecognized and novel role of specific GFRα2 and RET isoforms in mediating NRTN activation of STAT3 and the transcription independent mechanism whereby the mitochondria localized P-Ser-STAT3 mediated NRTN induced neurite outgrowth.
Collapse
Affiliation(s)
- Lihan Zhou
- Department of Biochemistry, National University of Singapore, Singapore; Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR), Singapore
| | - Heng-Phon Too
- Department of Biochemistry, National University of Singapore, Singapore; Chemical Pharmaceutical Engineering, Singapore-Massachusetts Institute of Technology Alliance, Singapore; Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR), Singapore.
| |
Collapse
|
132
|
VEGF-A165 potently induces human blood-nerve barrier endothelial cell proliferation, angiogenesis, and wound healing in vitro. Cell Mol Neurobiol 2013; 33:789-801. [PMID: 23712256 DOI: 10.1007/s10571-013-9946-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/18/2013] [Indexed: 12/15/2022]
Abstract
Several mitogens such as vascular endothelial growth factor (VEGF) have been implicated in mammalian vascular proliferation and repair. However, the molecular mediators of human blood-nerve barrier (BNB) development and specialization are unknown. Primary human endoneurial endothelial cells (pHEndECs) were expanded in vitro and specific mitogen receptors detected by western blot. pHEndECs were cultured with basal medium containing different mitogen concentrations with or without heparin. Non-radioactive cell proliferation, Matrigel(™)-induced angiogenesis and sterile micropipette injury wound healing assays were performed. Proliferation rates, number and total length of induced microvessels, and rate of endothelial cell monolayer wound healing were determined and compared to basal conditions. VEGF-A165 in the presence of heparin, was the most potent inducer of pHEndEC proliferation, angiogenesis, and wound healing in vitro. 1.31 nM VEGF-A165 induced ~110 % increase in cell proliferation relative to basal conditions (∼51 % without heparin). 2.62 pM VEGF-A165 induced a three-fold increase in mean number of microvessels and 3.9-fold increase in total capillary length/field relative to basal conditions. In addition, 0.26 nM VEGF-A165 induced ∼1.3-fold increased average rate of endothelial wound healing 4-18 h after endothelial monolayer injury, mediated by increased cell migration. VEGF-A165 was the only mitogen capable of complete wound closure, occurring within 30 h following injury via increased cell proliferation. This study demonstrates that VEGF-A165, in the presence of heparin, is a potent inducer of pHEndEC proliferation, angiogenesis, and wound healing in vitro. VEGF-A165 may be an important mitogen necessary for human BNB development and recovery in response to peripheral nerve injury.
Collapse
|
133
|
Simkin JE, Zhang D, Rollo BN, Newgreen DF. Retinoic acid upregulates ret and induces chain migration and population expansion in vagal neural crest cells to colonise the embryonic gut. PLoS One 2013; 8:e64077. [PMID: 23717535 PMCID: PMC3661488 DOI: 10.1371/journal.pone.0064077] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 04/11/2013] [Indexed: 11/23/2022] Open
Abstract
Vagal neural crest cells (VNCCs) arise in the hindbrain, and at (avian) embryonic day (E) 1.5 commence migration through paraxial tissues to reach the foregut as chains of cells 1–2 days later. They then colonise the rest of the gut in a rostrocaudal wave. The chains of migrating cells later resolve into the ganglia of the enteric nervous system. In organ culture, E4.5 VNCCs resident in the gut (termed enteric or ENCC) which have previously encountered vagal paraxial tissues, rapidly colonised aneural gut tissue in large numbers as chains of cells. Within the same timeframe, E1.5 VNCCs not previously exposed to paraxial tissues provided very few cells that entered the gut mesenchyme, and these never formed chains, despite their ability to migrate in paraxial tissue and in conventional cell culture. Exposing VNCCs in vitro to paraxial tissue normally encountered en route to the foregut conferred enteric migratory ability. VNCC after passage through paraxial tissue developed elements of retinoic acid signalling such as Retinoic Acid Binding Protein 1 expression. The paraxial tissue's ability to promote gut colonisation was reproduced by the addition of retinoic acid, or the synthetic retinoid Am80, to VNCCs (but not to trunk NCCs) in organ culture. The retinoic acid receptor antagonist CD 2665 strongly reduced enteric colonisation by E1.5 VNCC and E4.5 ENCCs, at a concentration suggesting RARα signalling. By FACS analysis, retinoic acid application to vagal neural tube and NCCs in vitro upregulated Ret; a Glial-derived-neurotrophic-factor receptor expressed by ENCCs which is necessary for normal enteric colonisation. This shows that early VNCC, although migratory, are incapable of migrating in appropriate chains in gut mesenchyme, but can be primed for this by retinoic acid. This is the first instance of the characteristic form of NCC migration, chain migration, being attributed to the application of a morphogen.
Collapse
Affiliation(s)
- Johanna E. Simkin
- Embryology Laboratory, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville VIC, Australia
| | - Dongcheng Zhang
- Embryology Laboratory, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville VIC, Australia
| | - Benjamin N. Rollo
- Embryology Laboratory, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville VIC, Australia
| | - Donald F. Newgreen
- Embryology Laboratory, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville VIC, Australia
- * E-mail:
| |
Collapse
|
134
|
Rasouly HM, Lu W. Lower urinary tract development and disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2013; 5:307-42. [PMID: 23408557 PMCID: PMC3627353 DOI: 10.1002/wsbm.1212] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Congenital anomalies of the lower urinary tract (CALUT) are a family of birth defects of the ureter, the bladder, and the urethra. CALUT includes ureteral anomaliesc such as congenital abnormalities of the ureteropelvic junction (UPJ) and ureterovesical junction (UVJ), and birth defects of the bladder and the urethra such as bladder-exstrophy-epispadias complex (BEEC), prune belly syndrome (PBS), and posterior urethral valves (PUVs). CALUT is one of the most common birth defects and is often associated with antenatal hydronephrosis, vesicoureteral reflux (VUR), urinary tract obstruction, urinary tract infections (UTI), chronic kidney disease, and renal failure in children. Here, we discuss the current genetic and molecular knowledge about lower urinary tract development and genetic basis of CALUT in both human and mouse models. We provide an overview of the developmental processes leading to the formation of the ureter, the bladder, and the urethra, and different genes and signaling pathways controlling these developmental processes. Human genetic disorders that affect the ureter, the bladder and the urethra and associated gene mutations are also presented. As we are entering the postgenomic era of personalized medicine, information in this article may provide useful interpretation for the genetic and genomic test results collected from patients with lower urinary tract birth defects. With evidence-based interpretations, clinicians may provide more effective personalized therapies to patients and genetic counseling for their families.
Collapse
Affiliation(s)
- Hila Milo Rasouly
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| | - Weining Lu
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| |
Collapse
|
135
|
Abstract
Enteric glial cells (EGCs) are one of the most important components of the enteric nervous system (ENS), which have been demonstrated to play an important role in the neuro-immune-endocrine network and directly regulate enteric homeostasis in addition to supporting and nourishing neurons. By recognizing and binding to specific receptors, neurotransmitters secreted by EGCs, including neurotrophins, neuropeptides and cytokines, can exert their biochemical effect, and these neurotransmitters might be important mediators of the cross-talk between EGCs and enteric immune cells. However, the role of the interaction between EGCs and enteric immune cells in the pathogenesis of inflammatory bowel disease is still elusive. This review will summarize the current understanding of the effect of enteric glial cells on enteric immune cells in inflammatory bowel disease.
Collapse
|
136
|
Agrawal N, Jiao Y, Sausen M, Leary R, Bettegowda C, Roberts NJ, Bhan S, Ho AS, Khan Z, Bishop J, Westra WH, Wood LD, Hruban RH, Tufano RP, Robinson B, Dralle H, Toledo SPA, Toledo RA, Morris LGT, Ghossein RA, Fagin JA, Chan TA, Velculescu VE, Vogelstein B, Kinzler KW, Papadopoulos N, Nelkin BD, Ball DW. Exomic sequencing of medullary thyroid cancer reveals dominant and mutually exclusive oncogenic mutations in RET and RAS. J Clin Endocrinol Metab 2013; 98:E364-9. [PMID: 23264394 PMCID: PMC3565108 DOI: 10.1210/jc.2012-2703] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Medullary thyroid cancer (MTC) is a rare thyroid cancer that can occur sporadically or as part of a hereditary syndrome. OBJECTIVE To explore the genetic origin of MTC, we sequenced the protein coding exons of approximately 21,000 genes in 17 sporadic MTCs. PATIENTS AND DESIGN We sequenced the exomes of 17 sporadic MTCs and validated the frequency of all recurrently mutated genes and other genes of interest in an independent cohort of 40 MTCs comprised of both sporadic and hereditary MTC. RESULTS We discovered 305 high-confidence mutations in the 17 sporadic MTCs in the discovery phase, or approximately 17.9 somatic mutations per tumor. Mutations in RET, HRAS, and KRAS genes were identified as the principal driver mutations in MTC. All of the other additional somatic mutations, including mutations in spliceosome and DNA repair pathways, were not recurrent in additional tumors. Tumors without RET, HRAS, or KRAS mutations appeared to have significantly fewer mutations overall in protein coding exons. CONCLUSIONS Approximately 90% of MTCs had mutually exclusive mutations in RET, HRAS, and KRAS, suggesting that RET and RAS are the predominant driver pathways in MTC. Relatively few mutations overall and no commonly recurrent driver mutations other than RET, HRAS, and KRAS were seen in the MTC exome.
Collapse
Affiliation(s)
- Nishant Agrawal
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, Baltimore, Maryland 21287, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Linher-Melville K, Li J. The roles of glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor and nerve growth factor during the final stage of folliculogenesis: a focus on oocyte maturation. Reproduction 2013; 145:R43-54. [PMID: 23166367 DOI: 10.1530/rep-12-0219] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neurotrophic factors were first identified to promote the growth, survival or differentiation of neurons and have also been associated with the early stages of ovarian folliculogenesis. More recently, their effects on the final stage of follicular development, including oocyte maturation and early embryonic development, have been reported. Glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), which are expressed in numerous peripheral tissues outside of the CNS, most notably the ovary, are now known to stimulate oocyte maturation in various species, also enhancing developmental competence. The mechanisms that underlie their actions in antral follicles, as well as the targets ultimately controlled by these factors, are beginning to emerge. GDNF, BDNF and NGF, alone or in combination, could be added to the media currently utilized for in vitro oocyte maturation, thereby potentially increasing the production and/or quality of early embryos.
Collapse
Affiliation(s)
- Katja Linher-Melville
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, L8S4L8 Canada
| | | |
Collapse
|
138
|
Wang X. Structural studies of GDNF family ligands with their receptors-Insights into ligand recognition and activation of receptor tyrosine kinase RET. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:2205-12. [PMID: 23085183 DOI: 10.1016/j.bbapap.2012.10.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 10/05/2012] [Indexed: 12/21/2022]
Abstract
RET is the receptor for glial cell line-derived neurotrophic factor family of ligands (GFLs). It is different from most other members in the receptor tyrosine kinase (RTK) family with the requirement of a co-receptor, GFRα, for ligand recognition and activation. Through the common signal transducer RET, GFLs are crucial for the development and maintenance of distinct sets of central and peripheral neurons, which has led to a series of studies towards understanding the structure, function and signaling mechanisms of GFLs with GFRα and RET receptors. Here I summarize our current understanding of the molecular basis underlying ligand recognition and activation of RET, focusing on the interactions of GFLs with their respective GFRα receptors, the recently determined crystal structure of RET extracellular region and a proposed GFL-GFRα-RET ternary complex model based on extensive structural, biochemical and functional data. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases.
Collapse
Affiliation(s)
- Xinquan Wang
- Center for Structural Biology, School of Life Sciences, Ministry of Education Key Laboratory of Protein Science, Medical Science Building C226, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
139
|
The important roles of RET, VEGFR2 and the RAF/MEK/ERK pathway in cancer treatment with sorafenib. Acta Pharmacol Sin 2012; 33:1311-8. [PMID: 22941289 DOI: 10.1038/aps.2012.76] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AIM To elucidate the roles of receptor tyrosine kinases RET and VEGFR2 and the RAF/MEK/ERK signaling cascade in cancer treatment with sorafenib. METHODS The cell lines A549, HeLa, and HepG2 were tested. The enzyme activity was examined under cell-free conditions using 384-well microplate assays. Cell proliferation was evaluated using the Invitrogen Alarmar Blue assay. Gene expression was analyzed using the Invitrogen SYBR Green expression assays with a sequence detection system. Protein expression analysis was performed using Western blotting. RESULTS Sorafenib potently suppressed the activities of cRAF, VEGFR2, and RET with IC(50) values of 20.9, 4 and 0.4 nmol/L, respectively. Sorafenib inhibited cRAF, VEGFR2, and RET via non-ATP-competitive, ATP-competitive and mixed-type modes, respectively. In contrast, sorafenib exerted only moderate cytotoxic effects on the proliferation of the 3 cell lines. The IC(50) values for inhibition of A549, HeLa, and HepG2 cells were 8572, 4163, and 8338 nmol/L, respectively. In the 3 cell lines, sorafenib suppressed the cell proliferation mainly by blocking the MEK/ERK downstream pathway at the posttranscriptional level, which in turn regulated related gene expression via a feed-back mechanism. CONCLUSION This study provides novel evidence that protein kinases RET and VEGFR2 play crucial roles in cancer treatment with sorafenib.
Collapse
|
140
|
Promoting engraftment of transplanted neural stem cells/progenitors using biofunctionalised electrospun scaffolds. Biomaterials 2012; 33:9188-97. [PMID: 23022345 DOI: 10.1016/j.biomaterials.2012.09.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/09/2012] [Indexed: 02/02/2023]
Abstract
With the brain's limited capacity for repair, new and innovative approaches are required to promote regeneration. While neural transplantation for a number of neural disease/injuries have been demonstrated, major limitations in the field include poor cell survival and integration. This, in part, is due to the non-conducive environment of the adult brain, failing to provide adequate chemical and physical support for new neurons. Here we examine the capacity of fibrous poly ε-caprolactone (PCL) scaffolds, biofunctionalised with immobilised glial cell-derived neurotrophic factor (GDNF), to influence primary cortical neural stem cells/progenitors in vitro and enhance integration of these cells following transplantation into the brain parenchyma. Immobilisation of GDNF was confirmed prior to in vitro culturing and at 28 days after implantation into the brain, demonstrating long-term delivery of the protein. In vitro, we demonstrate that PCL with immobilised GDNF (iGDNF) significantly enhances cell viability and neural stem cell/progenitor proliferation compared to conventional 2-dimensional cultureware. Upon implantation, PCL scaffolds including iGDNF enhanced the survival, proliferation, migration, and neurite growth of transplanted cortical cells, whilst suppressing inflammatory reactive astroglia.
Collapse
|
141
|
Li J, Cao G, Ma Q, Liu H, Li W, Han L. The bidirectional interation between pancreatic cancer and diabetes. World J Surg Oncol 2012; 10:171. [PMID: 22920886 PMCID: PMC3499274 DOI: 10.1186/1477-7819-10-171] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 08/11/2012] [Indexed: 12/15/2022] Open
Abstract
The bidirectional interation between pancreatic cancer (PanCa) and diabetes has been confirmed by epidemiological studies, which provide evidence-based medical support for further research into the mechanisms involved in the interaction. We reviewed the literature regarding the role of diabetes in the generation and progression of PanCa and the mechanism by which PanCa induces diabetes for its malignant progression. The effect of antidiabetic drugs on the occurrence and prognosis of PanCa was also reviewed. Diabetes may directly promote the progression of PanCa by pancreatic duct enlargement and hypertension, as well as by enabling an increased tumor volume. Hyperinsulinemia, insulin resistance, cytokines, hyperglycemia and genotype change are also important factors in the progression of PanCa with diabetes. Hyperglycemia may be the first clinical manifestation and is helpful in the early diagnosis of PanCa. Furthermore, antidiabetic drugs can have different effects on the occurrence and prognosis of PanCa. The bidirectional interation between PanCa and diabetes is involved in the occurrence, proliferation, invasion, metastasis and prognosis of PanCa with diabetes. The discovery of biomarkers for the early diagnosis of PanCa, as well as the novel usage of metformin for its antitumor effects and determining the potential mechanisms of these effects, may be the next direction for PanCa research and treatment.
Collapse
Affiliation(s)
- Junhui Li
- Department of General Surgery, Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, 157 West 5th Road, Xi'an 710004, People's Republic of China
| | | | | | | | | | | |
Collapse
|
142
|
Fu R, Wang LQ, Chu GL, Zhou LH. Involvement of phospholipase C-γ in the pro-survival role of glial cell line-derived neurotrophic factor in developing motoneurons in rat spinal cords. Mol Med Rep 2012; 6:805-10. [PMID: 22825309 DOI: 10.3892/mmr.2012.990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/11/2012] [Indexed: 11/05/2022] Open
Abstract
The glial cell line-derived neurotrophic factor (GDNF) has been proven to be the most powerful neurotrophic factor in neuronal development. However, it remains uncertain as to which intracellular signaling pathway interacting with GDNF is invovlved in motoneuron (MN) development. In this study, we investigated whether phosphoinositide phospholipase C-γ (PLC-γ) is involved in GDNF-promoted MN development. The primary spinal MNs from 12- to 14-day-old embryos of Sprague-Dawley rats were cultured and survival was sustained by GDNF. A specific inhibitor of PLC-γ, 1-[6-((17b-3-methoxyestra-1,3,5(10)-trien-17-yl) amino)hexyl]-1H-pyrrole-2,5-dione (U73122), was used to block the pro-survival effect of GDNF. Our results showed that MN-like cells appeared at 72 h after initial implantation and were sustained for a period of up to seven days under GDNF treatment. These cultured MNs expressed neuron-specific enolase, SMI-32, 75-kDa low-affinity neurotrophic receptor and choline acetyltransferase. The survival rate of the cultured MNs at 24 h was significantly lower in the GDNF + U73122-treated group (31.87±2.17%), compared either with that of the GDNF- (81.38±1.13%) or GDNF + DMSO (79.39±1.22%)-treated groups. The present data suggest that PLC-γ may be one of the intracellular signals that play a role in the survival-promoting effects of GDNF in developing spinal MNs.
Collapse
Affiliation(s)
- Rao Fu
- Zhong Shan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China
| | | | | | | |
Collapse
|
143
|
Ramekers D, Versnel H, Grolman W, Klis SF. Neurotrophins and their role in the cochlea. Hear Res 2012; 288:19-33. [DOI: 10.1016/j.heares.2012.03.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/10/2012] [Accepted: 03/05/2012] [Indexed: 12/16/2022]
|
144
|
Meng LX, Chi YH, Wang XX, Ding ZJ, Fei LC, Zhang H, Mou L, Cui W, Xue YJ. Neurotrophic Artemin Promotes Motility and Invasiveness of MIA PaCa-2 Pancreatic Cancer Cells. Asian Pac J Cancer Prev 2012; 13:1793-7. [DOI: 10.7314/apjcp.2012.13.5.1793] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
145
|
Recent advances in the molecular pathogenesis and targeted therapies of medullary thyroid carcinoma. Curr Opin Oncol 2012; 24:229-34. [DOI: 10.1097/cco.0b013e328351c71a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
146
|
Control of Aβ release from human neurons by differentiation status and RET signaling. Neurobiol Aging 2012; 34:184-99. [PMID: 22534065 DOI: 10.1016/j.neurobiolaging.2012.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 02/14/2012] [Accepted: 03/24/2012] [Indexed: 12/28/2022]
Abstract
Few studies have compared the processing of endogenous human amyloid precursor protein (APP) in younger and older neurons. Here, we characterized LUHMES cells as a human model to study Alzheimer's disease-related processes during neuronal maturation and aging. Differentiated LUHMES expressed and spontaneously processed APP via the secretase pathways, and they secreted amyloid β (Aβ) peptide. This was inhibited by cholesterol depletion or secretase inhibition, but not by block of tau phosphorylation. In vitro aged cells increased Aβ secretion without upregulation of APP or secretases. We identified the medium constituent glial cell line-derived neurotrophic factor (GDNF) as responsible for this effect. GDNF-triggered Aβ release was associated with rapid upregulation of the GDNF coreceptor "rearranged during transfection" (RET). Other direct (neurturin) or indirect (nerve growth factor) RET activators also increased Aβ, whereas different neurotrophins were ineffective. Downstream of RET, we found activation of protein kinase B (AKT) to be involved. Accordingly, inhibitors of the AKT regulator phosphatidylinositol-3-kinase completely blocked GDNF-triggered AKT phosphorylation and Aβ increase. This suggests that RET signaling affects Aβ release from aging neurons.
Collapse
|
147
|
Meng L, Chi Y, Wang X, Ding Z, Mou L, Cui W, Xue Y. The neurotrophic factor Artemin promotes the motility and invasiveness of MIA PaCa-2 pancreatic cancer cells. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s10330-011-0955-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
148
|
Abstract
Specific thyroid cancer histotypes, such as papillary and medullary thyroid carcinoma, display genetic rearrangements or point mutations of the RET gene, resulting in its oncogenic conversion. The molecular mechanisms mediating RET rearrangement with other genes and the role of partner genes in tumorigenesis have been described. In addition, the RET protein has become a molecular target for medullary thyroid carcinoma treatment.
Collapse
Affiliation(s)
- Francesca Carlomagno
- *Francesca Carlomagno, Dipartimento di Biologia e Patologia Cellulare e Molecolare L. Califano, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, IT–80123 Napoli (Italy), Tel. +39 081 746 3603, E-Mail
| |
Collapse
|
149
|
Mixed versus pure variants of desmoplastic melanoma: a genetic and immunohistochemical appraisal. Mod Pathol 2012; 25:505-15. [PMID: 22157936 DOI: 10.1038/modpathol.2011.196] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Desmoplastic melanoma is subclassified into pure and mixed variants with a higher rate of lymph node metastasis in the latter. Given that reasons for these biological differences are not currently known, we investigated these subtypes with techniques that included genetic and immunohistochemical analyses of 43 cases of desmoplastic melanoma (24 pure, 19 mixed). Direct DNA sequencing was performed on BRAFV600E, RET gene (coding region on exon 11) and KIT (exons 11, 13 and 17). Immunohistochemical stains were performed with antibodies to markers of significance with respect to biological potential of nevomelanocytic proliferations and/or desmoplastic melanoma (Ki-67, CD117, nestin, clusterin, SOX10 and CD271/p75NTR). Polymorphism at the RET coding region (RETp) was noted in 33% of pure (8/24 cases) versus 24% of mixed (4/17 cases); BRAFV600E was absent in all cases of pure (0/24 cases) versus 6% of mixed (1/17 cases); no mutations were found in any of the cases on analyses of exons 11, 13 and 17 of the c-KIT gene (P=NS for all). For immunohistochemical analyses of pure versus mixed: mean percentage of Ki-67 nuclear positivity was 5% (s.d.=5.6) versus 28% (s.d.=12.6, P<0.001); CD117 stained 26% (6/23 cases) versus 78% (14/18 cases, P<0.01); nestin stained 83% (n=19/23 cases) versus 89% (16/18 cases, P=NS); clusterin stained 4% (1/23 cases) versus 6% (1/18 cases, P=NS); SOX10 87% (20/23 cases) versus 94% (17/18 cases, P=NS) and CD271 stained 61% (14/23 cases) versus 67% (12/18 cases, P=NS). Increased CD117 staining in the mixed variant suggests that alterations in the KIT protein may be involved in tumor progression. In addition, the proliferative index of the mixed variant was higher than that of the pure variant.
Collapse
|
150
|
Muresan V, Muresan Z. Unconventional functions of microtubule motors. Arch Biochem Biophys 2012; 520:17-29. [PMID: 22306515 PMCID: PMC3307959 DOI: 10.1016/j.abb.2011.12.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 11/21/2022]
Abstract
With the functional characterization of proteins advancing at fast pace, the notion that one protein performs different functions - often with no relation to each other - emerges as a novel principle of how cells work. Molecular motors are no exception to this new development. Here, we provide an account on recent findings revealing that microtubule motors are multifunctional proteins that regulate many cellular processes, in addition to their main function in transport. Some of these functions rely on their motor activity, but others are independent of it. Of the first category, we focus on the role of microtubule motors in organelle biogenesis, and in the remodeling of the cytoskeleton, especially through the regulation of microtubule dynamics. Of the second category, we discuss the function of microtubule motors as static anchors of the cargo at the destination, and their participation in regulating signaling cascades by modulating interactions between signaling proteins, including transcription factors. We also review atypical forms of transport, such as the cytoplasmic streaming in the oocyte, and the movement of cargo by microtubule fluctuations. Our goal is to provide an overview of these unexpected functions of microtubule motors, and to incite future research in this expanding field.
Collapse
Affiliation(s)
- Virgil Muresan
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, U.S.A
| | - Zoia Muresan
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, U.S.A
| |
Collapse
|