101
|
Kong M, Ba M, Song L, Liu Z. Comparative Effects of Acute or Chronic Administration of Levodopa to 6-OHDA-lesioned Rats on the Expression and Phosphorylation of N-methyl-d-aspartate Receptor NR1 Subunits in the Striatum. Neurochem Res 2009; 34:1513-21. [DOI: 10.1007/s11064-009-9939-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
|
102
|
Willemssen R, Falkenstein M, Schwarz M, Müller T, Beste C. Effects of aging, Parkinson's disease, and dopaminergic medication on response selection and control. Neurobiol Aging 2009; 32:327-35. [PMID: 19269061 DOI: 10.1016/j.neurobiolaging.2009.02.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 12/31/2008] [Accepted: 02/03/2009] [Indexed: 11/28/2022]
Abstract
We examined effects of short-term and long-term dopaminergic medication in Parkinson's disease on conflict monitoring or response selection processes. These processes were examined using event-related potentials (ERPs), while subjects performed a stimulus-response (S-R) compatibility task. An extended sample of young and elderly controls, Parkinson's disease patients with a medication history (PDs) and initially diagnosed, drug-naïve de novo PD patients (de novo PDs) were enrolled. Both PD groups were measured twice (on and off-medication or before and 8 weeks after medication onset). The results show that dopaminergic intervention selectively reduced the pathologically enhanced response selection in compatible S-R relations. This medication effect was already evident after short-term treatment, not differing from long-term treatment and performance in elderly controls. Contrary, age-related attenuations of the N2 in incompatible S-R relations, probably reflecting impaired conflict processing or response control, are unaffected by medication. The results suggest that compatible and incompatible S-R relations demand different neuronal mechanisms within the basal ganglia, as only the former are affected by agonizing the dopaminergic system.
Collapse
Affiliation(s)
- Rita Willemssen
- Leibniz Research Centre for Working Environment and Human Factors, WHO Collaborating Research Centre Dortmund, Germany
| | | | | | | | | |
Collapse
|
103
|
Schintu N, Frau L, Ibba M, Caboni P, Garau A, Carboni E, Carta AR. PPAR-gamma-mediated neuroprotection in a chronic mouse model of Parkinson’s disease. Eur J Neurosci 2009; 29:954-63. [DOI: 10.1111/j.1460-9568.2009.06657.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
104
|
Fornai F, Biagioni F, Fulceri F, Murri L, Ruggieri S, Paparelli A. Intermittent Dopaminergic stimulation causes behavioral sensitization in the addicted brain and parkinsonism. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 88:371-98. [PMID: 19897084 DOI: 10.1016/s0074-7742(09)88013-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The gold standard therapy for Parkinson's disease (PD) consists in chronic administration of pulses of the dopamine (DA) precursor l-dihydroxyphenylalanine (l-DOPA). Although the main brain area which is DA-deficient is the dorsal striatum (more the putamen than the caudate nucleus), other DA-innervated brain regions (i.e., the ventral striatum and other limbic areas) are affected by systemic administration of l-DOPA. While such a therapy produces an increase in synaptic and nonsynaptic DA, which replace the neurotransmitter deficiency, peaks of extracellular DA in the course of disease progression produce abnormal involuntary movements related to behavioral sensitization. Methamphetamine (METH), a widely abused drug, is known to produce behavioral sensitization, related to DA release (more in the ventral than dorsal striatum as well as other limbic regions). The present review discusses the overlapping between these treatments, based on pulses of DA stimulation with an emphasis on the class of DA receptors; signal transduction pathways; rearranged expression of neurotransmitters, cotransmitters, and their receptors coupled with ultrastructural changes. In fact, all these levels of synaptic plasticity show a surprising homology following these treatments, posing the mechanisms of behavioral sensitization during DA-replacement therapy in PD very close to the neurobiological mechanisms operating during METH abuse. In line with this view is the growing evidence of addictive behaviors in PD patients during the course of DA-replacement therapy.
Collapse
Affiliation(s)
- Francesco Fornai
- Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy
| | | | | | | | | | | |
Collapse
|
105
|
Vinuela A, Hallett PJ, Reske-Nielsen C, Patterson M, Sotnikova TD, Caron MG, Gainetdinov RR, Isacson O. Implanted reuptake-deficient or wild-type dopaminergic neurons improve ON L-dopa dyskinesias without OFF-dyskinesias in a rat model of Parkinson's disease. Brain 2008; 131:3361-79. [PMID: 18988638 PMCID: PMC2639209 DOI: 10.1093/brain/awn192] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 07/02/2008] [Accepted: 07/29/2008] [Indexed: 11/16/2022] Open
Abstract
OFF-L-dopa dyskinesias have been a surprising side-effect of intrastriatal foetal ventral mesencephalic transplantation in patients with Parkinson's disease. It has been proposed that excessive and unregulated dopaminergic stimulation of host post-synaptic striatal neurons by the grafts could be responsible for these dyskinesias. To address this issue we transplanted foetal dopaminergic neurons from mice lacking the dopamine transporter (DATKO) or from wild-type mice, into a rat model of Parkinson's disease and L-dopa-induced dyskinesias. Both wild-type and DATKO grafts reinnervated the host striatum to a similar extent, but DATKO grafts produced a greater and more diffuse increase in extra-cellular striatal dopamine levels. Interestingly, grafts containing wild-type dopaminergic neurons improved parkinsonian signs to a similar extent as DATKO grafts, but provided a more complete reduction of L-dopa induced dyskinesias. Neither DATKO nor wild-type grafts induced OFF-L-dopa dyskinesias. Behavioural and receptor autoradiography analyses demonstrated that DATKO grafts induced a greater normalization of striatal dopaminergic receptor supersensitivity than wild-type grafts. Both graft types induced a similar downregulation and normalization of PEnk and fosb/Deltafosb in striatal neurons. In summary, DATKO grafts causing high and diffuse extra-cellular dompamine levels do not per se alter graft-induced recovery or produce OFF-L-dopa dyskinesias. Wild-type dopaminergic neurons appear to be the most effective neuronal type to restore function and reduce L-dopa-induced dyskinesias.
Collapse
Affiliation(s)
- A. Vinuela
- Udall Parkinson Disease Research Center of Excellence, Center for Neuroregeneration Research, McLean Hospital/Harvard Medical School, Belmont, MA 02478, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA and Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
| | - P. J. Hallett
- Udall Parkinson Disease Research Center of Excellence, Center for Neuroregeneration Research, McLean Hospital/Harvard Medical School, Belmont, MA 02478, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA and Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
| | - C. Reske-Nielsen
- Udall Parkinson Disease Research Center of Excellence, Center for Neuroregeneration Research, McLean Hospital/Harvard Medical School, Belmont, MA 02478, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA and Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
| | - M. Patterson
- Udall Parkinson Disease Research Center of Excellence, Center for Neuroregeneration Research, McLean Hospital/Harvard Medical School, Belmont, MA 02478, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA and Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
| | - T. D. Sotnikova
- Udall Parkinson Disease Research Center of Excellence, Center for Neuroregeneration Research, McLean Hospital/Harvard Medical School, Belmont, MA 02478, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA and Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
| | - M. G. Caron
- Udall Parkinson Disease Research Center of Excellence, Center for Neuroregeneration Research, McLean Hospital/Harvard Medical School, Belmont, MA 02478, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA and Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
| | - R. R. Gainetdinov
- Udall Parkinson Disease Research Center of Excellence, Center for Neuroregeneration Research, McLean Hospital/Harvard Medical School, Belmont, MA 02478, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA and Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
| | - O. Isacson
- Udall Parkinson Disease Research Center of Excellence, Center for Neuroregeneration Research, McLean Hospital/Harvard Medical School, Belmont, MA 02478, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA and Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
| |
Collapse
|
106
|
Simola N, Di Chiara G, Daniels WMU, Schallert T, Morelli M. Priming of rotational behavior by a dopamine receptor agonist in Hemiparkinsonian rats: movement-dependent induction. Neuroscience 2008; 158:1625-31. [PMID: 19063947 DOI: 10.1016/j.neuroscience.2008.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 11/02/2008] [Accepted: 11/07/2008] [Indexed: 11/25/2022]
Abstract
Repetitive stimulation of dopamine receptors located in the basal ganglia may lead to the manifestation of sensitized, abnormal, motor responses in dopamine-denervated rats. In order to study the role of motor behavior execution on the expression of these altered motor responses, we evaluated how "priming", a phenomenon displaying neurochemical and behavioral features peculiar to a sensitized abnormal motor response in dopamine-denervated rats, depends on actual movement performance. To this end, unilaterally 6-hydroxydopamine-lesioned rats received apomorphine (0.2 mg/kg s.c.), being either allowed to move or immobilized (1 h) before, concomitantly to, or after its administration, respectively. Three days after apomorphine, the dopamine D(1) receptor agonist 1-Phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol (SKF 38393, 3 mg/kg s.c.) was administered to all animals. Rats that had performed rotational behavior following apomorphine administration displayed robust contraversive rotational behavior in response to SKF 38393, whereas rats that had been immobilized concomitantly to, but neither before nor after apomorphine, did not. To clarify whether stress, which may be increased by immobilization, mediated the results observed, additional rats received apomorphine paired with immobilization plus the corticosterone-synthesis inhibitor metyrapone (100 mg/kg i.p.), or apomorphine paired with a tail stressor, being not immobilized. Metyrapone did not affect the capacity of immobilization to prevent priming and tail stressor imposition did not affect priming magnitude, suggesting that stress has minimal or no effect on the results observed. This study demonstrates how movement performance following initial dopaminergic stimulation governs the occurrence of a sensitized, abnormal, motor response to a subsequent dopaminergic challenge in dopamine-denervated rats.
Collapse
Affiliation(s)
- N Simola
- Department of Toxicology and Centre of Excellence for Neurobiology of Dependence, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | | | | | | | | |
Collapse
|
107
|
|
108
|
Dupre KB, Eskow KL, Barnum CJ, Bishop C. Striatal 5-HT1A receptor stimulation reduces D1 receptor-induced dyskinesia and improves movement in the hemiparkinsonian rat. Neuropharmacology 2008; 55:1321-8. [PMID: 18824001 DOI: 10.1016/j.neuropharm.2008.08.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/14/2008] [Accepted: 08/18/2008] [Indexed: 11/17/2022]
Abstract
Convergent evidence suggests that serotonin 5-HT1A receptor (5-HT1AR) agonists reduce l-DOPA-induced dyskinesia by auto-regulating aberrant release of l-DOPA-derived dopamine (DA) from raphestriatal neurons. However, recent findings indicate that 5-HT1AR stimulation also modifies D1 receptor (D1R)-mediated dyskinesia and rotations implicating a previously unexplored extra-raphe mechanism. In order to characterize the contribution of the striatum to these effects, rats with medial forebrain bundle DA lesions were tested for abnormal involuntary movements (AIMs) and rotations following striatal microinfusions of the 5-HT1AR agonist +/-8-OH-DPAT and systemic D1R agonist treatment with SKF81297. Additional rats with multi-site striatal DA lesions were tested for motor disability following systemic or intrastriatal +/-8-OH-DPAT with or without systemic SKF81297. In rats with medial forebrain bundle lesions, striatal infusions of +/-8-OH-DPAT dose-dependently reduced AIMs while conversely increasing rotations. In rats with striatal lesions, +/-8-OH-DPAT alone, both systemic and intrastriatal administration, optimally reversed motor disability. Collectively, these results support an important functional interaction between 5-HT1AR and D1R in the striatum with implications for the improved treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Kristin B Dupre
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA
| | | | | | | |
Collapse
|
109
|
Pascual-Sedano B, Kulisevsky J, Barbanoj M, García-Sánchez C, Campolongo A, Gironell A, Pagonabarraga J, Gich I. Levodopa and executive performance in Parkinson's disease: a randomized study. J Int Neuropsychol Soc 2008; 14:832-41. [PMID: 18764978 DOI: 10.1017/s1355617708081010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Parkinson's disease (PD) patients may experience fluctuations in executive performance after oral levodopa (LD). Their relationship with the pharmacokinetic profile of LD and with distinct cognitive processes associated with frontal-basal ganglia circuits is not well understood. In this randomized, double-blind, crossover study we plotted acute cognitive changes in 14 PD patients challenged with faster (immediate-release, IR) versus slower (controlled-release, CR) increases in LD plasma concentrations. We monitored motor status, LD plasma levels, and performance on four tasks of executive function (Wisconsin Card Sorting Test-WCST, Sternberg test, Stroop and Tower of Hanoi), 1 hr before and over +6 hr after IR and CR-LD dose. Analysis of variance demonstrated significant but divergent changes in the Sternberg (6-digit but not 2- and 4-digit) test: improvement after CR-LD and worsening after IR-LD. Marginal improvement (p = .085) was observed with CR-LD in the WCST, while no significant differences were seen for the Stroop or Tower of Hanoi tests. Executive-related performance after LD challenge may differ depending on the LD time-to-peak plasma concentration and specific task demands. A slower rise in LD levels appears to have a more favorable impact on more difficult working memory tests. These results require replication to determine their generalization.
Collapse
Affiliation(s)
- Berta Pascual-Sedano
- Department of Neurology (Movement Disorders Unit) and CIBERNED, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Silver DE. Early, Nondisabling Parkinson's Disease: Weighing the Options for Initial Therapy. Neurol Clin 2008; 26:S1-13, v. [DOI: 10.1016/j.ncl.2008.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
111
|
Abstract
Enormous progress has been made in the treatment of Parkinson's disease (PD). As a result of advances in experimental therapeutics, many promising therapies for PD are emerging. Levodopa remains the most potent drug for controlling PD symptoms, yet is associated with significant complications such as the "wearing off" effect, levodopa-induced dyskinesias and other motor complications. Catechol-o-methyl-transferase inhibitors, dopamine agonists and nondopaminergic therapy are alternative modalities in the management of PD and may be used concomitantly with levodopa or one another. The neurosurgical treatment, focusing on deep brain stimulation, is reviewed briefly. Although this review has attempted to highlight the most recent advances in the treatment of PD, it is important to note that new treatments are not necessarily better than the established conventional therapy and that the treatment options must be individualized and tailored to the needs of each individual patient.
Collapse
Affiliation(s)
- Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, 6550 Fannin, Suite 1801, Houston, Texas 77030, USA
| | | |
Collapse
|
112
|
Avshalumov MV, Patel JC, Rice ME. AMPA receptor-dependent H2O2 generation in striatal medium spiny neurons but not dopamine axons: one source of a retrograde signal that can inhibit dopamine release. J Neurophysiol 2008; 100:1590-601. [PMID: 18632893 DOI: 10.1152/jn.90548.2008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dopamine-glutamate interactions in the striatum are critical for normal basal ganglia-mediated control of movement. Although regulation of glutamatergic transmission by dopamine is increasingly well understood, regulation of dopaminergic transmission by glutamate remains uncertain given the apparent absence of ionotropic glutamate receptors on dopaminergic axons in dorsal striatum. Indirect evidence suggests glutamatergic regulation of striatal dopamine release is mediated by a diffusible messenger, hydrogen peroxide (H2O2), generated downstream from glutamatergic AMPA receptors (AMPARs). The mechanism of H2O2-dependent inhibition of dopamine release involves activation of ATP-sensitive K+ (KATP) channels. However, the source of modulatory H2O2 is unknown. Here, we used whole cell recording, fluorescence imaging of H2O2, and voltammetric detection of evoked dopamine release in guinea pig striatal slices to examine contributions from medium spiny neurons (MSNs), the principal neurons of striatum, and dopamine axons to AMPAR-dependent H2O2 generation. Imaging studies of H2O2 generation in MSNs provide the first demonstration of AMPAR-dependent H2O2 generation in neurons in the complex brain-cell microenvironment of brain slices. Stimulation-induced increases in H2O2 in MSNs were prevented by GYKI-52466, an AMPAR antagonist, or catalase, an H2O2 metabolizing enzyme, but amplified by mercaptosuccinate (MCS), a glutathione peroxidase inhibitor. By contrast, dopamine release evoked by selective stimulation of dopamine axons was unaffected by GYKI-52466 or MCS, arguing against dopamine axons as a significant source of modulatory H2O2. Together, these findings suggest that glutamatergic regulation of dopamine release via AMPARs is mediated through retrograde signaling by diffusible H2O2 generated in striatal cells, including medium spiny neurons, rather than in dopamine axons.
Collapse
Affiliation(s)
- Marat V Avshalumov
- Department of Neurosurgery, NYU School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
113
|
Dupre KB, Eskow KL, Steiniger A, Klioueva A, Negron GE, Lormand L, Park JY, Bishop C. Effects of coincident 5-HT1A receptor stimulation and NMDA receptor antagonism on L-DOPA-induced dyskinesia and rotational behaviors in the hemi-parkinsonian rat. Psychopharmacology (Berl) 2008; 199:99-108. [PMID: 18545986 DOI: 10.1007/s00213-008-1135-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 03/01/2008] [Indexed: 11/27/2022]
Abstract
RATIONALE Serotonin 1A receptor (5-HT1AR) agonists reduce L-DOPA-induced dyskinesia and enhance motor function in experimental and clinical investigations of Parkinson's disease (PD). While the mechanism(s) by which these effects occur are unclear, recent research suggests that modulation of glutamate neurotransmission contributes. OBJECTIVE To further delineate the relationship between 5-HT1A receptors and glutamate, the current study examined the effects of the 5-HT1AR agonist, +/-8-OH-DPAT and the N-methyl-D-aspartic acid receptor (NMDAR) antagonist, MK-801, on L-DOPA-induced motor behavior. MATERIALS AND METHODS Unilateral 6-hydroxydopamine lesioned male Sprague-Dawley rats were rendered dyskinetic with 1 week of daily L-DOPA (12 mg/kg, i.p.) + benserazide (15 mg/kg, i.p.). On test days, one group of rats received pretreatments of: +/-8-OH-DPAT (0, 0.03, 0.1, 0.3 mg/kg, i.p.) or MK-801 (0, 0.03, 0.1, 0.3 mg/kg, i.p.). A second group was administered combined +/-8-OH-DPAT (0, 0.03 or 0.1 mg/kg, i.p.) + MK-801 (0, 0.1 mg/kg, i.p.). Pretreatments were followed by L-DOPA administration, after which, abnormal involuntary movements (AIMs) and rotations were monitored. To investigate effects on motor performance, subthreshold doses of +/-8-OH-DPAT (0.03 mg/kg, i.p.) + MK-801 (0.1 mg/kg, i.p.) were administered to L-DOPA-naïve hemiparkinsonian rats before the forepaw adjusting steps test. RESULTS Individually, both +/-8-OH-DPAT and MK-801 dose-dependently decreased L-DOPA-induced AIMs without affecting rotations. Combined subthreshold doses of +/-8-OH-DPAT+MK-801 reduced L-DOPA-induced AIMs and potently enhanced contralateral rotations without altering L-DOPA-induced motor improvements. CONCLUSIONS The current results indicate a functional interaction between 5-HT1AR and NMDAR that may improve pharmacological treatment of PD patients.
Collapse
Affiliation(s)
- Kristin B Dupre
- Department of Psychology, Behavioral Neuroscience Program, State University of New York at Binghamton, Binghamton, NY 13902-6000, USA
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Sepehrizadeh Z, Sahebgharani M, Ahmadi S, Shapourabadi MB, Bozchlou SH, Zarrindast MR. Morphine-induced behavioral sensitization increased the mRNA expression of NMDA receptor subunits in the rat amygdala. Pharmacology 2008; 81:333-43. [PMID: 18391508 DOI: 10.1159/000122959] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 12/02/2007] [Indexed: 01/28/2023]
Abstract
This study was designed to evaluate the effect of repeated morphine treatment on rat behavioral responses. In the genetic section, the mRNA expression of NMDA receptor subunits (NR1 and NR2A) was measured in certain areas of the male rat brain (striatum, prefrontal cortex, hippocampus, hypothalamus and amygdala). In the behavioral section, the effect of repeated morphine treatment on animal models such as locomotion, oral stereotypy, and state-dependent memory in a passive avoidance test was evaluated in the presence or absence of MK801 (NMDA receptor antagonist). Our results showed that chronic morphine treatment, followed by a 7-day (but not 24-hour) washout period, potentiated the effect of test doses of morphine, which is referred to as behavioral sensitization. Meanwhile, pretreatment of animals with MK801 (0.1 and 0.25 mg/kg), 30 min before a test dose of morphine (5 mg/kg), failed to attenuate the locomotion and oral stereotypy in the behavioral sensitization state. Interestingly, a higher dose of MK801 (0.25 mg/kg) decreased memory retrieval induced by morphine (2.5 mg/kg) in state-dependent memory. This effect may be due to the intrinsic motor enhancer property of higher doses of MK801, rather than the blockade of NMDA receptors. It can be concluded that MK801 does not affect morphine-induced behavioral sensitization in the expression phase. In the genetic section of the study, results of quantitative real-time RT-PCR clearly indicated that morphine sensitization increased the expression of NMDA receptor subunits mRNA in the amygdala (NR1 by 104% and NR2A by 85%), while the other areas of the brain were unaffected. Maenwhile, no change in the mRNA levels was observed in non-sensitized animals (chronic morphine treatment followed by a 24-hour washout period). In summary, the present study indicates that repeated morphine treatment followed by long-term (7-day washout) induces behavioral sensitization and causes a delayed increase in mRNA levels of NMDA receptor subunits in the rat amygdala. Meanwhile, it has previously been reported that the amygdala is involved in behavioral sensitization. Thus, it can be concluded that the increase in NMDA receptor expression is associated with morphine-induced behavioral sensitization.
Collapse
Affiliation(s)
- Zargham Sepehrizadeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Tehran, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
115
|
Cenci MA, Lindgren HS. Advances in understanding L-DOPA-induced dyskinesia. Curr Opin Neurobiol 2008; 17:665-71. [PMID: 18308560 DOI: 10.1016/j.conb.2008.01.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 01/08/2008] [Accepted: 01/08/2008] [Indexed: 10/22/2022]
Abstract
The crucial role of dopamine (DA) in movement control is illustrated by the spectrum of motor disorders caused by either a deficiency or a hyperactivity of dopaminergic transmission in the basal ganglia. The degeneration of nigrostriatal DA neurons in Parkinson's disease causes poverty and slowness of movement. These symptoms are greatly improved by pharmacological DA replacement with L-3,4-dihydroxy-phenylalanine (L-DOPA), which however causes excessive involuntary movements in a majority of patients. L-DOPA-induced dyskinesia (abnormal involuntary movements) provides a topic of investigation at the interface between clinical and basic neuroscience. In this article, we review recent studies in rodent models, which have uncovered two principal alterations at the basis of the movement disorder, namely, an abnormal pre-synaptic handling of exogenous L-DOPA, and a hyper-reactive post-synaptic response to DA. Dysregulated nigrostriatal DA transmission causes secondary alterations in a variety of non-dopaminergic transmitter systems, the manipulation of which modulates dyskinesia through mechanisms that are presently unclear. Further research on L-DOPA-induced dyskinesia will contribute to a deeper understanding of the functional interplay between neurotransmitters and neuromodulators in the motor circuits of the basal ganglia.
Collapse
Affiliation(s)
- M A Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, S-221 84 Lund, Sweden.
| | | |
Collapse
|
116
|
Rodrigues TB, Granado N, Ortiz O, Cerdán S, Moratalla R. Metabolic interactions between glutamatergic and dopaminergic neurotransmitter systems are mediated through D(1) dopamine receptors. J Neurosci Res 2008; 85:3284-93. [PMID: 17455302 DOI: 10.1002/jnr.21302] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Interactions between the dopaminergic and glutamatergic neurotransmission systems were investigated in the adult brain of wild-type (WT) and transgenic mice lacking the dopamine D(1) or D(2) receptor subtypes. Activity of the glutamine cycle was evaluated by using (13)C NMR spectroscopy, and striatal activity was assessed by c-Fos expression and motor coordination. Brain extracts from (1,2-(13)C(2)) acetate-infused mice were prepared and analyzed by (13)C NMR to determine the incorporation of the label into the C4 and C5 carbons of glutamate and glutamine. D(1)R(-/-) mice showed a significantly higher concentration of cerebral (4,5-(13)C(2)) glutamine, consistent with an increased activity of the glutamate-glutamine cycle and of glutamatergic neurotransmission. Conversely, D(2)R(-/-) mice did not show any significant changes in (4,5-(13)C(2)) glutamate or (4,5-(13)C(2)) glutamine, suggesting that alterations in glutamine metabolism are mediated through D(1) receptors. This was confirmed with D(1)R(-/-) and WT mice treated with reserpine, a dopamine-depleting drug, or with reserpine followed by L-DOPA, a dopamine precursor. Exposure to reserpine increased (4,5-(13)C(2)) glutamine in WT to levels similar to those found in untreated D(1)R(-/-) mice. These values were the same as those reached in the reserpine-treated D(1)R(-/-) mice. Treatment of WT animals with L-DOPA returned (4,5-(13)C(2)) glutamine levels to normal, but this was not verified in D(1)R(-/-) animals. Reserpine impaired motor coordination and decreased c-Fos expression, whereas L-DOPA restored both variables to normal values in WT but not in D(1)R(-/-). Together, our results reveal novel neurometabolic interactions between glutamatergic and dopaminergic systems that are mediated through the D(1), but not the D(2), dopamine receptor subtype.
Collapse
Affiliation(s)
- Tiago B Rodrigues
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC/UAM, Madrid, Spain
| | | | | | | | | |
Collapse
|
117
|
Galvan A, Wichmann T. GABAergic circuits in the basal ganglia and movement disorders. PROGRESS IN BRAIN RESEARCH 2007; 160:287-312. [PMID: 17499121 DOI: 10.1016/s0079-6123(06)60017-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
GABA is the major inhibitory neurotransmitter in the basal ganglia, and GABAergic pathways dominate information processing in most areas of these structures. It is therefore not surprising that abnormalities of GABAergic transmission are key elements in pathophysiologic models of movement disorders involving the basal ganglia. These include hypokinetic diseases such as Parkinson's disease, and hyperkinetic diseases, such as Huntington's disease or hemiballism. In this chapter, we will briefly review the major anatomic features of the GABAergic pathways in the basal ganglia, and then describe in greater detail the changes of GABAergic transmission, which are known to occur in movement disorders.
Collapse
Affiliation(s)
- Adriana Galvan
- Department of Neurology, School of Medicine and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| | | |
Collapse
|
118
|
Abstract
The neurotoxin 6-hydroxydopamine (6-OHDA) continues to constitute a valuable topical tool used chiefly in modeling Parkinson's disease in the rat. The classical method of intracerebral infusion of 6-OHDA involving a massive destruction of nigrostriatal dopaminergic neurons, is largely used to investigate motor and biochemical dysfunctions in Parkinson's disease. Subsequently, more subtle models of partial dopaminergic degeneration have been developed with the aim of revealing finer motor deficits. The present review will examine the main features of 6-OHDA models, namely the mechanisms of neurotoxin-induced neurodegeneration as well as several behavioural deficits and motor dysfunctions, including the priming model, modeled by this means. An overview of the most recent morphological and biochemical findings obtained with the 6-OHDA model will also be provided, particular attention being focused on the newly investigated intracellular mechanisms at the striatal level (e.g., A(2A) and NMDA receptors, PKA, CaMKII, ERK kinases, as well as immediate early genes, GAD67 and peptides). Thanks to studies performed in the 6-OHDA model, all these mechanisms have now been hypothesised to represent the site of pathological dysfunction at cellular level in Parkinson's disease.
Collapse
Affiliation(s)
- Nicola Simola
- Department of Toxicology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | | | | |
Collapse
|
119
|
Abstract
Control of movement depends on the continuous release of dopamine by neurons in the basal ganglia of the brain. The degeneration of these neurons in Parkinson's disease (PD) interferes with the flow of dopamine, leading to classic motor symptoms. In early PD, enough dopaminergic neurons remain to store dopamine provided by periodic dosing with oral levodopa and relatively normal, tonic levels of dopamine release are maintained. PD progression leads to degeneration of remaining dopaminergic terminals and loss of buffering capacity for exogenous levodopa. As a result, there are supraphysiological levels of dopamine after dosing and troughs when the available dopamine has been depleted. These divergent levels are associated with dyskinesia and 'off' states, respectively. Treatment strategies that provide a continuous flow of dopamine and can thus mimic normal physiological dopamine stimulation have potential to improve motor control for patients with advanced PD.
Collapse
Affiliation(s)
- Dag Nyholm
- Department of Neuroscience, Neurology, Uppsala University Hospital, SE-75185 Uppsala, Sweden.
| |
Collapse
|
120
|
Matsukawa N, Maki M, Yasuhara T, Hara K, Yu G, Xu L, Kim KM, Morgan JC, Sethi KD, Borlongan CV. Overexpression of D2/D3 receptors increases efficacy of ropinirole in chronically 6-OHDA-lesioned Parkinsonian rats. Brain Res 2007; 1160:113-23. [PMID: 17573046 DOI: 10.1016/j.brainres.2007.05.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 05/12/2007] [Accepted: 05/17/2007] [Indexed: 01/09/2023]
Abstract
Ropinirole, which is a non-ergot dopamine agonist derivative, exerts therapeutic benefits in Parkinson's disease (PD). Based on recent studies implicating dopamine receptors 2 and 3 (D2R and D3R) as possible targets of ropinirole, we over-expressed these dopamine receptor genes in the dopamine-denervated striatum of rodents to reveal whether their over-expression modulated ropinirole activity. Adult Sprague-Dawley rats initially received unilateral 6-hydroxydopamine lesion of the medial forebrain bundle. At 1 month after surgery, successfully lesioned animals (3 or less forelimb akinesia score, and 8 or more apomorphine-induced rotations/min over 1 h) were randomly assigned to intrastriatal injection (ipsilateral to the lesion) of blank lentiviral vector, D2R, D3R or both genes. At about 5 months post-lesion, ropinirole (0.2 mg/kg, i.p.) was administered daily for 9 consecutive days. The subtherapeutic dose of ropinirole improved the use of previously akinetic forelimb and produced robust circling behavior in lesioned animals with striatal over-expression of both D2R and D3R compared to lesioned animals that received blank vector. In contrast, the subtherapeutic dose of ropinirole generated only modest motor effects in lesioned animals with sole over-expression of D2R or D3R. Western immunoblot and autoradiographic assays showed enhanced D2R and D3R protein levels coupled with normalized D2R and D3R binding in the ventral striatum of lesioned animals with lentiviral over-expression of both D2R and D3R relative to vehicle-treated lesioned animals. Immunohistochemical analyses showed that D2R and D3R GFP fluorescent cells colocalized with enkephalin and substance P immunoreactive medium spiny neurons. These data support the use of the subtherapeutic dose of ropinirole in a chronic model of PD.
Collapse
Affiliation(s)
- N Matsukawa
- Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Dupre KB, Eskow KL, Negron G, Bishop C. The differential effects of 5-HT(1A) receptor stimulation on dopamine receptor-mediated abnormal involuntary movements and rotations in the primed hemiparkinsonian rat. Brain Res 2007; 1158:135-43. [PMID: 17553470 DOI: 10.1016/j.brainres.2007.05.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 04/27/2007] [Accepted: 05/02/2007] [Indexed: 11/26/2022]
Abstract
Serotonin 1A receptor (5-HT(1A)R) agonists have emerged as valuable supplements to l-DOPA therapy, demonstrating that they can decrease side effects and enhance motor function in animal models of Parkinson's disease (PD) and human PD patients. The precise mechanism by which these receptors act remains unknown and there is limited information on how 5-HT(1A)R stimulation impacts striatal dopamine (DA) D1 receptor (D1R) and D2 receptor (D2R) function. The current study examined the effects of 5-HT(1A)R stimulation on DA receptor-mediated behaviors. Male Sprague-Dawley rats were rendered hemiparkinsonian by unilateral 6-OHDA lesions and primed with the D1R agonist SKF81297 (0.8 mg/kg, i.p.) in order to sensitize DA receptors. Using a randomized within subjects design, rats received a first injection of: Vehicle (dH(2)O) or the 5-HT(1A)R agonist +/-8-OH-DPAT (0.1 or 1.0 mg/kg, i.p.), followed by a second injection of: Vehicle (dimethyl sulfoxide), the D1R agonist SKF81297 (0.8 mg/kg, i.p.), the D2R agonist quinpirole (0.2 mg/kg, i.p.), or l-DOPA (12 mg/kg+benserazide, 15 mg/kg, i.p.). On test days, rats were monitored over a 2-h period immediately following the second injection for abnormal involuntary movements (AIMs), analogous to dyskinesia observed in PD patients, and contralateral rotations. The present findings indicate that 5-HT(1A)R stimulation reduces AIMs induced by D1R, D2R and l-DOPA administration while its effects on DA agonist-induced rotations were receptor-dependent, suggesting that direct 5-HT(1A)R and DA receptor interactions may contribute to the unique profile of 5-HT(1A)R agonists for the improvement of PD treatment.
Collapse
Affiliation(s)
- Kristin B Dupre
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA
| | | | | | | |
Collapse
|
122
|
Chambers RA, Bickel WK, Potenza MN. A scale-free systems theory of motivation and addiction. Neurosci Biobehav Rev 2007; 31:1017-45. [PMID: 17574673 PMCID: PMC2150750 DOI: 10.1016/j.neubiorev.2007.04.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 04/03/2007] [Accepted: 04/09/2007] [Indexed: 11/24/2022]
Abstract
Scale-free organizations, characterized by uneven distributions of linkages between nodal elements, describe the structure and function of many life-based complex systems developing under evolutionary pressures. We explore motivated behavior as a scale-free map toward a comprehensive translational theory of addiction. Motivational and behavioral repertoires are reframed as link and nodal element sets, respectively, comprising a scale-free structure. These sets are generated by semi-independent information-processing streams within cortical-striatal circuits that cooperatively provide decision-making and sequential processing functions necessary for traversing maps of motivational links connecting behavioral nodes. Dopamine modulation of cortical-striatal plasticity serves a central-hierarchical mechanism for survival-adaptive sculpting and development of motivational-behavioral repertoires by guiding a scale-free design. Drug-induced dopamine activity promotes drug taking as a highly connected behavioral hub at the expense of natural-adaptive motivational links and behavioral nodes. Conceptualizing addiction as pathological alteration of scale-free motivational-behavioral repertoires unifies neurobiological, neurocomputational and behavioral research while addressing addiction vulnerability in adolescence and psychiatric illness. This model may inform integrative research in defining more effective prevention and treatment strategies for addiction.
Collapse
Affiliation(s)
- R. Andrew Chambers
- Assistant Professor of Psychiatry, Director, Laboratory for Translational Neuroscience of Dual Diagnosis Disorders, Institute of Psychiatric Research, Assistant Medical Director, Indiana Division of Mental Health and Addiction, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN 46202, Ph: (317) 278-1716, Fax: (317) 274-1365,
| | - Warren K. Bickel
- Professor of Psychiatry, Wilbur D. Mills Chair of Alcoholism and Drug Abuse Prevention, Director, Center for Addiction Research, College of Medicine, Director, Center for the Study of Tobacco, Fay W Boozeman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR,
| | - Marc N. Potenza
- Associate Professor of Psychiatry, Director, Problem Gambling Clinic at Yale, Director, Women and Addictions Core of Women’s Health Research at Yale, Director of Neuroimaging, MIRECC VISN1, West Haven Veteran’s Administration Hospital, Yale University School of Medicine, New Haven, CT,
| |
Collapse
|
123
|
Kuoppamäki M, Al-Barghouthy G, Jackson MJ, Smith LA, Quinn N, Jenner P. L-dopa dose and the duration and severity of dyskinesia in primed MPTP-treated primates. J Neural Transm (Vienna) 2007; 114:1147-53. [PMID: 17446998 DOI: 10.1007/s00702-007-0727-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 03/18/2007] [Indexed: 10/23/2022]
Abstract
Most patients with Parkinson's disease (PD) develop dyskinesia and other motor complications after prolonged L-dopa use. We now report on the relationship between L-dopa dose and the duration and severity of dyskinesia in L-dopa-primed MPTP-treated primates with marked nigral degeneration mimicking late stage PD. With increasing doses of L-dopa, locomotor activity increased and motor disability declined. The duration of dyskinesia following L-dopa administration increased dose-dependently, and showed a linear correlation with total locomotor activity. In addition, the time-course of dyskinesia paralleled closely that of locomotor activity in a dose-dependent manner. In contrast, severity of dyskinesia showed a non-linear correlation with total locomotor activity, low doses of L-dopa eliciting severe dyskinesia for short periods of time. The threshold for dyskinesia induction and the antiparkinsonian effects of L-dopa appear very similar in primed MPTP primates mimicking late stage PD. Reducing individual doses of L-dopa to avoid severe dyskinesia can markedly compromise the antiparkinsonian response. Our results extend the relevance of the dyskinetic MPTP-treated primate in studying the genesis of involuntary movements occurring in L-dopa treated patients with PD.
Collapse
Affiliation(s)
- M Kuoppamäki
- Neurodegenerative Diseases Research Centre, King's College, London, U.K.
| | | | | | | | | | | |
Collapse
|
124
|
Fox SH, Lang AE, Brotchie JM. Translation of nondopaminergic treatments for levodopa-induced dyskinesia from MPTP-lesioned nonhuman primates to phase IIa clinical studies: keys to success and roads to failure. Mov Disord 2007; 21:1578-94. [PMID: 16874752 DOI: 10.1002/mds.20936] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Studies in MPTP-lesioned nonhuman primates have demonstrated the potential of nondopaminergic drugs in reducing the problems of levodopa-induced dyskinesia (LID). Here we review the process of translating findings from the monkey to man. Agents targeting glutamate, adensosine, noradrenaline, 5-hydroxytryptamine, cannabinoid, and opioid transmitter systems have been assessed for antidyskinetic potential in human studies. Eleven nondopaminergic drugs with antidyskinetic efficacy in the MPTP primate have been advanced to proof-of-concept phase IIa trials in PD patients (amantadine, istradefylline, idazoxan, fipamezole, sarizotan, quetiapine, clozapine, nabilone, rimonabant, naloxone, and naltrexone). For all six nondopaminergic transmitter systems reviewed, the MPTP-lesioned primate correctly predicted phase II efficacy of at least one drug. Of the 11 specific molecules tested in both monkeys and humans, 8 showed clear antidyskinetic properties in both human and monkey. In the instances where the primate studies did not, or did not consistently, predict the outcome of the human studies, the discrepancy may reflect limitations in the validity of the model or limitations in the design of either the clinical or the preclinical studies. We find that the major determinant of success in predicting efficacy is to ensure that primate studies are conducted in a statistically rigorous way and incorporate designs and outcome measures with clinical applicability. On the other hand, phase IIa trials should strive to replicate the preclinical study, especially in terms of protocol, drug dose equivalence, and outcome measure, so as to test the same hypothesis. Failure to meet these criteria carries the risk of false negative conclusions in phase IIa trials.
Collapse
Affiliation(s)
- Susan H Fox
- Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
125
|
Smith CPS, Oh JD, Bibbiani F, Collins MA, Avila I, Chase TN. Tamoxifen effect on L-DOPA induced response complications in parkinsonian rats and primates. Neuropharmacology 2007; 52:515-26. [PMID: 17116309 DOI: 10.1016/j.neuropharm.2006.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2005] [Revised: 06/29/2006] [Accepted: 08/01/2006] [Indexed: 10/23/2022]
Abstract
The contribution of striatal protein kinase C (PKC) isoform changes in levodopa (L-DOPA) induced motor response complications in parkinsonian rats was investigated and the ability of tamoxifen, an antiestrogen with a partial PKC antagonist property, to prevent these response alterations in 6-hydroxydopamine (6-OHDA) lesioned rats as well as in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treated cynomologous monkeys was studied. Following treatment of adult male rats with L-DOPA twice daily for 3 weeks, protein levels of left (lesioned) and right (intact) striatal PKC isoforms were measured. Western blot analysis showed increased protein expression of both the novel PKC epsilon isoform and the atypical PKC lambda isoform ipsilateral to the lesion (174+/-17% for epsilon, 140+/-9% for lambda, of intact striatum in 6-OHDA lesioned plus chronic L-DOPA treated animals) in acute L-DOPA treated rats. No enhancement was observed in PKC immunoreactivity for other isoforms. Tamoxifen (5.0 mg/kg p.o.) significantly attenuated the L-DOPA induced augmentation of protein expression of PKC epsilon and PKC lambda, but had no effect on immunoreactivity for other PKC isoforms. In chronic L-DOPA treated parkinsonian rats, tamoxifen prevented (5.0 mg/kg p.o.) as well as ameliorated (5.0 mg/kg p.o.) the characteristic shortening in duration of motor response to L-DOPA challenge. In MPTP lesioned primates, similar to the ameliorative effect seen in rats, tamoxifen (1 and 3 mg/kg p.o) reduced the appearance of L-DOPA induced dyskinesia by 61% and 55% respectively (p<0.05). These results suggest that changes in specific striatal PKC isoforms contribute to the pathogenesis of L-DOPA induced motor complications and further that drugs able to selectively inhibit these signaling kinases might provide adjunctive benefit in the treatment of Parkinson's disease.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- Animals
- Antiparkinson Agents/adverse effects
- Disease Models, Animal
- Drug Administration Schedule
- Drug Interactions
- Dyskinesia, Drug-Induced/drug therapy
- Dyskinesia, Drug-Induced/etiology
- Haplorhini
- Levodopa/adverse effects
- Male
- Models, Biological
- Nerve Tissue Proteins/metabolism
- Oxidopamine
- Parkinson Disease, Secondary/chemically induced
- Parkinson Disease, Secondary/drug therapy
- Protein Kinase C/metabolism
- Rats
- Rats, Sprague-Dawley
- Selective Estrogen Receptor Modulators/therapeutic use
- Tamoxifen/therapeutic use
- Time Factors
Collapse
Affiliation(s)
- C P S Smith
- Experimental Therapeutics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
126
|
Avshalumov MV, Bao L, Patel JC, Rice ME. H2O2 signaling in the nigrostriatal dopamine pathway via ATP-sensitive potassium channels: issues and answers. Antioxid Redox Signal 2007; 9:219-31. [PMID: 17115944 DOI: 10.1089/ars.2007.9.219] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The role of reactive oxygen species (ROS) as signaling agents is increasingly appreciated. Studies of ROS functions in the central nervous system, however, are only in their infancy. Using fast-scan cyclic voltammetry and fluorescence imaging in brain slices, the authors discovered that hydrogen peroxide (H2O2) is an endogenous regulator of dopamine release in the dorsal striatum. Given the key role of dopamine in motor, reward, and cognitive pathways, regulation by H2O2 has implications for normal dopamine function, as well as for dysfunction of dopamine transmission. In this review, data are summarized to show that H2O2 is a diffusible messenger in the striatum, generated downstream from glutamate receptor activation, and an intracellular signal in dopamine neurons of the substantia nigra, generated during normal pacemaker activity. The mechanism by which H2O2 inhibits dopamine release and dopamine cell activity is activation of ATP-sensitive K+ (KATP) channels. Characteristics of the neuronal and glial antioxidant networks required to permit H2O2 signaling, yet prevent oxidative damage, are also considered. Lastly, estimates of physiological H2O2 levels are discussed, and strengths and limitations of currently available methods for H2O2 detection, including fluorescence imaging using dichlorofluorescein (DCF) and the next generation of fluorescent probes, are considered.
Collapse
Affiliation(s)
- Marat V Avshalumov
- Department of Neurosurgery and Department of Physiology and Neuroscience, New York University School of Medicine, New York 10016, USA
| | | | | | | |
Collapse
|
127
|
Dekundy A, Lundblad M, Danysz W, Cenci MA. Modulation of L-DOPA-induced abnormal involuntary movements by clinically tested compounds: further validation of the rat dyskinesia model. Behav Brain Res 2007; 179:76-89. [PMID: 17306893 DOI: 10.1016/j.bbr.2007.01.013] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2006] [Revised: 01/15/2007] [Accepted: 01/19/2007] [Indexed: 11/22/2022]
Abstract
L-DOPA-induced dyskinesia (LID) is a major complication of the pharmacotherapy of Parkinson's Disease. A model of LID has recently been described in rats with unilateral 6-hydroxydopamine (6-OHDA) lesions. In the present study, the model was used in order to compare the efficacies of some clinically available compounds that have shown antidyskinetic effects in nonhuman primate models of LID and/or in patients, namely, amantadine (20 and 40 mg/kg), buspirone (1, 2 and 4 mg/kg), clonidine (0.01, 0.1 and 1 mg/kg), clozapine (4 and 8 mg/kg), fluoxetine (2.5 and 5 mg/kg), propranolol (5, 10 and 20mg/kg), riluzole (2 and 4 mg/kg), and yohimbine (2 and 10 mg/kg). Rats were treated for 3 weeks with L-DOPA for an induction and monitoring of abnormal involuntary movements (AIMs) prior to the drug screening experiments. The antidyskinetic drugs or their vehicles were administered together with L-DOPA, and their effects were evaluated according to a randomized cross-over design both on the AIM rating scale and on the rotarod test. Most of the compounds under investigation attenuated the L-DOPA-induced axial, limb and orolingual AIM scores. However, the highest doses of many of these substances (but for amantadine and riluzole) had also detrimental motor effects, producing a reduction in rotarod performance and locomotor scores. Since the present results correspond well to existing clinical and experimental data, this study indicates that axial, limb and orolingual AIMs possess predictive validity for the preclinical screening of novel antidyskinetic treatments. Combining tests of general motor performance with AIMs ratings in the same experiment allows for selecting drugs that specifically reduce dyskinesia without diminishing the anti-akinetic effect of L-DOPA.
Collapse
Affiliation(s)
- Andrzej Dekundy
- In vivo Pharmacology, Preclinical Research and Development, Merz Pharmaceuticals GmbH, Eckenheimer Landstrasse 100, D-60318 Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
128
|
Mela F, Marti M, Dekundy A, Danysz W, Morari M, Cenci MA. Antagonism of metabotropic glutamate receptor type 5 attenuates l-DOPA-induced dyskinesia and its molecular and neurochemical correlates in a rat model of Parkinson's disease. J Neurochem 2007; 101:483-97. [PMID: 17359492 DOI: 10.1111/j.1471-4159.2007.04456.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Metabotropic glutamate receptor type 5 (mGluR5) modulates dopamine and glutamate neurotransmission at central synapses. In this study, we addressed the role of mGluR5 in l-DOPA-induced dyskinesia, a movement disorder that is due to abnormal activation of both dopamine and glutamate receptors in the basal ganglia. A selective and potent mGluR5 antagonist, 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl] pyridine, was tested for its ability to modulate molecular, behavioural and neurochemical correlates of dyskinesia in 6-hydroxydopamine-lesioned rats treated with l-DOPA. The compound significantly attenuated the induction of abnormal involuntary movements (AIMs) by chronic l-DOPA treatment at doses that did not interfere with the rat physiological motor activities. These effects were paralleled by an attenuation of molecular changes that are strongly associated with the dyskinesiogenic action of l-DOPA (i.e. up-regulation of prodynorphin mRNA in striatal neurons). Using in vivo microdialysis, we found a temporal correlation between the expression of l-DOPA-induced AIMs and an increased GABA outflow within the substantia nigra pars reticulata. When co-administered with l-DOPA, 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl] pyridine greatly attenuated both the increase in nigral GABA levels and the expression of AIMs. These data demonstrate that mGluR5 antagonism produces strong anti-dyskinetic effects in an animal model of Parkinson's disease through central inhibition of the molecular and neurochemical underpinnings of l-DOPA-induced dyskinesia.
Collapse
Affiliation(s)
- Flora Mela
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
129
|
Ba M, Kong M, Ma G, Yang H, Lu G, Chen S, Liu Z. Cellular and behavioral effects of 5-HT1A receptor agonist 8-OH-DPAT in a rat model of levodopa-induced motor complications. Brain Res 2006; 1127:177-84. [PMID: 17113046 DOI: 10.1016/j.brainres.2006.10.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 10/09/2006] [Accepted: 10/14/2006] [Indexed: 10/23/2022]
Abstract
5-HT1A autoreceptor stimulation can act to attenuate supraphysiological swings in extracellular dopamine levels following long-term levodopa treatment and may be useful in the treatment and prevention of the motor complications. The purpose of this study was to investigate cellular and behavioral effects of 5-HT1A receptor agonist 8-OH-DPAT in a rat model of levodopa-induced motor complications. Two sets of experiments were performed. First, animals were treated with levodopa (50 mg/kg with benserazide 12.5 mg/kg, twice daily), intraperitoneally (i.p.) for 22 days. On day 23, animals received either 8-OH-DPAT (1 mg/kg, i.p.) or 8-OH-DPAT plus WAY-100635 (0.1 mg/kg, i.p) or vehicle with each levodopa dose. In the second set, animals were treated either with levodopa (50 mg/kg, i.p.) plus 8-OH-DPAT (1 mg/kg, i.p.) or levodopa (50 mg/kg, i.p.) plus vehicle, administered twice daily for 22 consecutive days. Our study showed that 8-OH-DPAT plus levodopa both prolonged the duration of the motor response and reduced peak turning. 8-OH-DPAT plus levodopa also decreased the frequency of failures to levodopa. Co-administration of WAY-100635, a 5-HT1A receptor antagonist, with 8-OH-DPAT eliminated the effect of 8-OH-DPAT on motor complications indicating that the observed 8-OH-DPAT responses were probably mediated at the 5-HT1A autoreceptor. Moreover, 8-OH-DPAT plus levodopa significantly reduced hyperphosphorylation of GluR1 at serine 845, which was closely associated with levodopa-induced motor complications.
Collapse
MESH Headings
- 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology
- 8-Hydroxy-2-(di-n-propylamino)tetralin/therapeutic use
- Animals
- Antiparkinson Agents/adverse effects
- Antiparkinson Agents/antagonists & inhibitors
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Benserazide/pharmacology
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Disease Models, Animal
- Drug Interactions/physiology
- Dyskinesia, Drug-Induced/drug therapy
- Dyskinesia, Drug-Induced/metabolism
- Dyskinesia, Drug-Induced/physiopathology
- Female
- Levodopa/adverse effects
- Levodopa/antagonists & inhibitors
- Phosphorylation/drug effects
- Piperazines/pharmacology
- Pyridines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptors, AMPA/drug effects
- Receptors, AMPA/metabolism
- Serotonin/metabolism
- Serotonin 5-HT1 Receptor Agonists
- Serotonin Antagonists/pharmacology
- Serotonin Receptor Agonists/pharmacology
- Serotonin Receptor Agonists/therapeutic use
- Synapses/drug effects
- Synapses/metabolism
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Treatment Outcome
Collapse
Affiliation(s)
- Maowen Ba
- Department of Neurology, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, PR China
| | | | | | | | | | | | | |
Collapse
|
130
|
Voss OP, Milne S, Sharkey J, O'Neill MJ, McCulloch J. Molecular mechanisms of neurite growth with AMPA receptor potentiation. Neuropharmacology 2006; 52:590-7. [PMID: 17101156 DOI: 10.1016/j.neuropharm.2006.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 08/30/2006] [Accepted: 09/01/2006] [Indexed: 11/23/2022]
Abstract
Positive allosteric modulation of AMPA receptor function has therapeutic potential in a number of psychiatric disorders and neurodegenerative diseases. AMPA receptor potentiators can induce neurite sprouting in vivo. Using a strategy of combined morphological and biochemical analyses, we investigated the effect of the AMPA receptor potentiator LY404187 on neurite growth in the SH-SY5Y human neuroblastoma cell line. LY404187 (0.1-10 microM) increased average neurite length and neurofilament expression when co-administered with s-AMPA. Co-incubation with s-AMPA and LY404187 also increased Trk receptor expression. All actions of LY404187 were sensitive to AMPA receptor blockade by the selective antagonist CNQX (10 microM). Antibody sequestration of BDNF attenuated neurite growth following AMPA receptor potentiator administration, suggesting that LY404187 increases neurite length in vitro by a BDNF mediated mechanism. AMPA receptor potentiation activates multiple intracellular neurochemical cascades and the present report identifies BDNF as one key mediator of the neurotrophic effects of AMPA receptor potentiation.
Collapse
Affiliation(s)
- Oliver P Voss
- Division of Neuroscience, The University of Edinburgh, The Chancellor's Building (Room FU.203), 49 Little France Crescent, Edinburgh EH16 4SB, UK.
| | | | | | | | | |
Collapse
|
131
|
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA) remains the most efficacious drug for the treatment of Parkinson's disease (PD), but causes adverse effects that limit its utility. L-DOPA-induced dyskinesia (abnormal involuntary movements) is a significant clinical problem that attracts growing scientific interest. Current notions attribute the development of dyskinesia to two main factors, viz. the loss of nigrostriatal dopamine (DA) projections and the maladaptive changes produced by L-DOPA at sites postsynaptic to the nigrostriatal neuron. Basic research in the past 15 years has placed a lot of emphasis on the postsynaptic plasticity associated with dyskinesia, but recent experimental work shows that also some presynaptic factors, involving the regulation of L-DOPA/DA release and metabolism in the brain, may show plasticity during treatment. This review summarizes significant studies of L-DOPA-induced dyskinesia in patients and animal models, and outlines directions for future experiments addressing mechanisms of presynaptic plasticity. These investigations may uncover clues to the varying susceptibility to L-DOPA-induced dyskinesia among PD patients, paving the way for tailor-made treatments.
Collapse
Affiliation(s)
- M Angela Cenci
- Department of Experimental Medical Science, Basal Ganglia Pathophysiology Unit, Lund University, BMC F11, S.221 84 Lund, Sweden.
| | | |
Collapse
|
132
|
Hallett PJ, Spoelgen R, Hyman BT, Standaert DG, Dunah AW. Dopamine D1 activation potentiates striatal NMDA receptors by tyrosine phosphorylation-dependent subunit trafficking. J Neurosci 2006; 26:4690-700. [PMID: 16641250 PMCID: PMC6674081 DOI: 10.1523/jneurosci.0792-06.2006] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Interactions between dopaminergic and glutamatergic afferents in the striatum are essential for motor learning and the regulation of movement. An important mechanism for these interactions is the ability of dopamine, through D1 receptors, to potentiate NMDA glutamate receptor function. Here we show that, in striatal neurons, D1 receptor activation leads to rapid trafficking of NMDA receptor subunits, with increased NR1 and NR2B subunits in dendrites, enhanced coclustering of these subunits with the postsynaptic density scaffolding molecule postsynaptic density-95, and increased surface expression. The dopamine D1 receptor-mediated NMDA receptor trafficking is blocked by an inhibitor of tyrosine kinases. Blockers of tyrosine phosphatases also induce NMDA subunit trafficking, but this effect is nonselective and alters both NR2A- and NR2B-containing receptors. Furthermore, tyrosine phosphatase inhibition leads to the clustering of tyrosine-phosphorylated NR2B subunit along dendritic shafts. Our findings reveal that D1 receptor activation can potentiate striatal NMDA subunit function by directly promoting the surface insertion of the receptor complexes. This effect is regulated by the reciprocal actions of protein tyrosine phosphatases and tyrosine kinases. Modification of these pathways may be a useful therapeutic target for Parkinson's disease and other basal ganglia disorders in which abnormal function of striatal NMDA receptors contributes to the symptoms of the diseases.
Collapse
|
133
|
Bonsi P, Cuomo D, Picconi B, Sciamanna G, Tscherter A, Tolu M, Bernardi G, Calabresi P, Pisani A. Striatal metabotropic glutamate receptors as a target for pharmacotherapy in Parkinson’s disease. Amino Acids 2006; 32:189-95. [PMID: 16715415 DOI: 10.1007/s00726-006-0320-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Accepted: 01/12/2006] [Indexed: 11/26/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopamine (DA)-containing neurons in the substantia nigra pars compacta (SNc). The symptoms are resting tremor, slowness of movement, rigidity and postural instability. Evidence that an imbalance between dopaminergic and cholinergic transmission takes place within the striatum led to the utilization of DA precursors, DA receptor agonists and anticholinergic drugs in the symptomatic therapy of PD. However, upon disease progression the therapy becomes less effective and debilitating effects such as dyskinesias and motor fluctuations appear. Hence, the need for the development of alternative therapeutic strategies has emerged. Several observations in different experimental models of PD suggest that blockade of excitatory amino acid transmission exerts antiparkinsonian effects. In particular, recent studies have focused on metabotropic glutamate receptors (mGluRs). Drugs acting on group I and II mGluRs have indeed been proven useful in ameliorating the parkinsonian symptoms in animal models of PD and therefore might represent promising therapeutic targets. This beneficial effect could be due to the reduction of both glutamatergic and cholinergic transmission. A novel target for drugs acting on mGluRs in PD therapy might be represented by striatal cholinergic interneurons. Indeed, the activation of mGluR2, highly expressed on this cell type, is able to reduce calcium-dependent plateau potentials by interfering with somato-dendritic N-type calcium channel activity, in turn reducing ACh release in the striatum. Similarly, the blockade of both group I mGluR subtypes reduces cholinergic interneuron excitability, and decreases striatal ACh release. Thus, targeting mGluRs located onto cholinergic interneurons might result in a beneficial pharmacological effect in the parkinsonian state.
Collapse
Affiliation(s)
- P Bonsi
- Laboratorio di Neurofisiologia, I.R.C.C.S. Fondazione Santa Lucia - C.E.R.C., European Brain Research Institute, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Fiorentini C, Rizzetti MC, Busi C, Bontempi S, Collo G, Spano P, Missale C. Loss of synaptic D1 dopamine/N-methyl-D-aspartate glutamate receptor complexes in L-DOPA-induced dyskinesia in the rat. Mol Pharmacol 2006; 69:805-12. [PMID: 16365282 DOI: 10.1124/mol.105.016667] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glutamate-mediated mechanisms are related to the motor complications of L-DOPA therapy in Parkinson's disease (PD). In striatal postsynaptic densities (PSD), the dopamine D1 receptor (D1R) is part of an oligomeric complex with the glutamate N-methyl-D-aspartate receptor (NMDAR), determining the strength of corticostriatal transmission. We studied D1R/NMDAR complex alterations induced by L-DOPA in the 6-hydroxydopamine-lesioned rat model of PD. L-DOPA-treated hemiparkinsonian rats were determined to be dyskinetic or nondyskinetic based on behavioral testing. D1R/NMDAR assemblies containing NR1-C2 and NR2B subunits were decreased in the PSD of lesioned striatum. Short-term L-DOPA administration improved akinesia and restored the synaptic abundance of D1R, NR1-C2 and NR2B. Prolonged L-DOPA treatment also normalized synaptic D1R/NMDAR complexes in nondyskinetic rats, but remarkably reduced them in the dyskinetic group without changing their interaction. This decrease involved NR1-C2, NR1-C2', NR2A, and NR2B subunits. The composition of residual synaptic D1R/NMDAR complexes in dyskinetic rats may thus be different from that observed in lesioned rats, suggesting that expression of different motor dysfunctions might be related to the receptor profile at corticostriatal synapses. The levels of D1R/NMDAR complexes were unchanged in total striatal membrane proteins, suggesting that the decrease of these species in the PSD is likely to reflect an altered receptor trafficking. In human embryonic kidney 293 cells expressing the D1R/NMDAR, complex costimulation of both D1R and NMDAR, but not individual receptor activation, promoted internalization, suggesting that development of dyskinesias might be related to agonist-mediated down-regulation of the D1R/NMDAR complex at corticostriatal synapses.
Collapse
MESH Headings
- Animals
- Antiparkinson Agents/toxicity
- Cells, Cultured
- Corpus Striatum/chemistry
- Corpus Striatum/metabolism
- Dyskinesia, Drug-Induced/metabolism
- Humans
- Levodopa/toxicity
- Male
- Oxidopamine
- Parkinson Disease, Secondary/chemically induced
- Parkinson Disease, Secondary/complications
- Protein Subunits/analysis
- Protein Subunits/metabolism
- Rats
- Rats, Wistar
- Receptors, Dopamine D1/analysis
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, N-Methyl-D-Aspartate/analysis
- Receptors, N-Methyl-D-Aspartate/metabolism
- Synapses/chemistry
- Synapses/metabolism
- Transfection
Collapse
Affiliation(s)
- Chiara Fiorentini
- Division of Pharmacology, Department of Biomedical Sciences and Biotechnology, University of Brescia, Viale Europa 11, 25124 Brescia, Italy
| | | | | | | | | | | | | |
Collapse
|
135
|
Mela F, Marti M, Fiorentini C, Missale C, Morari M. Group-II metabotropic glutamate receptors negatively modulate NMDA transmission at striatal cholinergic terminals: Role of P/Q-type high voltage activated Ca++ channels and endogenous dopamine. Mol Cell Neurosci 2006; 31:284-92. [PMID: 16249096 DOI: 10.1016/j.mcn.2005.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 09/21/2005] [Accepted: 09/26/2005] [Indexed: 11/27/2022] Open
Abstract
Striatal cholinergic nerve terminals express functional group-II metabotropic (mGlu) and NMDA glutamate receptors. To investigate whether these receptors interact to regulate ACh release, LY354740 (a group-II mGlu receptor agonist) and NMDA were co-applied in striatal synaptosomes and slices. LY354740 prevented the NMDA-evoked [3H]-choline release from synaptosomes and ACh release from slices. In synaptosomes, this modulation was prevented by omega-agatoxin IVA, suggesting that it was mediated by P/Q-type high voltage activated Ca++ channels. In slices, LY341495 (a group-II mGlu receptor antagonist) enhanced the NMDA-induced ACh release, suggesting that group-II mGlu receptor activation by endogenous glutamate inhibits NMDA transmission. Co-immunoprecipitation studies excluded direct group-II mGlu-NMDA receptor interactions. Finally, group-II mGlu negative modulation of NMDA transmission was abolished in dopamine-depleted synaptosomes and slices, suggesting that it relied on endogenous dopamine. We conclude that group-II mGlu receptors attenuate NMDA inputs at striatal cholinergic terminals via Ca++ channel modulation and dopamine-sensitive pathways.
Collapse
Affiliation(s)
- Flora Mela
- Section of Pharmacology, and Neuroscience Center, Department of Experimental and Clinical Medicine, University of Ferrara, via Fossato di Mortara 17-19, 44100 Ferrara, Italy
| | | | | | | | | |
Collapse
|
136
|
Marin C, Rodriguez-Oroz MC, Obeso JA. Motor complications in Parkinson's disease and the clinical significance of rotational behavior in the rat: Have we wasted our time? Exp Neurol 2006; 197:269-74. [PMID: 16375892 DOI: 10.1016/j.expneurol.2005.11.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 10/20/2005] [Accepted: 11/01/2005] [Indexed: 10/25/2022]
Affiliation(s)
- C Marin
- Laboratori de Neurologia Experimental, Fundació Clínic-Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPS, Barcelona, Spain
| | | | | |
Collapse
|
137
|
Day BK, Pomerleau F, Burmeister JJ, Huettl P, Gerhardt GA. Microelectrode array studies of basal and potassium-evoked release of L-glutamate in the anesthetized rat brain. J Neurochem 2006; 96:1626-35. [PMID: 16441510 DOI: 10.1111/j.1471-4159.2006.03673.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
L-glutamate (Glu) is the predominant excitatory neurotransmitter in the mammalian central nervous system. It plays major roles in normal neurophysiology and many brain disorders by binding to membrane-bound Glu receptors. To overcome the spatial and temporal limitations encountered in previous in vivo extracellular Glu studies, we employed enzyme-coated microelectrode arrays to measure both basal and potassium-evoked release of Glu in the anesthetized rat brain. We also addressed the question of signal identity, which is the predominant criticism of these recording technologies. In vivo self-referencing recordings demonstrated that our Glu signals were both enzyme- and voltage-dependent, supporting the identity of L-glutamate. In addition, basal Glu was actively regulated, tetrodotoxin (TTX)-dependent, and measured in the low micromolar range (approximately 2 microm) using multiple self-referencing subtraction approaches for identification of Glu. Moreover, potassium-evoked Glu release exhibited fast kinetics that were concentration-dependent and reproducible. These data support the hypothesis that Glu release is highly regulated, requiring detection technologies that must be very close to the synapse and measure on a second-by-second basis to best characterize the dynamics of the Glu system.
Collapse
Affiliation(s)
- B K Day
- Center For Sensor Technology, Morris K. Udall Parkinson's Disease Research Center of Excellence, Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky 40536-0098, USA
| | | | | | | | | |
Collapse
|
138
|
Morissette M, Dridi M, Calon F, Hadj Tahar A, Meltzer LT, Bédard PJ, Di Paolo T. Prevention of levodopa-induced dyskinesias by a selective NR1A/2BN-methyl-D-aspartate receptor antagonist in parkinsonian monkeys: Implication of preproenkephalin. Mov Disord 2006; 21:9-17. [PMID: 16127720 DOI: 10.1002/mds.20654] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enkephalin is reported to play an important role in the pathophysiology of levodopa (LD) -induced dyskinesias. The present study investigated the effect of chronic treatment with a selective NR1A/2B N-methyl-D-aspartate (NMDA) receptor antagonist, CI-1041, on the expression of preproenkephalin-A (PPE-A) in brains of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) -treated monkeys in relation to the development of LD-induced dyskinesias. Four MPTP-monkeys received LD/benserazide alone; they all developed dyskinesias. Four other MPTP-monkeys received LD/benserazide plus CI-1041; only one of them developed mild dyskinesias at the end of the fourth week of treatment. Four normal monkeys and four saline-treated MPTP monkeys were also included. MPTP-treated monkeys had extensive and similar striatal dopamine denervation. An increase of PPE-A mRNA levels assayed by in situ hybridization was observed in the lateral putamen (rostral and caudal) and caudate nucleus (rostral) of saline-treated MPTP monkeys compared to controls, whereas no change or a small increase was observed in their medial parts. Striatal PPE-A mRNA levels remained elevated in LD-treated MPTP monkeys, whereas cotreatment with CI-1041 brought them back to control values. These findings suggest that chronic blockade of striatal NR1A/2B NMDA receptors with CI-1041 normalizes PPE-A mRNA expression and prevents the development of LD-induced dyskinesias in an animal model of Parkinson disease.
Collapse
Affiliation(s)
- Marc Morissette
- Molecular Endocrinology and Oncology Research Centre, Laval University Medical Centre, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
139
|
Bibbiani F, Oh JD, Kielaite A, Collins MA, Smith C, Chase TN. Combined blockade of AMPA and NMDA glutamate receptors reduces levodopa-induced motor complications in animal models of PD. Exp Neurol 2005; 196:422-9. [PMID: 16203001 DOI: 10.1016/j.expneurol.2005.08.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 08/11/2005] [Accepted: 08/26/2005] [Indexed: 11/24/2022]
Abstract
AMPA and NMDA receptors, abundantly expressed on striatal medium spiny neurons, have been implicated in the regulation of corticostriatal synaptic efficacy. To evaluate the contribution of both glutamate receptor types to the pathogenesis of motor response alterations associated with dopaminergic treatment, we studied the ability of the selective AMPA receptor antagonist GYKI-47261 and the selective NMDA receptor antagonists, MK-801 and amantadine, to mitigate these syndromes in rodent and primate models of Parkinson's disease. The effects of GYKI-47261 and amantadine (or MK-801), alone and in combination, were compared for their ability to modify dyskinesias induced by levodopa. In rats, simultaneous administration of subthreshold doses of AMPA and NMDA receptor antagonists completely normalized the wearing-off response to acute levodopa challenge produced by chronic levodopa treatment (P < 0.05). In primates, the glutamate antagonists GYKI-47261 and amantadine, co-administered at low doses (failing to alter dyskinesia scores), reduced levodopa-induced dyskinesias by 51% (P < 0.05). The simultaneous AMPA and NMDA receptor blockade acts to provide a substantially greater reduction in the response alterations induced by levodopa than inhibition of either of these receptors alone. The results suggest that mechanisms mediated by both ionotropic glutamate receptors make an independent contribution to the pathogenesis of these motor response changes and further that a combination of both drug types may provide relief from these disabling complications at lower and thus safer and more tolerable doses than required when either drug is used alone.
Collapse
MESH Headings
- Amantadine/pharmacology
- Animals
- Antiparkinson Agents/pharmacology
- Behavior, Animal
- Benzazepines/pharmacology
- Benzodiazepines/pharmacology
- Disease Models, Animal
- Dizocilpine Maleate/pharmacology
- Dopamine Agents/adverse effects
- Dopamine Agonists/pharmacology
- Dose-Response Relationship, Drug
- Drug Interactions
- Excitatory Amino Acid Antagonists/pharmacology
- Haplorhini
- Levodopa/adverse effects
- Male
- Motor Activity/drug effects
- Parkinson Disease, Secondary/chemically induced
- Parkinson Disease, Secondary/drug therapy
- Quinpirole/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/physiology
- Receptors, Glutamate/physiology
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/physiology
- Rotarod Performance Test/methods
- Time Factors
Collapse
Affiliation(s)
- F Bibbiani
- ETB, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
140
|
Sgambato-Faure V, Buggia V, Gilbert F, Lévesque D, Benabid AL, Berger F. Coordinated and Spatial Upregulation of Arc in Striatonigral Neurons Correlates With L-Dopa-Induced Behavioral Sensitization in Dyskinetic Rats. J Neuropathol Exp Neurol 2005; 64:936-47. [PMID: 16254488 DOI: 10.1097/01.jnen.0000186922.42592.b7] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Although oral administration of L-Dopa remains the best therapy for Parkinson disease, its long-term administration causes the appearance of abnormal involuntary movements such as dyskinesia. Although persistent striatal induction of some genes has already been associated with such pathologic profiles in hemiparkinsonian rats, molecular and cellular mechanisms underlying such long-term adaptations remain to be elucidated. In this study, using a rat model of L-Dopa-induced dyskinesia, we report that activity regulated cytoskeletal (Arc)-associated protein is strongly upregulated in the lesioned striatum and that the extent of its induction further varies according to the occurrence or absence of locomotor sensitization. Moreover, Arc is preferentially induced, along with FosB, nur77, and homer-1a, in striatonigral neurons, which express mRNA encoding the precursor of dynorphin. Given the likely importance of Arc in the regulation of cytoskeleton during synaptic plasticity, its upregulation supports the hypothesis that a relationship exists between cytoskeletal modifications and the longlasting action of chronically administrated L-Dopa.
Collapse
|
141
|
Silverdale MA, Nicholson SL, Crossman AR, Brotchie JM. Topiramate reduces levodopa-induced dyskinesia in the MPTP-lesioned marmoset model of Parkinson's disease. Mov Disord 2005; 20:403-409. [PMID: 15593312 DOI: 10.1002/mds.20345] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Overactive AMPA receptor-mediated transmission may be involved in the pathogenesis of levodopa-induced dyskinesia. The mechanism of action of the anticonvulsant drug topiramate involves attenuation of AMPA receptor-mediated transmission. In this study, the potential antidyskinetic action of topiramate was examined in the MPTP-lesioned marmoset model of Parkinson's disease and levodopa-induced dyskinesia. Topiramate significantly reduced levodopa-induced dyskinesia, without affecting the antiparkinsonian action of levodopa. Topiramate represents an exciting potential novel therapeutic approach to levodopa-induced dyskinesia in patients with Parkinson's disease.
Collapse
Affiliation(s)
- Monty A Silverdale
- Department of Neurology, Hope Hospital, Salford, Manchester, United Kingdom
- Manchester Movement Disorder Laboratory, School of Biological Science, University of Manchester, Manchester, United Kingdom
| | - S L Nicholson
- Manchester Movement Disorder Laboratory, School of Biological Science, University of Manchester, Manchester, United Kingdom
| | - A R Crossman
- Manchester Movement Disorder Laboratory, School of Biological Science, University of Manchester, Manchester, United Kingdom
- Motac Neuroscience Ltd., Williams House, Manchester Science Park, Manchester, United Kingdom
| | - J M Brotchie
- Toronto Western Research Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|
142
|
Giordano G, Sánchez-Pérez AM, Montoliu C, Berezney R, Malyavantham K, Costa LG, Calvete JJ, Felipo V. Activation of NMDA receptors induces protein kinase A-mediated phosphorylation and degradation of matrin 3. Blocking these effects prevents NMDA-induced neuronal death. J Neurochem 2005; 94:808-18. [PMID: 16000164 DOI: 10.1111/j.1471-4159.2005.03235.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Activation of NMDA receptors leads to activation of cAMP-dependent protein kinase (PKA). The main substrates phosphorylated by PKA following NMDA receptor activation remain unidentified. The aim of this work was to identify a major substrate phosphorylated by PKA following NMDA receptor activation in cerebellar neurones in culture, and to assess whether this phosphorylation may be involved in neuronal death induced by excessive NMDA receptor activation. The main PKA substrate following NMDA receptor activation was identified by MALDI-TOFF fingerprinting as the nuclear protein, matrin 3. PKA-mediated phosphorylation of matrin 3 is followed by its degradation. NMDA receptor activation in rat brain in vivo by ammonia injection also induced PKA-mediated matrin 3 phosphorylation and degradation in brain cell nuclei. Blocking NMDA receptors in brain in vivo with MK-801 reduced basal phosphorylation of matrin 3, suggesting that it is modulated by NMDA receptors. Inhibition of PKA with H-89 prevents NMDA-induced phosphorylation and degradation of matrin 3 as well as neuronal death. These results suggest that PKA-mediated phosphorylation of matrin 3 may serve as a rapid way of transferring information from synapses containing NMDA receptors to neuronal nuclei under physiological conditions, and may contribute to neuronal death under pathological conditions.
Collapse
MESH Headings
- Ammonia/pharmacology
- Animals
- Animals, Newborn
- Blotting, Western/methods
- Cell Count/methods
- Cell Death/drug effects
- Cells, Cultured
- Cerebellum/cytology
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Dizocilpine Maleate/pharmacology
- Dose-Response Relationship, Drug
- Drug Interactions
- Electrophoresis, Gel, Two-Dimensional/methods
- Enzyme Inhibitors/pharmacology
- Excitatory Amino Acid Agonists/pharmacology
- Excitatory Amino Acid Antagonists/pharmacology
- Fluorescent Antibody Technique/methods
- Immunoprecipitation/methods
- Isoquinolines/pharmacology
- N-Methylaspartate/pharmacology
- Neurons/drug effects
- Neurons/metabolism
- Nuclear Proteins/metabolism
- Phosphorylation/drug effects
- RNA-Binding Proteins
- Rats
- Rats, Wistar
- Receptors, N-Methyl-D-Aspartate/physiology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
- Sulfonamides/pharmacology
- Time Factors
Collapse
Affiliation(s)
- Gennaro Giordano
- Laboratory of Neurobiology, Fundación Valenciana de Investigaciones Biomedicas, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Hallett PJ, Dunah AW, Ravenscroft P, Zhou S, Bezard E, Crossman AR, Brotchie JM, Standaert DG. Alterations of striatal NMDA receptor subunits associated with the development of dyskinesia in the MPTP-lesioned primate model of Parkinson's disease. Neuropharmacology 2005; 48:503-16. [PMID: 15755478 DOI: 10.1016/j.neuropharm.2004.11.008] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 10/16/2004] [Accepted: 11/27/2004] [Indexed: 11/25/2022]
Abstract
The development of dyskinesias and other motor complications greatly limits the use of levodopa therapy in Parkinson's disease (PD). Studies in rodent models of PD suggest that an important mechanism underlying the development of levodopa-related motor complications is alterations in striatal NMDA receptor function. We examined striatal NMDA receptors in the MPTP-lesioned primate model of PD. Quantitative immunoblotting was used to determine the subcellular abundance of NR1, NR2A and NR2B subunits in striata from unlesioned, MPTP-lesioned (parkinsonian) and MPTP-lesioned, levodopa-treated (dyskinetic) macaques. In parkinsonian macaques, NR1 and NR2B subunits in synaptosomal membranes were decreased to 66 +/- 11% and 51.2 +/- 5% of unlesioned levels respectively, while the abundance of NR2A was unaltered. Levodopa treatment eliciting dyskinesia normalized NR1 and NR2B and increased NR2A subunits to 150 +/- 12% of unlesioned levels. No alterations in receptor subunit tyrosine phosphorylation were detected. These results demonstrate that altered synaptic abundance of NMDA receptors with relative enhancement in the abundance of NR2A occurs in primate as well as rodent models of parkinsonism, and that in the macaque model, NR2A subunit abundance is further increased in dyskinesia. These data support the view that alterations in striatal NMDA receptor systems are responsible for adaptive and maladaptive responses to dopamine depletion and replacement in parkinsonism, and highlight the value of subtype selective NMDA antagonists as novel therapeutic approaches for PD.
Collapse
Affiliation(s)
- P J Hallett
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, 114 16th Street, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Marti M, Manzalini M, Fantin M, Bianchi C, Della Corte L, Morari M. Striatal glutamate release evoked in vivo by NMDA is dependent upon ongoing neuronal activity in the substantia nigra, endogenous striatal substance P and dopamine. J Neurochem 2005; 93:195-205. [PMID: 15773919 DOI: 10.1111/j.1471-4159.2005.03015.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of the present microdialysis study was to investigate whether the increase in striatal glutamate levels induced by intrastriatal perfusion with NMDA was dependent on the activation of extrastriatal loops and/or endogenous striatal substance P and dopamine. The NMDA-evoked striatal glutamate release was mediated by selective activation of the NMDA receptor-channel complex and action potential propagation, as it was prevented by local perfusion with dizocilpine and tetrodotoxin, respectively. Tetrodotoxin and bicuculline, perfused distally in the substantia nigra reticulata, prevented the NMDA-evoked striatal glutamate release, suggesting its dependence on ongoing neuronal activity and GABA(A) receptor activation, respectively, in the substantia nigra. The NMDA-evoked glutamate release was also dependent on striatal substance P and dopamine, as it was antagonized by intrastriatal perfusion with selective NK(1) (SR140333), D(1)-like (SCH23390) and D(2)-like (raclopride) receptor antagonists, as well as by striatal dopamine depletion. Furthermore, impairment of dopaminergic transmission unmasked a glutamatergic stimulation by submicromolar NMDA concentrations. We conclude that in vivo the NMDA-evoked striatal glutamate release is mediated by activation of striatofugal GABAergic neurons and requires activation of striatal NK(1) and dopamine receptors. Endogenous striatal dopamine inhibits or potentiates the NMDA action depending on the strength of the excitatory stimulus (i.e. the NMDA concentration).
Collapse
Affiliation(s)
- Matteo Marti
- Department of Experimental and Clinical Medicine, Section of Pharmacology, and Neuroscience Center, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
145
|
Bibbiani F, Costantini LC, Patel R, Chase TN. Continuous dopaminergic stimulation reduces risk of motor complications in parkinsonian primates. Exp Neurol 2005; 192:73-8. [PMID: 15698620 DOI: 10.1016/j.expneurol.2004.11.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 11/05/2004] [Accepted: 11/10/2004] [Indexed: 10/25/2022]
Abstract
Levodopa or short-acting dopamine (DA) agonist treatment of advanced parkinsonian patients exposes striatal DA receptors to non-physiologic intermittent stimulation that contributes to the development of dyskinesias and other motor complications. To determine whether continuous dopaminergic stimulation can delay or prevent onset of motor complications, four MPTP-lesioned, levodopa-naive cynomolgus monkeys were implanted subcutaneously with apomorphine containing ethylene vinyl acetate rods. Three other MPTP-lesioned monkeys received daily injections of apomorphine. Animals receiving apomorphine rods showed improved motor function ('ON' state) within 1 day of implantation, and remained continually 'ON' for the duration of treatment (up to 6 months) without developing dyskinesias. Injected animals also showed similar improvement in motor function after each apomorphine injection. However, these primates remained 'ON' for only 90 min and within 7-10 days all developed severe dyskinesias. Implanted monkeys evidenced local irritation, which was alleviated by steroid co-therapy.
Collapse
Affiliation(s)
- Francesco Bibbiani
- Experimental Therapeutic Branch, Building 10, Room 5C103, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892-1406, USA
| | | | | | | |
Collapse
|
146
|
Pisani A, Centonze D, Bernardi G, Calabresi P. Striatal synaptic plasticity: Implications for motor learning and Parkinson's disease. Mov Disord 2005; 20:395-402. [PMID: 15719415 DOI: 10.1002/mds.20394] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Changing the strength of synaptic connections between neurons is widely assumed to be the mechanism by which memory traces are encoded and stored in the central nervous system. Plastic changes appear to follow a regional specialization and underlie the specific type of memory mediated by the brain area in which plasticity occurs. Thus, long-term changes occurring at excitatory corticostriatal synapses should be critically involved in motor learning. Indeed, repetitive stimulation of the corticostriatal pathway can cause either a long-lasting increase or an enduring decrease in synaptic strength, respectively referred to as long-term potentiation (LTP), and long-term depression, both requiring a complex sequence of biochemical events. Once established, LTP can be reversed to control levels by a low-frequency stimulation protocol, an active phenomenon defined "synaptic depotentiation," required to erase redundant information. In the 6-hydroxydopamine rat model of Parkinson's disease (PD), striatal synaptic plasticity has been shown to be impaired, although chronic treatment with levodopa was able to restore it. Of interest, a consistent number of L-dopa-treated animals developed involuntary movements, resembling human dyskinesias. Strikingly, electrophysiological recordings from the dyskinetic group of rats demonstrated a selective impairment of synaptic depotentiation. This survey will provide an overview of plastic changes occurring at striatal synapses. The potential relevance of these findings in the control of motor function and in the pathogenesis both of PD and L-dopa-induced motor complications will be discussed.
Collapse
Affiliation(s)
- Antonio Pisani
- Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma "Tor Vergata" and Fondazione Santa Lucia, I.R.C.C.S., Roma, Italy
| | - Diego Centonze
- Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma "Tor Vergata" and Fondazione Santa Lucia, I.R.C.C.S., Roma, Italy
| | - Giorgio Bernardi
- Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma "Tor Vergata" and Fondazione Santa Lucia, I.R.C.C.S., Roma, Italy
| | - Paolo Calabresi
- Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma "Tor Vergata" and Fondazione Santa Lucia, I.R.C.C.S., Roma, Italy
| |
Collapse
|
147
|
Furukawa Y, Filiano JJ, Kish SJ. Amantadine for levodopa-induced choreic dyskinesia in compound heterozygotes for GCH1 mutations. Mov Disord 2005; 19:1256-8. [PMID: 15389992 DOI: 10.1002/mds.20194] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Amantadine suppressed severe levodopa-induced choreic dyskinesia, which developed at initiation of levodopa therapy, in two siblings manifesting dystonia with motor delay phenotype of GTP cyclohydrolase I deficiency caused by compound heterozygous GCH1 mutations. Our finding suggests a beneficial effect of amantadine on this type of dyskinesia frequently observed in relatively severe dopamine-deficient metabolic disorders.
Collapse
Affiliation(s)
- Yoshiaki Furukawa
- Movement Disorders Research Laboratory, Centre for Addiction and Mental Health-Clarke Division, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
148
|
Antonelli T, Fuxe K, Tomasini MC, Bartoszyk GD, Seyfried CA, Tanganelli S, Ferraro L. Effects of sarizotan on the corticostriatal glutamate pathways. Synapse 2005; 58:193-9. [PMID: 16138317 DOI: 10.1002/syn.20195] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The effects of sarizotan, a 5-HT(1A) agonist with additional affinity for D(3) and D(4) receptors, have been studied on the corticostriatal glutamate pathways using dual-probe microdialysis in the awake rat. Sarizotan given systemically (0.1-10 mg/kg s.c.) or perfused into the motor cortex (10 microM) produced 20-30% reduction of cortical and striatal glutamate levels. The inhibitory effects of the systemic sarizotan on cortical and striatal glutamate levels were counteracted by intracortical perfusion with the 5-HT(1A) antagonist WAY100135 (10 microM). These findings suggest that the anti-dyskinetic properties of sarizotan could be mediated via its 5-HT(1A) agonist actions in the motor cortex, leading to reduced activity in the corticostriatal glutamate pathways with reduced activation of the striatopallidal GABA pathway mediating motor inhibition.
Collapse
Affiliation(s)
- Tiziana Antonelli
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
149
|
Konradi C, Westin JE, Carta M, Eaton ME, Kuter K, Dekundy A, Lundblad M, Cenci MA. Transcriptome analysis in a rat model of L-DOPA-induced dyskinesia. Neurobiol Dis 2004; 17:219-36. [PMID: 15474360 PMCID: PMC4208672 DOI: 10.1016/j.nbd.2004.07.005] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Revised: 05/24/2004] [Accepted: 07/12/2004] [Indexed: 02/04/2023] Open
Abstract
We have examined the pattern of striatal messenger RNA expression of over 8000 genes in a rat model of levodopa (L-DOPA)-induced dyskinesia and Parkinson disease (PD). 6-Hydroxydopamine (6-OHDA)-lesioned rats were treated with L-DOPA or physiological saline for 22 days and repeatedly tested for antiakinetic response to L-DOPA and the development of abnormal involuntary movements (AIMs). In a comparison of rats that developed a dyskinetic motor response to rats that did not, we found striking differences in gene expression patterns. In rats that developed dyskinesia, GABA neurons had an increased transcriptional activity, and genes involved in Ca2+ homeostasis, in Ca2+ -dependent signaling, and in structural and synaptic plasticity were upregulated. The gene expression patterns implied that the dyskinetic striatum had increased transcriptional, as well as synaptic activity, and decreased capacity for energy production. Some basic maintenance chores such as ribosome protein biosynthesis were downregulated, possibly a response to expended ATP levels.
Collapse
Affiliation(s)
- Christine Konradi
- Laboratory of Neuroplasticity, McLean Hospital, Belmont, MA 02478, USA.
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Wessell RH, Ahmed SM, Menniti FS, Dunbar GL, Chase TN, Oh JD. NR2B selective NMDA receptor antagonist CP-101,606 prevents levodopa-induced motor response alterations in hemi-parkinsonian rats. Neuropharmacology 2004; 47:184-94. [PMID: 15223297 DOI: 10.1016/j.neuropharm.2004.03.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2003] [Revised: 03/03/2004] [Accepted: 03/18/2004] [Indexed: 11/20/2022]
Abstract
Sensitization of NMDA receptors containing the NR2B subunit has been increasingly associated with various forms of synaptic plasticity, including those implicated in the pathogenesis of extrapyramidal motor dysfunction. To determine whether activation of NR2B containing receptors contributes to the development and maintenance of levodopa-induced response changes in parkinsonian animals, we evaluated the effects of the selective NR2B antagonist CP-101,606 on these response alterations in unilateral 6-hydroxydopamine (6-OHDA) lesioned rats. Three weeks of twice-daily levodopa treatment decreased the duration of the rotational response to acute levodopa challenge. The response alteration was associated with an increase in GluR1 (S831) phosphorylation in medium spiny neurons of the dorsolateral striatum. Both the attenuated rotational response and augmented GluR1 phosphorylation were decreased by CP-101,606 treatment. These CP-101,606 effects were observed when the compound was administered either at the end of chronic levodopa treatment (ameliorative effect) or together with the twice-daily levodopa treatment for 3 weeks (preventive effect). Furthermore, concurrent administration of CP-101,606 with levodopa potentiated the ability of levodopa challenge to reverse the 6-OHDA lesion-induced contralateral forelimb movement deficit as measured in a drag test. These results suggest that activation of NR2B subunit containing NMDA receptors contributes to both the development and maintenance of levodopa-induced motor response alterations, through a mechanism that involves an increase in GluR1 phosphorylation in striatal spiny neurons.
Collapse
Affiliation(s)
- R H Wessell
- Psychology Department, Central Michigan University, BRAIN Center, Sloan 224, Mount Pleasant, MI 48858, USA
| | | | | | | | | | | |
Collapse
|