101
|
Ouyang G, Rühe J, Zhang Y, Lin M, Liu M, Würthner F. Intramolecular Energy and Solvent-Dependent Chirality Transfer within a BINOL-Perylene Hetero-Cyclophane. Angew Chem Int Ed Engl 2022; 61:e202206706. [PMID: 35638322 PMCID: PMC9400993 DOI: 10.1002/anie.202206706] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Indexed: 11/11/2022]
Abstract
Multichromophoric macrocycles and cyclophanes are important supramolecular architectures for the elucidation of interchromophoric interactions originating from precise spatial organization. Herein, by combining an axially chiral binaphthol bisimide (BBI) and a bay-substituted conformationally labile twisted perylene bisimide (PBI) within a cyclophane of well-defined geometry, we report a chiral PBI hetero-cyclophane (BBI-PBI) that shows intramolecular energy and solvent-regulated chirality transfer from the BBI to the PBI subunit. Excellent spectral overlap and spatial arrangement of BBI and PBI lead to efficient excitation energy transfer and subsequent PBI emission with high quantum yield (80-98 %) in various solvents. In contrast, chirality transfer is strongly dependent on the respective solvent as revealed by circular dichroism (CD) spectroscopy. The combination of energy and chirality transfer affords a bright red circularly polarized luminescence (CPL) from the PBI chromophore by excitation of BBI.
Collapse
Affiliation(s)
- Guanghui Ouyang
- Universität WürzburgInstitut für Organische Chemie & Center for Nanosystems ChemistryAm Hubland97074WürzburgGermany
- CAS Key Laboratory of ColloidInterface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of SciencesZhongGuanCun, North First Street 2100190BeijingChina
| | - Jessica Rühe
- Universität WürzburgInstitut für Organische Chemie & Center for Nanosystems ChemistryAm Hubland97074WürzburgGermany
| | - Yang Zhang
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University350116FuzhouChina
| | - Mei‐Jin Lin
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University350116FuzhouChina
| | - Minghua Liu
- CAS Key Laboratory of ColloidInterface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of SciencesZhongGuanCun, North First Street 2100190BeijingChina
| | - Frank Würthner
- Universität WürzburgInstitut für Organische Chemie & Center for Nanosystems ChemistryAm Hubland97074WürzburgGermany
| |
Collapse
|
102
|
Luňák S, Weiter M, Vala M. Complete Set of Diketopyrrolopyrrole Centrosymmetrical Cofacial Stacked Pairs. Chemphyschem 2022; 23:e202200252. [PMID: 35770507 DOI: 10.1002/cphc.202200252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/29/2022] [Indexed: 11/12/2022]
Abstract
Stacked centrosymmetrical dimers and simultaneously H-bonded and stacked hexamers of thiophene-substituted diketopyrrolopyrrole (ThDPP) were studied using DFT as models for crystals with slipped-stacked molecules in 1D columns. Eight stacked dimer arrangements were found, six of which are driven by the minimisation of electron repulsion and realised by placing the partially negatively charged atoms of the diketopyrrolopyrrole rings below the centre of an adjancent thiophene ring. Four of these stacks are related to N,N'-diacylated derivative. An analogous set of eight stacks was discovered computationally for phenyl-substituted DPP (PhDPP), four of which are known among H-bonded DPP pigments, and one more among N,N'-dialkylated PhDPP derivatives. The results shed more light on the mechanisms that drive the formation of stacks between nonaromatic (DPP) and aromatic (Th, Ph) rings. The excitation energies of the lowest four singlet states computed by TD DFT enabled excitonic coupling and energy separation between Frenkel-resonsnce-type and charge-transfer states to be established, depending on the equilibrium stack geometry.
Collapse
Affiliation(s)
- Stanislav Luňák
- Brno University of Technology: Vysoke uceni technicke v Brne, Faculty of Chemistry, Purkyňova 464/118, 61200, Brno, CZECH REPUBLIC
| | - Martin Weiter
- Brno University of Technology: Vysoke uceni technicke v Brne, Faculty of Chemistry, Purkyňova 464/118, 61200, Brno, CZECH REPUBLIC
| | - Martin Vala
- Brno University of Technology: Vysoke uceni technicke v Brne, Faculty of Chemistry, Purkyňova 464/118, 61200, Brno, CZECH REPUBLIC
| |
Collapse
|
103
|
Kim T, Lin C, Schultz JD, Young RM, Wasielewski MR. π-Stacking-Dependent Vibronic Couplings Drive Excited-State Dynamics in Perylenediimide Assemblies. J Am Chem Soc 2022; 144:11386-11396. [PMID: 35699940 DOI: 10.1021/jacs.2c03993] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vibronic coupling, the interplay of electronic and nuclear vibrational motion, is considered a critical mechanism in photoinduced reactions such as energy transfer, charge transfer, and singlet fission. However, our understanding of how particular vibronic couplings impact excited-state dynamics is lacking due to the limited number of experimental studies of model molecular systems. Herein, we use two-dimensional electronic spectroscopy (2DES) to launch and interrogate a range of vibronic coherences in two distinct types of perylenediimide slip stacks─along the short and long molecular axes, which form either an excimer or a mixed state between the Frenkel exciton (FE) and charge transfer states. We explore the functionality of these vibronic coherences using quantum beatmaps, which display the Fourier amplitude signal oscillations as a function of pump and probe frequencies, along with knowledge of the characteristic signatures of the FE, ionic, and excimer species. We find that a low-frequency vibrational mode of the short-axis slip stack appears concomitantly with the formation of the excimer state, survives 2-fold longer than in the FE state in the reference monomer, and shows a phase shift compared to other modes. For the long-axis slip stacks, a pair of low-frequency modes coupled to a high-frequency coordinate of the FE state were found to play a critical role in mixed-state generation. Our findings thus experimentally reveal the complex and varying roles of vibronic couplings in tightly packed multimers undergoing a range of photoinduced processes.
Collapse
Affiliation(s)
- Taeyeon Kim
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Chenjian Lin
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Jonathan D Schultz
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Ryan M Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
104
|
Jadhav SD, Sasikumar D, Hariharan M. Modulating singlet fission through interchromophoric rotation. Phys Chem Chem Phys 2022; 24:16193-16199. [PMID: 35749225 DOI: 10.1039/d2cp01116f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Singlet fission (SF) is a spin-allowed, exciton-multiplying phenomenon that can be utilized to improve the efficiency of organic solar cells. It is well-understood that SF is sensitive to the local crystal morphology and an appropriately balanced coupling is essential to facilitate efficient SF. In this study, we show how the interchromophoric rotation selectively modulates the interaction between the monomer frontier molecular orbitals, promoting both fast and exothermal SF. We evaluate the effective electronic coupling for SF (VSF), the square of which is proportional to the SF rate, and the effective energies of the Frenkel exciton (FE/S1S0) and triplet pair exciton (TT) in a terrylene dimer model. Optimal interplanar rotation of the chromophoric moieties in slip-stacked arrangements pulls the effective energy of the TT state below that of the FE state. Consequently, SF is favored over competing pathways such as excimer formation, thereby enhancing the overall triplet yield. This work represents a step towards improvising the molecular design guidelines for SF and understanding the importance of interchromophoric rotation over the conventional slip-stacked arrangements for achieving favorable intermolecular electronic coupling towards efficient SF.
Collapse
Affiliation(s)
- Sohan D Jadhav
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram, Kerala, 695551, India.
| | - Devika Sasikumar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram, Kerala, 695551, India.
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
105
|
Wilson S, Li DH, Ruban AV. The Structural and Spectral Features of Light-Harvesting Complex II Proteoliposomes Mimic Those of Native Thylakoid Membranes. J Phys Chem Lett 2022; 13:5683-5691. [PMID: 35709359 PMCID: PMC9237827 DOI: 10.1021/acs.jpclett.2c01019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The major photosystem II light-harvesting antenna (LHCII) is the most abundant membrane protein in nature and plays an indispensable role in light harvesting and photoprotection in the plant thylakoid. Here, we show that "pseudothylakoid characteristics" can be observed in artificial LHCII membranes. In our proteoliposomal system, at high LHCII densities, the liposomes become stacked, mimicking the in vivo thylakoid grana membranes. Furthermore, an unexpected, unstructured emission peak at ∼730 nm appears, similar in appearance to photosystem I emission, but with a clear excimeric character that has never been previously reported. These states correlate with the increasing density of LHCII in the membrane and a decrease in its average fluorescence lifetime. The appearance of these low-energy states can also occur in natural plant membrane structures, which has unique consequences for the interpretation of the spectroscopic and physiological properties of the photosynthetic membrane.
Collapse
|
106
|
Ouyang G, Rühe J, Zhang Y, Lin M, Liu M, Würthner F. Intramolecular Energy and Solvent‐Dependent Chirality Transfer within a BINOL‐Perylene Hetero‐Cyclophane. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Guanghui Ouyang
- Universität Würzburg Institut für Organische Chemie & Center for Nanosystems Chemistry Am Hubland 97074 Würzburg Germany
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun, North First Street 2 100190 Beijing China
| | - Jessica Rühe
- Universität Würzburg Institut für Organische Chemie & Center for Nanosystems Chemistry Am Hubland 97074 Würzburg Germany
| | - Yang Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University 350116 Fuzhou China
| | - Mei‐Jin Lin
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University 350116 Fuzhou China
| | - Minghua Liu
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun, North First Street 2 100190 Beijing China
| | - Frank Würthner
- Universität Würzburg Institut für Organische Chemie & Center for Nanosystems Chemistry Am Hubland 97074 Würzburg Germany
| |
Collapse
|
107
|
Niu X, Tajima K, Kong J, Tao M, Fukui N, Kuang Z, Shinokubo H, Xia A. Symmetry-breaking charge separation in a nitrogen-bridged naphthalene monoimide dimer. Phys Chem Chem Phys 2022; 24:14007-14015. [PMID: 35635531 DOI: 10.1039/d2cp00295g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photophysical properties of 4-aminonaphthalene-1,8-imide-based derivatives, bis-ANI, consisting of two naphthalimide (NI) units linked by a butylamine bridge and its monomer ANI have been intensively investigated by steady-state and transient spectroscopy combined with quantum chemical calculations. The excited state relaxation dynamics of the two molecules are studied in three solvents of varying polarity - from hexane to tetrahydrofuran to acetone. A strong reduction in the fluorescence quantum yields and larger red shifts of the emission spectra are observed when going from the monomer ANI to dimer bis-ANI with increasing solvent polarity. It is found that the presence of the central amino linker in bis-ANI facilitates the formation of an asymmetric CS state between the ANI and NI moieties in bis-ANI, where NI˙- is the dominant radical anion unit after CS, evidenced by the femtosecond transient absorption measurements and spectroelectrochemistry in polar solvents. Femtosecond transient absorption spectra and quantum chemical calculations reveal the conformational change after the formation of the symmetry-breaking charge separation (SBCS) state upon photoexcitation, while a near-orthogonal structure in the excited state of bis-ANI retards charge recombination. In addition, it is evidenced that the rate of SBCS can be tuned by changing the different polar solvents.
Collapse
Affiliation(s)
- Xinmiao Niu
- State Key Laboratory of Information Photonic and Optical Communications, School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100176, P. R. China. .,Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Keita Tajima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.
| | - Jie Kong
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Min Tao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.
| | - Zhuoran Kuang
- State Key Laboratory of Information Photonic and Optical Communications, School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100176, P. R. China.
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.
| | - Andong Xia
- State Key Laboratory of Information Photonic and Optical Communications, School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100176, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
108
|
Cheng A, Jiang Y, Su H, Zhang B, Jiang J, Wang T, Luo Y, Zhang G. Origin of Red‐Shifted Phosphorescence from Triphenylamines: Triplet Excimer or Impurity? Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Aoyuan Cheng
- University of Science and Technology of China Hefei National Research Center for Physical Sciences at the Microscale CHINA
| | - Yifan Jiang
- University of Sciencen and Technology of China Hefei National Research Center for Physical Sciences at the Microscale CHINA
| | - Hao Su
- University of Science and Technology of China University of Science and Technology of China CHINA
| | - Baicheng Zhang
- University of Science and Technology of China Hefei National Laboratory CHINA
| | - Jun Jiang
- University of Science and Technology of China Hefei National Research Center for Physical Sciences at the Microscale CHINA
| | - Tao Wang
- University of Scicence and Technology of China Hefei National Research Center for Physical Sciences at the Microscale CHINA
| | - Yi Luo
- University of Sciencen and Technology of China Hefei National Research Center for Physical Sciences at the Microscale CHINA
| | - Guoqing Zhang
- University of Science and Technology of China Polymer Science and Engineering CHINA
| |
Collapse
|
109
|
Estergreen L, Mencke AR, Cotton DE, Korovina NV, Michl J, Roberts ST, Thompson ME, Bradforth SE. Controlling Symmetry Breaking Charge Transfer in BODIPY Pairs. Acc Chem Res 2022; 55:1561-1572. [PMID: 35604637 DOI: 10.1021/acs.accounts.2c00044] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ConspectusSymmetry breaking charge transfer (SBCT) is a process in which a pair of identical chromophores absorb a photon and use its energy to transfer an electron from one chromophore to the other, breaking the symmetry of the chromophore pair. This excited state phenomenon is observed in photosynthetic organisms where it enables efficient formation of separated charges that ultimately catalyze biosynthesis. SBCT has also been proposed as a means for developing photovoltaics and photocatalytic systems that operate with minimal energy loss. It is known that SBCT in both biological and artificial systems is in part made possible by the local environment in which it occurs, which can move to stabilize the asymmetric SBCT state. However, how environmental degrees of freedom act in concert with steric and structural constraints placed on a chromophore pair to dictate its ability to generate long-lived charge pairs via SBCT remain open topics of investigation.In this Account, we compare a broad series of dipyrrin dimers that are linked by distinct bridging groups to discern how the spatial separation and mutual orientation of linked chromophores and the structural flexibility of their linker each impact SBCT efficiency. Across this material set, we observe a general trend that SBCT is accelerated as the spatial separation between dimer chromophores decreases, consistent with the expectation that the electronic coupling between these units varies exponentially with their separation. However, one key observation is that the rate of charge recombination following SBCT was found to slow with decreasing interchromophore separation, rather than speed up. This stems from an enhancement of the dimer's structural rigidity due to increasing steric repulsion as the length of their linker shrinks. This rigidity further inhibits charge recombination in systems where symmetry has already enforced zero HOMO-LUMO overlap. Additionally, for the forward transfer, the active torsion is shown to increase LUMO-LUMO coupling, allowing for faster SBCT within bridging groups.By understanding trends for how rates of SBCT and charge recombination depend on a dimer's internal structure and its environment, we identify design guidelines for creating artificial systems for driving sustained light-induced charge separation. Such systems can find application in solar energy technologies and photocatalytic applications and can serve as a model for light-induced charge separation in biological systems.
Collapse
Affiliation(s)
- Laura Estergreen
- Department of Chemistry, University of Southern California, Los Angeles California 90089, United States
| | - Austin R. Mencke
- Department of Chemistry, University of Southern California, Los Angeles California 90089, United States
| | - Daniel E. Cotton
- Department of Chemistry, University of Texas at Austin, Austin Texas 78712, United States
| | - Nadia V. Korovina
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Josef Michl
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Sean T. Roberts
- Department of Chemistry, University of Texas at Austin, Austin Texas 78712, United States
| | - Mark E. Thompson
- Department of Chemistry, University of Southern California, Los Angeles California 90089, United States
| | - Stephen E. Bradforth
- Department of Chemistry, University of Southern California, Los Angeles California 90089, United States
| |
Collapse
|
110
|
Tian W, Sukhanov AA, Bussotti L, Pang J, Zhao J, Voronkova VK, Di Donato M, Li MD. Charge Separation and Intersystem Crossing in Homo- and Hetero-Compact Naphthalimide Dimers. J Phys Chem B 2022; 126:4364-4378. [PMID: 35649261 DOI: 10.1021/acs.jpcb.2c02276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Naphthalimide (NI) homo- and hetero-dimers adopting orthogonal geometry were prepared to study photo-induced symmetry-breaking charge transfer (SBCT) and charge recombination (CR)-induced intersystem crossing (ISC). The two moieties in the dimer are connected either at the 3-C or 4-C position of the NI unit. The photophysical properties of the dimers were studied with steady-state and transient absorption spectroscopic methods. Significant CT only occurs for the hetero-dimer, in which one NI unit has a 4-amino substituent and the other NI unit is without it. The CR-induced ISC is most efficient for this dimer (singlet oxygen quantum yield ΦΔ = 50.3%). For the homo-dimer, in which both NI units did not present amino substitution, SBCT was not observed. Based on the electrochemical studies, we propose that the absence of SBCT for the homo-dimer is attributed to its high oxidation potential and low reduction potential. Femtosecond transient absorption (fs TA) spectra show that there is no charge separation (CS) for the homo-dimer. Nanosecond transient absorption spectroscopy indicate the formation of a triplet state with electron delocalization for the homo dimer, with a lifetime of 72.0 μs, while for the hetero dimer a triplet state with an intrinsic lifetime of 206.4 μs is observed. CS (11.6 ps) and slow CR-induced ISC (>1.5 ns) were observed for the hetero-dimer. Time-resolved electron paramagnetic resonance spectra give the zero-field splitting parameters (|D| = 1894 MHz and |E| = 111 MHz) and electron spin polarization patterns (e, e, e, a, a, a) for the triplet state of the hetero-dimer, inferring that the triplet state of the hetero-dimer is confined on the amino-substituted NI moiety.
Collapse
Affiliation(s)
- Wen Tian
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia
| | - Laura Bussotti
- LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, Sesto Fiorentino (FI) 50019, Italy
| | - Junhong Pang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420029, Russia
| | - Mariangela Di Donato
- LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, Sesto Fiorentino (FI) 50019, Italy
- ICCOM-CNR, via Madonna del Piano 10, Sesto Fiorentino (FI) 50019, Italy
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| |
Collapse
|
111
|
Kim JH, Schembri T, Bialas D, Stolte M, Würthner F. Slip-Stacked J-Aggregate Materials for Organic Solar Cells and Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104678. [PMID: 34668248 DOI: 10.1002/adma.202104678] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Dye-dye interactions affect the optical and electronic properties in organic semiconductor films of light harvesting and detecting optoelectronic applications. This review elaborates how to tailor these properties of organic semiconductors for organic solar cells (OSCs) and organic photodiodes (OPDs). While these devices rely on similar materials, the demands for their optical properties are rather different, the former requiring a broad absorption spectrum spanning from the UV over visible up to the near-infrared region and the latter an ultra-narrow absorption spectrum at a specific, targeted wavelength. In order to design organic semiconductors satisfying these demands, fundamental insights on the relationship of optical properties are provided depending on molecular packing arrangement and the resultant electronic coupling thereof. Based on recent advancements in the theoretical understanding of intermolecular interactions between slip-stacked dyes, distinguishing classical J-aggregates with predominant long-range Coulomb coupling from charge transfer (CT)-mediated or -coupled J-aggregates, whose red-shifts are primarily governed by short-range orbital interactions, is suggested. Within this framework, the relationship between aggregate structure and functional properties of representative classes of dye aggregates is analyzed for the most advanced OSCs and wavelength-selective OPDs, providing important insights into the rational design of thin-film optoelectronic materials.
Collapse
Affiliation(s)
- Jin Hong Kim
- Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Tim Schembri
- Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - David Bialas
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Matthias Stolte
- Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Frank Würthner
- Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
112
|
Wang K, Shao G, Peng S, You X, Chen X, Xu J, Huang H, Wang H, Wu D, Xia J. Achieving Symmetry-Breaking Charge Separation in Perylenediimide Trimers: The Effect of Bridge Resonance. J Phys Chem B 2022; 126:3758-3767. [PMID: 35559687 DOI: 10.1021/acs.jpcb.2c02387] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Symmetry-breaking charge separation (SB-CS) provides a very promising option to engineer a novel light conversion scheme, while it is still a challenge to realize SB-CS in a nonpolar environment. The strength of electronic coupling plays a crucial role in determining the exciton dynamics of organic semiconductors. Herein, we describe how to mediate interchromophore coupling to achieve SB-CS in a nonpolar solvent by the use of two perylenediimide (PDI)-based trimers, 1,7-tri-PDI and 1,6-tri-PDI. Although functionalization at the N-atom decreases electronic coupling between PDI units, our strategy takes advantage of "bridge resonance", in which the frontier orbital energies are nearly degenerate with those of the covalently linked PDI units, leading to enhanced interchromophore electronic coupling. Tunable electronic coupling was realized by the judicious combination of "bridge resonance" with N-functionalization. The enhanced mixing between the S1 state and CT/CS states results in direct observation of the CT band in the steady-state UV-vis absorption and negative free energy of charge separation (ΔGCS) in both chloroform and toluene for the two trimers. Using transient absorption spectroscopy, we demonstrated that photoinduced SB-CS in a nonpolar solvent is feasible. This work highlights that the use of "bridge resonance" is an effective way to control exciton dynamics of organic semiconductors.
Collapse
Affiliation(s)
- Kangwei Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Guangwei Shao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Shaoqian Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaoxiao You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xingyu Chen
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jingwen Xu
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Huaxi Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China.,School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Huan Wang
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Di Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China.,School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China.,School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
113
|
Accelerating symmetry-breaking charge separation in a perylenediimide trimer through a vibronically coherent dimer intermediate. Nat Chem 2022; 14:786-793. [PMID: 35469005 DOI: 10.1038/s41557-022-00927-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/10/2022] [Indexed: 11/08/2022]
Abstract
Understanding the photophysics and photochemistry of molecular π-stacked chromophores is important for utilizing them as functional photonic materials. However, these investigations have been mostly limited to covalent molecular dimers, which can only approximate the electronic and vibronic interactions present in the higher oligomers typical of functional organic materials. Here we show that a comparison of the excited-state dynamics of a covalent slip-stacked perylenediimide dimer (2) and trimer (3) provides fundamental insights into electronic state mixing and symmetry-breaking charge separation (SB-CS) beyond the dimer limit. We find that coherent vibronic coupling to high-frequency modes facilitates ultrafast state mixing between the Frenkel exciton (FE) and charge-transfer (CT) states. Subsequently, solvent fluctuations and interchromophore low-frequency vibrations promote CT character in the coherent FE/CT mixed state. The coherent FE/CT mixed state persists in 2, but, in 3, low-frequency vibronic coupling collapses the coherence, resulting in ultrafast SB-CS between the distal perylenediimide units.
Collapse
|
114
|
Seetharaman S, Zink‐Lorre N, Gutiérrez‐Moreno D, Karr PA, Fernández‐Lázaro F, D'Souza F. Quadrupolar Ultrafast Charge Transfer in Diaminoazobenzene‐Bridged Perylenediimide Triads. Chemistry 2022; 28:e202104574. [DOI: 10.1002/chem.202104574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Sairaman Seetharaman
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Nathalie Zink‐Lorre
- Área de Química Orgánica Instituto de Bioingeniería Universidad Miguel Hernández Avda. de la Universidad s/n 03202 Elche Spain
| | - David Gutiérrez‐Moreno
- Área de Química Orgánica Instituto de Bioingeniería Universidad Miguel Hernández Avda. de la Universidad s/n 03202 Elche Spain
| | - Paul A. Karr
- Department of Physical Sciences and Mathematics Wayne State College Wayne Nebraska 68787 USA
| | - Fernando Fernández‐Lázaro
- Área de Química Orgánica Instituto de Bioingeniería Universidad Miguel Hernández Avda. de la Universidad s/n 03202 Elche Spain
| | - Francis D'Souza
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| |
Collapse
|
115
|
Mencaroni L, Carlotti B, Elisei F, Marrocchi A, Spalletti A. Exploring a new class of singlet fission fluorene derivatives with high-energy triplets. Chem Sci 2022; 13:2071-2078. [PMID: 35308848 PMCID: PMC8848920 DOI: 10.1039/d1sc07175k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, we report strong experimental evidence for singlet fission (SF) in a new class of fluorene-based molecules, exhibiting two-branched donor-acceptor structures. The time-resolved spectroscopic results disclose ultrafast formation of a double triplet state (occurring in few picoseconds) and efficient triplet exciton separation (up to 145% triplet yield). The solvent polarity effect and the role of intramolecular charge transfer (ICT) on the SF mechanism have been thoroughly investigated with several advanced spectroscopies. We found that a stronger push-pull character favors SF, as long as the ICT does not act as a trap by opening a competitive pathway. Within the context of other widely-known SF chromophores, the unconventional property of generating high-energy triplet excitons (ca. 2 eV) via SF makes these materials outstanding candidates as photosensitizers for photovoltaic devices.
Collapse
Affiliation(s)
- Letizia Mencaroni
- Department of Chemistry Biology and Biotechnology and CEMIN, University of Perugia via elce di sotto n. 8, 06123 Perugia Italy
| | - Benedetta Carlotti
- Department of Chemistry Biology and Biotechnology and CEMIN, University of Perugia via elce di sotto n. 8, 06123 Perugia Italy
| | - Fausto Elisei
- Department of Chemistry Biology and Biotechnology and CEMIN, University of Perugia via elce di sotto n. 8, 06123 Perugia Italy
| | - Assunta Marrocchi
- Department of Chemistry Biology and Biotechnology and CEMIN, University of Perugia via elce di sotto n. 8, 06123 Perugia Italy
| | - Anna Spalletti
- Department of Chemistry Biology and Biotechnology and CEMIN, University of Perugia via elce di sotto n. 8, 06123 Perugia Italy
| |
Collapse
|
116
|
He G, Yablon LM, Parenti KR, Fallon KJ, Campos LM, Sfeir MY. Quantifying Exciton Transport in Singlet Fission Diblock Copolymers. J Am Chem Soc 2022; 144:3269-3278. [PMID: 35166107 DOI: 10.1021/jacs.1c13456] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Singlet fission (SF) is a mechanism of exciton multiplication in organic chromophores, which has potential to drive highly efficient optoelectronic devices. Creating effective device architectures that operate by SF critically depends on electronic interactions across multiple length scales─from individual molecules to interchromophore interactions that facilitate multiexciton dephasing and exciton diffusion toward donor-acceptor interfaces. Therefore, it is imperative to understand the underpinnings of multiexciton transport and interfacial energy transfer in multichromophore systems. Interestingly, block copolymers (BCPs) can be designed to control multiscale interactions by tailoring the nature of the building blocks, yet SF dynamics are not well understood in these macromolecules. Here, we designed diblock copolymers comprising an inherent energy cleft at the interface between a block with pendent pentacene chromophores and an additional block with pendent tetracene chromophores. The singlet and triplet energy offset between the two blocks creates a driving force for exciton transport along the BCP chain in dilute solution. Using time-resolved optical spectroscopy, we have quantified the yields of key energy transfer steps, including both singlet and triplet energy transfer processes across the pentacene-tetracene interface. From this modular BCP architecture, we correlate the energy transfer time scales and relative yields with the length of each block. The ability to quantify these energy transfer processes provides valuable insights into exciton transport at critical length scales between bulk crystalline systems and small-molecule dimers─an area that has been underexplored.
Collapse
Affiliation(s)
- Guiying He
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, United States.,Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Lauren M Yablon
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kaia R Parenti
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kealan J Fallon
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Matthew Y Sfeir
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, United States.,Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| |
Collapse
|
117
|
Mahl M, Niyas MA, Shoyama K, Würthner F. Multilayer stacks of polycyclic aromatic hydrocarbons. Nat Chem 2022; 14:457-462. [DOI: 10.1038/s41557-021-00861-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022]
|
118
|
Tölle J, Neugebauer J. The Seamless Connection of Local and Collective Excited States in Subsystem Time-Dependent Density Functional Theory. J Phys Chem Lett 2022; 13:1003-1018. [PMID: 35061387 DOI: 10.1021/acs.jpclett.1c04023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The theoretical understanding of photoinduced processes in multichromophoric systems requires, as an essential ingredient, the possibility of accurately describing their electronically excited states. However, the size of these systems often prohibits the usage of conventional electronic-structure methods, so that often multiscale approaches based on phenomenologically motivated models are employed. In contrast, subsystem time-dependent density functional theory (sTDDFT) allows for a subsystem-based ab initio description of multichromophoric systems and therefore allows for, in principle, an exact description of photoinduced processes. This Perspective aims to outline the theoretical foundations and commonly used practical realizations as well as to illustrate benefits of recent developments and open issues in the field of sTDDFT. Prospective, potential future applications and possible methodological developments are discussed.
Collapse
Affiliation(s)
- Johannes Tölle
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
119
|
Paul S, Karunakaran V. Excimer Formation Inhibits the Intramolecular Singlet Fission Dynamics: Systematic Tilting of Pentacene Dimers by Linking Positions. J Phys Chem B 2022; 126:1054-1062. [PMID: 35107283 DOI: 10.1021/acs.jpcb.1c07951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The role of excimer formation in inhibiting or enhancing the efficiency of the intramolecular singlet fission (iSF) process has been a subject of recent debate. Here, we investigated the effect of excimer formation on iSF dynamics by modifying its configuration by connecting pentacenes at various positions. Hence, pentacene dimers having slip-stacked (2,2' BP, J-type), oblique (2,6' BP), and facial (6,6' BP, H-type) configurations were synthesized by covalently linking pentacenes at positions 2,2', 2,6', and 6,6', respectively, with an ethynyl bridge, and their ultrafast excited-state relaxation dynamics were characterized. Femtosecond time-resolved transient absorption spectra revealed that the efficiency of iSF dynamics decreased from slip-stacked (182%) to oblique configuration (97%),whereas in the 6,6' BP with facial configuration, strong electronic coupling led to the formation of excimers that decayed nonradiatively without formation of correlated triplet pairs. These studies reveal the formation of excimers by strong intrapentacene electronic coupling upon ultrafast excitation, preventing the efficient iSF process.
Collapse
Affiliation(s)
- Sumitha Paul
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala 695 019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Venugopal Karunakaran
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala 695 019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
120
|
Ruban A, Saccon F. Chlorophyll a De-Excitation Pathways in the LHCII antenna. J Chem Phys 2022; 156:070902. [DOI: 10.1063/5.0073825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alexander Ruban
- SBBS, Queen Mary University of London - Mile End Campus, United Kingdom
| | - Francesco Saccon
- School of Biological and Chemical Sciences, Queen Mary University of London - Mile End Campus, United Kingdom
| |
Collapse
|
121
|
Impact of Charge-Resonance Excitations on CT-Mediated J-Type Aggregation in Singlet and Triplet Exciton States of Perylene Di-Imide Aggregates: A TDDFT Investigation. COMPUTATION 2022. [DOI: 10.3390/computation10020018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The modulation of intermolecular interactions upon aggregation induces changes in excited state properties of organic molecules that can be detrimental for some optoelectronic applications but can be exploited for others. The time-dependent density functional theory (TDDFT) is a cost-effective approach to determining the exciton states of molecular aggregates, and it has been shown to provide reliable results when coupled with the appropriate choice of the functional. Here we apply a general procedure to analyze the aggregates’ exciton states derived from TDDFT calculations in terms of diabatic states chosen to coincide with local (LE) and charge-transfer (CT) excitations within a restricted orbital space. We apply the approach to study energy profiles, interstate couplings, and the charge-transfer character of singlet and triplet exciton states of perylene di-imide aggregates (PDI). We focus on the intermolecular displacement along the longitudinal translation coordinate, which mimics different amounts of slip-stacking observed in PDI crystals. The analysis, in terms of symmetry-adapted Frenkel excitations (FE) and charge-resonance (CR) states and their interactions, discloses how the interchange of the H/J character for small longitudinal shifts, previously reported for singlet exciton states, also occurs for triplet excitons.
Collapse
|
122
|
Manjanath A, Yang CH, Kue K, Wang CI, Claudio GC, Hsu CP. Enhancing Singlet Fission Coupling with Nonbonding Orbitals. J Chem Theory Comput 2022; 18:1017-1029. [PMID: 34982933 DOI: 10.1021/acs.jctc.1c00868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Singlet fission (SF) is a process where a singlet exciton is split into a pair of triplet excitons. The increase in the excitonic generation can be exploited to enhance the efficiency of solar cells. Molecules with conjugated π bonds are commonly developed for optoelectronic applications including SF, due to their low energy gaps. The electronic coupling for SF in such well-stacked π-conjugated molecule pairs can be rather limited due to the orthogonal π and π* orbital overlaps that are involved in the coupling elements, leading to a large cancellation in the coupling. In the present work, we show that such limits can be removed by involving triplet states of different origins, such as those with nonbonding n orbitals. We demonstrate such an effect for formaldehyde and methylenimine dimers, with a low-lying n-π* triplet state (T1) in addition to the π-π* triplet (T2). We show that the coupling can be enhanced by 40 times or more for the formaldehyde dimer, and 15 times or more for the methylenimine dimer, with the T1-T2 state as the end product of SF. With 1759 randomly oriented pairs of formaldehyde derived from a molecular dynamics simulation, the coupling from a singlet exciton to this T1-T2 state is, on an average, almost two times larger than that for a regular T1-T1 state. We investigated a few families that have been shown to be prospective candidates for SF, using our proposed strategy. However, our unfavorable results indicate that there are clear difficulties in fulfilling the ES1 ≳ ET1 + ET2 energy criterion. Nevertheless, our results provide a new molecular design concept for better SF (and triplet-triplet annihilation, TTA) materials that allows future development.
Collapse
Affiliation(s)
- Aaditya Manjanath
- Institute of Chemistry, Academia Sinica, 128 Section 2 Academia Road, Nankang, Taipei, 115, Taiwan
| | - Chou-Hsun Yang
- Institute of Chemistry, Academia Sinica, 128 Section 2 Academia Road, Nankang, Taipei, 115, Taiwan
| | - Karl Kue
- Institute of Chemistry, Academia Sinica, 128 Section 2 Academia Road, Nankang, Taipei, 115, Taiwan.,Institute of Chemistry, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Chun-I Wang
- Institute of Chemistry, Academia Sinica, 128 Section 2 Academia Road, Nankang, Taipei, 115, Taiwan
| | - Gil C Claudio
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, 128 Section 2 Academia Road, Nankang, Taipei, 115, Taiwan.,National Center for Theoretical Sciences, 1, Section 4, Roosevelt Road, Taipei, 106, Taiwan
| |
Collapse
|
123
|
Kononevich YN, Belova AS, Ionov DS, Sazhnikov VA, Pakhomov AA, Alfimov MV, Muzafarov AM. Novel DBMBF 2-BODIPY dyads connected via a flexible linker: synthesis and photophysical properties. NEW J CHEM 2022. [DOI: 10.1039/d2nj01786e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Novel BODIPY and DBMBF2 dyads connected via a flexible trisiloxane linker were synthesized and their photophysical properties were investigated.
Collapse
Affiliation(s)
- Yuriy N. Kononevich
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Anastasia S. Belova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Dmitry S. Ionov
- Photochemistry Center, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, 119421 Moscow, Russian Federation
| | - Viacheslav A. Sazhnikov
- Photochemistry Center, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, 119421 Moscow, Russian Federation
- Moscow Institute of Physics and Technology (State University), 141707 Dolgoprudny, Russian Federation
| | - Alexey A. Pakhomov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russian Federation
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russian Federation
| | - Mikhail V. Alfimov
- Photochemistry Center, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, 119421 Moscow, Russian Federation
- Moscow Institute of Physics and Technology (State University), 141707 Dolgoprudny, Russian Federation
| | - Aziz M. Muzafarov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russian Federation
- N.S. Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 117393 Moscow, Russian Federation
| |
Collapse
|
124
|
Fei X, Zhang S, Zhai D, Wang Z, Lin JL, Xiao Q, Sun CL, Deng W, Zhang C, Hu W, Zhang HL. Flavanthrene derivatives as photostable and efficient singlet exciton fission materials. Chem Sci 2022; 13:9914-9920. [PMID: 36128249 PMCID: PMC9430411 DOI: 10.1039/d2sc00263a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
Singlet exciton fission (SF) is believed to have the potential to break the Shockley−Quiesser third-generation solar cell devices, so that attracted great attention. Conventional linear acene based SF materials generally...
Collapse
Affiliation(s)
- Xian Fei
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - San Zhang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, School of Physics, Nanjing University Nanjing 210093 China
| | - Dong Zhai
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 China
| | - Zhiwei Wang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, School of Physics, Nanjing University Nanjing 210093 China
| | - Jin-Liang Lin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Qi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Chun-Lin Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Weiqiao Deng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, School of Physics, Nanjing University Nanjing 210093 China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Institute of Molecular Aggregation Science, Tianjin University 300072 Tianjin China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Institute of Molecular Aggregation Science, Tianjin University 300072 Tianjin China
| |
Collapse
|
125
|
Mentzel P, Holzapfel M, Schmiedel A, Krummenacher I, Braunschweig H, Wodyński A, Kaupp M, Würthner F, Lambert C. Excited states and spin–orbit coupling in chalcogen substituted perylene diimides and their radical anions. Phys Chem Chem Phys 2022; 24:26254-26268. [DOI: 10.1039/d2cp02723b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A novel series of chalcogen bay-substituted perylene diimides show increasing SOC, which was investigated in detail via (time-resolved) optical spectroscopy, (spectro)electrochemistry, EPR spectroscopy and TD-DFT calculations.
Collapse
Affiliation(s)
- Paul Mentzel
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marco Holzapfel
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alexander Schmiedel
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Artur Wodyński
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Martin Kaupp
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christoph Lambert
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
126
|
Wang L, Cai W, Sun J, Wu Y, Zhang B, Tian X, Guo S, Liang W, Fu H, Yao J. H-Type-like Aggregation-Accelerated Singlet Fission Process in Dipyrrolonaphthyridinedione Thin Film: The Role of Charge Transfer/Excimer Mixed Intermediate State. J Phys Chem Lett 2021; 12:12276-12282. [PMID: 34931841 DOI: 10.1021/acs.jpclett.1c03265] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Through the combination of transient spectroscopy and theoretical simulations, an accelerated singlet fission (SF) process was evidently observed in the strongly coupled H-type-like aggregation thin films of a dipyrrolonaphthyridinedione skeleton. Results elucidate that in this H-type-like aggregation, the substantially stabilized charge transfer (CT) state is close in energy with singlet and excimer states, resulting in a CT/excimer mixed state, which could drive excited-state population escaping from excimer trap and promote an ultrafast and highly efficient SF process. Our results not only enrich the limited capacity of SF materials but also contribute to an in-depth understanding of SF dynamics in H-type aggregation, which is of fundamental importance for designing new SF sensitizers and implementing practical SF applications.
Collapse
Affiliation(s)
- Long Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wanlin Cai
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jing Sun
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yuling Wu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Bin Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiangbin Tian
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shaoting Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - WanZhen Liang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
127
|
Bonardd S, Díaz Díaz D, Leiva A, Saldías C. Chromophoric Dendrimer-Based Materials: An Overview of Holistic-Integrated Molecular Systems for Fluorescence Resonance Energy Transfer (FRET) Phenomenon. Polymers (Basel) 2021; 13:4404. [PMID: 34960954 PMCID: PMC8705239 DOI: 10.3390/polym13244404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
Dendrimers (from the Greek dendros → tree; meros → part) are macromolecules with well-defined three-dimensional and tree-like structures. Remarkably, this hyperbranched architecture is one of the most ubiquitous, prolific, and recognizable natural patterns observed in nature. The rational design and the synthesis of highly functionalized architectures have been motivated by the need to mimic synthetic and natural-light-induced energy processes. Dendrimers offer an attractive material scaffold to generate innovative, technological, and functional materials because they provide a high amount of peripherally functional groups and void nanoreservoirs. Therefore, dendrimers emerge as excellent candidates since they can play a highly relevant role as unimolecular reactors at the nanoscale, acting as versatile and sophisticated entities. In particular, they can play a key role in the properties of light-energy harvesting and non-radiative energy transfer, allowing them to function as a whole unit. Remarkably, it is possible to promote the occurrence of the FRET phenomenon to concentrate the absorbed energy in photoactive centers. Finally, we think an in-depth understanding of this mechanism allows for diverse and prolific technological applications, such as imaging, biomedical therapy, and the conversion and storage of light energy, among others.
Collapse
Affiliation(s)
- Sebastián Bonardd
- Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez S/N, La Laguna, 38206 Tenerife, Spain; (S.B.); (D.D.D.)
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, La Laguna, 38206 Tenerife, Spain
| | - David Díaz Díaz
- Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez S/N, La Laguna, 38206 Tenerife, Spain; (S.B.); (D.D.D.)
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, La Laguna, 38206 Tenerife, Spain
- Institutfür Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Angel Leiva
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul, Santiago, CL 7820436, USA;
| | - César Saldías
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul, Santiago, CL 7820436, USA;
| |
Collapse
|
128
|
Zink‐Lorre N, Seetharaman S, Gutiérrez‐Moreno D, Fernández‐Lázaro F, Karr PA, D'Souza F. Excited State Charge Separation in an Azobenzene-Bridged Perylenediimide Dimer - Effect of Photochemical Trans-Cis Isomerization. Chemistry 2021; 27:14996-15005. [PMID: 34405918 PMCID: PMC8596671 DOI: 10.1002/chem.202102903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 01/26/2023]
Abstract
Photoinduced charge transfer and separation events in a newly synthesized azobenzene-bridged perylenediimide-dimer (PDI-dimer) are demonstrated. Trans-to-cis conversion (∼50 % efficiency) from the initial trans PDI-dimer by 355 nm pulsed laser light, and its reversal, cis-to-trans, process by 435 nm laser light irradiation has been possible to accomplish. Efficient fluorescence quenching in the PDI-dimer, more so for the cis isomer was witnessed, and such quenching increased with increasing solvent polarity. DFT-calculated geometry and electronic structures helped in visualizing the charge transfer in the PDI-dimer in both isomeric forms, and also revealed certain degree of participation of the azobenzene entity in the charge transfer events. Femtosecond transient absorption spectral studies confirmed occurrence of both charge transfer followed by charge separation in the studied PDI-dimer in both trans and cis forms in polar solvents, and the evaluated time constants from Global target analysis revealed accelerated events in the cis PDI-dimer due to proximity effects. The present study offers key insights on the role of the azobenzene bridge, and the dimer geometry in governing the excited state charge transfer and separation in symmetrically linked PDI dimer.
Collapse
Affiliation(s)
- Nathalie Zink‐Lorre
- Área de Química Orgánica, Instituto de BioingenieríaUniversidad Miguel Hernández de ElcheAvda. de la Universidad s/n03202ElcheSpain
| | - Sairaman Seetharaman
- Department of ChemistryUniversity of North Texas1155 Union Circle, #305070DentonTX 76203-5017USA
| | - David Gutiérrez‐Moreno
- Área de Química Orgánica, Instituto de BioingenieríaUniversidad Miguel Hernández de ElcheAvda. de la Universidad s/n03202ElcheSpain
| | - Fernando Fernández‐Lázaro
- Área de Química Orgánica, Instituto de BioingenieríaUniversidad Miguel Hernández de ElcheAvda. de la Universidad s/n03202ElcheSpain
| | - Paul A. Karr
- Department of Physical Sciences and MathematicsWayne State College1111 Main StreetWayneNebraska68787USA
| | - Francis D'Souza
- Department of ChemistryUniversity of North Texas1155 Union Circle, #305070DentonTX 76203-5017USA
| |
Collapse
|
129
|
Chang X, Wang Z, Wang G, Liu T, Lin S, Fang Y. Perylene Bisimide-Cored Supramolecular Coordination Complexes: Interplay between Ensembles, Excited State Processes, and Aggregation Behaviors. Chemistry 2021; 27:14876-14885. [PMID: 34462989 DOI: 10.1002/chem.202101970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 12/17/2022]
Abstract
Manipulating the optical properties of fluorescent species is challenging owing to complicated and tedious synthetic works. Herein, the photophysical properties of perylene bisimide (PBI) were effectively tuned by varying the geometrical arrangement of PBI moieties within supramolecular coordination complexes (SCCs), where a PBI-based dicycle (2) and a trigonal prism (3) were generated via using a typical 90° Pt(II) reagent, cis-(PEt3 )2 Pt(OTf)2 -based coordination-driven self-assembly approach. The ligand, an ortho-tetrapyridiyl-PBI (1), exhibits a moderate fluorescence quantum yield (∼13 %) and efficient inter-system crossing (ISC). 2, however, is much more emissive with a fluorescence quantum yield of ∼41 %, and the relevant ISC process is significantly hindered. The fluorescence quantum yield of 3 is merely ∼6 % due to the observed symmetry-breaking charge separation (SB-CS), which turns to triplet state upon charge recombination. Interestingly, 3 could be fully transformed into 2 by simply adding a suitable amount of a 90° Pt(II)-based neutral triangle. Moreover, 2 tends to form discrete dimers both in crystal and solution states, but 3 does not show the property. Therefore, controlling geometrical arrangement of fluorophores through coordination-driven self-assembly could be taken as another effective way to tune their excited state relaxation pathways and construct high-performance optical molecular materials, which generally have to be prepared via organic synthesis.
Collapse
Affiliation(s)
- Xingmao Chang
- Key Laboratory of Applied Surface andColloid Chemistry, Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Zhaolong Wang
- Key Laboratory of Applied Surface andColloid Chemistry, Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Gang Wang
- Key Laboratory of Applied Surface andColloid Chemistry, Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface andColloid Chemistry, Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Simin Lin
- Key Laboratory of Applied Surface andColloid Chemistry, Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface andColloid Chemistry, Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
130
|
Vonhausen Y, Lohr A, Stolte M, Würthner F. Two-step anti-cooperative self-assembly process into defined π-stacked dye oligomers: insights into aggregation-induced enhanced emission. Chem Sci 2021; 12:12302-12314. [PMID: 34603660 PMCID: PMC8480337 DOI: 10.1039/d1sc03813c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022] Open
Abstract
Aggregation-induced emission enhancement (AIEE) phenomena received great popularity during the last decade but in most cases insights into the packing structure – fluorescence properties remained scarce. Here, an almost non-fluorescent merocyanine dye was equipped with large solubilizing substituents, which allowed the investigation of it's aggregation behaviour in unpolar solvents over a large concentration range (10−2 to 10−7 M). In depth analysis of the self-assembly process by concentration-dependent UV/Vis spectroscopy at different temperatures revealed a two-step anti-cooperative aggregation mechanism. In the first step a co-facially stacked dimer is formed driven by dipole–dipole interactions. In a second step these dimers self-assemble to give an oligomer stack consisting of about ten dyes. Concentration- and temperature-dependent UV/Vis spectroscopy provided insight into the thermodynamic parameters and allowed to identify conditions where either the monomer, the dimer or the decamer prevails. The centrosymmetric dimer structure could be proven by 2D NMR spectroscopy. For the larger decamer atomic force microscopy (AFM), diffusion ordered spectroscopy (DOSY) and vapour pressure osmometric (VPO) measurements consistently indicated that it is of small and defined size. Fluorescence, circular dichroism (CD) and circularly polarized luminescence (CPL) spectroscopy provided insights into the photofunctional properties of the dye aggregates. Starting from an essentially non-fluorescent monomer (ΦFl = 0.23%) a strong AIEE effect with excimer-type fluorescence (large Stokes shift, increased fluorescence lifetime) is observed upon formation of the dimer (ΦFl = 2.3%) and decamer (ΦFl = 4.5%) stack. This increase in fluorescence is accompanied for both aggregates by an aggregation-induced CPL enhancement with a strong increase of the glum from ∼0.001 for the dimer up to ∼0.011 for the higher aggregate. Analysis of the radiative and non-radiative decay rates corroborates the interpretation that the AIEE effect originates from a pronounced decrease of the non-radiative rate due to π–π-stacking induced rigidification that outmatches the effect of the reduced radiative rate that originates from the H-type exciton coupling in the co-facially stacked dyes. The self-assembly of a dipolar merocyanine into preferred dimers and small-sized chiral aggregates leads to enhanced emission due to a reduced non-radiative rate as well as amplified circular polarized luminescence.![]()
Collapse
Affiliation(s)
- Yvonne Vonhausen
- Institut für Organische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Andreas Lohr
- Institut für Organische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Matthias Stolte
- Institut für Organische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany .,Center for Nanosystems Chemistry (CNC), Bavarian Polymer Institute (BPI), Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany .,Center for Nanosystems Chemistry (CNC), Bavarian Polymer Institute (BPI), Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| |
Collapse
|
131
|
Alzola JM, Tcyrulnikov NA, Brown PJ, Marks TJ, Wasielewski MR, Young RM. Symmetry-Breaking Charge Separation in Phenylene-Bridged Perylenediimide Dimers. J Phys Chem A 2021; 125:7633-7643. [PMID: 34431674 DOI: 10.1021/acs.jpca.1c05100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Perylenediimides (PDIs) are important molecular building blocks that are being investigated for their applicability in optoelectronic technologies. Covalently linking multiple PDI acceptors at the 2,5,8,11 (headland) positions adjacent to the PDI carbonyl groups is reported to yield higher power conversion efficiencies in photovoltaic cells relative to PDI acceptors linked at the 1,6,7,12 (bay) positions. While the photophysical properties of PDIs linked via the bay positions have been investigated extensively, those linked at the headland positions have received far less attention. We showed previously that symmetry-breaking charge separation (SB-CS) in PDIs hold promise as a strategy for increasing photovoltaic efficiency. Here we use transient absorption and emission spectroscopies to investigate the competition between SB-CS, fluorescence, and internal conversion in three related PDI dimers linked at the headland positions with o-, m-, and p-phenylene moieties: o-PDI2, m-PDI2, and p-PDI2, respectively. It is found that o-PDI2 supports SB-CS yielding PDI•+-PDI•-, which is in equilibrium with the o-PDI2 first excited state in a polar solvent (CH2Cl2) while m-PDI2 and p-PDI2 exhibit accelerated internal conversion due to the motion of the linker along with subnanosecond intersystem crossing (ISC). Electronic coupling and structural dynamics are shown to play a significant role, with o-PDI2 being the only member of the series that exhibits significant through-bond interchromophore coupling. The pronounced o-PDI2 steric congestion prevents the free internal rotation that leads to rapid deactivation of the excited state in the other dimers.
Collapse
Affiliation(s)
- Joaquin M Alzola
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Nikolai A Tcyrulnikov
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Paige J Brown
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Tobin J Marks
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ryan M Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
132
|
Zhao X, O'Connor JP, Schultz JD, Bae YJ, Lin C, Young RM, Wasielewski MR. Temperature Tuning of Coherent Mixing between States Driving Singlet Fission in a Spiro-Fused Terrylenediimide Dimer. J Phys Chem B 2021; 125:6945-6954. [PMID: 34133180 DOI: 10.1021/acs.jpcb.1c02476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The excited-state dynamics of a spiro-fused terrylene-3,4:11,12-bis(dicarboximide) (TDI) dimer (sTDI2) in toluene and 2-methyltetrahydrofuran (mTHF) were investigated as a function of temperature using femtosecond- and nanosecond-transient absorption spectroscopy, as well as two-dimensional electronic spectroscopy. The spiro conjugation and the corresponding geometry of this compound guarantee a short intermonomer distance along with a partial orbital overlap between the orthogonal TDI π-electron systems, providing electronic coupling between the TDIs. Photoexcitation of sTDI2 in toluene, a low dielectric solvent, at 295 K, results in the ultrafast formation of a state composed of a coherent mixture of singlet 1(S1S0), multiexciton 1(T1T1), and charge-transfer (CT) electronic characters. This mixed species decays to decorrelated triplet states on the nanosecond timescale, completing the process of intramolecular singlet fission (SF) in sTDI2. Upon decreasing the temperature from 295 to 200 K, the contribution of the 1(T1T1) state to the mixed species decreases concurrently with an increase in the CT state character. We attribute this behavior to the variation in the vibrational energy level alignment between the states comprising the mixture due to changes in the temperature and hence the local dielectric environment. In contrast, photoexcitation of sTDI2 in more polar mTHF at 295 K results in the formation of a mixed singlet and CT state before undergoing symmetry-breaking charge separation, owing to the increased stabilization of the CT state in the medium. However, in glassy mTHF at 85 K, photoexcited sTDI2 exhibits discernible multiexciton character, comparable to that observed in toluene at 200 K, which we rationalize by the similarity of the dielectric constants under these two sets of conditions. These observations of mixed states of varying diabatic contributions over the range of experimental conditions show that the temperature and the static dielectric constant can directly control the composition of the electronically mixed excited state of sTDI2 and thus the fate of the SF process.
Collapse
Affiliation(s)
- Xingang Zhao
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - James P O'Connor
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Jonathan D Schultz
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Youn Jue Bae
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Chenjian Lin
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ryan M Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
133
|
Levine AM, He G, Bu G, Ramos P, Wu F, Soliman A, Serrano J, Pietraru D, Chan C, Batteas JD, Kowalczyk M, Jang SJ, Nannenga BL, Sfeir MY, Tsai EHR, Braunschweig AB. Efficient Free Triplet Generation Follows Singlet Fission in Diketo-pyrrolopyrrole Polymorphs with Goldilocks Coupling. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:12207-12213. [PMID: 34868444 PMCID: PMC8641251 DOI: 10.1021/acs.jpcc.1c02737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microcrystal electron diffraction, grazing incidence wide-angle scattering, and UV-Vis spectroscopy were used to determine the unit cell structure and the relative composition of dimethylated diketopyrrolopyrrole (MeDPP) H- and J-polymorphs within thin films subjected to vapor solvent annealing (VSA) for different times. Electronic structure and excited state deactivation pathways of the different polymorphs were examined by transient absorption spectroscopy, conductive probe atomic force microscopy, and molecular modeling. We find VSA initially converts amorphous films into mixtures of H- and J-polymorphs and promotes further conversion from H to J with longer VSA times. Though both polymorphs exhibit efficient SF to form coupled triplets, free triplet yields are higher in J-polymorph films compared to mixed films because coupling in J-aggregates is lower, and, in turn, more favorable for triplet decoupling.
Collapse
Affiliation(s)
- Andrew M. Levine
- Nanoscience Initiative, Advanced Science Research Center, Graduate Center, City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, NY 10065, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Guiying He
- Photonics Initiative, Advanced Science Research Center, Graduate Center, City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
- Department of Physics, Graduate Center, City University of New York, New York, NY 10016, USA
| | - Guanhong Bu
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Pablo Ramos
- Department of Chemistry and Biochemistry, Queens College, City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367, United States
| | - Fanglue Wu
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Aisha Soliman
- Nanoscience Initiative, Advanced Science Research Center, Graduate Center, City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, NY 10065, USA
| | - Jacqueline Serrano
- Nanoscience Initiative, Advanced Science Research Center, Graduate Center, City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, NY 10065, USA
| | - Dorian Pietraru
- Nanoscience Initiative, Advanced Science Research Center, Graduate Center, City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, NY 10065, USA
| | - Christopher Chan
- Nanoscience Initiative, Advanced Science Research Center, Graduate Center, City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
| | - James D. Batteas
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Marta Kowalczyk
- Department of Chemistry and Biochemistry, Queens College, City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367, United States
- Department of Natural Sciences, LaGuardia Community College, City University of New York, New York, NY 11101, USA
| | - Seogjoo J. Jang
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Department of Physics, Graduate Center, City University of New York, New York, NY 10016, USA
- Department of Chemistry and Biochemistry, Queens College, City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367, United States
| | - Brent L. Nannenga
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Matthew Y. Sfeir
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Photonics Initiative, Advanced Science Research Center, Graduate Center, City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
- Department of Physics, Graduate Center, City University of New York, New York, NY 10016, USA
| | - Esther H. R. Tsai
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Adam B. Braunschweig
- Nanoscience Initiative, Advanced Science Research Center, Graduate Center, City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, NY 10065, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
134
|
Hu X, Schulz A, Lindner JO, Grüne M, Bialas D, Würthner F. Folding and fluorescence enhancement with strong odd-even effect for a series of merocyanine dye oligomers. Chem Sci 2021; 12:8342-8352. [PMID: 34221315 PMCID: PMC8221066 DOI: 10.1039/d1sc01678d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A series of merocyanine (MC) oligomers with a varying number of chromophores from two to six has been synthesized via a peptide synthesis strategy. Solvent-dependent UV/vis spectroscopic studies reveal folding processes for the MC oligomers driven by strong dipole–dipole interactions resulting in well-defined π-stacks with antiparallel orientation of the dyes. Whilst even-numbered tetramer 4 and hexamer 6 only show partial folding into dimeric units, odd-numbered trimer 3 and pentamer 5 fold into π-stacks of three and five MC units upon decreasing solvent polarity. In-depth 2D NMR studies provided insight into the supramolecular structure. For trimer 3, an NMR structure could be generated revealing the presence of a well-defined triple π-stack in the folded state. Concomitant with folding, the fluorescence quantum yield is increased for all MC oligomers in comparison to the single chromophore. Based on radiative and non-radiative decay rates, this fluorescence enhancement can be attributed to the rigidification of the chromophores within the π-stacks that affords a pronounced decrease of the non-radiative decay rates. Theoretical investigations for the double and triple dye stacks based on time-dependent density functional theory (TD-DFT) calculations indicate for trimer 3 a pronounced mixing of Frenkel and charge transfer (CT) states. This leads to significant deviations from the predictions obtained by the molecular exciton theory which only accounts for the Coulomb interaction between the transition dipole moments of the chromophores. A series of merocyanine (MC) oligomers with a varying number of chromophores from two to six has been synthesized via a peptide synthesis strategy.![]()
Collapse
Affiliation(s)
- Xiaobo Hu
- Institut für Organische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Alexander Schulz
- Institut für Organische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Joachim O Lindner
- Center for Nanosystems Chemistry (CNC), Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Matthias Grüne
- Institut für Organische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - David Bialas
- Center for Nanosystems Chemistry (CNC), Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany.,Center for Nanosystems Chemistry (CNC), Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| |
Collapse
|
135
|
Roy P, Bressan G, Gretton J, Cammidge AN, Meech SR. Ultrafast Excimer Formation and Solvent Controlled Symmetry Breaking Charge Separation in the Excitonically Coupled Subphthalocyanine Dimer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Palas Roy
- School of Chemistry University of East Anglia Nowich NR4 7TJ UK
| | - Giovanni Bressan
- Department of Life Sciences Imperial College London London SW7 2BX UK
| | - Jacob Gretton
- School of Chemistry University of East Anglia Nowich NR4 7TJ UK
| | | | | |
Collapse
|
136
|
Chen J, Tang N, Zhou J, Wang L, Jiang N, Zheng N, Liu L, Xie Z. Coexistence of Parallel and Rotary Stackings in the Lamellar Crystals of a Perylene Bisimide Dyad for Temperature-Sensitive Bicomponent Emission. J Phys Chem Lett 2021; 12:3373-3378. [PMID: 33784108 DOI: 10.1021/acs.jpclett.1c00674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Coexistence of rotationally π-π stacked columns and discrete slip-stacked dimers of perylene bisimide (PBI) chromophores is revealed by single crystal X-ray diffraction in the lamellar crystal of a head-to-tail linked PBI dyad. The rotary π-π stacked columnar moieties show H-type spectral character with relatively higher excitation energy, while the discrete slip-stacked π-π dimers have J-type spectral behavior with lower excitation energy. The lamellar crystals show relatively low photoluminescence efficiency of 12% at room temperature, while this dramatically increases to ∼90% at low temperature (80 K). Both of the rotary and slip-stacked moieties are emissive, and the nonradiative energy transfer processes between them are suppressed at low temperature, ensuring the highly efficient excimer-like long-lived fluorescence.
Collapse
Affiliation(s)
- Jiehuan Chen
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Ningning Tang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jiadong Zhou
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Liangxuan Wang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Nianqiang Jiang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Nan Zheng
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Linlin Liu
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zengqi Xie
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
137
|
Hasobe T. Organic-Inorganic Hybrid Molecular Architectures Utilizing Self-assembled Monolayers for Singlet Fission and Light Energy Conversion. CHEM LETT 2021. [DOI: 10.1246/cl.200858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Taku Hasobe
- Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
138
|
Seetharaman S, Dukh M, Tabaczynski WA, Ou Z, Karr PA, Kadish KM, Pandey RK, D'Souza F. Meso-Biphenyl-Linked, Near- and Far-Infrared Emitting, Chlorin and Bacteriochlorin Dimers: Synthesis, Excitation Transfer, and Singlet Oxygen Production. Chempluschem 2021; 86:674-680. [PMID: 33881234 DOI: 10.1002/cplu.202100120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/30/2021] [Indexed: 12/18/2022]
Abstract
A series of meso-biphenyl linked chlorin and bacteriochlorin dimers, derived from naturally occurring chlorophyll (Chl-a) and bacteriochlorophyll (BChl-a) were synthesized in 32 % to 44 % yields and characterized, as photosynthetic antenna mimics, and a new class of singlet oxygen producing agents. The dimers are characterized by absorption, fluorescence, electrochemical, spectroelectrochemical and computational methods to evaluate their physico-chemical properties, and to identify ground and excited state interactions. Evidence of excited energy exchange among the chromophores in the dimer is derived from femtosecond transient absorption spectral studies. Rate constants for excitation hopping were in the order of 1011 s-1 , indicating occurrence of efficient processes. Nanosecond transient absorption studies confirmed relaxation of the singlet excited chlorin and bacteriochlorin dimers to their corresponding triplet states (3 Chl* and 3 Bchl*). As predicted by the established energy level diagrams, both 3 Chl* and 3 Bchl* are shown to be capable of producing singlet oxygen with appreciable quantum yields (ϕSO ∼0.3).
Collapse
Affiliation(s)
- Sairaman Seetharaman
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - Mykhaylo Dukh
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Walter A Tabaczynski
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Zhongping Ou
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Paul A Karr
- Department of Physical Sciences and Mathematics, Wayne State College, 1111 Main Street, Wayne, Nebraska, 68787, USA
| | - Karl M Kadish
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Ravindra K Pandey
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| |
Collapse
|
139
|
Roy P, Bressan G, Gretton J, Cammidge AN, Meech SR. Ultrafast Excimer Formation and Solvent Controlled Symmetry Breaking Charge Separation in the Excitonically Coupled Subphthalocyanine Dimer. Angew Chem Int Ed Engl 2021; 60:10568-10572. [PMID: 33606913 PMCID: PMC8251754 DOI: 10.1002/anie.202101572] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 11/18/2022]
Abstract
Knowledge of the factors controlling excited state dynamics in excitonically coupled dimers and higher aggregates is critical for understanding natural and artificial solar energy conversion. In this work, we report ultrafast solvent polarity dependent excited state dynamics of the structurally well‐defined subphthalocyanine dimer, μ‐OSubPc2. Stationary electronic spectra demonstrate strong exciton coupling in μ‐OSubPc2. Femtosecond transient absorption measurements reveal ultrafast excimer formation from the initially excited exciton, mediated by intramolecular structural evolution. In polar solvents the excimer state decays directly through symmetry breaking charge transfer to form a charge separated state. Charge separation occurs under control of solvent orientational relaxation.
Collapse
Affiliation(s)
- Palas Roy
- School of Chemistry, University of East Anglia, Nowich, NR4 7TJ, UK
| | - Giovanni Bressan
- Department of Life Sciences, Imperial College London, London, SW7 2BX, UK
| | - Jacob Gretton
- School of Chemistry, University of East Anglia, Nowich, NR4 7TJ, UK
| | | | - Stephen R Meech
- School of Chemistry, University of East Anglia, Nowich, NR4 7TJ, UK
| |
Collapse
|
140
|
Canola S, Bagnara G, Dai Y, Ricci G, Calzolari A, Negri F. Addressing the Frenkel and charge transfer character of exciton states with a model Hamiltonian based on dimer calculations: Application to large aggregates of perylene bisimide. J Chem Phys 2021; 154:124101. [PMID: 33810656 DOI: 10.1063/5.0045913] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To understand the influence of interchromophoric arrangements on photo-induced processes and optical properties of aggregates, it is fundamental to assess the contribution of local excitations [charge transfer (CT) and Frenkel (FE)] to exciton states. Here, we apply a general procedure to analyze the adiabatic exciton states derived from time-dependent density functional theory calculations, in terms of diabatic states chosen to coincide with local excitations within a restricted orbital space. In parallel, motivated by the need of cost-effective approaches to afford the study of larger aggregates, we propose to build a model Hamiltonian based on calculations carried out on dimers composing the aggregate. Both approaches are applied to study excitation energy profiles and CT character modulation induced by interchromophore rearrangements in perylene bisimide aggregates up to a tetramer. The dimer-based approach closely reproduces the results of full-aggregate calculations, and an analysis in terms of symmetry-adapted diabatic states discloses the effects of CT/FE interactions on the interchange of the H-/J-character for small longitudinal shifts of the chromophores.
Collapse
Affiliation(s)
- Sofia Canola
- Università di Bologna, Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi, 2, 40126 Bologna, Italy
| | - Giuseppe Bagnara
- Università di Bologna, Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi, 2, 40126 Bologna, Italy
| | - Yasi Dai
- Università di Bologna, Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi, 2, 40126 Bologna, Italy
| | - Gaetano Ricci
- Università di Bologna, Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi, 2, 40126 Bologna, Italy
| | - Alessandro Calzolari
- Università di Bologna, Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi, 2, 40126 Bologna, Italy
| | - Fabrizia Negri
- Università di Bologna, Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi, 2, 40126 Bologna, Italy
| |
Collapse
|
141
|
Bialas D, Kirchner E, Röhr MIS, Würthner F. Perspectives in Dye Chemistry: A Rational Approach toward Functional Materials by Understanding the Aggregate State. J Am Chem Soc 2021; 143:4500-4518. [DOI: 10.1021/jacs.0c13245] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- David Bialas
- Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Eva Kirchner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Merle I. S. Röhr
- Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Frank Würthner
- Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
142
|
Shibasaki Y, Suenobu T, Nakagawa T, Katoh R. Effect of Deuteration on Relaxation Dynamics of the Perylene Excimer Studied by Subnanosecond Transient Absorption Spectroscopy. J Phys Chem A 2021; 125:1359-1366. [PMID: 33541078 DOI: 10.1021/acs.jpca.0c10683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We studied the effect of deuteration on the relaxation dynamics of the excimer of perylene in solution using subnanosecond time-resolved transient absorption spectroscopy based on the randomly interleaved pulse-train method. We found that the deuterated perylene excimer in solution had a longer lifetime than the undeuterated excimer but that deuteration had a little effect on the ground-state and transient absorption spectra of the excimer, suggesting that deuteration altered the relaxation dynamics by inducing small changes in vibrational properties. To confirm the origin of the deuteration effect, we quantitatively analyzed the kinetics of transient absorption decay, including the decay of triplet-triplet absorption. In addition, we evaluated the effects of temperature on the lifetime of the excimers. On the basis of these results, we concluded that the rate of internal conversion was suppressed by deuteration. By comparing our results with previously reported results on the effect of deuteration on the fluorescence properties of crystalline perylene, we proposed a model that may explain the effect of deuteration on the lifetime of the perylene excimer in solution.
Collapse
Affiliation(s)
- Yuuya Shibasaki
- College of Engineering, Nihon University, Koriyama, Fukushima 963-8642, Japan
| | - Tomoyoshi Suenobu
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | | | - Ryuzi Katoh
- College of Engineering, Nihon University, Koriyama, Fukushima 963-8642, Japan
| |
Collapse
|
143
|
Schultz JD, Shin JY, Chen M, O'Connor JP, Young RM, Ratner MA, Wasielewski MR. Influence of Vibronic Coupling on Ultrafast Singlet Fission in a Linear Terrylenediimide Dimer. J Am Chem Soc 2021; 143:2049-2058. [PMID: 33464054 DOI: 10.1021/jacs.0c12201] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Singlet fission (SF) is a photophysical process capable of boosting the efficiency of solar cells. Recent experimental investigations into the mechanism of SF provide evidence for coherent mixing between the singlet, triplet, and charge transfer basis states. Up until now, this interpretation has largely focused on electronic interactions; however, nuclear motions resulting in vibronic coupling have been suggested to support rapid and efficient SF in organic chromophore assemblies. Further information about the complex interactions between vibronic excited states is needed to understand the potential role of this coupling in SF. Here, we report mixed singlet and correlated triplet pair states giving rise to sub-50 fs SF in a terrylene-3,4:11,12-bis(dicarboximide) (TDI) dimer in which the two TDI molecules are covalently linked by a direct N-N connection at one of their imide positions, leading to a linear dimer with perpendicular TDI π systems. We observe the transfer of low-frequency coherent wavepackets between the initial predominantly singlet states to the product triplet-dominated states. This implies a non-negligible dependence of SF on nonadiabatic coupling in this dimer. We interpret our experimental results in the framework of a modified Holstein Hamiltonian, which predicts that vibronic interactions between low-frequency singlet modes and high-frequency correlated triplet pair motions lead to mixing of the pure basis states. These results highlight how nonadiabatic mixing can shape the complex potential energy landscape underlying ultrafast SF.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Jae Yoon Shin
- Department of Advanced Materials Chemistry, Korea University, 30019 Sejong-ro, Sejong, South Korea
| | - Michelle Chen
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - James P O'Connor
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ryan M Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Mark A Ratner
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
144
|
Abstract
Singlet fission (SF) is a photophysical downconversion pathway, in which a singlet excitation transforms into two triplet excited states. As such, it constitutes an exciton multiplication generation process, which is currently at the focal point for future integration into solar energy conversion devices. Beyond this, various other exciting applications were proposed, including quantum cryptography or organic light emitting diodes. Also, the mechanistic understanding evolved rapidly during the last year. Unfortunately, the number of suitable SF-chromophores is still limited. This is per se problematic, considering the wide range of envisaged applicability. With that in mind, we emphasize uncommon SF-scaffolds and outline requirements as well as strategies to expand the chromophore pool of SF-materials.
Collapse
Affiliation(s)
- Tobias Ullrich
- Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Department für Chemie und Pharmazie, Egerlandstr. 1-3, 91058 Erlangen, Germany.
| | | | | |
Collapse
|
145
|
Hempe M, Harrison AK, Ward JS, Batsanov AS, Fox MA, Dias FB, Bryce MR. Cyclophane Molecules Exhibiting Thermally Activated Delayed Fluorescence: Linking Donor Units to Influence Molecular Conformation. J Org Chem 2021; 86:429-445. [PMID: 33251794 DOI: 10.1021/acs.joc.0c02174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The synthetic methodology to covalently link donors to form cyclophane-based thermally activated delayed fluorescence (TADF) molecules is presented. These are the first reported examples of TADF cyclophanes with "electronically innocent" bridges between the donor units. Using a phenothiazine-dibenzothiophene-S,S-dioxide donor-acceptor-donor (D-A-D) system, the two phenothiazine (PTZ) donor units were linked by three different strategies: (i) ester condensation, (ii) ether synthesis, and (iii) ring closing metathesis. Detailed X-ray crystallographic, photophysical and computational analyses show that the cyclophane molecular architecture alters the conformational distribution of the PTZ units, while retaining a certain degree of rotational freedom of the intersegmental D-A axes that is crucial for efficient TADF. Despite their different structures, the cyclophanes and their nonbridged precursors have similar photophysical properties since they emit through similar excited states resulting from the presence of the equatorial conformation of their PTZ donor segments. In particular, the axial-axial conformations, known to be detrimental to the TADF process, are suppressed by linking the PTZ units to form a cyclophane. The work establishes a versatile linking strategy that could be used in further functionalization while retaining the excellent photophysical properties of the parent D-A-D system.
Collapse
Affiliation(s)
- Matthias Hempe
- Chemistry Department, Durham University, South Road, Durham DH1 3LE, U.K
| | | | - Jonathan S Ward
- Chemistry Department, Durham University, South Road, Durham DH1 3LE, U.K
| | - Andrei S Batsanov
- Chemistry Department, Durham University, South Road, Durham DH1 3LE, U.K
| | - Mark A Fox
- Chemistry Department, Durham University, South Road, Durham DH1 3LE, U.K
| | - Fernando B Dias
- Physics Department, Durham University, South Road, Durham DH1 3LE, U.K
| | - Martin R Bryce
- Chemistry Department, Durham University, South Road, Durham DH1 3LE, U.K
| |
Collapse
|
146
|
Taffet EJ, Beljonne D, Scholes GD. Overlap-Driven Splitting of Triplet Pairs in Singlet Fission. J Am Chem Soc 2020; 142:20040-20047. [PMID: 33190497 DOI: 10.1021/jacs.0c09276] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We analyze correlated-triplet-pair (TT) singlet-fission intermediates toward two-triplet separation (T...T) using spin-state-averaged density matrix renormalization group electronic-structure calculations. Specifically, we compare the triplet-triplet exchange (J) for tetracene dimers, bipentacene, a subunit of the benzodithiophene-thiophene dioxide polymer, and a carotenoid (neurosporene). Exchange-split energy gaps of J and 3J separate a singlet from a triplet and a singlet from a quintet, respectively. We draw two new insights: (a) the canonical tetracene singlet-fission unit cell supports precisely three low-lying TT intermediates with order-of-magnitude differences in J, and (b) the separable TT intermediate in carotenoids emanates from a pair of excitations to the second triplet state. Therefore, unlike with tetracenes, carotenoid fission requires above-gap excitations. In all cases, the distinguishability of the molecular triplets-that is, the extent of orbital overlap-determines the splitting within the spin manifold of TT states. Consequently, J represents a spectroscopic observable that distnguishes the resemblance between TT intermediates and the T...T product.
Collapse
Affiliation(s)
- Elliot J Taffet
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - David Beljonne
- Department of Chemistry, University of Mons, 7000 Mons, Belgium
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
147
|
Ramirez CE, Chen S, Powers-Riggs NE, Schlesinger I, Young RM, Wasielewski MR. Symmetry-Breaking Charge Separation in the Solid State: Tetra(phenoxy)perylenediimide Polycrystalline Films. J Am Chem Soc 2020; 142:18243-18250. [DOI: 10.1021/jacs.0c09185] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carolyn E. Ramirez
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3113, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Su Chen
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Natalia E. Powers-Riggs
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Itai Schlesinger
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ryan M. Young
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R. Wasielewski
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
148
|
Bae YJ, Shimizu D, Schultz JD, Kang G, Zhou J, Schatz GC, Osuka A, Wasielewski MR. Balancing Charge Transfer and Frenkel Exciton Coupling Leads to Excimer Formation in Molecular Dimers: Implications for Singlet Fission. J Phys Chem A 2020; 124:8478-8487. [DOI: 10.1021/acs.jpca.0c07646] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Youn Jue Bae
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Daiki Shimizu
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Jonathan D. Schultz
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Gyeongwon Kang
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Jiawang Zhou
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - George C. Schatz
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Michael R. Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|